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Abstract The objective of this paper is to investigate the
continuation of Lemaître–Tolman–Bondi (LTB) space-time
for dissipative dust configuration in the direction of Palatini
f (R) theory. In this context, the generalized form of field
and dynamical equations will be formulated. We explore the
effects of kinematical variables and curvature invariant on
our proposed fluid configuration. The significance of Pala-
tini f (R) scalar variables computing through the orthogonal
splitting of Riemann-tensor for dissipative dust spheres will
be reported. Furthermore, two subcases of LTB space-time
have been carried out to note down its symmetric aspects. It
is revealed that extended LTB space-time has characteristics
comparable to that of LTB and computed scalar variables in
both situations have identical dependance on source profile
even under the effects of Palatini technique.

1 Introduction

Indeed, high-quality findings obtained from the galactic clus-
ter studies include mass, correlation concerns, and a plethora
of variations with red-shift [1–3], Hubble preview of Type-Ia
supernovae [4,5], The galactic shearing [6,7] determined via
weak-lensing, cosmic-microwave-background anisotropies
[8,9], major structure optical measurements [10,11] stud-
ies all point to spatial flatness in the cosmos, and sub-critical
fluid composition enduring the cosmic accelerating expan-
sion era. The key target of today’s cosmology is to combine
all these kinds of data into a well-consistent configuration
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that provides a clear picture of the current observable cosmos.
Even though it has some significant theoretical concerns that
have motivated the researchers to look for other alternatives,
which they regard as dark energy/quintessence. Mainly, the
dark energy serves as a repulsive gravity. It contributes to the
expanding mechanism and controls the entire energy con-
tent of the cosmos. Despite this, the rudimentary aspects and
nature of dark energy are still unclear. Dark matter seems to
be in a comparable scenario. Its grouping and allocation char-
acteristics are fully grasped throughout all levels. However,
in a rudimentary sense, its context is mysterious. Else ways,
the inclusion of these dark source ingredients could well be
interpreted as an indication of the inadequacy of general rel-
ativity (GR) at extra-galactic and large cosmic scales. In this
scenario, modified gravity theories (MGTs) can be a captivat-
ing substitute in order to elucidate large-scales structures and
cosmic speedy expansion. The MGTs are one of the attractive
mathematical techniques that could be applied to analyze the
dark side of the cosmos. By varying the geometric portion
of the GR action, distinct dark energy frameworks have been
suggested. In last few years, there have been proposed distinct
MGTs likewise f (R), f (T), f (G) , f (R, T ), etc., where R
identifies the curvature scalar, T is the torsion invariant, G
symbolizes the Gauss–Bonnet correction, and T represents
the stress-energy tensor (reviews on MGTs could be stud-
ied in [12–17]). Nojiri and Odintsov [18] investigated this
approach to figure out the cosmic rapid-expansion together
with the consequences of inflation.

The simplest way to generalize GR is the f (R) gravity
[19–22] enables for geometrical degrees-of-freedom for dark
energy substitute without need to introduce any new mate-
rial ingredient. Olmo and Garcia [23] studied the formula-
tion of a group of anisotropic static spheres under the con-
text of f (R) theory and found the consequences of relating
parameters representing the black hole structures whose cen-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10599-0&domain=pdf
mailto:mutasem@gmail.com
mailto:mzaeem.math@pu.edu.pk
mailto:zeeshan.math@pu.edu.pk
mailto:ume.farwa514@gmail.com
mailto:ahm.mohamed@psau.edu.sa


631 Page 2 of 18 Eur. Phys. J. C (2022) 82 :631

tral singularity is substituted by a definite wormhole. Cog-
nola et al. [24] proposed the well-grounded formulations of
f (R) dark energy configurations and categorized them into
four-streams. Azadi et al. [25] found some vacuum conse-
quences via Weyl-coordinates for cylindrical configuration
within the insights of f (R) gravity. Durrer and Maartens
[26] found that f (R) models might give valuable insights
regarding the evolving cosmic configurations. Bamba et al.
[27] analyzed the influence of dark energy via generalized
cosmological configurations to study the acceleratory era of
the cosmos. Cembranos et al. [28] studied the inflationary
f (R) model by taking collapsing dust candidates under con-
sideration. Reverberi [29] analyzed the curvature singulari-
ties through various aspects of f (R) models and concluded
that these singularities emerge due to increase in mass/energy
of the fluid configuration. Yousaf and Bhatti [30] examined
the consequences of fluids candidates along with the f (R)

corrections on the evolving cylindrical cosmic configuration.
They found that some specific f (R) models try to attain super
dense objects with considerably smaller radii. Owing to its
simple reliability, f (R) theory has been attained consider-
able interest in characterizing dark matter and dark energy
which is constructed by replacing the curvature invariant
R by its generalized function. In this scenario, two distinct
approaches could be adopted in order to get the generalised
field equations. The first one is metric formalism, where the
action function can be varied with regard to the metric, and
second is the Palatini version, in which the metric and con-
nections are considered to be independent. The key premise
in such an approach is that matter-action is independent of
connections; its disregard follows the metric-affine version
which could recover the metric/Palatini f (R) theories within
usual bounds. The field equations in metric-based theory are
of order four. However, we come up with second-order field-
equations in the Palatini f (R) scenario which are more easy
to work with [31–36].

In Palatini f (R) scenario, Sotiriou [37] built an associa-
tion of scalar-tensor theory to the f (R) gravity. He examined
the connection between them and studied the consequences
of their equivalency. He also showed how fluid configuration
is associated with the independent connections within certain
situations. Starobinsky [38] discovered a set of f (R)-models
that result in a distinct and plausible cosmic formation. They
showed that these configurations correspond to Minkowskian
and de-Sitter line-elements in the vacuum scenario. Santos
et al. [39] analyzed the energy constraints to scrutinize f (R)

theories. They proposed the expansion evolution to deter-
mine the null and strong-energy constraints, and other ones
via effective matter content. Bamba and Geng [40] studied
the thermodynamical aspects of apparent-horizon in the Pala-
tini f (R) version and found that the equilibrium perspective
is suitable for understanding the entropy of the apparent-
horizon. Olmo and Alepuz [41] investigated the Hamilto-

nian f (R) distribution by imposing the Palatini approach.
They computed the constraint equation and determined that
Cauchy-problem is well-suited for ω = − 3

2 . Bhatti et al.
[42] proposed isotropic spheres in order to analyse the sta-
ble zones of compact stars in a Palatini f (R, T )context.
They constructed the stable regions as a result of physical
conditions. Yousaf et al. [43] measured the complexity via
structure scalar of the static spheres to examine the influ-
ence of physical parameters bearing the impact of Palatini
f (R) corrections. To better interpret the physical meanings
of the gravitating system, structure scalars are an effective
approach. Herrera et al. [44] computed the set of stellar-
equations that could express in the form of the scalar vari-
ables. They inferred that these scalars demonstrate the basic
aspects of the gravitating fluid under concern. Yousaf [13]
explored the consequences of strong-field gravitational inter-
action via scalar variables on the formulation of propagat-
ing source. They evaluated anisotropic dynamical source
and determined the relating generalized scalars to check out
the their effects on the systematic description of radiating
stars. Bhatti et al. [45–47] computed the f (R) scalars for
the physical manifestation of various gravitating bodies and
formulated the stellar consequences via scalar functions to
explore the physical aspects of matter configurations. They
also developed static-solutions to entail the influence of f (R)

version of scalars.
Bhatti and Tariq [48] studied expansion of dissipative

star in the impact of charged-field under GR concerns. They
attained the five scalars for the spherical system and showed
that stellar-solutions could be well-expressed by means of
such scalars in static scenarios. Herrera et al. [49] explained
the Misner–Sharp approach for heat-fluxes and examined the
thermodynamical consequences via heat conduction. Goven-
der et al. [50] explored the influence of shearing motion
on collapsing configurations under dissipative concerns and
showed that shearing effects are the origins of increasing core
temperature. They also studied the physical aspects of col-
lapsing stars without considering shearing motion. Herrera et
al. [51] inspected the characteristics of axial symmetric dis-
sipative matter configuration, and determined the absence
of gravitational-radiations in geodesic scenario. It is also
deduced that in non-dissipative condition, the system pro-
ceeds to Friedmann–Robertson–Walker configuration pro-
vided the positivity of expansion factor. Reddy et al. [52]
analyzed the consequences of dissipation on collapsing bod-
ies and presented the dynamics of some particular cosmic
models within the perturbative approach. They noticed that
anisotropy of pressure affects the interior body’s temperature.

Inhomogeneous matter configuration has considerable
consequences for comprehending the physical description
of any cosmic system. Inhomogeneous space-times are
regarded to be the exact-solutions of field equations and
reveal details about the universe’s various eras. A revived
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interest in Lemaître–Tolman–Bondi (LTB) space-time has
emerged in association with the current data from type-Ia
supernovae that suggests that the universe’s expansion is
accelerating. LTB space-time is considered to be the most
common inhomogeneous spherical configuration that plays
a key role in the investigation of cosmic configurations. It
could be applied to analyze the formation of Cauchy and
apparent-horizons. Sussman [53] proposed a numerical tech-
nique for the extension of LTB space-time and examined
influence of pressure. He determined the basic conditions
for the influence of collapsing procedure and particle forma-
tion. Herrera et al. [54] presented the generalization of LTB
space-time by introducing tilted-congruence and explores the
effects inhomogeneity of energy composition. Yousaf et al.
[55,56] performed the evolution of LTB geometry under the
investigation of tilted-congruence with and without the influ-
ence of charged field in the perspective of MGTs. Fernandes
et al. [57] checked the consequences of higher derivatives
corrections on LTB space-time. They also analyzed the phys-
ical outcomes for Hubble constant and scale-factor for Proca
structure and observed that magnetic effects disappear for
such structures.

