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Abstract Recently, an analytical study of radial and circu-
lar orbits for null and time-like geodesics that propagate in the
spacetime produced by a Schwarzschild black hole associ-
ated with cloud of strings, in a universe filled by quintessence,
has been done in Mustafa and Hussain (Eur Phys J C 81:419,
2021). In this paper, we complete the aforementioned study
by investigating possible analytical solutions to the equa-
tions of motion for other types of bound orbits, beside taking
into account the cases of unbound orbits. This requires an
extensive study of the corresponding effective potentials that
categorize the test particle motion. We follow the standard
Lagrangian dynamics to parametrize the radial and angu-
lar geodesics and the resultant (hyper-)elliptic integrals of
motion are treated accordingly. We also simulate the orbits
which correspond to different levels of energy in the effective
potentials.

1 Introduction and motivation

The general theory of relativity got famous soon after its
advent, firstly because of its bewildering formalism with
its strong roots in the Riemannian geometry, and secondly,
because of its unprecedented success in predicting rather
small deflection angles and precession in the perihelion,
respectively in the lensing process around the Sun and in
the planetary orbit of Mercury. And the theory still continues
with its triumphs in conformity with observational results
regarding its prediction of gravitational waves [2–4] and
black hole dynamics [5] (see Ref. [6] for a recent review). The
two first brilliant predictions of general relativity are, how-
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ever, of fundamental importance, since they result directly
from the Riemannian nature of the theory which incarnates
in the geodesic equations. In this sense, the study of particle
trajectories in the spacetimes predicted by general relativ-
ity has been of great interest among theoretical scientists, as
well as observational astrophysicists. In particular, the atten-
tion to the derivation of analytical solutions to the equations
of motion in general relativistic geometries, uplifted signifi-
cantly after the calculations done by Hagihara in 1930 for par-
ticle trajectories in Schwarzschild spacetime [7]. Since then,
efforts have been made rigorously to find analytical solutions
for test particle geodesics in strong gravity. These include the
significant formulation of lens equations, particle scatterings
and bound orbits around black holes [8–11]. On the other
hand, the more new general relativistic solutions were pro-
posed, the more it became complicated treating, analytically,
the particle geodesics. Although the advancements in compu-
tational equipments, softwares and methods, have paved the
way in doing numerical simulations of particle orbits even in
stationary spacetimes, the analytical treatments of these phe-
nomena are still of considerable merit. Since such studies
are based on firm mathematical foundations, they can serve
to show the precise way the test particles behave. Accord-
ingly, the Keplerian orbits of mass-less and massive particles
(in the sense of null and time-like geodesics) in general rela-
tivistic black hole spacetimes, have been studied by means of
advanced elliptic integration methods, for example, in Refs.
[12–22] for static, and in Refs. [23–35] for stationary space-
times.

One important feature that appears in most of the afore-
mentioned references, is the coupling of the black hole
spacetime with at least one cosmological term. This feature,
on its own, makes the analysis more intense and likely to
encounter hyper-elliptic integrals. On the other hand, inclu-
sion of cosmological-associated terms in general relativistic
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solutions have a long history, going back to the early years
of the theory. And ever since the uplift in the attention to
the dark side of the universe regarding the evidences like
the flat galactic rotation curves, anti-lensing, and the accel-
erated expansion of the universe [36–41], relativists have
become more inclined to the inclusion of cosmological com-
ponents in the solutions to Einstein field equations, for them
to be more compatible with astrophysical observations. In
fact, the evolution of black holes are now seen to be affected
by the dynamics of the universe where they reside [42–45].
From the the geometric point of view, this is approached by
adding cosmological components to the black hole space-
time under consideration, to compensate for the dark fea-
tures. This is commonly done by inclusion of a dark fluid
energy-momentum tensor in the Einstein field equations, cor-
responding for example, to a dark matter halo [46,47], or a
quintessential field [48–50]. This latter, in particular, has been
postulated to explain the accelerated expansion of the uni-
verse, however, in a dynamic essence that is in contrast with
the standard �-cold dark matter (�CDM) model, by replac-
ing the cosmological constant with a quintessential scalar
field. The search for alternatives to the cosmic fluid has been
being developed constantly. As a special case, which is also
of the interest of this paper, the cosmic fluid is supposed to
be composed of a relativistic dust cloud consisting of one-
dimensional strings (instead of point particles). This way, the
Schwarzschild spacetime was generalized in Ref. [51], to be
associated with the so-called cloud of strings. The gauge-
invariant generalization of this spacetime was proposed in
Ref. [52], and some of its geodesic phenomena were studied
in Ref. [53].

In this work, we aim at the full study of null and
time-like geodesic trajectories that are possible around a
Schwarzschild black hole which is coupled with both the
quintessential field and the cloud of strings. The exterior
geometry of this black hole has been derived and discussed
in Refs. [54–56]. Furthermore, the radial and circular orbits
of mass-less and massive particles have been studied analyt-
ically in Ref. [1]. The shadow and the photon ring structure
of this black hole has been investigated in Ref. [57]. Indeed,
this spacetime could be of interest, specially because of the
fact that the quintessential component grants an extra poten-
tial to the solution, and hence, in addition to the accelerated
expansion of the universe, it can compensate for the unseen
galactic dark matter. Such property can be seen also in the
Mannheim–Kazanas spherically symmetric solution to the
fourth order Weyl conformal gravity, which was proposed to
recover the flat galactic rotation curves [58]. In this space-
time, the source of gravity is supposed to be extended. There-
fore, the black hole resides in a stringy universe. Recently,
the respected parameters of this spacetime have been cali-
brated in the context of standard solar system observational
tests [59].

In this paper, in addition to the cases of radial and circu-
lar orbits studied in Ref. [1], we also present an analytical
investigation of general angular orbits for both of the null
and time-like geodesics, that include deflecting trajectories,
critical and planetary orbits. Furthermore, for the aforemen-
tioned radial and circular orbits, we apply special elliptic
integration methods that enable us expressing the solutions
in the more compact and aesthetic Weierstraßian forms. In
order to complete the work done in the above reference, we
go deeper into these kind of orbits by classifying them in
accordance with their corresponding effective potentials. In
particular, to provide more perception, the radial orbits are
plotted for each of these cases.

