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Abstract In the Minimal Supersymmetric Standard Model
(MSSM) the mass of the lightest neutral Higgs boson is deter-
mined by the supersymmetric parameters. In the mhMSSM
the precisely measured Higgs boson replaces the trilinear
coupling At as input parameter. Expressions are derived to
extract At in a semi-analytical form as a function of the light
Higgs boson (pole) mass. An algorithm is developed and
implemented at two-loop precision, generalizable to higher
orders, to perform this inversion consistently. The result of
the algorithm, implemented in the SuSpect spectrum calcu-
lator, is illustrated on a parameter set compatible with LHC
measurements.

1 Introduction

In the Minimal Supersymmetric Standard Model (MSSM)
the scalar boson discovered by ATLAS and CMS [1,2] is
identified with the lightest neutral Higgs boson of the model.
Its mass has been determined to be 125.10 GeV with a pre-
cision of 0.14 GeV when combining the measurements of
ATLAS and CMS [3–6].

Given the precision of the measurement it is tempting to
express model parameters of the MSSM as a function of
this measurement, as it is customarily done for the fermion
masses. This choice is also similar to e.g, the almost univer-
sally adopted convention of expressing electroweak BSM
model parameters as functions of the Z-boson pole mass
input,mZ , after its precise determination at LEP1 in the early
1990s [7]. This procedure was analytically nontrivial beyond
tree-level as it necessarily involved the radiative corrections
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b e-mail: gilbert.moultaka@umontpellier.fr (corresponding author)
c e-mail: Dirk.Zerwas@in2p3.fr

contributing to the Z-boson pole mass (for the state of the
art see [8] and references therein). In the MSSM, the rela-
tion of the lightest Higgs boson mass mh to the basic model
parameters is even more involved when including the radia-
tive corrections.

The inversion of relations between parameters of a model
and a physical observable is facilitated by approximations
which are more easily amenable to such a procedure. In
the MSSM this approach has been studied in the gaugino-
Higgsino sector [9–11] and in the Higgs sector [11,12]. By
construction the precision of the approach depends on the
precision of the approximation which has to be compared
to the precision of the experimental measurement. Thus the
development of an algorithm to cope with the highest avail-
able precision is developed in this paper.

There is a second motivation for the replacement of the
model parameter. If a full exploration of the MSSM parame-
ter space is performed, a large fraction of the parameter sets
studied will not predict a lightest neutral Higgs boson mass
in agreement with the experimental measurement. Using mh

as parameter has the potential to lead to a more efficient
exploration of the MSSM.

In the following the MSSM with mh as parameter is
referred to as mhMSSM to differentiate the model from the
standard MSSM. It is well known that mh depends non-
trivially and strongly on the trilinear coupling At as well
as on the third generation squark sector soft breaking masses
via its leading radiative corrections. Because of the At ↔ mh

connection, it is natural to choose to develop the inversion
with At replaced bymh as model parameter in themhMSSM.
The study is carried out within the CP-conserving version of
the MSSM where At is real-valued, and relies on the fixed-
order loop approximations. We will comment on departure
from these assumptions towards the end of the paper.
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Inverting a relationship between two parameters can be
performed in multiple ways. A brute force approach would be
to calculate mh as function of all MSSM parameters as well
as their SM inputs, taking into account the experimental and
systematic errors. This is time consuming and inefficient as in
most of the parameter space the predictedmh is too light with
respect to the experimental measurement. Machine Learning
algorithms are more efficient but need extensive training and
validation. For each update of the calculations the full pro-
cedure of determination and validation has to be performed
again. For these reasons an algorithmically simple procedure,
the fixed point algorithm, is used. It has the advantage that
its preparation is analytical work, i.e., an appropriate func-
tion has to be derived and the convergence criteria have to be
fulfilled. The guiding principle behind this choice is that the
additional calculations should add minimal overhead to the
calculation of the spectrum.

The paper is organized as follows. In Sect. 2 the basic
generic expressions for the scalar Higgs boson masses in
the MSSM, including higher order radiative corrections, are
recalled and the notations are defined. The MSSM parameter
set to serve as test case for our general approach is defined.
In Sect. 3 the inversion At (mh) is first illustrated using an
analytical approximation at one-loop level, whose purpose
is to serve as first guess within a subsequent more elaborate
construction. Then the exact full one-loop expression is given
together with a description of the strategy for the inversion
algorithm, as well as the consistent implementation of the
dominant two-loop contributions. In Sect. 4 the full algorithm
is assembled by combining the analytical approximation with
the full one-loop and dominant two-loop calculations. The
results of its application to the parameter set are discussed,
as well as possible extensions. We conclude in Sect. 5 and
provide technical material in the appendices.

2 Setting up the MSSM Higgs mass

In this section we briefly recall the main content of the fixed-
order (diagrammatic) calculation of mh . Then we define a
parameter set to illustrate numerical results.

2.1 Calculation of the Higgs boson mass

In the standard ‘top-down’ procedure one assumes that all the
SM and MSSM parameters are taken as input before deter-
mining the light (and heavy) CP-even Higgs boson masses
through the diagonalization of the corresponding (momen-
tum dependent) squared mass matrix. The latter has the fol-

lowing generic form:

M2
s (p

2) =
(
m2

11 − �11(p2) + t1
v1

m2
12 − �12(p2)

m2
12 − �12(p2) m2

22 − �22(p2) + t2
v2

)

(1)

where

m2
11 = m2

Z cos2 β + m2
A sin2 β, (2)

m2
22 = m2

Z sin2 β + m2
A cos2 β, (3)

m2
12 = −1

2
(m2

Z + m2
A) sin 2β. (4)

Here m2
Z and m2

A denote the running Z -boson and CP-
odd Higgs boson squared masses, β the angle defined by
tan β = v2/v1 where v1, v2 are the two Higgs vacuum expec-
tation values, and �i j (p2) and ti designate respectively the
renormalized self-energy and tadpole loop contributions, for-
mally to arbitrary orders in perturbation theory. In practice
we rely on the DR renormalization scheme. For reviews on
radiative corrections to mh in the MSSM and original refer-
ences see e.g. [13,14], and [15] for a recent up-to-date review.

In Eq. (1) the tree-level contributions involve mA eval-
uated at a given electroweak symmetry breaking (EWSB)
scale QEWSB , and the MSSM parameter tan β. If we ignore
momentarily the complication that the running parameters
in the expressions above have actually a non-trivial implicit
dependence on the other MSSM parameters, the “tree-level”
masses of the two CP-even MSSM Higgs states and their
mixings are described by only these two unknown MSSM
parameters as well as mZ .

Beyond the tree-level the squared mass matrix depends on
the external squared momentum p2 through the self-energies,
as shown in Eq. (1). The actual pole masses, mh and mH , are
then obtained by determining the two solutions p2 = p2

h and
p2 = p2

H to the equation

det
(
p21 − M2

s (p
2)

)
= 0, (5)

and taking mh,H =
√

Re(p2
h,H ). Obviously, the loop contri-

butions in M2
s (p

2) depend also on the chosen (DR) renor-
malization scale.

In this paper we focus on the lighter CP-even Higgs
with mass mh . The self-energies and tadpoles contained in
M2

s (p
2) have been known to one-loop order exactly since

the 1990s [16–19], as well as the QCD [20,21] and other
dominant two-loop corrections in the on-shell scheme [22–
24] or in the DR scheme [25–33]. The (almost) complete
two-loop contributions are also available [34–37], as well as
the dominant higher order contributions [38–41]. These have
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been included in some analyses (see [15] for details). In prac-
tice, the determination of the pole mass mh is achieved by
iterating on its implicit expression Eq. (5), until a sufficient
accuracy is reached.