Herrera [58] considered the dissipative dust fluid to
explored the consequences of dissipation in the configuration
of energy density inhomogeneities. Herrera et al. [59] dis-
cussed the generalization of LTB spacetime with the help of
structure scalars and symmetric properties. They considered
the dissipative dust fluid to generalize the LTB spacetime for
the dissipative case because LTB does agree with dissipative
phenomena. They have mentioned that the state of pure dust,
suggesting geodesic fluid in non-dissipative scenario while
this condition remains not valid when we consider dissipative
flux. Yousaf et al. [60] considered the imperfect fluid to exam-
ine the factors that create irregularities for a spherical star in
f (R, T ) theory. They studied particular cases of anisotropic,
isotropic, and dust to analyze the irregularity factors in the
dissipative and non-dissipative scenarios. They considered
dissipative dust as a special case to analyze the effects of
heat-fluxes as well as null-radiations. Herrera [61] studied
the gravitational radiation and its properties by considering
dissipative fluids as well as addressed some particular cases
such as shear-free and perfect fluid to analyze their behavior.
They found that dust fluid along with dissipation is the more
consistent fluid distribution with gravitational radiation.

The Palatini version of f (R) gravity have its own sig-
nificance since its inception. The theory has several fasci-
nating properties, including the ability to predict the pres-
ence of a long range scalar-field, describing cosmic late-time
acceleration. It is worth noting that Olmo [62] applied the
scalar-tensor representation technique to work out the post-
Newtonian limit of Palatini and metric versions of f (R)

theory. They inferred that the f (R) Lagrangian must be
linear in R in both formalisms but observations are quite

opposite to the corrections that are obtained at low curva-
tures. This result demonstrated that the gravitational alter-
ation at very low densities is irreversible. Olmo et al. [63]
used Palatini approach to examine the formation of static
spherically symmetric star, where Lagrangian is an unde-
fined function of f (R, RμνRμν). They derived the TOV
equations for such theories and indicated that under usual
limits, they regain the f (R) and GR. They demonstrated that
exterior vacuum findings are comparable with Schwarzschild
de-Sitter ones, discussed the presumed changes of the inte-
rior solutions when matched with general relativity. Olmo
and Garcia [64] utilized the tensor distributional technique
to compute the matching conditions for Palatini f (R) grav-
ity. They demonstrated that these conditions are required to
construct the models of gravitational bodies with the match-
ing of inner and outer regions at hyper-surface. They demon-
strated their importance by taking into account the stellar
surfaces within polytropic configurations and analyzed that
the Palatini framework can safely model the white dwarfs and
neutron stars. Olmo [21] studied the MGTs by using the Pala-
tini context and discussed the cosmic speed-up problem in
detail. The Cauchy problem and solar system tests have also
been studied in this context. Amarzguioui et al. [65] studied
the f (R) gravity using Palatini formalism for analyzing the
expansion history of the cosmos by the choice of an arbi-
trary f (R) function. They explored the cosmological con-
straints of f (R) theory originated from cosmic-microwave-
background observations and demonstrated that their results
reveal that the choice of 1

R model is inconsistent with the data.
Allemandi et al. [66] discussed the physical significance of
conformal transformations by taking the Palatini technique
in gravitational theories. They analyzed that the conformal
transformations provide the physical signs which enable to
differentiate the space-time and geodesic structures by taking
into consideration the bi-metric structure within Palatini for-
malism. Meng and Wang [67] discussed the modified gravity
with R2 terms using the Palatini formalism. They indicated
that the quantum effects of R2 theory are different in met-
ric and Palatini formalisms as well as demonstrated that R2

term provides no information about the early time inflation
in Palatini formalism.

The main idea of our work is to extend the LTB metric in
the background of the Palatini f (R) theory to the dissipa-
tive case. We discussed a couple of aspects in this scenario.
One is to explore some basic dynamical quantities, referred
as the structure scalars, which have their own physical sig-
nificance. The other is to discuss some symmetric aspects
of the LTB metric and then generalize it under the influence
of a specific generalized gravity, namely the Palatini f (R)

approach, along with dissipative effects, because LTB geom-
etry does not admit dissipation. Our manuscript is outlined as
follows. Generalized field and dynamical laws together with
Bianchi-identities and the Weyl propagation equations bear-
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ing the influence of Palatini f (R) corrections are presented in
Sect. 2. The Palatini f (R) scalars will be computed in Sect. 3
using an orthogonal breakdown of the Riemann-tensor. Sec-
tion 4 comprises a full demonstration of LTB space-time
where the feasible findings of the evolving system with the
graphical representation will be discussed. On the basis of
symmetric characteristics and scalar variables, the continua-
tion of LTB space-time would be attained in Sect. 5. In the
last section, we conclude the findings of our work.

2 Palatini f (R) formalism

The action integral for f (R) gravity is expressed by

I f (R) = 1

2κ

∫ √−g[ f (R) + Sm]d4x, (1)

where Sm is the matter action, g identifies the determinant of
gβ� (metric tensor) and κ represents the coupling constant.
The curvature invariant R in (1) is constructed through the
contraction of Ricci-tensor corresponding to connections by
implying that R is the outcome of geometric connections. By
varying (1) with regard to gβ� and connections �

μ
β�, we get

the following two equations

F(R)Rβ� − 1

2
gβ� f (R) = κTβ�, (2)

∇μ(gβ�√−gF(R)) = 0, (3)

where Tβ� is the stress-energy having no dependence over
independent connections and F(R) symbolizes the derivative
of f by R. For the comparison between T = gβ�Tβ� and
curvature scalar, we contract Eq. (2) with gβ� and get the
trace-equation as below

2 f (R) − RF(R) = −κT, (4)

showing that curvature scalar has clear dependence on trace
of Tβ�. In the Palatini f (R) case, a single description of
field equations of order two could obtain by computing the
connections from Eq. (2) after that putting in Eq. (3), we get
the following form

Rβ� − 1

2
gβ�R = κ

F
Tβ� + 1

2
gβ�

(
f

F
− R

)

+ 1

F
(∇β∇� − gβ��F) + 3

2F2

×
[

1

2
gβ�(∇F)2 − ∇βF∇�F

]
, (5)

here ∇�, shows the covariant-derivative and � ≡ gβ�∇β∇�

is the box operator. The generalized field-equations in the

term of the Gβ� could be represented as

Gβ� = 8π

F
(Tβ� + T (D)

β� ), (6)

here

T (D)
β� = 1

κ

[
∇β∇�F − gβ��F − F

2
gβ�R + f gβ�

2

+ 3

2F

(
1

2
gβ�(∇F)2 − ∇βF∇�F

)]
, (7)

is the stress-energy tensor demonstrating the gravitational
contribution via Palatini f (R) modifications. The metric ver-
sion breaks down the quadratic-order aspects of GR, how-
ever, these could be reserved via Palatini approach. The
generic line-element for the inner configuration of a spherical
symmetric geodesic fluid can be given as

ds2 = B2dr2 + C2dθ2 + C2sin2θdφ2 − dt2, (8)

where B = B(t, r) and C = C(t, r). The geometric variable
B have dimensionless while dimension of C is identical to
that r . It is noteworthy that cold dark-matter is non collisional
having the intense impact of rest-mass in which the pressure
and heat-fluxes have ignorable consequences owing to their
kinetic-nature. Henceforth, it would be important to analyze
the stability/instability of such configuration together with
the influence of certain kinetic factors, for instance, heat-
fluxes in the perspective of a specific gravity theory namely;
Palatini f (R) theory. For this purpose, the stress-energy ten-
sor is chosen as in this scenario is given by

Tβ� = μVβV� + εlβl� + qβV� + Vβq�, (9)

here, the fluid’s energy-density, null four-vector and four-
velocity are represented by μ, l� and V�, respectively.
The heat-flux is identified by q� demonstrating the dissipa-
tive effects in term of diffusion-approximation. However, ε

denotes radiation-density of the fluid configuration, provid-
ing the dissipative impact via streaming-out approximation.
We have proposed the dissipative dust-fluid to describe the
dissipative mechanism for distinct gravitating bodies. For a
co-moving coordinates, we have

V � = δ
�
0 , q� = qB−1δ

�
1 , l� = δ

�
0 + B−1δ

�
1 ,

χ� = B−1δ
�
1 ,

accommodating the relations

V �V� = −1, V �q� = 0, l�V� = −1, l�l� = 0,

χ�χ� = 1, χ�V� = 0. (10)
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The Palatini f (R) equations can acquire by utilizing the
connections (affinities) represented to be �α

γν = {αγ ν} +
1

2F

[
(δα

γ ∂ν + δα
ν ∂γ )F − gγ νgασ ∂σ F

]
as

8πμ̂e f f = Ċ

C

(
Ċ

C
+ 2

Ḃ

B

)
− 1

B2

[
2
C ′′

C
+
(
C ′

C

)2

− B2

C2 − 2
B ′C ′

BC

]
(11)

8π q̂e f f = − 2

B

[
Ċ ′
C

− Ḃ

B

(
C ′

C

)]
, (12)

8πεe f f = −
[

2
C̈

C
+
(
Ċ

C

)2]
− 1

B2

[(
B

C

)2

−
(
C ′

C

)2
]

,

(13)

ξ22 = −C2
[
C̈

C
+ B̈

B
+ Ḃ

B

(
Ċ

C

)]

−
(
C

B

)2 [ B ′

B

(
C ′

C

)
− C ′′

C

]
. (14)