To proceed with this investigation, in Sect. 2, we briefly
introduce the black hole spacetime and its causal structure. In
Sect. 3, we construct the geodesic equations of motion in the
context of the standard Lagrangian dynamics. We begin our
study in Sect. 4 with the radial geodesics for the both null and
time-like cases. The corresponding effective potentials are
categorized and the respected radial profiles of the temporal
parameters are analyzed and plotted. In Sect. 5, we continue
our study by analyzing the effective potentials for particles
with non-zero angular momentum. This way, several kinds of
orbits become available which are studied analytically and in
detail. Further information are given in the appropriate places
within the text. We summarize our results in Sect. 6. We adopt
the geometrized system of units in which, G = c = 1.

2 The black hole solution

The static, spherically symmetric black hole solution associ-
ated with quintessence and cloud of strings, is described by
the line element

ds2 = −B(r)dt2 + dr2

B(r)
+ r2dθ2 + r2 sin2 θdφ2 (1)

in the xμ = (t, r, θ, φ) coordinates. The lapse function is
given by [54,55]

B(r) = 1 − α − 2M

r
− γ

r3wq+1 , (2)

with, α, γ and wq , representing the parameters of cloud of
strings (dimensionless and 0 < α < 1), quintessence and the
equation of state (EoS), and M is the black hole’s mass. For
a perfect fluid distribution of matter/energy and in the pres-
ence of quintessence, the EoS parameter respects the range
−1 < wq < − 1

3 [48]. The case of ωq = −1 corresponds to
an extraordinary quintessence, or the cosmological constant.
This particular case is similar to the Schwazschild-(anti-)de
Sitter black hole, and its geodesic structure for mass-less
and massive particles has been studied analytically in Refs.
[12,14]. When ωq = − 1

3 , the mathematical form of the lapse
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function becomes similar to a purely Schwarzschild black
hole with cloud of strings, whose geodesic structure has been
discussed in Ref. [53]. Respecting the subject of the current
study, both of the aforementioned cases propose all kinds
of bound and unbound orbits. For the purpose of this paper,
however, we confine ourselves to the case of wq = − 2

3 , that
recovers

B(r) = 1 − α − 2M

r
− γ r, (3)

and accordingly, [γ ] = m−1. As it is observed, the term γ r
in the above lapse function, generates an additional gravi-
tational potential. Such a potential is also available in the
Mannheim–Kazanas static spherically symmetric solution to
Weyl conformal gravity, and serves to compensate for the
flat galactic rotation curves [58]. In this regard, the choice of
ωq = − 2

3 is of worth for further studies, besides the fact that
it is relatively simpler than its other allowed values.

The black hole horizons are located at the radial distances
at which B(r) = 0, providing the two real roots [59]

r++ = 1 − α

γ
cos2

(
1

2
arcsin

(
2
√

2Mγ

1 − α

))
, (4)

r+ = 1 − α

γ
sin2

(
1

2
arcsin

(
2
√

2Mγ

1 − α

))
, (5)

that correspond, respectively, to the (quintessential) cosmo-
logical and the event horizons. This way, one can recast the
lapse function (3) as

B(r) = γ

r
(r − r+) (r++ − r) . (6)

Note that, the extremal black hole for which r+ = r++ =
re = 4M

1−α
corresponds to the case of γ = γc = (1−α)2

8M , and a
naked singularity is obtained when γ > γc. Note that, for the
cases of α → 1 and α → 0, we get γc → 0 and γc → 1

8M . In
Fig. 1, the behavior of the lapse function (2) has been plotted
for different values of γ . The infinite redshift happens when
the curves pass the B(r) = 0 line for the first time (at the
event horizon), whereas, the infinite blueshift happens when
they pass this line for the second time (at the cosmological
horizon). The corresponding extremal horizon re, has been
also indicated in this diagram.

In the forthcoming sections, we analyze the analytical
expressions for the radial and angular geodesics for both
mass-less and massive particles around this black hole. For
the particular case of radial null and time-like geodesics
which have been also studied in Ref. [1], we present more
compact analytical solutions in terms of Weierstraßian ellip-
tic functions, and we study different types of radial phenom-
ena. Additionally, the bound and unbound angular orbits are
given rigorous analytical studies regarding all kinds of the
possible motions for mass-less and massive particles.

Fig. 1 Plot of the lapse function for different values of the γ parameter.
For this diagram and all the forthcoming ones, we have considered
α = 0.2, and the unit of length along the axes is M . This way, the
extremal horizon will be located at re = 5

3 Particle dynamics

In the static black hole spacetime (1), the geodesic equations
can be expressed in terms of the Lagrangian [11]

L = 1

2
gμν ẋ

μ ẋν

= 1

2

[
−B(r)ṫ2 + ṙ2

B(r)
+ r2θ̇2 + r2 sin2 θφ̇2

]

= −1

2
ε, (7)

where “dot” stands for differentiation with respect to the
affine curve parameter τ , which here is also regarded as the
proper time. Furthermore, the null and time-like geodesics
are characterized, respectively, by ε = 0 and ε = 1. Now,
defining the generalized conjugate momenta

�μ = ∂L
∂ ẋμ

, (8)

one can introduce the two constants of motion

�t = −B(r)ṫ ≡ −E, (9a)

�φ = r2 sin2 θφ̇ ≡ L , (9b)

corresponding to the energy and angular momentum of the
test particles. For the seek of convenience, we confine the
geodesics to the equatorial plane, by fixing θ = π

2 , so that
from Eqs. (7) and (9) we have

ṙ2 = E2 − Veff(r), (10)

defining the gravitational effective potential

Veff(r) = B(r)

[
ε + L2

r2

]
. (11)
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Accordingly, one can obtain the radial and rotational equa-
tions of motion, as(

dr

dt

)2

= B2(r)

[
1 − Veff(r)

E2

]
, (12)

(
dr

dφ

)2

= r4

L2

[
E2 − Veff(r)

]
. (13)

Starting from the next section, these equations are treated in
the context of the radial and angular motions, for both null
and time-like trajectories.