Let us now recall some important features of the scalar
sector parameter relationship that will be relevant for our
construction. Depending on the phenomenological context,
mA may be either an input or a derived quantity. In the first
case, typical for low-energy model-independent applications,
mA can be a direct input at a given EWSB scale QEWSB , or
inferred from the pole mass mA taken as input. In the second
case, typical for top-down approaches, it is obtained from the
Supersymmetry (SUSY) soft-breaking running Higgs mass
parameters mHu and mHd , evolved by the renormalization
group equations (RGE) down to a scale QEWSB where the
EWSB constraints are imposed:

m2
A(QEWSB) = 1

cos 2β

(
m̂2

Hu
− m̂2

Hd

)
− m2

Z , (6)

μ2(QEWSB) = 1

2

((
m̂2

Hu
tan β − m̂2

Hd
cot β

)
× tan 2β − m2

Z

)
. (7)

Here μ denotes the running supersymmetric Higgs mixing
parameter, and m̂2

Hi
≡ m2

Hi
− ti/vi .

The self-energies and tadpole loop contributions in Eq. (1)
depend implicitly on all MSSM parameters through their
sensitivity to the couplings and masses of (s)particles enter-
ing the loops. In particular, the dominant radiative correc-
tion originates from the top quark mass mt as well as the
stop masses and mixing, mt̃i , Xt ≡ At − μ/ tan β. A fur-
ther implicit dependence on these parameters occurs when
Eqs. (6) and (7) are imposed. This will be instrumental for
the identification of the functional dependence of mh on the
trilinear stop coupling At , in order to set up an efficient inver-
sion algorithm leading to At (mh), i.e. in the mhMSSM.

2.2 Stop Cliff

In order to illustrate the general procedure with a concrete
example, an MSSM benchmark parameter set is used in the
study. The parameters are listed in Table 1.

The EWSB scale is fixed as suggested in [42]. The numer-
ical value chosen is close to the geometric mean of the top
squark masses mt̃1,mt̃2 . In the following we will use as input
parameter either At in the MSSM or alternatively mh in the
mhMSSM. Many parameters of the table have little influence
on the value of mh . They are set to values which are suffi-
ciently large to evade the lower bounds on supersymmetric
particle masses determined at the LHC [43–47].

The value of M1 is chosen to obtain a dominantly Bino
LSP χ◦

1 . Of the two soft breaking masses mq̃3L is much

Table 1 The Stop Cliff set of MSSM parameters is given. The scale
dependent parameters are defined at the EWSB scale with the exception
of tan β which is defined at the Z boson scale. The resulting masses of
the Higgs, lightest stop and LSP are listed as well

EW 2.0 TeV

m2
Hd

3.65740418 TeV2

m2
Hu

−0.213361994 TeV2

sign(μ) +
At 3.610 TeV

mt̃R 1.27 TeV

mq̃3L 3 TeV

M1 300 GeV

M2 2 TeV

M3 3 TeV

Ab, Aτ 0 GeV

tan β 10

mẽL = mμ̃L = m τ̃L = mẽR =
mμ̃R = m τ̃R

2 TeV

mq̃1L = mq̃2L = mũR = mc̃R =
md̃R

= ms̃R = mb̃R

3 TeV

mh 125.012 GeV

mt̃1 1306 GeV

mχ̃◦
1

294 GeV

greater than mt̃R , therefore the lightest top squark is essen-
tially of type R. mt̃R dominates the determination of its mass
as the mixing angle is small. The resulting masses of the
lightest top squark and the LSP are shown in Table 1 as well.
The top squark mass of 1.3 TeV was chosen to be close to the
exclusion bounds determined at the LHC by ATLAS [48] and
CMS [49]. We will refer to the benchmark point of Table 1
as the Stop Cliff.

In order to accurately compare the mhMSSM to the
MSSM determination, we have first adjusted At such that
mh(At ) is driven to its experimental value. The resulting mh

values are rounded to MeV. This is two orders of magnitude
more precise than the current experimental precision.

3 From the Higgs boson mass to the trilinear stop
coupling

The dependence of mh on At is non-trivial. First a simple
well-known approximation will be studied, followed by a full
one-loop expression derivation. Finally the two-loop contri-
butions will be included.

The strategy to determine At (mh) relies on identifying
first the algebraic dominant dependencies on At at the given
perturbative order or approximation. Then either the approx-
imation is solved for At or the resulting equation at given
order is transformed into a fixed-point problem. The latter,
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via the intrinsically iterative structure of the determination,
will account also for the residual non-algebraic dependen-
cies, leading to the exact determination of At (mh).

3.1 Approximate one-loop inversion

Several approximate expressions have been developed in
the past for the dominant radiative corrections to mh in the
MSSM, ranging from simple to sophisticated [50–57]. While
the latter cannot compete with the full one-loop plus two-loop
calculations available nowadays, some of the approximations
including dominant two-loop contributions can be rather pre-
cise, depending on the considered MSSM parameter range.
In our construction there is no need to rely on the most elabo-
rate approximations. The specific expression that we will use
is the well-known one originally derived in [53,54], see also
[56], obtained from considering only the dominant top and
stop contributions to the one-loop MSSM effective poten-
tial, and using renormalization group properties to resum the
leading logarithms of decoupled “heavy” stops (relative to
∼ mt ):

m2
h = m2

h + 3g2
2m

4
t

8π2m2
W

[
ln

(
M2

S

m2
t

)
+ X2

t

M2
S

− X4
t

12M4
S

]
, (8)

with the noteworthy quartic and quadratic dependencies on
the stop mixing parameter,

Xt ≡ At − μ cot β. (9)

In Eq. (8), mh is the (running) tree-level Higgs mass

m2
h = 1

2

[
m2

Z+m2
A−

√
(m2

A − m2
Z )2+4m2

Zm
2
A sin2(2β)

]
,

(10)

mt the running top mass, g2 the running SU(2) gauge cou-
pling, and tan β the running vev ratio, and we define

M2
S =

√
(m2

q̃3L
+ (

1

2
− 2

3
s2
W )m2

Z cos 2β + m2
t )

·
√

(m2
t̃R

+ 2

3
s2
Wm2

Z cos 2β + m2
t ) (11)

where m2
q̃3L

and m2
t̃R

are the running soft SUSY-breaking
parameters of the third generation associated to the left dou-
blet and the stop singlet.

We choose to evaluate all the running quantities in Eq. (8)
at the EWSB scale QEWSB � (mt̃1mt̃2)

1/2, including mt .
While this choice formt , and the definition of MS in Eq. (11),
are somewhat at variance with the literature, we emphasize
here that we seek a sufficiently accurate but simple expres-
sion whose sole purpose is to serve as a first guess for our
genuine algorithm, the latter giving consistently a (perturba-
tively) “exact” At (mh). To put things in perspective, let us
enumerate some important features related to Eq. (8), refer-
ring to [53–56] for details:

• Strictly speaking, Eq. (8) is valid for large tan β, neglect-
ing O(g4

i ) terms, and in the limit MS � mt as an expan-

sion in |mt Xt |
M2

S
. In particular, among other necessary steps

[53] in the derivation of Eq. (8) from the MSSM effective
potential, the X4

t term arises only after expanding to sec-
ond order in X2

t the terms with logarithmic dependence
in the stop masses, lnm2

t̃i
� ln(M2

S ±mt Xt ) (in the limit

MS �
√
m2

q̃3L
+ m2

t �
√
m2

t̃R
+ m2

t ). This approxima-

tion was thus a priori expected to be valid only for rather
moderate |Xt/MS|, large tan β and for mA � mZ , but
turned out to be reasonably good in an extended range.

• In [53–56], the D-terms ∝ mZ in Eq. (11) were accord-
ingly neglected, moreover, universal soft masses,mq̃3L =
mt̃R � Msusy , were also assumed for simplicity. Actually
in the effective field theory (EFT) framework appropri-
ate to derive Eq. (8), MS is not very precisely defined
as long as it is identified as the scale at which the top
squarks are decoupled, and the matching to the EFT is
done: MS is assumed in the literature to be of order the
average stop masses. In a more refined treatment (or to
account for mt̃1 	 mt̃2 ) one would need to decouple the
two stop masses separately, which is beyond the scope
of the approximation Eq. (8). Our slightly different defi-
nition in Eq. (11) makes minor differences, the important
practical feature for our purpose being that MS in Eq. (11)
does not involve an extra dependence on Xt .