In our study, μ̂e f f , q̂e f f and εe f f comprising the f (R) mod-
ifications together with usual constituents that are computed
as

μ̂e f f = 1

F
(μ̂ + ξ00), q̂e f f = 1

F

(
q̂ + ξ01

B

)
,

εe f f = 1

F

(
ε + ξ11

B2

)
, (15)

here dot and prime represent the derivatives of related quan-
tities by t and r , respectively. Moreover, μ̂ = μ + ε and
q̂ = q + ε, and ξ00, ξ01, ξ11 and ξ22 depicts the extra-
curvature terms with the values given in the Appendix A.
The expansion parameter (�), four-acceleration (a�), and
shear-tensor (σβ�) could be expressed as

� = V �;� a� = V�;αV α σβ� = V(β;�)

− 1

3
�hβ� + a(βV�). (16)

The projection tensor is given to be (hβ� = gβ� + VβV�).
Now, we would describe the non-vanishing components of
the kinematical variables for our matter configuration within
Palatini f (R) context as below

�e f f = 2

[
Ċ

C
+ Ḃ

2B
+ Ḟ

F

]
, a0 = 1

2

(
Ḟ

F

)
,

a1 = 1

2

(
F ′

F

)
, (17)

σ01 = 1

4

(
F ′

F

)
, σ11 = 2

B2σ

3
− B2

6

(
Ḟ

F

)
,

σ22 = 1

sin2θ
σ33 = −C2

3
σ −

(
C2

6

)
Ḟ

F
, (18)

It is observed that fluid’s four-acceleration is entirely depends
upon Palatini f (R) factors as noticed in Eq. (17). The shear-
scalar σ is computed in the following way

σ = −
(
Ċ

C
− Ḃ

B

)
,

however, in Palatini f (R) scenario, its gets the form

σe f f =
[
σ 2 + 1

8

(
Ḟ2

F2

)
− 3

16B2

(
F ′2

F2

)] 1
2

. (19)

In order to quantify the matter in the interior of proposed
gravitating source, Misner and Sharp [68] introduced expres-
sion for the mass-function that for our source under investi-
gation read the form

m = m(t, r) = (C3)

2
R 23

23 =
[

1 −
(
C ′

B

)2

+ Ċ2

]
C

2
,

(20)

which may turn out as

E ≡ C ′

B
=
[
U 2 + 1 − 2m(t, r)

C

] 1
2

, (21)

here U is fluid’s collapsing velocity, that might be accounts
for the variation of areal-radius C with its proper-time. For
collapsing spheres it is considered to be negative. The col-
lapsing fluid’s velocity, and could be defined as the variation
of areal-radius C with proper-time that is U = Ċ . By apply-
ing afore said results, Eq. (12) could be expressed as

4π q̂e f f = −E

[
− 1

3C ′ (� − σ)′ + σ

C

]
. (22)

The variation of the mass-function by means of time and
radial corrdinates read the form

ṁ = −4π(Uεe f f + q̂e f f E)C2, (23)

m′ = 4π

[
μ̂e f f + q̂e f f

U

E

]
C ′C2, (24)

respectively. Integrating partially Eq. (24), we have

3

C3m = 4πμ̂e f f − 4π

C3

∫ r

0
C3
[
μ̂′
e f f − 3q̂e f f

UC ′

EC

]
dr.

(25)
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This outcome provides an association among fluid’s variables
and relating mass-function under the influence of Palatini
f (R) constituents.

2.1 Junction conditions in palatini f (R) context

The study of matching conditions has attracted a lot of interest
in the field of relativistic astrophysics. Their implications are
frequently discovered when studying the dynamical charac-
teristics of fluid thin shells, cosmic phase-transitions, and col-
lapsing star’s boundaries. These circumstances necessitate a
thorough analysis of the star’s inside and outside configura-
tions. Several paradigms of gravitating systems of observa-
tional and theoretical intrigue include the incorporation of
two distinct regions of spacetime, matched at certain hyper-
surfaces, detaching the inner from the outer region [69]. As
in celestial bodies, such systems could effectively provide
both geometries in which an internal one stuffed with a cer-
tain fluid composition detached from the outer vacuum solu-
tion [36,70,71]. On the other side, the two matter-crowded
regions likewise in domains/brain walls [72] or thin shells
[73–75]. In order for these designs to be well-stated math-
ematically, the gluing of the hyper-surface must meet a set
of requirements, which in the background of GR are called
Darmois–Israel junction (matching) conditions [76,77]. The
continuity of the first-fundamental form throughout the coin-
ciding hyper-surface, as well as a variety of constraints
linking the stress-energy tensor to the discontinuity in the
extrinsic-curvature over said hyper-surface, are among these
requirements. In the literature, the physical relevance of
related configurations and the requirements for represent-
ing the particular stellar bodies have been widely presented
[78–81]. The thermodynamical aspects and entropy of such
thin-shells are investigated under various scenarios [82–85].
Various modified theories would have their own set of match-
ing requirements, which are determined through their relative
field equations, comprising extra degrees where the theories
are grounded. Hence, the study of the matching conditions
within the context of extended gravity theories is of great
significance to frequently analyzing the phenomenology of
stellar configurations. The deliberation of such modifications
is enlightened in a multitude of ways to explore the regimes
of the intense-field gravitational interaction within the field
of astronomy and the challenges by the late and early-time
cosmic configurations [86,87]. These theories suggest new
challenges involving higher degrees and significantly more
dynamical aspects, necessitating the upgrade of the matching
conditions. Olmo and Garcia [64] presented the junction-
conditions for Palatini f (R) scenario to glue the exterior
and interior geometries at hyper-surface. They showed that
certain of these requirements depart from that of GR and
counterparts metric f (R) ones. In our study, we would like
to compute the matching conditions for the LTB spacetime

in the context of Palatini f (R) formalism. Unlike its metric
counterparts, the proposed formalism features a quadratic-
order equations of motion bearing the novel gravitational
circumstances owing to non-linear association produces by
matter-fields having no influence on propagating degrees-
of-freedom. The matching conditions within the context of
Palatini f (R) gravity are expressed as [64]

hβ� = gβ� − nβn�, (26)

[T ] = 0, (27)

τ = 0, (28)

[K α
α ] = − 3

2 fR
fRR RT |�b (29)

− [Kβ�] + 1

3
hβ�[K α

α ] = κ2 τβ�

fR�

, (30)

(
K+

β� + K−
β�

)
τβ� = 2n�nβ [T�β ] − 3

fR
R2
T F

2
R[b2]. (31)

The continuity of first fundamental-form across hyper-
surface is expressed in Eq. (26), however, the continuity of
trace of fluid configuration, and the disappearing of its sin-
gular constituents across � is represented by Eqs. (27) and
(28). The condition presented in Eq. (30) is revealing the
depart consequences (second fundamental form: discontinu-
ity of the trace) from the Einstein’s gravity also in the metric
f (R) scenarios. Since Palatini f (R) trace-equation is given
by κ2T = R fR − 2 f �⇒ R ≡ R(T ) which is simple an
algebraic relation associating matter and curvature of the cor-
responding system. The relation propose a radical variance
in the characteristics of the framework regarded to the metric
version, thereby a distributional study of the Palatini f (R)

configuration must consider those factors. In order to match
the exterior and interior geometries of our matter configura-
tions, we consider the exterior metric of the form [62]

ds2+ = −
[

1 −
(

2M

r
+ r2 R̃

12

)]
dν2 − 2dνdr

+ r2dθ2 + r2 sin2 θdφ2, (32)

here ν is the retarded-time, while M(ν) represents the entire
mass of the configuration. To evaluate the matchings on the
boundary surface r = r� = constant. We are taking into
account the null-fluid as well in the stellar configuration. The
regions are assumed to be glued (matched) across a time like
hyper-surface (�) together with the usual representation of
their respective boundaries as �− = �+. The several discon-
tinuities in certain geometrical variables would be evaluated
through Eqs. (30) and (31) for our case, depicting the influ-
ence of singular constituents of the source. Therefore, we get
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the following equations

−1

12r

{
R̃C3 + 12C

[
Ċ2 −

(
C ′2

B2

)
+ 1

C2 sin2 θ

]}

{
CĊ −

(
C

{
Ċ2 − C ′2

B2

}
− Ḟ

2F

)
ν̇

}

= 3κ2

2F2 (Ċμ̇)FR, (33)

and

1

2C

{
Ċ2 − C ′2

B2 + 1

}[{
C ′2

B2 − Ċ

}−2

− C2

B2

F ′2

2F2

(
Ḟ

2F

)−2]
− 1

36

[
CĊ

−
{
C

(
Ċ2 − C ′2

B2

)
− Ḟ

2F

}{
C ′

B

[
C ′2

B2 − Ċ

]−1

− C

B

F ′

2F

(
Ḟ

2F

)−1}]{
R̃C3 + 12C

[
Ċ2 − C ′2

B2

]

+ 1

C
sin2 θ

}
− ν̈ =

(
κ2

F2 μ + Ḟ

F
(1 − Ċ)

)[
C

′2

B2

{
C

′2

B2

− Ċ2
}−2

− C2

B2

F ′2

2F2

(
Ḟ

2F

)−2]

+ Ḟ

2F

{
C ′

B

(
C

′2

B2 − Ċ2
)−1

− C

B

F ′

2F

(
Ḟ

F

)−1}
, (34)

{
− C ′

B

(
C

′2

B2 − Ċ2
)−1

+ C

B

F ′

2F

(
Ḟ

F

)−1}

×
{(

− B2

3
+ 1

)
CĊ − 2

[
C

′2

B2 − Ċ2
]

− Ḟ

F

}[
R̃C3 + 12C

{
Ċ2 − C ′2

B2

}
+ 1

C
sin2 θ

]
− CĊ = 0,

(35)

sin2 θ

[{
C ′

B

(
Ċ2 − C

′2

B2

)−1

+ C

2B

F ′

F

(
Ḟ

F

)−1}

×
{

1

3
(3 − B2)CĊ − 2

[
C

′2

B2 − Ċ2
]

− Ḟ

F

}{
R̃C3 + 12C

(
Ċ2 − C ′2

B2

)
+ 1

C
sin2 θ

}
− CĊ

]

= 0, (36)

respectively. The aforementioned consequences are persistent
with tracelessness of singular section of the fluid under discus-
sion. It is found that the outcomes (34)–(36) heavily deviate
from the results in Einstein’s gravity where the singular seg-
ment of the Gζ� = κτζ� does not set about the constrain (28).
It is worthy to mention that Eq. (28) enforce a condition within
the energy density and stresses on � which usefully consider the
source of reduction of the degree-of-freedom. It is revealed that
trace of (30) displays 2[K α

α ] = κ2τ as shown in (21) of [64]

under acceptable bounds. Therefore, the brane tension in the
framework of GR is non disappearing generally. In contrast to
it, the brane tension disappears on the grounds of Palatini f (R)

approach, however, [K α
α ] �= 0 as represented in Eqs. (34)–(36).