4 Radial motion

The test particles with L = 0 are of great importance, since in
the case of null geodesics they can construct the casual struc-
ture of the spacetime, and in the case of time-like geodesics,
the difference between the perception of comoving and dis-
tant observers of infalling objects onto the black hole, is
revealed. We begin with the null radial geodesics and con-
tinue with the time-like ones.

4.1 Null geodesics

Letting ε = 0, one can then see from Eq. (11) that for the
radially moving mass-less particles (e.g. photons), we have
Veff(r) = 0. Accordingly, Eqs. (10) and (12) become

ṙ = ±E, (14)
dr

dt
= ±B(r). (15)

Note that, the sign + (−) corresponds to the photons falling
onto the cosmological (event) horizon. Choosing the initial
radial distance r = ri for t = τ = 0, and regarding the
expression in Eq. (6), the above two equations provide the
solutions

τ(r) = ±r − ri
E

, (16)

t (r) = ± 1

γ (r++ − r+)

[
r+ ln

∣∣∣∣ r − r+
ri − r+

∣∣∣∣
−r++ ln

∣∣∣∣ r++ − r

r++ − ri

∣∣∣∣
]

. (17)

In Fig. 2, the above solutions have been demonstrated, which
indicate that, whereas the comoving observers see them-
selves passing both of the horizons, to the distant observers,
the geodesics never pass the horizons.

4.2 Time-like geodesics

As discussed in the previous subsection, to the distant
observers, radially infalling test particles never cross the hori-
zons and in this sense, they appear frozen (see Refs. [60,61]).

Fig. 2 The radial null geodesics plotted for γ = 0.06, E = 0.5 and
ri = 5. The diagrams indicate the asymptotic behavior of t (r) (blue
curves) and horizon crossing of τ(r) (black lines)

Fig. 3 The effective potential for radially moving massive particles
plotted for γ = 0.04. In this particular case, the maximum distance of
unstable orbit, is du = 7.07 in accordance with E2 = E2

u = 0.23, and
the two turning points ds = 12.3 and d f = 4.12 have been indicated
in accordance with the corresponding value E2 = 0.15. The point ds is
related to the distance, at which, the particles 0 < E2 < E2

u , experience
their frontal scattering

Such particles confront an effective potential Vr (r) that is
obtained by letting ε = 1 and L = 0 in Eq. (11), whose
profile has been shown in Fig. 3.

Accordingly, the motion becomes unstable whereV ′
r (r) =

0, solving which, yields

du =
√

2M

γ
, (18)
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as the maximum distance of the unstable motion. Taking into
account E2

u ≡ Vr (du) = 1−α−2
√

2Mγ , the possible radial
orbits are then categorized as follows, based on the value of
E compared with its critical value Eu :

• Frontal scatterings of the first and the second kind (FSFK
and FSSK): For 0 < E2 < E2

u , the potential allows for
the turning point ds (du < ds < r++) corresponding to
the scattering distance (FSFK). In the case of 0 < E2 <

E2
u , another turning point d f (r+ < d f < du) occurs for

those trajectories that fall onto the event horizon and are
captured (RSSK).

• Critical radial motion: For E2 = E2
u , the test particles

that come from the initial distance di (du < di < r++)
fall on the unstable radius du , and those that come from
d0 (r+ < d0 < du), cross the horizon.

• Radial capture: For E2 > E2
u , particles approaching a

finite distance d j (r+ < d j < r++), fall directly onto the
event horizon.

Now, to formulate the time-like radial orbits, let us recall the
radial velocity relations

ṙ2 = γ p(r)

r
, (19)

(
dr

dt

)2

= γ 3(r − r+)2(r++ − r)2p(r)

E2r3 , (20)

which are inferred from Eqs. (6), (10) and (12), with

p(r) ≡ r2 −
(

1 − α − E2

γ

)
r + 2M

γ
. (21)

In general, the equation p(r) = 0 is satisfied at any turning
point for the radial orbits. We continue by discussing the
frontal scatterings.

4.2.1 FSFK and FSSK

The polynomial (21) vanishes for the two radii

ds = 1 − α − E2

γ
cos2

(
1

2
arcsin

(
2
√

2Mγ

1 − α − E2

))
, (22)

d f = 1 − α − E2

γ
sin2

(
1

2
arcsin

(
2
√

2Mγ

1 − α − E2

))
. (23)

For the case of FSFK that occurs at r = rs , the differential
equation (19) provides the solution

τ(U ) = ds
4
√

γ d f
[F(Us) − F(U )] , (24)

where

F(U ) = 1

℘′(�s)

[
ln

∣∣∣∣σ (ß(U ) − �s)

σ (ß(U) + �s)

∣∣∣∣ + 2ζ(�s)ß(U )

]
.

(25)

In the above relation, ℘′(x) ≡ d
dx ℘(x), in which, ℘(x) ≡

℘(x; g2, g3) is the ℘-Weierstraßian elliptic function with the
invariants g2 and g3, whose inverse is notated by ℘−1(x) ≡
ß(x). Furthermore, ζ(x) and σ(x) are also the Zeta and Sigma
Weierstraßian functions with the same invariants (for more
information, see Ref. [62]). In Eq. (25)

U (r) = ds
4r

− ds + d f

12d f
, (26a)

Us = 1

4
− ds + d f

12d f
, (26b)

�s = ß

(
−ds + d f

12d f

)
, (26c)

and the corresponding Weierstraß invariants are

g2 = 1

12d2
f

(
d2
s − dsd f + d2

f

)
, (27a)

g3 = 1

432d3
f

(ds − 2d f )(ds − d f )(2ds − d f ). (27b)

The solution in Eq. (24) corresponds to the radial evolution
of the proper time for comoving observers. For the case of
distant observers, one can integrate Eq. (20), that yields

t (U ) = δ0

2∑
k=1

δk [Fk(Us) − Fk(U )] , (28)

with the same expressions for U (r) and Us as in Eqs. (26a)
and (26b). In the above solution, we have defined

Fk(U ) = 1

℘′(�k)

[
ln

∣∣∣∣σ (ß(U ) − �k)