• The scale Qt at which the running top mass mt (Qt ) is
evaluated in Eq. (8) is quite relevant due to the m4

t depen-
dence. While the EFT one-loop calculation in [53,54]
involves mt (mt ), in [55] it was shown that the leading
(EFT) two-loop contributions are essentially absorbed
by the one-loop expression Eq. (8), if setting mt (Qt ≡
(mtMS)

1/2) andmt (Qt ≡ MS), respectively for the term
∼ ln M2

S/m
2
t and mixing terms ∼ mt Xt . Given that we

do not seek the best possible approximation, the choice
of a (unique) EWSB scale QEWSB � (mt̃1mt̃2)

1/2 ∼ MS

for all running parameters (or any fixed scale sufficiently
close to the latter, as often conveniently chosen in Sus-
pect and similar codes [58]) appears to be a reasonable
compromise.
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Fig. 1 The prediction of mh at one- and two-loop precision as well as
for the approximate one-loop is shown as function of At together with
the measured mass

• Equation (8) can also be derived from the diagrammati-
cally obtained �i j (0) self-energies and ti tadpoles, pro-
vided one carefully identifies [56] approximations at the
same level as described above.

There exists several refinements of Eq. (8), e.g. including
sbottom [55], stau and QCD leading effects [57]. In the fol-
lowing we stick to Eq. (8), referring to it as approximate
one-loop whose simplicity is important for our construction,
as explained next.

In order to determine At as a function of the “physical”
mass mh , Eq. (8) is solved as being a quadratic equation in
X2
t .
The procedure captures an essential feature of the inver-

sion for At : in principle there are two X2
t solutions which,

when real-valued and positive, lead to up to four different At

solutions. This well-known feature is illustrated in Fig. 1
where we show the mh prediction for the full one-loop,
two-loop and the approximate one-loop calculations. For the
mh(At ) full one-loop and two-loop results, At was varied
and for each At the EWSB minimisation was performed to
derive the running mass of the CP-odd Higgs boson and the
μ parameter. All other parameters were fixed to their cliff
point values. For the approximate one-loop, the coefficients
of Eq. (8) were calculated for the cliff point, thus fixing m2

A
and μ and varying only At in the square root of Eq. (8) shown
in the figure. For the measured Higgs boson there are four
intersections with the prediction. The third intersection (from
left to right) with the two-loop prediction is consistent with
the At cliff point value of 3.61 TeV.

We turn now to the inverse approach of determining At

from Eq. (8) when the measured mh is taken as input. The
At determination is illustrated in Table 2. Four solutions are
determined for At as expected. The third solution s3 corre-
sponds to the nominal solution: the cliff point. In each one

Table 2 The result of the At
determination from mh using
Eq. (8) is shown. s3 corresponds
to the nominal solution: the cliff
point

s1 At [TeV] −5.44

s2 At [TeV] −3.61

s3 At [TeV] 2.87

s4 At [TeV] 6.36

of the solutions m2
A and μ are those corresponding to the

intersection of the two-loop Higgs mass with the measured
mh .

For the nominal At in s3 Eq. (8) leads to a Higgs mass
larger than the two-loop Higgs mass prediction (see Fig. 1).
This is compensated by an At value smaller than the nominal
one: 2.87 TeV instead of 3.61 TeV. The use of the measured
mh in the calculation therefore inevitably leads to a shift in
At . Its calculated value is within 25% of the nominal value,
a clear improvement compared to a blind guess. At the same
time, it clearly illustrates that an accurate At (mh) determi-
nation requires a more elaborate construction as compared
to Eq. (8), which we will describe next.

3.2 Full one-loop: the HiggsMolar function

For the full one-loop inversion the starting point is the (for-
mally exact) Eq. (5) which we rewrite here as an essentially
quadratic equation in the CP-even Higgs squared masses,

m4
h,H − m2

h,H

(
(M2

s )11(p
2) + (M2

s )22(p
2)

)
+(M2

s )11(p
2)(M2

s )22(p
2)

−
(
(M2

s )12(p
2)

)2 |p2=m2
h,H

= 0, (12)

of which m2
h corresponds to the lighter mass solution.

Here (M2
s )i j (p

2) denotes the real parts of the matrix ele-
ment, and the solutions p2 = m2

h,H are real-valued.1 The

(M2
s )i j (p

2)’s extracted from Eq. (1) include perturbatively
complete loop corrections where the full one-loop Higgs
boson self-energies, �i j , and tadpoles ti are taken from [19].
In the DR scheme these expressions include contributions
from all (s)particles (running) masses, resulting in a highly
nonlinear dependence on At from the stop sector. In particular
the finite part of the one-loop scalar function A0, occurring
in the tadpoles and self-energies, has a rather involved At

1 Since the matrix elements of (M2
s )(p

2) develop imaginary parts, the
squared pole masses are, strictly speaking, given by the real parts of the
two solutions of Eq. (5). In practice, though, neglecting the imaginary
parts in the equation itself is a very good approximation for mh , since
the induced relative error on its estimate (of order �h

mh
with �h the total

width), is negligibly small compared to other (higher order) theoretical
uncertainties.
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dependence when its argument is the stop mass:

A0(mt̃i ) = m2
t̃i

(
1 − ln

(
m2

t̃i

Q2

))
(13)

where Q is the DR-scheme renormalization scale, and where
from the stop sector diagonalization, the DR-scheme running
stop masses can be written as

m2
t̃1,2

= 1

2

(
M2 ∓

√
as A2

t + bs At + cs

)
, (14)

where

M2 = m2
q̃3L

+ m2
t̃R

+ 2m2
t + 1

2
m2

Z cos 2β,

as = 4m2
t ,

bs = −8m2
t μ cot β,

cs =
(
m2

q̃3L
− m2

t̃R
+

(
1

2
− 4

3
s2
W

)
m2

Z cos 2β

)2

+4m2
t μ

2 cot2 β, (15)

are At independent.2 The strategy is to rewrite Eq. (12) as an
equation for At by extracting from Eq. (1) the explicit poly-
nomial At dependencies or “power counting” within each
�i j and ti . On close inspection of the various contributions
in e.g. [19] we identify:

1. terms depending linearly on At (with coefficients iden-
tified by a superscript ‘1’), originating from the sk-t̃i -t̃ j
couplings, gs2 t̃1 t̃1 , gs2 t̃2 t̃2 , gs2 t̃1 t̃2 which are given by

gs2 t̃1 t̃1 = c2
t gs2 t̃L t̃L + 2ct st gs2 t̃L t̃R + s2

t gs2 t̃R t̃R ,

gs2 t̃2 t̃2 = s2
t gs2 t̃L t̃L − 2ct st gs2 t̃L t̃R + c2

t gs2 t̃R t̃R ,

gs2 t̃1 t̃2 = st ct (gs2 t̃R t̃R − gs2 t̃L t̃L ) + (c2
t − s2

t ) gs2 t̃L t̃R ,

gs2 t̃L t̃R = yt√
2
At ,

(16)

with yt the top quark Yukawa coupling, st ≡ sin θ̃t , ct ≡
cos θ̃t , where θ̃t denotes the stop mixing angle, t̃1, t̃2 are
the stop mass eigenstates, t̃L , t̃R the gauge eigenstates, and
sk are the neutral scalar states in the basis corresponding to
Eq. (1). Note that gs2 t̃R t̃R , gs2 t̃L t̃L do not depend explicitly
on At , their expressions can be found e.g. in [19] (denoted
by λs2ũL ,RũL ,R , λs2ũL ũ R therein).

2 Note that M2 gives the accurate combination entering the exact one-
loop expressions considered here. M2

S in Eq. (11) is in general obviously
unequal to 1

2 M
2, unless m2

q̃3L
= m2

t̃R
and the D-terms are neglected.

We use it in Eq. (8) as a practical approximation for mh .