The expressions for the first and second time-derivatives of the
quantity ν are calculated as follows

ν̇ = C ′

B

[(
C ′

B

)2

− Ċ2

]−1

− C

2B

F ′

F

(
Ḟ

F

)−1

, (37)

ν̈ =
Ċ ′
B − C ′ Ḃ

B2[(
C ′
B

)2

− Ċ2

] − 1

[(C ′
B )2 − Ċ2]

{
2C ′2

B2

(
Ċ ′

B
− C ′ Ḃ

B2

)

− 2ĊC ′ C̈
B

}
− 1

Ḟ
2F

[
C

2B

(
Ċ

C
− Ḃ

B
− Ḟ

F

)
F ′

F
+ C

2B

Ḟ

2F

]

− 1(
Ḟ

2F

)2

[
C

B

F ′

2F

(
F̈

2F
+ Ḟ2

F2

)]
. (38)

The sphere of our matter configuration is made up of entirely dust
and dissipation by means of heat flow and bearing the influence
of outgoing null-fluid. Thus, for our matter configuration, the
computation of (31) for the matching of interior to the exterior
geometry gets the following form

q̂e f f
�= εe f f − 3κ2

F
R2
T F

2
R

(
μ′

μ

)
+ χ0, (39)

here script
�= identifies the measurements are computed across

surface �. Alternatively, by using the Palatini f (R) field equa-
tions for our LTB source, the matchings of our geometrical con-
figurations read

m(t, r)
�= M + Rr3

24
(40)

q̂
�= ε − κR

F

(
f

R
− F

)
− 3κ2

F
R2
T F

2
R

(
μ′

μ

)
+ χ∗

0 , (41)

demonstrating the regimes of intense-field of gravitational inter-
action and these consequences could be recovered the GR ones
under acceptable bounds just if fRR = 0. Equation (41) deter-
mines the energy content in cases when shells/branes are present.
In our case, the matchings should be applied for the vacuum con-
figuration provided the singular constituent of the stress-energy
tensor disappear in (41) which is only possible if we regard
the energy density of our source to be uniform. The quantity
χ∗

0 = χ0 + ξ11 − ξ01. The value of χ0 is revealing the intense
gravitational interaction owing to high curvature regimes is com-
puted as below

χ0 = F ′

BF

[
Ċ2 − C ′2

B2

]
− C ′

B( ḞF )2

(
Ċ2 − C ′2

B2

)−2

×
[
C

2B

F ′

F

Ḟ

2F

(
Ċ

C
− Ḃ

B
− Ḟ

2F

)
+ C

2B

Ḟ2

2F2
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− C

2B

F ′

F

(
F̈

2F
+ Ḟ2

2F2

)]
.

It is shown that the findings that corresponds the extrinsic-
curvature to the fluid configurations on gluing surface disagree
from those ones computed in GR as well as in f (R) metric the-
ories. Hence, one could match vacuum exteriors within Palatini
f (R) context which is consistent to any stellar bodies. Addi-
tionally, the implications of such matchings outside stellar con-
figurations (white-dwarfs, neutron-stars, among others) exist,
e.g. braneworld or thin shell wormholes within Palatini f (R)

context. Furthermore, we have the finding across � as

εe f f
�= L

4πr2 , (42)

where L represents the entire sphere’s luminosity computed on
corresponding surface, having the form as

L
�= L∞

(
1 − 2m

r
+ 2

dr

dν

)−1

(43)

with entire luminosity computed by stationary observer at infin-
ity

L∞ = dm

dν

�= −
(
dm

dt

(
dν

dt

)−1)
. (44)

Now, the boundary red shift would be given by

dν

dt
�= z + 1. (45)

The value of ν̇ is expressed earlier. Thus, the time formation of
the compact body (black-hole) is

ν̇−1 �= E +U
�= 0 (46)

From (43) and (37), it implies that

L
�= L∞

(E +U )2 . (47)

However, by using U = Ṙ and (43) found to be

dr

dν

�= U (E +U ). (48)

Consequently, it is significant to highlight that under totally dif-
fusion approximation that is entire luminosity of the system dis-
appears even when the heat fluxes are non-vanishing within the
spherical configuration. Therefore, in such scenario εe f f = 0
and q̂e f f �= 0, thereby (41) follows that

q̂
�= κR

F

(
f

R
− F

)
− 3κ2

F
R2
T F

2
R

(
μ′

μ

)
+ χ∗

0 ,

which could recover (32) of [59] within acceptable bounds. This
outcome is the clear effect of the dust configuration (disappear-
ing hydro-dynamic pressure) within Palatini f (R) context.

2.2 Matter variables and conformal scalar

The Weyl-tensorCρ
β�μ could be written in the form of Riemann-

tensor Rρ
β�γ , the curvature scalar R, and Ricci-tensor Rβ� as

Cρ
β�γ = Rρ

β�γ − 1

2
Rρ

� gβγ + 1

2
Rβ�δρ

γ − 1

2
Rβγ δρ

�

+ 1

2
Rρ

γ gβ� + 1

6
R(δρ

� gβγ − gβ�δρ
γ ), (49)

that may be further split into its electric and magnetic sections. In
the case of the spherical composition of the fluid configuration,
the magnetic distribution of the Weyl-tensor disappears and it
might only be represented in its electric constituents as

Eβ� = Cβγ�αV
γ V α. (50)

The electric components of the Weyl-tensor by projection-tensor
and the unit four-vector get the form as below

Eβ� = ε

(
χβχ� − 1

3
hβ�

)
. (51)

The scalar captures the consequences of the space-time curva-
ture , having the mathematical expression given below

ε = 1

2

[
C̈

C
− B̈

B
+ Ċ

C

(
− Ċ

C
+ Ḃ

B

)]

+ 1

B2

[
−C ′′

2C
+
(
B ′

B
+ C ′

C

)
C ′

2C

]
− 1

2C2 . (52)

Now, using Eqs. (11), (13), (14), (20) and (52), we have

−ε + 4π(μ̂e f f − εe f f ) = 3

C3 m − ξ22

C2 , (53)

In the influence of extra curvature factors, the conformal scalar
is dependent on the mass-function and the matter variables.
The propagation equations of shear and expansion scalar that
describe particles’ motion and their expansion, respectively, are
written as

1

3

(
3�̇e f f + �2

e f f + 2σ 2
e f f

)
= −4π(μ̂e f f + εe f f )

− ξ22

C2 + D1, (54)

1

3

(
3σ̇e f f + σ 2

e f f + 2�e f f σe f f

)
= T1(4πεe f f +T2−ε)+D2,

(55)

along with T1 = −2
(
Ċ
C − Ḃ

B

)
, T2 = 2 Ḃ

B
Ċ
C − Ċ2

3C2 − Ḃ2

3B2 . The

terms D2 and D1 emerge because of Palatini consequences of
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f (R) theory, which are listed in Appendix C. To discuss the
dynamics of the fluid configuration, the dynamical equations
utilizing matter-fields in the Palatini f (R) perspective as

˙̂μe f f + Ḃ

B
(μ̂e f f + εe f f ) + 2

Ċ

C
μ̂e f f + 1

B
q̂ ′
e f f

+ 2
C ′

CB
q̂e f f + 5

2
μ̂e f f

Ḟ

F
+ 3

B
q̂e f f

F ′

F
+ Ḟ

2F
εe f f = 0, (56)

˙̂qef f + 2

(
Ḃ

B
+ Ċ

C

)
q̂e f f + ε′

e f f

B
+ 2C ′

BC
εe f f + q̂e f f

(
3Ḟ

F

)

+ 5εe f f

2B

(
F ′

F

)
+ μ̂e f f

2B

(
F ′

F

)
= 0. (57)

The Bianchi-identities could be applied to acquire the propaga-
tion equation for the conformal tensor as

[
− 4π(μ̂e f f − εe f f ) + ε

]′
+ 3(4πεe f f + ε)

C ′

C

= −12π
BĊ

C
q̂e f f + ξ ′

22

2C2 + ξ22

2C2

C ′

C
. (58)

It demonstrates a connection between the matter variables and
the conformal tensor within the influence of additional curvature
constituents.