σ (ß(U ) + �k)

∣∣∣∣ + 2ζ(�k)ß(U )

]
,

(29)

for which the Weierstraß invariants are those in Eqs. (27),
and

δ0 = Eds
4γ

√
γ d f (r++ − r+)

, (30a)

δ1 = 1, (30b)

δ2 = −1, (30c)

�1 = ß

(
ds

4r++
− ds + d f

12d f

)
, (30d)

�2 = ß

(
ds

4r+
− ds + d f

12d f

)
. (30e)

The above solutions describe radially moving particles on the
FSFK, which are scattered at the distance ds . Accordingly,
to obtain the solutions for the FSSK, it is enough to do the
change ds → d f in the above solutions, and reverse the
direction of the radial propagation. The frontal scatterings of
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Fig. 4 The plots of FSFK (blue) and FSSK (red), for γ = 0.04 and
in accordance with three different energies E2 = 0.1, 0.15 and 0.21
(from bottom to top), corresponding to three different initial points for
each of the cases (i.e. ds for FSFK and d f for FSSK). The thick curves
show the radial evolution of the proper time τ(r), whereas the thin ones
demonstrate that of the coordinate time t (r)

time-like geodesics have been shown in Fig. 4, for both of
the FSFK and FSSK.

4.2.2 Critical radial motion

Particles with E2 = E2
u , can approach from two directions,

initiating from either the radial distance di (du < di < r++),
or from d0 (r+ < d0 < du), each of which, lead to a different
fate. We distinguish these fates, respectively by regions (I)
and (II), as indicated in Fig. 5. Solving the temporal Eq. (19),
and by taking into account the fact that for critical orbits
the characteristic polynomial changes its form to p(r) =
(r − du)2, we then obtain

τI(r) = ± [τA(r, du) − τA(di , du)] , (31a)

τII(r) = ∓ [τA(r, du) − τA(d0, du)] , (31b)

where we have defined the function

τA(r, y) = 2
√

r

γ
− 2

√
y

γ
arctanh

(√
r

y

)
. (32)

For the distant observes and to obtain the evolution of the
t-coordinate, we integrate Eq. (20), which results in

tI(r) = ±Eu

3∑
n=1

�n [tn(r) − tn(di )] , (33a)

Fig. 5 The critical radial motion in regions (I) and (II), plotted for
comoving (thick curves) and distant (thin curves) observers, for the case
of γ = 0.04. This value provides du = 7.07 corresponding to E2

u =
0.23. The trajectories have been specified for particles approaching from
d0 = 5 and di = 12

tII(r) = ∓Eu

3∑
n=1

�n [tn(r) − tn(d0)] , (33b)

with

t1(r) = τA(r, r++), (34a)

t2(r) = τA(r, r+), (34b)

t3(r) = τA(r, du), (34c)

and

�1 = −r++
γ (r++ − r+)(r++ − du)

, (35a)

�2 = −r+
γ (r++ − r+)(du − r+)

, (35b)

�3 = du
γ (r++ − du)(du − r+)

. (35c)

The critical radial motion of the temporal coordinates has
been plotted in Fig. 5, in accordance with the above solu-
tions and for the two different initial distances di and d0, that
generate the discussed regions.

5 Angular motion

Particles with L �= 0 can obtain more general types of
geodesic motion. In this section, we analyze the angular
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Fig. 6 The effective potential for angular null geodesics plotted for
γ = 0.001 and L = 3. Altering the values of L only affects the scale of
the potential and leaves its shape unchanged. For this particular poten-
tial, the turning points are located at rd = 5.81 and r f = 2.93 corre-
sponding to E2 = 0.12, and rc = 3.76 corresponding to E2

c = 0.168

motion of mass-less and massive particles, by solving the
angular equation of motion (13). As before, we apply the
methods of integrating the elliptic integrals that appear in the
course of this study. In a spacial occasion, a hyper-elliptic
integral is generated for the case of planetary orbits of mas-
sive particles. This integral will be dealt with by means of a
particular form of the Lauricella hypergeometric function.

5.1 Null geodesics

For the case of ε = 0 in Eq. (11), the effective potential for
the angular null geodesics becomes

Vn(r) = γ L2

r3 (r − r+) (r++ − r) , (36)

which has been plotted in Fig. 6. It can be checked that raising
and lowering L , changes only the scale of the axes, not the
shape of the effective potential. So, the one given in Fig. 6, can
categorize all the possible null orbits. As before, the turning
points are where E2 = Vn(rt ) is satisfied, which for the
case of angular geodesics, correspond to the vanishing of the
angular equation of motion (13).

In Fig. 6, these turning points have been indicated by
rd and r f , indicating respectively, the radial distances for
deflecting trajectories or orbits of the first kind (OFK) and
terminating bound orbits or obits of the second kind (OSK).
The other turning point rc, at which the condition V ′(rc) = 0
is satisfied, provides two kinds of unstable orbits, termed as
the critical orbits of the first and second kind (COFK and
COSK).

5.1.1 Period of the unstable circular orbits

The condition V ′
n(rc) = 0 results in the radial distance

rc = 2(1 − α)

γ
sin2

(
1

2
arcsin

(√
6Mγ

1 − α

))
. (37)

To compute the proper and the coordinate periods of orbits
at rc, we consider the expressions in Eq. (9), from which, we
infer

�τc = r2
c

L
�φc, (38)

�tc = Ec

L

r2
c

B(rc)
�φc. (39)

This way, for one complete revolution, one obtains the peri-
ods

Tτ ≡ �τc|�φc= π
2

= 2πr2
c

L
, (40)

for comoving observers and

Tt ≡ �tc|�φc= π
2

= 2πrc√
B(rc)

, (41)

for distant observers.

5.1.2 Deflecting trajectories

The turning points rd and r f can be calculated by solving the
equation
(

dr

dφ

)2

= P4(r)

L2 = 0, (42)

where P4(r) = r
[
E2r3 + L2γ r2 − L2(1 − α)r + 2ML2

]
.