2. terms depending quadratically on At (with coefficients
identified by a superscript ‘2’), originating from the g2

s2ti ti
that appear solely in �22(p2);

3. terms depending on
√
as A2

t + bs At + cs (with coeffi-

cients identified by ‘s’) originating from the m2
t̃i

in
A0(mt̃i );

4. a term containing At ·
√
as A2

t + bs At + cs (with coeffi-
cient identified by ‘1s’) resulting from the occurrence of
the product gs2ti ti × A0(mt̃i ) appearing solely in t2;

5. finally all remnant contributions with no (explicit) depen-
dence or with logarithmic dependence on At , are iden-
tified by a ‘0’ superscript. It is an important part of our
strategy that in our At -power counting any “logarithmic”

dependence ∼ ln(M2 ∓
√
as A2

t + · · ·) on At (such as in
the second term of Eq. (13), and in the one-loop scalar
function B0), as well as the other algebraic dependence
on At in B0, are incorporated exactly as they stand within
the coefficients of the above listed relevant At powers.
In the following we dub these dependencies “residual”.
The dependence of the stop mixing angle θ̃t on At is also
treated as residual, since it enters in Eq. (16) through ct
and st that remain obviously bounded functions of At .

According to the previous At power counting, within the rel-
evant (one-loop) �i j and ti individual contributions, there
are no higher degree monomials in At than the Ak

t identified
above with k ≤ 2. This gives the following formal decom-
position of the tadpoles and self-energies:

t1
v1

= t (s)1

√
as A2

t + bs At + cs + t (0)
1

t2
v2

= t (1s)2 At

√
as A2

t + bs At + cs + t (1)
2 At

+ t (s)2

√
as A2

t + bs At + cs + t (0)
2

�11 = π
(s)
11

√
as A2

t + bs At + cs + π
(0)
11

�12 = π
(1)
12 At + π

(0)
12

�22 = π
(2)
22 A2

t + π
(1)
22 At

+ π
(s)
22

√
as A2

t + bs At + cs + π
(0)
22 . (17)

Equation (17) is simply a convenient rewriting of already
available exact one-loop expressions, no contributions are
ignored. Using Eq. (17) to display the algebraic depen-
dence on At in Eq. (12), the following molar-shaped function
HiggsMolar(At ), which should consistently vanish for any
At solution, is obtained:

HiggsMolar(At ) = C3A
3
t + C2A

2
t + C1At + C0

+ (R2A
2
t + R1At + R0)

√
as A2

t + bs At + cs = 0. (18)
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Fig. 2 The distribution of the HiggsMolar is shown as function of At :
calculating the coefficients of Eq. (18) for each At (solid blue curve);
fixing the coefficients of Eq. (18) at the four At solutions (red curves).
For the four solutions, given by the intersections with the dotted blue
line, only the At range around the solution is shown by the red curves

The HiggsMolar is shown as function of At in Fig. 2. For each
At the coefficients are recalculated. The four other curves
show the behavior of the function if the coefficients deter-
mined at the intersections of the HiggsMolar with the line
HiggsMolar = 0 are used in the vicinity of the intersections.
The curves illustrate the variation of the coefficients.

This equation can in principle be used separately either
for the lighter or for the heavier CP-even Higgs masses, as
clear from Eq. (12). Hereafter we are only considering the
lighter Higgs mass at ∼ 125 GeV as input. The Ci and Ri

coefficients are easily identified upon use of Eqs. (1), (12) and
(17). They contain all the residual At dependencies quoted
above, neglecting all imaginary parts as justified in footnote
1.

The cubic term results from the product (t1 − �11) × t2
present in (M2

s )11(M2
s )22, with a coefficient C3 given by

C3 = 4m2
t (t

(s)
1 − π

(s)
11 )t (1s)2 . (19)

In particular, in contrast with Eq. (8) and unless perform-
ing in Eq. (18) an expansion in Xt , explicit X4

t ∼ A4
t terms

cannot occur within the exact Eq. (12) as the equation does
not involve squares of terms of the type ‘2’ or ‘1s’.

The general form of the other Ci and Ri coefficients is
given in Appendix A. These coefficients have a more involved
dependence on (differences of) the quantities π

(0,s,1,2)
i j and

t (0,s,1,1s)
i entering Eq. (17). The relevant one-loop expres-

sions of the latter are also given in Appendix A. They allow
to track the residual dependence on At and the absence of
some finite combinations in relation to the expected cancel-
lation of the quadratic divergences in softly-broken SUSY.
The full one-loop explicit dependence on At is thus included
in Eq. (18). A further implicit dependence on At will orig-

inate from the two EWSB conditions Eqs. (6), (7) when
imposed beyond the tree-level, due to the presence of m2

A
as well as μ in the Ci and Ri coefficients. In particular, the
t2-tadpole dependence in m2

A will induce, through the term
m2

11 × t2 appearing in the cross-product (M2
s )11(M2

s )22 in
Eq. (12), an effectively quartic dependence on At for large
At , not explicit in Eq. (18). This entails solving simultane-
ously Eq. (18) and the EWSB constraints Eqs. (6) and (7),
which we will perform numerically in a consistent way as
described in Sect. 4.1. Other implicit dependencies on At

are discussed in Sect. 3.5. Hereafter we ignore momentarily
these issues and focus solely on the resolution of Eq. (18).

3.3 Full one-loop inversion: the fixed point algorithm

To solve Eq. (18) for At , a fixed point iterative method is
used. For this purpose we define

CFP(At ) = − 1

C3

(
C2A

2
t + C1At + C0

+(R2A
2
t + R1At + R0)

√
as A2

t + bs At + cs
)
,

(20)

and rewrite Eq. (18) as

At = 3
√

CFP(At ). (21)

It is then clear that finding all the real-valued solutions of
Eq. (18) is equivalent to determining all the fixed points
At = AFP

t , satisfying LFP(AFP
t ) = AFP

t , of the function
LFP defined by

LFP(At ) ≡ 3
√

CFP(At ), (22)

with only real-valued cubic roots allowed.
To determine the fixed points one starts from a guess value

At,0 = AGuess
t and studies the convergence of the sequence

At,i+1 = LFP(Ati ). The iterations return unambiguously
real-valued At as a consequence of the definition of LFP,
Eq. (22). As we will specify in more detail in Sect. 4, appro-
priate At -guess values, not too far from the exact solutions,
are those obtained from our approximate one-loop Eq. (8)
that already captures the multi-solution structure. However,
even if starting relatively close to the exact solutions, the
method will catch only the attractive fixed points and can
thus miss some, otherwise acceptable, At solutions.

One expects typically four distinct solutions as illustrated
in Fig. 3 for the stop cliff benchmark: The functions CFP(At )

and LFP(At ), in blue, intersect the dotted blue lines at the
fixed points of these functions, corresponding to the four At

solutions that are consistent with mh = 125 GeV. For the
blue curve the coefficients Ci and Ri of the two fixed-point
functions were recalculated at each At . For the four red curves
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Fig. 3 The distributions of the functions CFP and LFP are shown as
function of At : calculating the coefficients of Eq. (18) for each At (solid
blue curve); fixing the coefficients of Eq. (18) at the four At solutions

(red curves). For the four solutions, given by the intersections with the
dotted blue line, only the At range around the solution is shown by the
red curves

these coefficients are frozen at their values calculated at the
intersection of the blue curve with the blue dotted line, for
At varying in the vicinity of the intersection.

The dotted blue line on Fig. 3-right being the bisector,
it follows that the slope of LFP at its fixed points is alter-
natively greater or smaller than one. We label the solutions
s1, s2, s3, s4 ordered in ascending in At . Given that LFP

takes negative values for very large |At |, the slopes of LFP

at s1 and s3 are necessarily greater than one and those at
s2 and s4 less than one. s1 and s3 are thus repulsive fixed
points. In contrast, s2 and s4 will be either attractive if the
slope is between −1 and 1, or alternating/repulsive if the
slope is less than −1. The slope at s2 is typically less than
zero due to the strong variation of LFP in the vicinity of
|At | ∼ 0. It follows that the iterative procedure on LFP

as described above will always miss solutions s1 and s3
while capturing at best two solutions, namely s2 and s4,
provided furthermore the initial guess values AGuess

t close
enough to s2 and s4 to feel their attracting character. If a
guess point is chosen anywhere above s3 the iterations will
repel it from s3 and converge to s4. If chosen below s1 it will
be repelled to the left and the procedure will never converge.
Finally, if chosen between s1 and s3 then, depending on the
behaviour around s2, the convergence to s4 (and occasion-
ally to s2 if its slope is greater than −1) may or may not
occur.