3 Palatini f (R) scalar variables

Bel [88] was the first to propose the splitting of the Riemann-
tensor Rβγ�δ . It is worth noting that Herrera et al. [89] adopted
the Bel’s technique, broke down the Riemann-tensor orthogo-
nally to correlate the features of the matter configuration to that
of structure scalars in the framework of GR. By orthogonal break
down of the Riemann-tensor, they developed the electricYβ� and
magnetic Zβ�, and the dual-part Xβ� of the Riemann-tensor. The
set of five scalars for spherical line-element is obtained by split-
ting the aforementioned tensors into trace-free and trace por-
tions, and explained the physical consequences of each scalar.
It is shown that the energy-density and pressure anisotropy
of the are linked with the scalars YT and XT , respectively. It
was explained that the scalar YT F corresponds the pressure
anisotropy together with the conformal scalar, on the other side,
the energy irregularity is controlled by XT F in non-dissipative
fluid. After that, many researchers [43,44,90,91] utilized such
scalars in order to better analyze the physical aspects of various
cosmological configurations. Bhatti et al. [92,93] calculated the
scalar functions and discussed their role on the evolving gravi-
tating objects using Palatini f (R) context in the presence of the
electromagnetic field. They evaluated the kinematical factors to
examine the fluid’s physical aspects as well as Bianchi identities
and the Raychaudhuri equation. They broke the Riemann-tensor
orthogonally to yield the scalar variables and associated them
with the fluid’s aspects like energy-density and pressure stresses
as well as explained that these Palatini scalar functions enable us
to indicate the formation of the singularity in celestial objects.

Now, we would like to define the tensors Yζ� and Xβ� for the
evaluation of structure scalars in Palatini f (R) approach.

Yβ� = Rβλ�δV
λV δ, Xβ� = ∗R∗

βλ�δV
λV δ

= 1

2
η

ερ
βλ R∗

ερ�δV
λV δ, (59)

where R∗
β�λδ = 1

2ηελρδR
ερ

β� and ∗R∗
βλ�δ = 1

2η εα
βλ R∗

εα�δ denote
the right and double-dual of the Riemann-tensor and ηερλδ is the
Levi-Civita tensor. Following the usual approach of the orthog-
onal splitting for Riemann-tensor, Yβ� and Xβ� including the
fluid’s variables and some additional gravitational terms, and
are presented in Appendix D. For our problem, the scalar quan-
tities corresponding to trace-free and trace portions of the said
tensors are found as

YT = 4π(εe f f + μ̂e f f ) + M (D)
1 , (60)

YT F = −4πεe f f + ε + 4π

F
ξ11 + M (D)

2 , (61)

XT = 8πμ̂e f f − 8π

F
ξ00 + M (D)

3 , (62)

XT F = −4πεe f f − ε + 4π

F
χ11 + M (D)

4 , (63)

where

M (D)
2 = M (D)

β�

ξβ ı� − 1
3hβ�

; M (D)
4 = N (D)

β�

ξβξ� − 1
3hβ�

. (64)

By making use of Eqs. (25), (53) and (61), we have

YT F = −8πεe f f +4π
1

C3

∫
C3
[
μ̂′
e f f − 3q̂e f f

C ′

C

U

E

]
dr + ξ22

C2 .

(65)

The computed expressions for M (D)
1 , M (D)

3 , M (D)
β� and N (D)

β�

are listed in the Appendix B. The scalar YT F might be shown
by energy irregularity,the null radiation, and the heat-fluxes,
carrying intense gravitational terms. additionally, it has been
described that YT F govern the stable profile of the shear-free
geodesic configuration. From Eqs. (60)–(63), the scalars vari-
ables may express via geometric variables as

YT = −2

(
C̈

C
+ B̈

2B

)
− ξ22

C2 + M (D)
1 , (66)

YT F = −
(
B̈

B
− C̈

C

)
− ξ22

C2 + 4π
ξ11

F
+ M (D)

2 , (67)

XT = 1

C2 + 2

(
Ḃ

B
+ Ċ

2C

)
Ċ

C

− 2

B2

[
C ′′

C
+ C ′2

2C2 − B ′

B

(
C ′

C

)]

− 8π

F
ξ00 + M (D)

3 , (68)

XT F = − Ċ

C

(
− Ċ

C
+ Ḃ

B

)
+ 1

B2

[
C ′′

C
−
(
B ′

B
+ C ′

C

)
C ′

C

]
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+ 1

C2 − ξ22

2C2 + 4π

F
ξ11 + M (D)

4 . (69)

From above findings, one could retrieve these scalars within the
context of GR [59] within the exclusion of higher curvature cor-
rections. These scalar are directly connected in the description of
dense stellar structures under f (R) gravity. To analyze the con-
sequences of εR2 in this scenario, the Raychaudhuri-equation
could be applied as a potential approach. Alternatively, Eqs. (54),
(55) and (58) may express as

1

3

(
3�̇e f f + �2

e f f + 2σ 2
e f f

)
= − YT − ξ3

C2 + M (D)
1 + D1,

(70)

deploying the expansion propagation of the source in association
with the YT structure scalar with the inclusion of additional
curvature corrections owing to Palatini f (R) context. For the
understanding of shearing motion of the fluid is linked with the
equation given below

1

3

(
3σ̇e f f + σ 2

e f f + 2�e f f σe f f

)

= T1

[
− YT F + 4π

F
ξ11 + M (D)

2 + T2

]
+ D2. (71)

Consequently, the shearing motion of compact stars is influ-
enced by Palatini f (R) modifications. Moreover, the propaga-
tion equation indicates an association between fluid profile and
the conformal tensor via scalar functions and higher curvature
corrections is evaluated as

[
XT F + 4πμ̂e f f

]′
= −3XT F

(
C ′

C

)
+ 4π q̂e f f B(� − σ)

− ξ ′
22

2C2 + ξ22C ′

2C3 +
(

4π
ξ11

F
+ M (D)

4

)′

+ 3

(
4π

ξ11

F
+ M (D)

4

)
C ′

C
. (72)

In dissipation-free dust cloud scenario, Eq. (72) recovers

[
XT F + 4πμ̂e f f

]′
= −3XT F

(
C ′

C

)
− ξ ′

22

2C2 + ξ22

2C2

(
C ′

C

)

+
(

4π
ξ11

F
+ M (D)

4

)′

+ 3

(
4π

ξ11

F
+ M (D)

4

)
C ′

C
. (73)

Subsequently, μ̂′
e f f = 0 in the above finding implies

(XT F )′ = −3XT F

(
C ′

C

)
− ξ ′

22

2C2 + ξ22

2C2

(
C ′

C

)

+
(

4π
ξ11

F
+ M (D)

4

)′
+ 3

(
4π

ξ11

F
+ M (D)

4

)
C ′

C
,

(74)

whose integration reads to

XT F = f (t)

C3 −
∫

1

XT F

[
ξ ′

22

2C2 + ξ22C ′

2C3 +
(

4π

F
ξ11 + M (D)

4

)′

+3

(
4π

F
ξ11 + M (D)

4

)
C ′

C

]
dr. (75)

It is noticed from Eq. (75) that XT F manages the energy irreg-
ularity in the setting of zero dissipation and with the exclusion
of εe f f constituents. This is also true for a fluid that is isotropic
in nature as discussed in [89]

4 LTB space-time

In present section, we would want to describe discuss the char-
acteristics of LTB space-time for the dust fluid configuration
without considering the effects of dissipation. We also find some
LTB solutions for the corresponding propagation equation. In
this direction, we propose a geodesic fluid that is dissipation-
free in nature that is (qef f = 0 = εe f f ) for the generic feature of
LTB configuration. In this regard, Eq. (12) after being integrated,
reads the form

B(t, r) = 1

1 + k(r)
exp

⎡
⎣
∫ 1

2F

(
Ḟ ′ − 5Ḟ F ′

2F

)
− Ċ ′

C(
F ′
2F − C ′

C

) dt

⎤
⎦ ,

(76)

here k is the integration constant, however, in metric version of
f (R) theory the factor 5Ḟ F ′

2F is excluded since it arises because
of connections. In the direction of GR, F −→ 1, Ḟ, F ′ −→ 0
and aforesaid finding recovers

B(t, r) = 1

(1 + k(r))
1
2

C ′(t, r).

In case of Palatini f (R) approach, the evolution is observed
on the comparison of Eq. (76) with Misner–Sharp mass given
in Eq. (20). For the solution of propagation equation, we use
R+αR2 (Starobinski) model and junction conditions. The equa-
tion is numerically solved and its solution is described through
graphical representation which describe the impact of f (R) the-
ory on different models of the universe and expressed in Figures
1, 2 and 3.

Substituting the above expression into (8), the LTB model
gets the expression

ds2 = −dt2 + C ′2

κ(r) + 1
dr2 + C2(dθ2 + sin2θdφ2). (77)

The metric (77) naturally associated to dust inhomogeneity, it
is significant to express that fluid’s anisotropy is the leading
cause that is compatible with LTB geometry. In dissipation free
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Fig. 1 Plots of C versus t and r for κ = −0.5 and m = 1.4, indicating
the open universe increasing exponentially with the passage of time
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Fig. 2 Plots of C versus t and r for κ = 0 and m = 1.4, represents flat
universe
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Fig. 3 Plots of C versus t and r for κ = 0.5 and m = 1.4, indicat-
ing that f (R) terms effects the close universe instead of expanding to
maximum size and then collapsing, it expands exponentially

dust configuration, Bianchi identity then simplifies to subse-
quent form

μ̇e f f = 2μe f f

[
Ḃ

2B
+ Ċ

C
+ 5

4

(
Ḟ

F

)]
. (78)

Taking integration of Eq. (78) follows

μe f f = 3[1 + κ(r)] 1
2 h(r)

(C3)′F 5
2

, (79)

here h(r) is function of integration. Now, the scalars YT F , YT ,

XT F , and XT for the space-time (77) yield

YT = − C̈ ′
C ′ + C̈

C
+ M (D)

1 − ξ22

C2 , (80)

YT F = −2

(
− C̈

C
+ C̈ ′

C ′

)
− ξ22

C2 + M (D)
2 + 4π

ξ11

F
(81)

XT = 2ĊĊ ′
CC ′ + Ċ2

C2 − κ

C2 − κ ′

CC ′ − 8π

F
ξ00 + M (D)

3 , (82)

XT F = Ċ2

C2 − ĊĊ ′
CC ′ − κ

C2 + κ ′

2C ′C
− ξ22

2C2

+ 4π

F
ξ11 + M (D)

4 . (83)

It is shown from Eqs. (80) and (81) the scalars YT F and YT may
not comprise the factor κ in their descriptions.