Beside the trivial solution r = 0, the equation P4(r) = 0 has
the three real roots

rd =
√

ξ2

3
cosh

(
1

3
arccosh

(
3ξ3

√
3

ξ3
2

))
− γ b2

3
, (43)

rn =
√

ξ2

3
cosh

(
1

3
arccosh

(
3ξ3

√
3

ξ3
2

)
+ 2π i

3

)
− γ b2

3
,

(44)

r f =
√

ξ2

3
cosh

(
1

3
arccosh

(
3ξ3

√
3

ξ3
2

)
+ 4π i

3

)
− γ b2

3
,

(45)

in which, as expected, the positive-valued ones are only rd
and r f , and b ≡ L

E is the impact parameter. Here, we have
defined

ξ2 = 4

[
γ b2

3
+ b2(1 − α)

]
, (46a)

ξ3 = −4

[
γ b4

3
(1 − α) + 2γ 3b6

27
+ 2b2M

]
. (46b)
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(a) (b)

Fig. 7 The deflecting trajectories for null geodesics corresponding to a OFK, and b OSK, plotted for different values of E2 and in accordance
with the parameters given in Fig. 6

This way, one can recastP4(r) = E2

4 r(r−rd)(r−r f )(r−rn),
which eases the integration of the equation of motion. To
obtain the analytical solution for the deflecting trajectories,
we first consider the OFK at rd . The direct intergation of the

relation L
(

dr
dφ

)
= √P4(r), results in

r(φ) = r f rn

rd

[
�0
3r2

d
− 4℘ (ωd − κdφ)

] , (47)

with the Weierstraß invariants

g̃2 = �2
0 − 3r f rn�1

12r4
d

, (48a)

g̃3 = −27(rdr f rn)2 + 2�3
0 − 9r f rn�0�1

432r6
d

, (48b)

where ωd = ß(Ud), in which

Ud = �0 − 3r f rn
12r2

d

, (49)

and we have defined the constants

κd = r f rn
8brd

, (50a)

�0 = rdr f + rdrn + r f rn, (50b)

�1 = r2
d + rdr f + rdrn . (50c)

Pursuing the same procedure for photons approaching
from r f , one obtains the analytical solution

r(φ) = rdrn

r f

[
�0

3r2
f

− 4℘
(
ω f + κ f φ

)] , (51)

in which, the Weierstraß invariants and the constants ω f and
κ f have the same forms as in Eqs. (48)–(50), assuming the
exchange rd ↔ r f . In Fig. 7, the OFK and OSK have been
plotted for several energies.

Note that, the OFK can be used to obtain the lens equation.
Accordingly, the angle of deflection due to the gravitational
lensing is calculated as [63]

ϑ̂ = 2 (φ∞ − φd) − π, (52)

in which φ∞ ≡ φ(∞) and φd = φ(rd), where the radial
behavior of the azimuth angle in the equatorial plane is given
as

φ(r) = L
∫

dr√P4(r)
, (53)

according to Eq. (42). This way, the lens equation is obtained
as

ϑ̂ = 2

κd

[
ß

(
1

4r2
d

[
�0

3
− r f rn

])
− ß

(
�0

12r2
d

)]
− π, (54)

by taking into account the inversion of Eq. (47) for an
unbound (flyby) orbit.
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Fig. 8 The COFK (blue) and the COSK (orange), plotted in accordance
with the information given in Fig. 6

5.1.3 Critical trajectories

In the case of E = Ec, the characteristic polynomial gains
the formP4(r) = r(r−rc)2(r−rn), according to which, one
can do the intergation of the equation of motion, based on the
approaching points rc < ri1 < r++ and r+ < ri2 < rc. This
way, and taking into account b = bc(≡ L

Ec
), one obtains the

two solutions

rI(φ) = rc − rn
rc

[
(rc − rn) tanh

(
ϕi1 − κcφ

) − rc
] , (55)

that corresponds to the COFK for particles approaching from
ri1 , and

rII(φ) = rc + rn
rc

[
(rc − rn) tanh

(
ϕi2 − κcφ

) − rc
] , (56)

corresponding to the COSK for particles that approach from
ri2 . In these expressions

κc = rc
2

√
1 − rn

rc
, (57a)

ϕi1,2 = arctanh

(√
r2
c ri1,2 − rn

rc(rc − rn)ri1,2

)
. (57b)

In Fig. 8 These orbits have been plotted in accordance with
the approaching points, which lead to different fates for the
trajectories.

5.2 Time-like geodesics

For the case of ε = 1, the effective potential (11) gains the
form

Vt (r) = γ

r
(r − r+) (r++ − r)

(
1 + L2

r2

)
, (58)

for the angular time-like geodesics. It is however important
to note that, unlike the null case, the values of the angular
momentum L are crucial in the characterization of the pos-
sible orbits for time-like geodesics. In other words, different
choices of L can lead to different available orbits, in accor-
dance with the changes in the shape of the effective potential.
Therefore, one needs to find the corresponding limiting val-
ues of L , that characterize Vt (r).

To elaborate this, we first consider the limit where the
points of inflection and extremums coincide. These points are
where the equations V ′(r) = 0 and V ′′(r) = 0 are satisfied,
simultaneously (marginally stable orbits). The correspond-
ing angular momentums are then ramified to L IS, for which
Vt (r) presents a minimum at rIS where the innermost sta-
ble circular orbit (ISCO) occurs, and LOS, for which Vt (r)
has a minimum at rOS where the outermost stable circular
orbit (OSCO) happens. Furthermore, for the critical value
L = LC , the effective potential represents two maximum
of equal energy levels, occurring at the radial distances rC1

and rC2 . Based on the above notions, we can categorize the
angular momentums as follows:

• For 0 < L < L IS an unstable orbit is available without
the presence of stable circular orbits.

• For L = L IS an unstable orbit and ISCO are available.
• For L IS < L < LC a stable circular orbit and two unsta-

ble orbits are available. In this case, the first maximum is
smaller than the second one, so the energy of the unstable
orbit at the larger radius, is greater than that at the smaller
radius.

• For L = LC there are one stable circular orbit, and two
unstable orbits of equal energies.

• For LC < L < LOS there are one stable circular orbit and
two unstable orbits. The energy of the unstable orbit at
the smaller radius, is greater than that at the larger radius.