In order to ensure convergence and be able to capture all
solutions, we consider a generalized family LFPτ of functions
parametrized by τ = 0 as follows:

LFPτ (At ) = 1

τ
(LFP(At ) − At ) + At . (23)

Any fixed point of LFP is also a fixed point of LFPτ and
vice versa, for any value of τ .

Moreover from

LFP
′
τ (At ) = 1 + LFP

′(At ) − 1

τ
, (24)

follows that one can always choose τ in such a way that
LFP

′
τ (A

FP
t ) lies in the interval [−1, 1] for any given value

of LFP
′(AFP

t ). Thus the advantage of LFPτ is that all fixed
points of LFP can be made attractive with respect to LFPτ

for appropriately chosen values of τ . In this case an itera-
tion over the sequence At,i+1 = LFPτ (Ati ) is guaranteed to
converge on AFP

t , at least when the initial guess values are
not too far from the solution. However, AFP

t is not known
in advance, even less LFP

′(AFP
t ). Without this knowledge,

a rough strategy to converge on a given solution could be to
choose:

– τ � 1 for s4
– τ 	 −1 for s1, s3
– τ � 1 for s2.

Actually one can do better by determining optimal values of
τ from the knowledge of the local variation of LFP during
the iterative procedure. A numerical estimate 
LFP/
At of
the first derivative of LFP with respect to At can in principle
be calculated at any given step during the iterations on At at
moderate computational cost. Then choosing the τ parameter
as follows


LFP


At
− 1 < 0 : τ = +

∣∣∣∣
LFP


At
− 1

∣∣∣∣ ,

LFP


At
− 1 > 0 : τ = −

∣∣∣∣
LFP


At
− 1

∣∣∣∣ , (25)

ensures that an estimate of the derivative of LFPτ is close
to zero, cf. Eq. (24). Since this estimate is in practice not at

123



Eur. Phys. J. C (2022) 82 :657 Page 9 of 17 657

the fixed point, Eq. (25) is not sufficient to guarantee con-
vergence. However, it approximates a necessary condition,
fulfilling a convergence criterion discussed in Appendix B,
see Eq. (B.17). This allows to make any fixed point attractive,
provided initial guess values are not too far from that fixed
point. A simple and efficient algorithm will be implemented
along these lines, as described in Sect. 4.

3.4 Dominant two-loop inversion

The extension of the above exact one-loop method to the
two-loop contributions is rather straightforward. The lat-
ter corrections depend dominantly on the strong, weak and
third generation Yukawa couplings yi , leading to terms of
O(αs,i )×O(One-loop), where αi ≡ y2

i /(4π). In the stan-

dard fixed-order (diagrammatic) mh calculations, �
(2-loop)
i j

and t (2-loop)
i contributions are added to the M2

s matrix ele-
ments which enter the squared Higgs boson mass equation
shown in Eq. (12).

Due to the extra loop suppression factor, at any scale
relevant for the MSSM spectrum calculation where either
αs(Q) or αi (Q) remain moderate, the two-loop contributions
are a moderate correction relative to the one-loop contribu-
tions (even if including those is obviously very relevant for
a more precise comparison between the MSSM prediction
and the measured mh value. For instance typically for the
benchmark cliff point, restricting to exact one-loop would
give mh ∼ 118 GeV instead of ∼ 125 GeV as in Table 1.)
Thus, for the At (mh) inversion, rather than trying to extract
specific quite involved At dependencies from the �

(2-loop)
i j

and t (2-loop)
i contributions, the latter are incorporated just as

they contribute to Eq. (1): more precisely, within the above
algorithm the available two-loop contributions are formally
treated as if they were independent of At , therefore concretely
incorporated as additional contributions to either t (0)

i or π
(0)
i j

in Eq. (17):

t (0)
i → t (0)

i + t (2-loop)
i , π

(0)
i j → π

(0)
i j + �

(2-loop)
i j . (26)

This is then corrected iteratively for the true At depen-
dence. The seven coefficients entering the HiggsMolar(At )
function of Eq. (18) can now be computed incorporating con-
sistently two-loop contributions.

3.5 Including higher orders and refinements

At this stage the inversion is formally ‘exact’ at the consid-
ered (perturbative) level of theoretical precision taken for the
ti tadpoles and self-energy contributions �i j , namely full
one-loop and only the dominant two-loop contributions. It
is a straightforward matter to incorporate either more com-
plete two-loop and/or higher (3-loop) contributions, by con-

sidering those contributions similarly At independent, since
their actual At dependence, independent of its complexity, is
screened by tiny perturbative expansion coefficients. As long
as higher order corrections are obtained diagrammatically in
the form of self-energy or tadpole contributions, these could
be included explicitly by adding them to the t (0)

i and π
(0)
i j

contributions.
It is well known that sizeable theoretical uncertainties in

mh determinations (customarily taken as ∼ ±2 − 3 GeV in
phenomenological analyses) are due to presently unknown
higher order contributions, discrepancies between different
renormalization schemes, etc (see e.g. [33,59], or for more
recent analyses [60,61], as well as the recent updated dis-
cussion in [15]). Given these uncertainties, one might ques-
tion the importance of devising a very accurate inversion
procedure. The answer is obvious: not to introduce artifi-
cially further uncertainties in the determination of At (mh)

than there are from a given content of higher order contribu-
tions included in the standard mh determination. Related to
this, there remains one subtlety to consider: Even at one-loop
level, there are extra implicit At dependencies that would
not be accounted for by the previous algorithm, if one relied
solely on the procedure leading to Eq. (18). Indeed, the self-
energies and tadpoles also depend typically on SM-like gauge
and Yukawa couplings, as well as other running DR param-
eters (sW , mW ), which are affected by threshold corrections,
depending themselves on the MSSM parameters, therefore
depending on At in a highly nontrivial way in this case.
While all these threshold corrections give contributions that
are formally of higher (at least two-loop) order within the
loop self-energy and tadpole expressions, they can induce a
numerical inconsistency bias if not incorporated in the inver-
sion, slightly shifting the resulting At (mh) with respect to its
actual ‘reference’ value in a standard top-down calculation.
This, as well as the other residual or implicit dependencies on
At already mentioned in Sect. 3.2, are, however, consistently
taken into account in the full algorithm as we explain next.

4 The full inversion algorithm

The algorithm has been implemented in SuSpect3 [62,63].
SuSpect3 is a public spectrum calculator for multiple super-
symmetric models that includes, within Eq. (1) for mh , the
DR radiative corrections at full one-loop and dominant two-
loop orders (involving for the latter the QCD and third
family Yukawa contributions, but at vanishing p2). Other
MSSM spectrum calculators are, non-exhaustively, SOFT-
SUSY [64], SPHENO [65–67], FeynHiggs [22,57,68,69],
and FlexibleSUSY [70]. Note that on top of fixed-order cal-
culations including some contributions beyond the above
mentioned two-loop order, some of these codes (FeynHiggs,
SPHENO, FlexibleSUSY) also include resummations of
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large logarithms in an EFT approach for the Higgs mass cal-
culations, thus with an a priori increased precision for large
soft-supersymmetry breaking mass scenarios.

Before describing the full inversion algorithm, let us first
briefly recall the procedure to determine the spectrum in the
MSSM. This involves solving the RGE to evolve the parame-
ters between the EWSB scale (QEWSB) and the scale given by
the mass of the Z boson (mZ ), as well as solving the EWSB
equations Eqs. (6) and (7) at QEWSB. Radiative corrections
to the supersymmetric particle and Higgs boson masses are
calculated at QEWSB. Supersymmetric radiative corrections
to Standard Model parameters, the most important in the
present study being the top Yukawa coupling, are calculated
at mZ .

For EWSB three variants have been implemented. If m2
Hd

,

m2
Hu

and the sign of μ are given as input, the running mass

squared m2
A and the Higgs mass parameter μ are calculated.