5 Continuation of the LTB for dissipative scenario

We construct scalar functions for a generalized LTB configura-
tion, called GLTB, by incorporating the heat flow in this por-
tion. We make a comparison of the scalar variables related to
both of the spacetimes to find the correspondence between them.
We also address the symmetry-based continuation by consider-
ing streaming-out limit and diffusion scenarios. We provide the
study of heat conduction to produce the temperature-profile for
diffusion. It is shown in the previous section that the LTB geome-
try excluded the impact of heat fluxes. As a result, the extension
of the LTB configuration has the major effect of generalizing
it for the consequences of dissipation within the appearance
of dark source factors. In a particular scenario, when there is
no contribution of dissipation, GLTB recovers LTB space-time.
To construct the space-times closer to the LTB, we regard the
dust fluid in geodesic form. It is worth remembering that in the
dissipation-free case, the total dust form shows the matter con-
figuration to be geodesic. Consequently, GLTB gets a distinct
formation in contrast to that of Palatini f (R) and GR contexts.
Integrating Eq. (12), we have

B(t, r) = C ′

[K (t, r) + 1] 1
2

, (84)
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where K (t, r) + 1 = [
C(r) + ∫ 4π q̂e f f Rdt

]2 and q̂e f f is

defined as q̂e f f = 1
F

(
q̂ + ξ01

B

)
while the value of ξ01 in case of

Palatini formalism is given by

ξ01 = 1

κ

(
Ḟ ′ − 5Ḟ F ′

2F
− ḂF ′

B

)
.

In case of GR, F −→ 1 and ξ01 −→ 0 and q̂e f f becomes q̂.

However, in case of metric f (R) formalism, the term 5Ḟ
2

(
F ′
F

)
in above expression is absent. Therefore, the generalized LTB
metric in case of Palatini and metric formalism is given by

ds2 = −dt2 + (C ′)2

(
C(r) + ∫ 4π q̂e f f Cdt

)2 dr2 + C2dθ2

+ C2sin2θdφ2. (85)

The form of q̂e f f is distinct for both formalism and in GR, q̂e f f
reduces to q̂. The generalized metric in Eq. (85) is obtained by
substituting Eq. (84) in the general line element given in Eq. (8).
The scalars YT F , YT , XT F , and XT for the configuration (85)
are

YT = −2

(
C̈

C
+ C̈ ′

2C ′

)
+ K̇

K + 1

(
Ċ ′
C ′ − 3K̇

4(1 + K )

)

+ K̈

2(K + 1)
− ξ22

C2 + M (D)
1 , (86)

YT F = −
(

− C̈

C
+ C̈ ′

C ′

)
+ K̇

K + 1

(
Ċ ′
C ′ − 3K̇

4(K + 1)

)

+ K̈

2(K + 1)
− ξ22

C2 + 4π
ξ11

F
+ M (D)

2 , (87)

XT = 2

(
ĊĊ ′
CC ′ + Ċ2

2C2

)
− K ′

CC ′ − K

C2 − Ċ K̇

C(1 + K )

− 8π
ξ00

F
+ M (D)

3 , (88)

XT F = −
(

− Ċ2

C2 + ĊĊ ′
CC ′

)
+ K ′

2CC ′ − K

C2 + K̇ Ċ

2C(K + 1)

− ξ22

2C2 + 4π
ξ11

F
+ M (D)

4 . (89)

For further proceeding, we must impose certain constraints on
particular solutions. The criteria for choosing such constraints
would depend on the measures that require consequences that
are closer to the LTB space-time. On these grounds, we examine
the GLTB by relying on scalar variables in the proposed sce-
nario. We would also discuss this continuation on the grounds
of symmetric aspects. Firstly, we present the analysis of heat
conduction in a complete diffusion event.

5.1 Generalization through scalar variables

It is observed from the analysis of scalar variables that
the shear and expansion evolution is purely supervised by

the scalars specifically YT and YT F in the setting of non-
dissipative/dissipative geodesic fluid. The term differences for
both the GLTB and LTB are noted to be the same. Now, we
analyze scalar functions YT F and YT in such a manner that they
provide the same form in both contexts, revealing that GLTB
and LTB are maximally similar. Therefore, the comparison of
Eqs. (81) and (87) follows

K̈

2(K + 1)
− K̇

K + 1

[
3K̇

4(K + 1)
− Ċ ′

C ′

]
= 0. (90)

Integration of Eq. (90) provides

C1(r) = C ′ K̇ 1
2

(K + 1)
3
4

, (91)

where C1(r) is the integration-function. Feeding Eq. (84) in
(91), we get

C1(r) = C ′[8π q̂e f f C] 1
2

[1 + κ(r)] 1
2 + ∫ 4π q̂e f f Cdt

. (92)

Integration of Eq. (91) gives

K + 1 = 4
1[

C1(r)2
∫ dt

C ′2 + C2(r)
]2 , (93)

here C2(r) is also an arbitrary integration-function, the time
variation of Eq. (93) provides

K̇ = −8
C2

1 (r)

C ′2
[
C2(r) + C2

1 (r)
∫ dt

(C ′2)

]3 . (94)

The comparison of Eqs. (84) and (94) delivers

2π q̂e f f = C2
1 (r)

CC ′2
{
C2(r) + C2

1 (r)
∫ dt

C ′2
}2 . (95)

Furthermore, the comparison of Eqs. (92) and (95) provide the
association between integration-functions C2(r) and C(r) as

C2(r) = −2[−1 + 4π q̂e f f CC ′2]
C(r) + 4π

∫
q̂e f f Cdt

. (96)

On the grounds of the considerations enforced on YT F and
YT , we may get the configuration of the GLTB. Given the time
and radial dependence of R in Eq. (94), the GLTB heat-flow
could be up to the two radial functions. The functionC1(r) must
meet the regularity requirement C1(0) = 0, and if it does not,
the LTB solution goes back to the prior configuration. The rest
of the physical quantities are provided by the field-equations. To
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explain the procedure stated above, we would illustrate LTB’s
parabolic sub-class. Consequently, we select

C(t, r) = − f (r)[t − T (r ]) 2
3 , (97)

here T (r) and f (r) are the any LTB parabolic solution parame-
ters. Using Eq. (97), we describe

∫ dt
(C ′)2 in the form given below

I =
∫

dt

C ′2 =
∫ [T (r) − t] 2

3 dt

[− f ′(r){−T (r) + t} + 2 f (r)
3 T ′(r)]2

. (98)

Feeding τ 3 = T (r) − t in Eq. (98) and integration implies

I =
∫ −3τ 4

(aτ 3 + b)2 dτ

I = τ 2

τ 3a2 + ba
+ 1

3
3√
ba5

⎡
⎣2

√
3 arctan

⎛
⎝1 − 2 3

√
a
b τ

√
3

⎞
⎠

− ln

(
aτ 3 + b

( 3
√
aτ + 3

√
b)3

)⎤
⎦ , (99)

here b = 2 f (r)
3 T ′(r) and a = f ′(r). Plugging Eq. (99) in (95)

and using Eq. (97), we get

2π q̂e f f = C2
1 (r) f (r)−1

(
C2

1 (r)

[
τ 2

a + aτ 3+b

3
3√
ba5

[
2
√

3 arctan

(
1−2 3

√
a
b τ√

3

)
− ln

(
aτ 3+b

( 3√aτ+ 3√b)3

)]]
+ C2(r)(aτ 3 + b)

)2 . (100)

When variations on LTB are required, the quantity of dissipation
is regulated by the f C1(r), which may be adjusted as smaller as
needed. It is clear from the consequences that this GLTB recap-
tures the LTB in a dissipation-free configuration. The physical
aspects of the GLTB provide acceptable results for a small value
of C1(r)related to the LTB.

5.2 Generalization via symmetric aspects

In this subsection, we present another approach for constructing
GLTB space-time. This implies that the obtained GLTB has the
same properties as the related LTB. The Lie-derivative of the
fluid with vector-field ψ is expressed as

ŁψTβ� = 0. (101)

The following equations are then acquired by utilizing the
effective matter content together with the dissipative-flux in
Eq. (116).

ψ0 ˙̂μe f f + ψ1μ̂′
e f f + 2μ̂e f f ψ

0
,0 − 2q̂e f f Bψ1

,0 = 0, (102)

− ψ0 ˙̂qef f − ψ1q̂ ′
e f f + μ̂e f f

ψ0
,1

B
− q̂e f f

[
ψ0

,0 + ψ0 Ḃ

B

+ψ1 B
′

B
+ ψ1

,1

]
+ εe f f Bψ1

,0 = 0, (103)

ψ0ε̇e f f + ψ1ε′
e f f − 2q̂e f f

ψ0
,1

B
+ 2εe f f

[
ψ0 Ḃ

B

+ψ1 B
′

B
+ ψ1, 1

]
= 0. (104)

In the Palatini approach, we explore two strategies for extending
the LTB based on symmetry. One is the diffusion-approximation
(qef f �= 0, εe f f = 0, q̂e f f = qef f ) and the second is
streaming-out limit (εe f f �= 0, qef f = 0, q̂e f f = εe f f ).