• For L = LOS an unstable orbit and OSCO are available.
• For L > LOS only an unstable orbit is available.

In Fig. 9, several branches of Vt (r) have been plotted, by
taking into account the above limits and values.

In what follows, we confine ourselves to the case of L =
LC and the possible time-like orbits are discussed.
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Fig. 9 The different curves of
Vt (r) plotted for γ = 0.001, and
ramified in terms of the limiting
values of the angular
momentum. The red dots
indicate the radii of unstable
orbits, rC1 and rC2 , which are
with equal energies and
correspond to the LC curve

Fig. 10 The behavior of Vt (r) for L = LC (in accordance with Fig. 9).
Here, rC1 = 5.85 and rC2 = 34.37, corresponding to E2

C = 0.719,
rS = 11.63 corresponding to E2

U = 0.708, and rD = 53.76, rA =
19.51, rP = 7.77 and rF = 4.96, corresponding to E2 = 0.714

5.2.1 Planetary orbits

Planetary orbits are oscillations between two turning points
and are, therefore, bounded between two radii. To discuss
the planetary orbits, we select the curve corresponding to LC

from the effective potential, as demonstrated in Fig. 10. In
this diagram, the stable circular orbits and the critical orbits
can occur, respectively, at r = rS and rC1,2 . The planetary
orbits, however, are only available for the energy level E2

U <

E2 < E2
C , where the equation

(
dr

dφ

)2

= P5(r)

L2 = 0, (59)

in addition to the trivial solution r = 0, possesses the four
real solutions rD (OFK), rA (apoapsis), rP (periapsis), and rF
(OSK). In Eq. (59), the characteristic polynomial is inferred
from Eq. (13) as P5(r) = r

[
γ r4 − (1 −α − E2)r3 + (2M +

L2γ )r2 − L2(1 − α)r + 2ML2
]
. The equation P5(r) = 0

for this energy level results in the solutions (see appendix A)

rD = M

[
ρ̃ +

√
ρ̃2 − β̃ − ã

4

]
, (60)

rA = M

[
ρ̃ −

√
ρ̃2 − β̃ − ã

4

]
, (61)

rP = M

[
−ρ̃ +

√
ρ̃2 − λ̃ − ã

4

]
, (62)

rF = M

[
−ρ̃ −

√
ρ̃2 − λ̃ − ã

4

]
, (63)

where

ρ̃ =
√
Ũ − Ã

6
, (64a)

β̃ = 2ρ̃2 + Ã

2
+ B̃

4ρ̃
, (64b)

λ̃ = 2ρ̃2 + Ã

2
− B̃

4ρ̃
, (64c)

with

Ã = b̃ − 3ã2

8
, (65a)

B̃ = c̃ + ã3

8
− ãb̃

2
, (65b)

C̃ = d̃ + ã2b̃

16
− 3ã4

256
− ãc̃

4
, (65c)

given that

ã = −1 − α − E2

Mγ
, (66a)

b̃ = 2M + L2γ

M2γ
, (66b)

c̃ = − L2(1 − α)

M3γ
, (66c)

d̃ = 2L2

M3γ
, (66d)
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 11 Some examples of time-like planetary orbits, plotted in accor-
dance with the effective potential in Fig. 10, for the energies a E2 =
0.709, b E2 = 0.710, c E2 = 0.712, d E2 = 0.714, e E2 = 0.716,

f E2 = 0.718 and g E2 = 0.7194. The inner and outer dashed circles
indicate, respectively, rP and rA for each energy level and the small red
circle is r+

and we have defined the function

Ũ =
√

η̃2

3
cosh

(
1

3
arccosh

(
3η̃3

√
3

η̃3
2

))
, (67)

that includes the constant coefficients

η̃2 = Ã2

12
+ C̃, (68a)

η̃3 = Ã3

216
− ÃC̃

6
+ B̃2

16
. (68b)

This way, the characteristic polynomial can be recast as
P5(r) = r(rD − r)(rA − r)(r − rP )(r − rF ) for the case
that the planetary orbits are present.

For particles reaching at the turning point rA (or rP ) with
the initial azimuth angle φ0 = 0, the planetary orbits are then
characterized by the equation

φ(r) = −L
∫ r

rA

dr√
P5(r)

, (69)

which contains a hyper-elliptic integral on its right hand side.
After applying specific intergation methods and manipula-
tions, this integral results in the solution (see appendix B)

φ(r) = 2L√
l3γ

√
1 − r

rA
F (4)
D

×
(

1

2
,

1

2
,

1

2
,

1

2
,

1

2
; 3

2
; c1, c2, c3, 1 − r

rA

)
, (70)

in which l3 = (rD − rA)(rA − rP )(rA − rF ), and F (4)
D is the

incomplete Lauricella hypergeometric function of the fourth
order, which is defined in the context of the integral equation
[64,65]

∫ 1− r
rA

0
u− 1

2 (1 − u)−
1
2

3∏
i=1

(1 − xiu)−bi du

= 2

√
1 − r

rA
F (4)
D

×
(

1

2
, b1, b2, b3,

1

2
; 3

2
; c1, c2, c3, 1 − r

rA

)
, (71)

where b1 = b2 = b3 = 1
2 , and

c1 = − rA
(rD − rA)

, (72a)

c2 = rA
(rA − rP )

, (72b)

c3 = rA
(rA − rF )

. (72c)

In order to simulate the planetary orbits, we use the solution
(70) to make a list of points (φ(rt ), rt ) in the domain rP <

rt < rA, and then we do the inversion by means of numerical
interpolations. In Fig. 11, some examples of planetary orbits
have been plotted for some different ranges of energy E2

S <

E2 < E2
C .

Furthermore, the solution (70) allows for the determina-
tion of the precession of the periapsis in planetary orbits. This
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(a) (b)

Fig. 12 The deflecting time-like trajectories, a OFK and b OSK plot-
ted for the same values of energy as those used in Fig. 11. The thin
dashed circles indicate rD for the OFK, and rF for the OSK. The value

of E2 decreases from the inner to the outer circles in the OFK, and from
the outer to the inner circles in the OSK

precession is given by �pl = 2φAP − 2π , where φAP is the
azimuth angle swiped between rA and rP during the bound
orbit. This way, one obtains

�pl = 4L√
l3γ

√
1 − rP

rA
F (4)
D

×
(

1

2
,

1

2
,

1

2
,

1

2
,

1

2
; 3

2
; c1, c2, c3, 1 − rP

rA

)
− 2π,

(73)

as the exact expression for the precession in the planetary
orbits.