Alternatively μ and either the pole mass mA or the tree-level
running mass squared m2

A can be given to calculate m2
Hd

,

m2
Hu

.
Both the RGE evolution and the EWSB calculations are

implemented as iterations. The convergence is tested on the
stability of m2

A or m2
Hu

between successive iterations. The
choice depends on the input parameter set chosen.

We recall that for a precise calculation of the MSSM spec-
trum in the standard top-down approach, it is essential that
some of the relevant running parameters at a given scale,
and consequently the physical (pole) masses, are calculated
iteratively, as these parameters are nontrivially modified by
radiative corrections, which in turn depend on potentially all
MSSM parameters.3 There is also an iteration between the
EWSB and mZ scales, since important radiative corrections,
depending themselves on the MSSM spectrum, are incorpo-
rated to extract the DR-scheme gauge and Yukawa couplings
upon matching their experimentally measured values. The
convergence criterion for the RGE iteration depends on the
choice for the EWSB parameters.

4.1 Algorithm

In themhMSSM the At (mh)determination algorithm extends
the previously described calculation of the relevant EWSB
parameters of the MSSM in SuSpect3. The determination of
At has been added to this already necessarily iterative struc-
ture as the determination of an additional parameter. The
algorithm to determine At is independent of the parameter
input choice. In the following the numerical examples are
given for an input of m2

Hd
, m2

Hu
and the sign of μ. The calcu-

lation starts with the RGE evolution from the Z boson scale

3 In particular for determining μ from Eq. (7) since the right hand side
depends itself implicitly on μ from the tadpole contributions.

to a high scale. At is initialized arbitrarily to a fixed value
(10 GeV) as the parameter will be determined after the RGE
evolution to QEWSB. The procedure is similar to the initial-
ization of μ.

First the MSSM EWSB calculations are performed, i.e.,
μ and m2

A are determined, and then At is determined. This
procedure is repeated until convergence is reached according
to the MSSM criteria, i.e., μ is stable and therefore m2

A is
stable as well.

At the first and second RGE iteration the approximate
one-loop Eq. (8) with the measured mh as input is solved to
extract a new At as explained in Sect. 3.1. Taking into account
the newly determined At , the RGE evolution to the Z mass
scale is performed. Radiative corrections are calculated, in
particular to the top Yukawa terms. The parameters are then
RGE evolved to the high scale. The second RGE iteration
therefore starts at the high scale with the At value derived
from the approximate one-loop algorithm in the first iteration.

For the cliff point, Table 2 shows that the correct At is
within 25% of the calculated value. The use of Eq. (8) is pre-
ferred over the fixed point algorithm as the radiative correc-
tions used depend on yt ·μ. This allows to stabilize quickly yt
with an approximate At at low computational cost. Using the
full radiative calculations at this stage would lead to longer
iterations as the variations of both μ and At take longer to
stabilize.

For the third and all following RGE iterations the full
radiative calculations are used for EWSB, combined with the
fixed point algorithm described in Sects. 3.3 and 3.4 to deter-
mine At . For each new At , obtained from LFPτ , Eq. (23), the
tree-level stop sector and the Higgs sector including radia-
tive corrections are recalculated. This has the advantage that
not only the leading terms of LFP, Eq. (22), are taken into
account, but also both the residual and implicit At dependen-
cies in the coefficients Ci and Ri , as explained previously.
The recalculation of the stop sector and the Higgs sector for
each iteration brings the function from the red curves closer
to the blue (nominal) curves in Figs. 2 and 3.

The convergence depends on the τ parameter. When the
full radiative corrections are used in the algorithm, an esti-
mate 
LFP/
At of the first derivative of LFP with respect
to At is calculated numerically at the end of the iteration on
At . The iterations are stopped when the relative change of
At between the last and the current value is smaller than a
threshold. Numerical values are given below. The τ param-
eter is then adjusted according to Eq. (25) which is used in
the next determination of At .

4.2 Proof of concept

As proof of concept the calculation is performed for all four
possible solutions using the full algorithm. The At is first
determined via the approximate one-loop calculation for the
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Table 3 The result of the Higgs inversion algorithm is shown for the
stop cliff. The true point is s3. As a cross check the mh values shown
are the result of the standard mh(At ) calculation with the At obtained
from the input mh parameter

Stop cliff s1 s2 s3 s4

At [GeV] −5617.3 −3796.1 3609.7 6082.5

mh [GeV] 125.012 125.012 125.012 125.012

first two RGE iterations and then the fixed point algorithm is
used for all following iterations. At is refined at each step. To
converge on the spectrum calculation the RGE iterations are
stopped once mA is stabilized to the permil level. The EWSB
iterations are stopped when μ has converged at permil level.
The iterations on At are run with a convergence criterion of
permil.

The results of the full algorithm are shown in Table 3.
Four solutions are obtained as expected. The calculation of
At and the calculated mh are in excellent agreement with the
expected values.

In point s3 the deviation of the calculated At value from
the expected value in Table 1 is far smaller than convergence
criterion on At suggests. This is the consequence of the hier-
archical structure of the iterations. The iteration on At is at
the lowest level, therefore the calculation of At is also refined
for each EWSB and (times) RGE iteration until the running
mass of the A boson and the μ parameter have converged.
This leads to a higher precision than naively expected.

4.3 Scan settings

If the algorithm is used in a multidimensional scan of super-
symmetric parameters, an example using SuSpect3 is in [71],
the mhMSSM ensures that no spectrum calculation will be
performed for parameter sets incompatible with the measured
central value of mh . This leads to a reduction of the parame-
ter space allowed for At . However such a calculation, due to
the iteration on At , has a calculational overhead compared
to an MSSM spectrum calculation.

Given that the experimental uncertainty on the mh mea-
surement is of the order of 0.1 GeV and additionally the
theoretical uncertainty is about 2 GeV, the following cal-
culations have been performed with reduced precision: the
RGE iterations are stopped when percent level convergence
on mA has been reached. All other convergence definitions
remain unchanged. These are the standard settings used in
Suspect.

To illustrate the calculational overhead the MSSM cal-
culation is compared to the mhMSSM calculation for s3.
The number of RGE iterations is increased from four to
six. The algorithm typically adds one additional iteration
to each EWSB calculation on top of the three for the stan-

dard algorithm, i.e., a total of 27 iterations is necessary com-
pared to 13 for the standard settings. The calculation of At

at the first two RGE iterations as a direct calculation of
the approximate solution is not computationally intensive.
When the fixed point method is used, for the first two RGE
iterations, at the first EWSB iteration six and four calcu-
lations are necessary to converge on the fixed point to the
required accuracy. For the subsequent EWSB iterations typ-
ically only one or two iterations on At are necessary. For the
last two RGE iterations for all EWSB iterations only one or
two At calculations are necessary. For half of EWSB itera-
tions, a single calculation of At is sufficient. The reduction
of the number of iterations on At as the RGE and EWSB
iterations progress illustrates the convergence of the algo-
rithm.

In Table 4 the results on At and the calculated mh are
shown for the reduced precision setting of the algorithm. The
maximal difference between the calculated Higgs masses is
less than 1 MeV, i.e., largely sufficient given the experimental
error.

The two EWSB calculations with the μ parameter as input
lead to almost identical results for all At solutions. The two
EWSB calculations with μ use m2

Hu
as variable to test con-

vergence whereas the other EWSB calculation uses m2
A to

stop the RGE iterations. The calculation is performed with
a fixed convergence precision. The impact on the mh value
for a change of m2

Hu
and m2

A is not identical. Therefore the
results for EWSB with the A boson mass, tree level or pole,
can be different with respect to the calculation with the Higgs
mass parameters. For the true solution s3, the maximal devi-
ation for all EWSB variants is only two tenth of a permil, at
0.7 GeV with respect to the true At of the cliff point 1.

4.4 Beyond the cliff

The cliff point is a favorable situation as four distinct solu-
tions exist. A parameter set can lead to a situation where the
local minimum of the Higgs boson mass in the vicinity of
At = 0 GeV is larger than the mh parameter input. Alterna-
tively the mh parameter could be higher than either one or
both of the maxima of Fig. 1.