5.3 Diffusion approximation

In the scenario of diffusion, taking (qef f �= 0, εe f f = 0, q̂e f f =
qef f ) applying Eqs. (12) and (84), we get the following expres-
sion

8πqef f = K̇

K + 1

C ′

BC
, (105)

in this case, we get from Eq. (57)

qef f = g(r)

B2C2F3 D3, (106)

where D3 = exp
[
− ∫ F ′μe f f

2FBqef f
dt
]
, and g(r) regards arbitrarily

defined function. Combining Eqs. (84), (105)–(106), the follow-
ing result is obtained

8πg(r) = CC ′2 F3

D3

K̇

[K + 1] 3
2

. (107)

Additionally, Eq. (104) follows that ψ0 = F(t) in LTB case,
and by imposing this finding, Eqs. (102) and (103) read

μ̇e f f F(t) + ψ1μ′
e f f + 2Ḟ(t)μe f f − 2Bqef f ψ

1
,0 = 0, (108)

q̇e f f F(t) + ψ1q ′
e f f + qef f

[
Ḟ(t) + Ḃ

B
F(t)+ψ1 B

′

B
+ψ1

,1

]
= 0.

(109)

Eq. (109) might be written as

ψ1
[

ln(Bqef f ψ
1)

]′
+ F(t)

[
ln(Bqef f F(t))

].

= 0. (110)
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Multiplying Eq. (110) by Bqef f implies

[
Bqef f ψ

1)′ + (qef f BF

].

= 0, (111)

The partial solution of Eq. (111) may now be expressed as

Bqef f ψ
1 = −ζ̇ (t, r), (112)

Bqef f F(t) = ζ ′(t, r), (113)

using Eqs. (105) and (113) follow

ζ ′(t, r) = F(t)

8π

(
C ′

C

)
K̇

K + 1
. (114)

Manipulating Eqs. (84), (106), (113)–(114), it is inferred that

8πg(r) = CC ′2 F3

D3

K̇

[1 + K ] 3
2

, (115)

that is completely identical to Eq. (107). Integrating Eq. (107)
to obtain

1

[1 + K ] 1
2

= 4πg(r)
∫ −D3

CC ′2F3 dt + C ′(r), (116)

here C ′(r) is the function of integration. In a specific scenario,
utilizing the expression of C(t, r) presented in Eq. (97), it is
obtained that

1

(K + 1)
1
2

= − 4πg(r)

f ′(r) f (r)[− f ′(r)(−T (r) + t) + 2
3 f (r)T ′(r)]F3

+ C ′(r) + 4πg(r)

×
∫

3Ḟ F2

[− f ′(r)(−T (r) + t) + 2
3T

′(r) f (r)] . (117)

Feeding back Eq. (117) in (106) and applying Eq. (84), it is
found that

qef f = g(r)

f 2(r)F3[T (r) − t] 2
3

[
−4π

g(r)

f (r) f ′(r)F3

+
(

4πg(r)
∫

3Ḟ F2

[ f ′(r)(T (r) − t) + 2
3 f (r)T ′(r)]

+C ′(r)
)(

f ′(r)(T (r) − t) + 2

3
f (r)T ′(r)

)]−2

.

(118)

As a result, GLTB contains four-function, one of which dis-
appears because of r -coordinate invariance. Assuming that the
LTB solution has the same r -dependence as ψ1, a few functions
could be taken from the LTB seed model, and the rest could be
computed using the equations.

5.4 Streaming-out approximation

In the setting of εe f f �= 0, qef f = 0, the Bianchi-identities
brings down in the expression

μ̇e f f + 2μe f f

[
Ḃ

2B
+ Ċ

C
+ 5Ḟ

4F
− F ′

4BF

]
= 0. (119)

Integration of Eq. (119) yields

μe f f = 1

C2BF
5
2

j (r) exp
∫

F ′dt
2BF

. (120)

Using Eq. (84) in (120), we get

μe f f =
3 j (r)

[ ∫
4πεe f f Cdt + (1 + κ(r))

1
2

]

(C3)′F 5
2

exp
∫

F ′dt
2BF

,

(121)

where j (r) is constant of integration. Now, under the assumption
qef f = 0, εe f f �= 0, Eqs. (102)–(104) take the following form

ψ0(μe f f + εe f f )
. + ψ1(μe f f + εe f f )

′

+ 2(μe f f + εe f f )ψ
0
,0 − 2εe f f Bψ1

,0 = 0, (122)

ψ0ε̇e f f + ψ1ε′
e f f − (μe f f + εe f f )

ψ0
,1

B
+ εe f f

(
ψ0

,0

+ψ0 Ḃ

B
+ ψ1 B

′

B
+ ψ1

,1

)
− εe f f Bψ1

,0 = 0, (123)

ψ0ε̇e f f + ψ1ε′
e f f − 2εe f f

ψ0
,1

B
+ 2εe f f

(
ψ0 Ḃ

B

+ψ1 B
′

B
+ ψ1

,1

)
= 0. (124)

From Eqs. (122)–(124), we obtain

ψ0μ̇e f f + ψ1μ′
e f f + 2μe f f ψ

0
,0 + 2μe f f

ψ0
,1

B
= 0. (125)

After some manipulations, Eq. (125) gives

ψ1 = −μe f f

μ′
e f f

(
2Ḟ(r, t) + F(r, t)

μ̇e f f

μe f f
+ 2F ′(r, t)

B

)
, (126)

where ψ0 = F(r, t). Suppose that ψ0 = F(t), in order to satisfy
the obligation of maximal resemblance between LTB and GLTB.
In that case, Eqs. (122)–(124) implies

F(t)(μe f f + εe f f )
. + ψ1(μe f f + εe f f )

′

+ 2(μe f f + εe f f )Ḟ(t) − 2εe f f Bψ1
,0 = 0, (127)

F(t)ε̇e f f + ψ1ε′
e f f + εe f f

(
Ḟ(t) + F(t)

Ḃ

B
+ ψ1 B

′

B

+ψ1
,1

)− εe f f Bψ1
,0 = 0, (128)
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F(t)ε̇e f f + ψ1ε′
e f f + 2εe f f

(
F(t)

Ḃ

B
+ ψ1 B

′

B
+ ψ1

,1

)
= 0.

(129)

Eq. (129) may turn into the following form

F(t)
[
ln(εe f f B

2)
]. + ψ1 [ln(εe f f (Bψ1)2)

]′ = 0, (130)

or it may be rewritten as

F(t)(B2εe f f )
. + 1

ψ1 [εe f f (Bψ1)2]′ = 0. (131)

Also, in the presence of these conditions, Eq. (57) gets the fol-
lowing form

[
ln(εe f f (FBC)2)

]. + 1

B

[
ln(εe f f C

2)
]′ + Ḟ

F

+ 3F ′

B
+ F ′

2FB

(
μe f f

εe f f

)
= 0, (132)

or may be written as

[
εe f f (FBC)2]. + BF2(εe f f C

2)′ + B2F ḞC2εe f f

+ F ′BC2F

2
μe f f + 3BF2F ′C2εe f f = 0. (133)

It is now possible to acquire GLTB premised on the LTB (in the
streaming-out approximation) in the impact of Palatini f (R)

theory by adopting the following procedure. Suppose that LTB-
solution gets the similar sort of r -dependence as ψ1. Obtain
the value of (εe f f B2) from Eq. (133) and then substitute in
Eq. (131). Taking into account a definite LTB-model along with
the given field ψ and take F(t) = 1, because it is arbitrary.
Integrating Eq. (131) to get the effective radiation-density cor-
responding to r -coordinate.

6 Discussion

At large-scales, It is generally regarded that cold dark-matter is
non collisional having the intense impact of rest-mass in which
the pressure and heat-fluxes have ignorable consequences owing
to their kinetic-nature. Henceforth, it would be important to ana-
lyze the stability/instability of such configuration together with
the influence of certain kinetic factors, for instance, heat-fluxes
in the perspective of a specific gravity theory namely; Palatini
f (R) theory. It is well-accepted that the physical description of
any cosmic system is significantly influenced by the inhomo-
geneous matter configuration. Inhomogeneous space times are
exact solutions to field equations that disclose guidance about the
universe’s several periods. According to recent data from type-Ia
supernovae, indicating the universe’s expansion is accelerating,
Henceforth, there has been a rising demand for LTB space-time.
It is the most widely accepted non-homogeneous spherical con-
figuration that is very important to the study of how the universe

is set up. It is significant to note that in dissipation-free cases, the
regime of entire dust implies geodesic fluid, however, this is not
the case when considering dissipation. In current cosmology,
the study of the continuation of LTB space-time with the help
of structure scalars and symmetric properties is the significant
goal.

In present manuscript, we have explored the consequences of
Palatini f (R) correction on the continuation of the LTB space-
time. The Palatini version of f (R) theory has several fascinat-
ing properties, including the ability to predict the presence of
a long range scalar-field, describing cosmic late-time acceler-
ation. Our primary concern is to investigate the relevance of
Palatini f (R) curvature constituents, providing intense gravita-
tional field interactions. To do so,

• Our investigation is commenced by considering the dust
spheres. We have explored the relating field equations and
kinematical factors in association to the matter configuration
in Palatini f (R) context. In contrast to the GR outcomes,
it has been seen that the kinematical factors also get mod-
ified via higher curvature correction due to the influence
of connections within the Palatini context. As can be seen
from Eq. (17), the occurrence of four-acceleration is entirely
dependent on Palatini based modifications.