5.2.2 OFK and OSK

The same effective potential in Fig. 10, offers the OFK and
OSK for particles approaching at rD and rF . So the same
solution in Eq. (70) holds for these kinds of orbits, and the
only thing that changes is the point of approach. Therefore,
following the same numerical method as applied for the plan-
etary orbits, in Fig. 12, the deflecting time-like trajectories
have been plotted.

5.2.3 Period of the circular orbits

The period of stable and unstable circular orbits at the radial
distance rCO, which can be stable or unstable, respectively at
rS or rC , can be calculated in the same way as in Sect. 5.1.1,
and from Eqs. (40) and (41). In fact, by solving V ′

t (r) = 0
for L , one obtains the radial profiles

L(r) = r

√
2M − γ r2

2(1 − α)r − 6M − γ r2 , (74)

E2(r) = 2
[
2M − (1 − α − γ r)r

]2

r
[
2(1 − α)r − 6M − γ r2

] , (75)

for the circular orbits. Hence, by means of Eq. (40), the proper
period for the time-like circular orbits that exist at the distance
rCO, becomes

Tτ = 2πrCO

√
2(1 − α)rCO − 6M − γ r2

CO

2M − γ r2
CO

, (76)

to obtain which, we have let LCO ≡ L(rCO). Accordingly, at

the Schwarzschild limit we have T Sch
τ = 2πrCO

√
rCO−3M

M .
The period of the coordinate time, on the other hand, is
obtained by using Eq. (41) at r = rCO, providing

Tt = 2πrCO

√
rCO

rCO − 2M − αrCO − γ r2
CO

, (77)

with the Schwarzschild limit T Sch
t = 2πrCO

√
rCO

rCO−M . Tak-

ing into account the three important cases of L = L IS, LOS

and LC of the effective potential in Fig. 9, we have plotted
the proper and coordinate periods in Fig. 13, together with
their values at the distances rIS, rOS, rS , and rC1,2 .

Note that, as they are marginally stable, orbits at the ISCO
are sensitive to perturbations along the radial axis, in the
sense that the orbiting particles may fall out of the stable
orbits under certain circumstances. This way, one can define
a limit, beyond which, the orbits become unstable. Such limit
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(a) (b)

Fig. 13 The behavior of a the proper and b the coordinate periods of
time-like circular orbits, in accordance with the values of L as in Fig. 9.
In the diagrams, the red dot-dashed lines correspond to unstable cir-

cular orbits at rC1 (lower line) and rC2 (upper line). The dashed lines
correspond to the stable circular orbits at rIS (orange), rOS (yellow) and
rS (green)

Fig. 14 The radial profile of the epicyclic frequency together with its
values at the two radii of marginally stable orbits (rIS and rOS), in
accordance with the effective potential in Fig. 9

may be understood, indirectly, by mean of the radial epicyclic
frequency υr , which is related to the formation of accre-
tion disks around black holes (see Ref. [66] for a very good
review). Therefore, υr is the frequency of the oscillations
of the accreting particles along the radial direction, and is
defined as [67,68]

υ2
r = − 1

2grr
V ′′
t (r), (78)

given in terms of the effective potential. Taking into account
the value of L in Eq. (74) in the effective potential (58), we
obtain

υ2
r =

[
2M − (1 − α)r + γ r2

]2 [
12M2 − 2M(1 − α)r − 12Mγ r2 + 3γ (1 − α)r3 − γ r4

]
r3

[
6M − 2(1 − α)r + γ r2

]2 . (79)

In Fig. 14, the radial profile of υ2
r has been plotted together

with its value at rIS.
Recently, the epicyclic frequency for quasi oscillations

of massive test particles in circular accretions has been dis-

cussed in Ref. [69], for the same black hole with an associated
electric charge.

5.2.4 Critical orbits

Returning to the effective potential in Fig. 10, the two double
roots rC1 and rC2 can provide a particular form of critical
orbits. Once E2 = E2

C , the characteristic polynomial can
be recast as P5(r) = r(r − rC1)

2(r − rC2)
2, for which, the

angular equation of motion becomes

φ(r) = LC

∫ r

r j

dr

|r − rC1 ||r − rC2 |
√
r
, (80)

for particles approaching from an initial point r j . After some
manipulations, it is found out that the critical orbits can be
described in the context of the relation

Y (r) = exp

[(
rC2 − rC1

2LC

)
φ − ϕ̃ j

]
, (81)

in which

Y (r) =
⎛
⎝1 +

√
r
rC2

1 −
√

r
rC2

⎞
⎠

1
2
√

rC2
⎛
⎝1 +

√
r
rC1

1 −
√

r
rC1

⎞
⎠

− 1
2
√

rC1

, (82)

and

ϕ̃ j = 1√
rC2

arctanh

(√
r j
rC2

)
− 1√

rC1

arctanh

(√
r j
rC1

)
. (83)

Therefore, the simulation of the orbits can be done by means
of numerical interpolations. As before, the orbits can be clas-
sified in terms of the three cases r j > rC2 , rC1 < r j < rC2 ,
and r+ < r j < rC1 . In Fig. 15, the domain of the changes
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Fig. 15 The change in the φ-coordinate during the time-like critical
orbits, classified by colours, in accordance with different ranges of the
initial radial distance r j

Fig. 16 The critical orbits of time-like geodesics for L = LC , E2 =
E2
C , and different initial points r j , in accordance with Fig. 15

in the φ-coordinate during the critical orbits has been shown
for each of these cases.

In Fig. 16, the aforementioned three cases have been con-
sidered in Eq. (81), in order to simulate the possible forms
of the critical orbits.