To test the validity of the algorithm beyond the proof of
concept in the cliff point, the input mh parameter was varied.
The algorithm was slightly extended for mh values close to
the maxima and the local minimum by a bisection algorithm.
To ensure a logical coherence of the results, the regions of
validity for At are defined for the four solutions:

• s1: −∞ to At (mmax
h (At < 0))

• s2: At (mmax
h (At < 0)) to At (mmin

h (At ∼ 0))

• s3: At (mmin
h (At ∼ 0)) to At (mmax

h (At > 0))

• s4: At (mmax
h (At > 0)) to ∞.
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Table 4 The result of the Higgs
inversion algorithm for the three
definitions of EWSB input
variables is shown. s3 is the true
point. The calculated At and the
resulting mh are listed for all
calculations

EWSB s1 s2 s3 s4

m2
Hd

, m2
Hu

, sign(μ) At [GeV] −5617.8 −3795.0 3610.5 6085.9

mh [GeV] 125.012 125.012 125.012 125.012

m2
A(Q), μ At [GeV] −5606.9 −3795.1 3610.7 6090.1

mh [GeV] 125.012 125.012 125.012 125.012

mA, μ At [GeV] −5607.2 −3794.7 3610.7 6089.9

mh [GeV] 125.012 125.012 125.012 125.012

Fig. 4 The result of the determination of At is shown as function of
the chosen mh . The determination is performed separately for the four
solutions. The histograms are stacked from s1 (bottom) to s4 (top), the
horizontal lines at constant At at the transition between the regions show
only the top color

If the mh parameter is out of reach, the closest At in the
region is used.

The result of a scan of mh values between 112 and
128 GeV is shown in Fig. 4. The four solutions are cor-
rectly reconstructed over the full range. For s2 and s3 the
lowest parameter values cannot be reached, therefore the At

value of the local minimal mass is determined. A similar
feature is observed when the parameter is greater than the
maximal mh at 2-loop precision shown in Fig. 1. In this case
At corresponding to the maximal mass achievable for the
parameters is determined, resulting in a line parallel to the
x-axis. The steps correspond to cases where the μ parame-
ter and the CP-odd scalar Higgs boson mass have converged
to a slightly different value which leads to a step in At and
an offset in the predicted mh , smaller than the systematic
of 2 GeV typically used in scans of the parameter space.
In total 256 inversions are shown of which only 3 have not
converged correctly. These points are all located in regions
where a larger mh than possible was requested (horizontal
lines at At ≈ −4.95 TeV and At ≈ 4.85 TeV) and for two
the algorithm returned an error for non convergence. Since
the step size of the scan of 0.25 GeV is smaller than the error
on the Higgs mass of about 2 GeV, posterior distributions of
At also give an additional handle on the outliers.

Figure 4 shows At as multi-valued function of mh cov-
ering the same parameter space as Fig. 1. This shows that
the inversion, based on the exact calculation, works, vali-
dating the use of the approximate one-loop calculation as
a first guess. However, there could be problematic param-
eter sets for which the guess points are not sufficiently
close to the fixed points to ensure convergence. An alterna-
tive algorithm relying on the knowledge of At (mmax

h (At <

0)), At (mmin
h (At ∼ 0)) and At (mmax

h (At > 0)), com-
bined with global rather than local criteria, could then be
used.

4.5 Beyond the fixed-order approximation

Our inversion strategy is built upon fixed-order diagrammatic
results, in particular upon the knowledge of the analytical
form of the exact one-loop contribution to the Higgs mass.
In more recent developments of MSSM Higgs mass radiative
corrections, there are, however, configurations where an EFT
approach is better suited for a reliable estimate of the Higgs
mass, like typically when considering an MSSM setup with
(very) heavy scalars (see e.g. [15] for a recent review). In this
case, if for instance a heavy stop sector is integrated out from
the low-energy EFT, a direct analytical relation between mh

and At will be essentially lost. Nevertheless, an inversion
procedure can still be carried out: The needed relation will
reside now in the matching condition at the boundary scale
between the light and heavy sectors for the quartic Higgs
coupling, from which the multi-At solutions can be retrieved
analytically.

4.6 Beyond the CP-conserving case

If complex phases are allowed for the MSSM parameters,
the dependence of mh on At will be in general significantly
modified due to loop induced CP-violating mixings among
all the neutral Higgs states. The ensuing 3 × 3 mass matrix
after identifying the Goldstone boson, implies an analytical
expression ofm2

h given by a root of a cubic equation, quite dif-
ferent from that obtained from the diagonalization of Eq. (1).
Our approach can be easily extended to this case in the (exper-
imentally likely) configuration where the MSSM spectrum,
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and in particular the charged Higgs mass, are much heavier
than the 125 GeV state. As well known, in this case the CP-
violating mixing is essentially confined to the two heavy neu-
tral states sector, see e.g. [72], and the phenomenology (mass,
couplings) of the lightest would-be CP-even state becomes
essentially the same as in the CP-conserving MSSM. In this
limit, taking At and μ complex (which is sufficient to account
for the physically relevant phases, denoted φAt and φμ), the
functional dependence of mh on |At | will be the same as that
on At in the CP-conserving case. The only difference is the
reduction of some coefficients by cosine factors, (typically
occurrences of (μAt )

n become (|μ| |At |)n cos n(φμ + φAt ),
otherwise even powers A2n

t become |At |2n , etc.). Modulo
these modifications in Eqs. (8) and (18), our algorithm will
work exactly as before, to determine |At | (and/or − |At |)
solutions from mh , given φAt (and or φAt ±π ), a complex μ,
and the other parameters of the MSSM. Beyond this (relative
decoupling) limit, the algorithm can still provide an educated
guess for ±|At | input, within a more general numerical algo-
rithm for the CP-violating MSSM.

5 Conclusion

The discovery and precise measurement of the Higgs boson
motivates the redefinition of the MSSM as mhMSSM. The
algorithm presented in this paper replaces the trilinear cou-
pling of the stop sector At with the measured mh as input
parameter.

The simplified expression of the radiative corrections
to mh and the exact full one-loop with the leading two-
loop corrections are assembled in an algorithm to calcu-
late At . The algorithm has been applied to a benchmark
point showing that the four solutions are determined with
the expected precision. A single parameter scan with mh as
scan parameter shows that the At dependence is correctly
reconstructed.

The general structure of the algorithm could also be
applied to other parameters. Using the mhMSSM may
speed up the exploration of supersymmetric parameter
space by ensuring the compatibility of all calculated spec-
tra with the experimentally measured mh . Future work
will center on applying the algorithm in multi-parameter
scans.
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Appendix A: The coefficients of HiggsMolar(At)

We give hereafter the explicit dependence of the coefficients
appearing in Eq. (18) on the various π

(..)
i j , tadpoles and run-

ning mass parameters, as well as the relevant combinations
of the latter in terms of the MSSM parameters of the stop
sector.

C0[At ] = cs(π
(s)
11 − t (s)1 )(π

(s)
22 − t (s)2 )

+(m2
h + π

(0)
11 − t (0)

1 − m2
11)

·(m2
h + π

(0)
22 − t (0)

2 − m2
22) − (π

(0)
12 − m2

12)
2,

C1[At ] = (π
(s)
11 − t (s)1 )(bs(π

(s)
22 − t (s)2 ) − cst

(1s)
2 )

+(π
(1)
22 − t (1)

2 ) · (m2
h + π

(0)
11 − t (0)

1 − m2
11)

+2π
(1)
12 (m2

12 − π
(0)
12 ),

C2[At ] = (π
(s)
11 − t (s)1 )(as(π

(s)
22 − t (s)2 ) − bst

(1s)
2 )

+π
(2)
22 (m2

h + π
(0)
11 − t (0)

1 − m2
11) − (π

(1)
12 )2,

C3[At ] = as(t
(s)
1 − π

(s)
11 )t (1s)2 ,

R0[At ] = (π
(s)
11 − t (s)1 )(m2

h + π
(0)
22 − t (0)

2 − m2
22)

+(π
(s)
22 − t (s)2 )(m2

h + π
(0)
11 − t (0)

1 − m2
11),

R1[At ] = (t (s)1 − π
(s)
11 )(t (1)

2 − π
(1)
22 )

+(t (0)
1 − π

(0)
11 + m2

11 − m2
h)t

(1s)
2 ,

R2[At ] = π
(2)
22 (π

(s)
11 − t (s)1 ), (A1)

where the m2
i j are given by Eqs. (2)–(4).