• In order to quantify the matter inside of the geometric con-
figuration, we have explored the Misner–Sharp [68] expres-
sion for the relating mass-function. In the realm of rela-
tivistic astrophysics, the study of matching conditions has
sparked a lot of interest. It is widely acknowledged that sev-
eral paradigms of gravitating systems of observational and
theoretical intrigue include the incorporation of two distinct
regions of spacetime, matched at certain hyper-surfaces,
detaching the inner from the outer region. To match the
exterior Eq. (32) and interior region Eq. (8) of our matter
configurations, we have constructed the set of Palatini f (R)

matchings Eqs. (26)–(31), indicating the consequences of
singular factors of the fluid under discussion Eqs. (34)–(36).

• It has been found that in contrast to GR, the brane tension dis-
appears on the grounds of Palatini f (R) context, however,
[K �

� ] �= 0 as represented in Eqs. (34)–(36). As sphere of our
matter configuration is composed up of entirely dust and dis-
sipation by means of heat flow and bearing the influence of
outgoing null-fluid. So, the computation for the matchings
interior to the exterior geometry gets the form (40) and (41).
These matchings have described the intense gravitational-
field interactions, which could converted the GR ones within
acceptable limits i.e., FR = 0 and Eq. (41) has the key role to
determine the presence of shells/branes. From our study, the
matchings would be applied for the vacuum configuration
provided the singular constituent of the source disappears
in (41) which is only feasible when the energy-density of
our source is regarded to be uniform. In addition to such
conditions, we have computed the entire luminosity across
the surface of the sphere under discussion. Subsequently, we
have highlighted that under totally diffusion-approximation,
luminosity of the source disappears though the presence
of heat-flux is accounted within the spheres. Henceforth,
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Eq. (41) could recover (32) of [59] within acceptable limits.
Within the Palatini f (R) context, this finding described the
clear consequences of the dust configuration.

• To evaluate the gravitational influence, a connection involv-
ing matter profile, Misner–Sharp mass, and conformal scalar
together with the Palatini f (R) modifications has been
established. Furthermore, we have constructed the Bianchi-
identities, expansion evolution and propagation equations
for the conformal scalar to analyze the dynamical aspects
of the stellar system. Within the Palatini f (R) context, the
tensors Yβ� and Xβ� have been evaluated by the orthog-
onal break down strategy of the Riemann-tensor, and fur-
ther distributed them in their trace-free and trace portions.
It has concluded that XT manages the energy-density of the
matter configuration and the some additional curvature fac-
tors illustrating the gravitational interaction at large-scales.
However, the fluid’s anisotropy with the inclusion of Palatini
f (R)-terms and the presence of mysterious form of matter
and energy is revealed by YT . It is found that YT F gov-
erns the fluid’s anisotropy in addition to the higher curva-
ture constituents and the conformal scalar. To gain a better
understanding of the physical meanings of the stellar con-
figuration, we have formulated the propagation equations in
the context of Palatini f (R) scalars.

• The LTB metric has formed by integrating the G01 compo-
nent of the Palatini f (R) field-equations. The various find-
ings of the evolving configuration, depending upon the value
of k in LTB space-time has established. We have formulated
the Palatini f (R) scalars corresponding to the GLTB space-
time and LTB space-time for dissipation and dissipation-free
scenarios, respectively. We have examined the maximum
similar aspects of both cases by comparing the related scalar
functions. Furthermore, the continuation of the LTB on the
grounds of symmetric aspects has been explored through
two strategies, namely, streaming-out limit and diffusion
approximation. The temperature profile of the source has
attained via heat conduction in diffusion under Palatini f (R)

context.
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7 Appendix A

The additional curvature constituents emerging in the Palatini
f (R) field-equations for the system under discussion are com-
puted as

ξ00 = 1

16π

(
−3Ḟ2

F
+ F ′2

BF
+ 2F ′′

B
− 2Ḃ Ḟ

B
− 2F ′B ′

B3

−4Ċ Ḟ

C
+ 4F ′C ′

B2C
+ FR − f − 3F ′2

2B2F
− 9Ḟ2

2F

)
, (134)

ξ11 = 1

16B2π

(
Ḟ2B2

F
+ B2

2
F̈ − 3F ′2

F
+ 4Ċ B2 Ḟ

C

−2C ′F ′

C
− B2RF − f B2 − 3Ḟ2B2

2F
− 3F ′2

2F

)
, (135)

ξ01 = 1

16π

(
2Ḟ ′ − 2

ḂF ′

B
− 5

Ḟ F ′

F

)
, (136)

ξ22 = 1

2F

(
2ĊC Ḟ + Ḟ2C2

F
− 2

C ′CF ′

B2 − F ′2C2

FB2 + 2F̈C2

− 2
F ′′C2

B2 + 2
ḂC2 Ḟ

B
+ B ′C2F ′

B3 − C2FR

−C2 f − 3C2 Ḟ2

2F
+ 3C2F ′2

2B2F

)
. (137)

8 Appendix B

The corrections for higher curvature effects caused by Palatini
corrections in the scalar variables are listed as

M (D)
1 = 1

F

(
F̈ + Ḟ2

2F
+ F ′2

4FB2 + Ċ Ḟ

C
− C ′F ′

CB2 − F ′′

B2

+ Ḃ Ḟ

B
+ B ′F ′

B3 + ( f − FR)

2

)
, (138)

M (D)
β� = − 1

2F

[
(∇β∇�F − gβ��F) − (∇γ ∇δF

−gγ δ�F)gβ�V
γ V δ

]− 3

4F2 ∇γ F∇δFV
γ

× V δgβ� + 1

F

[(
1

F
∇γ F∇δF − 2

3
(∇γ ∇δF

−gγ δ�F)
)
V γ V δhβ�

]− 1

2F
�Fhβ�, (139)

M (D)
3 = 1

8F
εεα�

[
−επα�

(
−∇π∇εF + 3

2F
∇π F∇εF

)

+ επε�

(
−∇π∇αF + 3

2F
∇π F∇αF

)
+ εαθ�

×
(

−∇θ∇εF + 3

2F
∇θ F∇εF

)
− εεθ�

(−∇θ∇αF
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+ 3

2F
∇θ F∇αF

)]
+ 1

F
h�

�

(−3

4F
(∇F)2

− ( f − FR)

2
+ �F

)
+ 1

F
(2(RF − f ) + 3�F

− 3

F
(∇F)2 − 3

2F
gβ�∇β∇�F

)
, (140)

N (D)
β� = 1

16F
εεαξ

(
gξβ − 1

3
hξβ

) [
επα�

(
2∇π∇εF

− 3

F
∇π F∇εF

)
− επε�

(
2∇π∇αF − 3

F

×∇π F∇αF
)− εαθ�

(
2∇θ∇εF − 3

F
∇θ F∇εF

)

+εεθ�

(
2∇θ∇αF − 3

F
∇θ F∇αF

)]

− 1

2F

(
gβ� − 1

3
hβ�

)(
3

2F
(∇F)2+( f −RF)−2�F

)
.

(141)

9 Appendix C

The corrections for higher curvature caused by Palatini correc-
tions in the expansion and shearing evolution are provided as

D1 = 1

2

(
4F̈

F
− 7Ḟ2

6F2

)
+ 1

3

(
4Ḟ Ḃ

FB
+ 8Ċ Ḟ

FC
− F ′2

24B2F2

)
,

(142)

D2 = 2

3

[
−
(

− Ḃ

B
+ Ċ

C

)
+ Ḟ2

8F2 − 3F ′2

16F2B2

] 3
2

−

× 8Ḟ

3F

(
− Ḃ

B
+ Ċ

C

)
− 8

3

(
− Ḃ

2B
− Ċ

C
− Ḟ

F

)

×
(

− 3F ′2

16F2B2 + Ḟ2

8F2

)
−
(

3F ′2

16F2B2

).

+
(

Ḟ2

8F2

).

.

(143)

10 Appendix D

The tensors Yβ� and Yβ� for the evaluation of the Palatini scalar
variables are determined as below

Yβ� = Eβ� + κ

2F
(μ̂hβ� − εξβξ�) + κ

3F
(−μ̂ + ε)hβ�

− 1

2F

[
(∇β∇�F − gβ��F) + (∇γ ∇�F

− gγ ��F)VβV
γ + (∇β∇δF − gβδ�F)V δV�

+(−∇δ∇γ F + gγ δ�F)gβ�V
δV γ

]+ 3

4F2

× [∇βF∇�F + ∇�F∇γ FV
γ Vβ + ∇δF∇βFV�V

δ

−∇δF∇γ Fgβ�V
δV γ

]− 1

2F2

× (gβ�∇�F∇βF − �F)hβ� − 1

6
(FR − f )hβ�

+ 1

4
(∇F)2hβ�, (144)

Xβ� = −Eβ� + κε

2F
(ξβξ� − hβ�) + κ

3F
(−μ̂ + ε)hβ�

+ 1

8
εεα
β

[
επα�

(
∇π∇εF − 3

2F
∇π F∇εF

)

− επε�

(
∇π∇αF − 3

2F
∇π F∇αF

)

− εαθ�

(
∇θ∇εF − 3

2F
∇θ F∇εF

)
+ εεθ�

×
(

∇θ∇αF − 3

2F
∇θ F∇αF

)]
− 3

2F2 ∇βF∇�F

+ gβ�

F

(
1

4F
(∇F)2 + ( f − RF)

6

)
(145)
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