As it is observed, the case of r j > rC2 is indeed a COFK,
whereas the orbits are completely confined between the two
extremums when rC1 < r j < rC2 . Finally, the case of r+ <

r j < rC1 , is a COSK. Accordingly, distant observers will
only be able to detect particles coming from rC2 .

6 Summary and concluding remarks

The study of particle dynamics is an interesting subject both
from the theoretical and observational points of view. For
example, as done in Ref. [70], galactic astronomers can apply
the formulations of periapsis precession for stars orbiting
supermassive black holes, in order to compare the theoreti-
cal predictions with actual observations. In the same way, as
far as the theoretical studies move forward, the observational
evidences can be searched for, and vice versa. Hence, the the-
oretical predictions can help the applied scientists to obtain
more insights on what they observe. In this paper, aiming at a
theoretical study, we considered a Schwarzschild black hole
with two associated cosmological terms stemming, respec-
tively, in a quintessential field and a stringy cosmic fluid. Tak-
ing into account a special case for the EoS, namely ωq = − 2

3 ,
an extra linear gravitational potential is created. The resul-
tant black hole admits an event and a cosmological horizon,
that being null hypersurfaces, form the surfaces of infinite
redshift and blueshift. This way, the radial profiles of the
proper and coordinate times show two receding branches
towards either of these horizons. Although the radial evo-
lution of null and time-like geodesics for this black hole has
been studied analytically in Ref. [1], here we presented an
alternative approach to the analytical solutions reported in
that paper, by employing strict elliptic integration methods
that resulted in the Weierstraßian expressions for the solu-
tions. Furthermore, we categorized the radial orbits within
the corresponding effective potential, and also in accordance
with the turning points for which, we found explicit expres-
sions. The radial profiles of the time axes were plotted for
the particular cases of frontal scattering and critical motion.
The analytical study of the angular trajectories for mass-less
particles (photons) were first approached by means of the ℘-
Weierstraßian elliptic functions which enabled us analyzing
the deflecting trajectories from the turning points which were
also found explicitly. We continued the study of angular null
geodesics by discussing the unstable circular (critical) orbits,
which was the only remaining possible motion for mass-
less particles. on the other hand, angular motion for massive
particles appeared much more diverse in the sense that the
effective potential could offer an ISCO and an OSCO, that
confine the stable circular orbits. The corresponding angu-
lar momentums for these cases were obtained by taking into
account the marginality condition V ′′

t (r) = 0. There would
be, therefore, some cases of two double roots for the charac-
teristic polynomial. Accordingly, the choice of the angular
momentum for the approaching test particles becomes of cru-
cial importance in the analysis of the trajectories. To proceed,
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we adopted the switching value L = LC , for which the two
double extremums (maximums) of the effective potential are
equal in the value. This case was analyzed in the context
of several types of orbits that it could offer. For the case of
planetary orbits, in addition to the periapsis and apoapsis, the
characteristic polynomial has two other non-zero real roots
that result in a hyper-elliptic integral for the azimuth angle.
This integral was solved analytically in terms of the fourth
order Lauricella hypergeometric function. To do the plots of
the orbits, we obtained the inversion of this integral by means
of numerical interpolations. The orbits show larger preces-
sion in the periapsis as the particle’s energy approaches its
critical value. The same method was used to plot the deflect-
ing time-like trajectories. We also determined the proper and
coordinate periods of stable circular orbits, and calculated
the epicyclic frequency of accreting particles. We closed our
discussion by analyzing the critical time-like orbits as they
approach from three different initial points to either of the
extremums. The simulations indicate that only the particles
from the outer critical distance can escape to the infinity. In
fact, the stability of circular orbits is an interesting subject of
study for any black hole which is capable of the formation
of accretion disks. Therefore, as a future study, this black
hole can be investigated in more detail regarding the stability
of accreting massive particles, as well as the lensing of its
accretion disk and the possible higher order ring images.
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Appendix A: Solving quartic equations

The equation of the form

x4 + ax3 + bx2 + cx + d = 0, (A1)

can be depressed by applying the change of variable x
.=

z − a
4 , that yields

z4 + Az2 + Bz + C = 0, (A2)

where

A = b − 3a2

8
, (A3a)

B = c + a3

8
− ab

2
, (A3b)

C = d + a2b

16
− 3a4

256
− ac

4
. (A3c)

The method of finding the roots of Eq. (A2), has been given
in the appendix C of Ref. [71].

Appendix B: The angular solution for planetary orbits

Applying the change of variable x
.= r

rA
, the integral equation

(69) changes its form to

φ(x) = − L√
γ

∫ x

1

dx√
P5(x)

, (B1)

where

P5(x) = x(rD − rAx)(1 − x)(rAx − rP )(rAx − rF ). (B2)

Applying a second change of variable x
.= 1 − u, yields

φ(u) = L√
γ

∫ u

0

du√
P5(u)

, (B3)

in which

P5(u) = (1 − u) [rD − rA(1 − u)] u [rA(1 − u) − rP ]

× [rA(1 − u) − rF ]

= u(1 − u)(rD − rA)(rA − rP )(rA − rF )

×
[

1 + rAu

rD − rA

]

×
[

1 − rAu

rA − rP

] [
1 − rAu

rA − rF

]

≡ l3u(1 − u)(1 − c1u)(1 − c2u)(1 − c3u). (B4)

Hence, one can recast Eq. (B3) as

φ(u) = L√
l3γ

∫ u

0
u− 1

2 (1 − u)−
1
2 (1 − c1u)−

1
2

×(1 − c2u)−
1
2 (1 − c3u)−

1
2 du. (B5)
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The incomplete Lauricella function of order n+1, is defined
in terms of the integral equation [65]

∫ z

0
ua−1(1 − u)c−a−1

n∏
i=1

(1 − xi u)−bi du

= za

a
F(n+1)
D (a, b1, . . . , bn, 1 + a − c; a + 1; x1, . . . , xn, z) .

(B6)

By doing a comparison between Eqs. (B5) and (B6), it is
inferred that a = 1

2 , c = 1 and n = 3. Accordingly, we get
b1 = b2 = b3 = 1

2 , and x1 = c1, x2 = c2 and x3 = c3. This
way, the solution in Eq. (70) is obtained.
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