Relying on the full one-loop results (and partly on the
notations) of [19],4 we extract the relevant contributions of
the self-energies and tadpoles:

4 with, however, an opposite sign convention for μ in accord with SuS-
pect3 [62,63] and denoting the couplings λsũũ and λt of [19] by gst̃ t̃
and yt .
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16π2(t (0)
1 − π

(0)
11 ) = 3√

2

g2ct st ytμM2

cβMW
ln

(
mt̃1

mt̃2

)

− 3
2∑

i, j=1

g2
s1 t̃i t̃ j

B0

(
mt̃i ,mt̃ j

)
+ · · · , (A2)

16π2(t (s)1 − π
(s)
11 ) = 3√

2

g2ct st ytμ

cβMW

(
1 − ln

(
mt̃1mt̃2

Q2

))
,

(A3)

16π2(t (0)
2 − π

(0)
22 ) = −3

( 2∑
i=1

(
gi )
2B0

(
mt̃i ,mt̃i

)
+ 2(
g12)

2B0
(
mt̃1,mt̃2

) )
+ · · · , (A4)

16π2(t (s)2 − π
(s)
22 ) = 0, (A5)

16π2(t (1)
2 − π

(1)
22 ) = 3√

2

g2yt ct st M2

sβMW
ln

(
mt̃2

mt̃1

)

− 6
√

2yt
(
ct st

(

g1B0

(
mt̃1 ,mt̃1

) − 
g2B0
(
mt̃2 ,mt̃2

))
+ (c2

t − s2
t )
g12B0

(
mt̃1 ,mt̃2

) )
, (A6)

16π2t (1s)2 = 3√
2

g2yt ct st
sβMW

(
ln

(
mt̃1mt̃2

Q2

)
− 1

)
, (A7)

16π2π
(2)
22 = 3y2

t

(
2c2

t s
2
t

(
B0

(
mt̃1,mt̃1

) + B0
(
mt̃2 ,mt̃2

))
+ (c2

t − s2
t )

2B0
(
mt̃1,mt̃2

) )
, (A8)

16π2π
(0)
12 = 3

(
gs1 t̃1 t̃1
g1B0

(
mt̃1,mt̃1

)
+ gs1 t̃2 t̃2
g2B0

(
mt̃2 ,mt̃2

)
+ gs1 t̃1 t̃2
g12B0

(
mt̃1,mt̃2

) )
+ · · · , (A9)

16π2π
(1)
12 = 3√

2
yt

(
2ct st

(
gs1 t̃1 t̃1 B0

(
mt̃1 ,mt̃1

)
−gs1 t̃2 t̃2 B0

(
mt̃2 ,mt̃2

))
+ 2(c2

t − s2
t )gs1 t̃1 t̃2 B0

(
mt̃1,mt̃2

) )
(A10)

where we have defined


g1 ≡ c2
t gs2 t̃L t̃L + s2

t gs2 t̃R t̃R ,


g2 ≡ s2
t gs2 t̃L t̃L + c2

t gs2 t̃R t̃R ,


g12 ≡ ct st (gs2 t̃R t̃R − gs2 t̃L t̃L ).

(A11)

sβ and cβ stand for sin β and cos β, and all other quan-
tities have been defined previously, see also Eqs. (14)–(16).
The ellipses indicate contributions from the Higgs/Higgsino,
gauge/gaugino and other scalar/fermion sectors, that do not
have a direct dependence on At . The couplings gs1 t̃i t̃ j are
related to gs1 t̃L ,R t̃L ,R

, gs1 t̃L t̃R as in Eq. (16), but do not depend
explicitly on At . All parameters appearing in the above
expressions are understood to be running in the DR scheme,
and Q is the corresponding renormalization scale. The depen-

dence on p2, cf. Eq. (1), taken here at p2 = m2
h , is in

the B0 functions with the shorthand notation B0(m1,m2) ≡
B0(mh,m1,m2), see also footnote 1.

Note finally that the vanishing of t (s)2 −π
(s)
22 , cf. Eq. (A5),

together with the fact that M2 appears exclusively with

ln
(mt̃1
mt̃2

)
, Eqs. (A2) and (A6), and

√
as A2

t + bs At + cs

exclusively with ln
(mt̃1

mt̃2
Q2

)
, Eqs. (A3) and (A7), are a

direct consequence of the cancellation of the quadratic diver-
gences before renormalization as expected in softly-broken
SUSY. Indeed, in this case the stop sector contributions
from the A0 function can occur only in the combination
A0(mt̃1) − A0(mt̃2).

Appendix B: Convergence criterion

A fixed point xFP of a function F , satisfying F(xFP) = xFP,
can be determined iteratively as the limit of a sequence
defined by xi+1 = F(xi ) and an initial guess x0, only if
the fixed point is attractive, i.e. −1 ≤ F ′(xFP) ≤ 1. We
sketch here how to proceed in the more general cases of non-
attractive fixed points:

Define

Fτ (x) = (τ − 1)x + F(x)

τ
, with τ = 0, (B.12)

and

F(x) − F(x0) = (x − x0)K (x, x0) (B.13)

with

K (x0, x0) = F ′(x)|x=x0 . (B.14)

Let us consider two distinct sequences given by

xi+1 = Fτ (xi ) and yi+1 = Fτ (yi ), (with x0 = y0), (B.15)

and study the variation Fτ (xn) − Fτ (yn) after n iterations.
One finds straightforwardly upon repeated use of Eqs. (B.12),
(B.13) and (B.15):

Fτ (xn) − Fτ (yn) = (xn − yn)

(
1 + K (xn, yn) − 1

τ

)
,

= (
Fτ (xn−1) − Fτ (yn−1)

) (
1 + K (xn, yn) − 1

τ

)
,

...

Fτ (xn) − Fτ (yn) = (x0 − y0)

n∏
i=0

(
1 + K (xi , yi ) − 1

τ

)
.

(B.16)
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It follows from Eq. (B.16) that

choosing τ such that

∣∣∣∣1 + K (xi , yi ) − 1

τ

∣∣∣∣ is sufficiently

smaller than 1 for a sufficiently large set of i’s between

0 and n, (B.17)

leads to

∣∣∣∣∣
n∏

i=0

(
1 + K (xi , yi ) − 1

τ

)∣∣∣∣∣ 	 1, (B.18)

and the two sequences xi and yi converge towards each other
after n iterations within a prescribed numerical precision. In
particular, choosing y0 = xFP yields a constant sequence
{yi } = {xFP}, and xi converges to the fixed point xFP. This
completes the proof that by using the auxiliary function Fτ ,
one can in principle always optimize the choice of τ depend-
ing on the variations of F , so as to converge to xFP for a given
initial guess value x0, even when dealing with non-attractive
fixed points of F . It should be stressed that K (xi , yi ) is not
always a very good estimate of the local variation of F since
the two sequences {xi } and {yi } do not necessarily start off
close to each other. Nonetheless, it will become so after a
few iterations if τ satisfies the criterion (B.17). In particular,
for the constant sequence {yi } ≡ {xFP}, the successive val-
ues of K correspond to variations with respect to the same
reference point xFP which is of course not yet known. How-
ever, if the initial guess point x0 is sufficiently close to xFP,
one can in practice use K (xi , xi+1) instead of K (xi , xFP)

to optimize τ piece-wise. With this in mind, we can apply
the above procedure to the case of LFP, where the quantity(

1 + K (xi ,xi+1)−1
τ

)
, with K (xi , xi+1)) = 
LFP/
x being

an estimate of LFP
′(xFP) for xi sufficiently close to xFP, is

clearly a discretized version of LFP
′
τ (xi ) as given by Eq. (24).

A simple numerical algorithm can thus be devised, based on
Eq. (25) as described at the end of Sect. 3.3.
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