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Abstract In this study, we work in the framework of
the Next-to-Minimal extension of the Standard Model
(NMSSM) extended by six singlet leptonic superfields.
Through the mixing with the three doublet leptonic super-
fields, the non-zero tiny neutrino masses can be generated
through the inverse seesaw mechanism. While R-parity is
conserved in this model lepton number is explicitly vio-
lated. We quantify the impact of the extended neutrino sec-
tor on the NMSSM Higgs sector by computing the complete
one-loop corrections with full momentum dependence to the
Higgs boson masses in a mixed on-shell-DR renormalization
scheme, with and without the inclusion of CP violation. The
results are consistently combined with the dominant two-
loop corrections at O(αt (αs + αt )) to improve the predic-
tions for the Higgs mixing and the loop-corrected masses.
In our numerical study we include the constraints from the
Higgs data, the neutrino oscillation data, the charged lepton
flavor-violating decays li → l j + γ , and the new physics
constraints from the oblique parameters S, T,U . We present
in this context the one-loop decay width for li → l j + γ .
The loop-corrected Higgs boson masses are included in the
Fortran code NMSSMCALC-nuSS.

1 Introduction

Both cosmological and neutrino oscillation data have indi-
cated the existence of three neutrino flavors, non-zero neu-
trino masses, and neutrino mixing. The three observed neu-
trinos are called active neutrinos. Cosmological data con-
strain the sum of the three active neutrino masses to be below
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b e-mail: margarete.muehlleitner@kit.edu
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0.12 eV [1]. Their absolute values must hence be less than
0.12 eV. As a result, the effect from the three active neutrinos
on the Higgs sector is negligible. However, models with an
extended neutrino sector contain three active neutrinos and at
least one sterile neutrino. The sterile neutrino can mix with
the active neutrinos and help to explain the tininess of the
active neutrino masses through the seesaw mechanism. The
number of sterile neutrinos and their masses are model depen-
dent. Current experiments have not observed sterile neutri-
nos yet but still allow for a small mixing between sterile and
active neutrinos. For precise investigations and meaningful
interpretations of both the Higgs and the neutrino sector, it is
therefore worthwhile and mandatory to consider the effects of
these sterile neutrinos on the Higgs sector. With the increas-
ing amount of the experimental LHC data on the Higgs mass,
couplings, production, and decay processes, one can expect
stronger constraints on new physics affecting directly and/or
indirectly the Higgs sector.

In this study, we consider the impact on the Higgs boson
masses in a supersymmetric theory. More specifically, we
work in the framework of the Next-to-Minimal Supersym-
metric extension of the Standard Model (NMSSM) [2–17]
with a Higgs sector consisting of two complex Higgs doublets
and a complex Higgs singlet. After electroweak symmetry
breaking (EWSB), the NMSSM Higgs sector features seven
Higgs bosons, five neutral and two charged Higgs bosons.
One of the neutral Higgs states is identified with the Stan-
dard Model (SM) Higgs boson. In the minimal supersym-
metric extension of the SM (MSSM) its mass is bounded
to be below the Z boson mass so that substantial radiative
Higgs mass corrections are required to shift the tree-level
mass value to the 125 GeV observed by the LHC experi-
ments ATLAS [18] and CMS [19]. In the NMSSM, there
is an additional contribution to the tree-level mass arising
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from the Higgs doublets mixing with the additional com-
plex singlet, so that less substantial radiative corrections are
required in order to comply with experiment. The neutrino
sector in this model is extended to include six singlet leptonic
superfields. R-parity is conserved while the lepton number
is explicitly violated by an interaction term between two sin-
glet neutrino superfields and a singlet Higgs superfield. This
type of model was first discussed in [20]. The six singlet neu-
trinos mix with the three doublet ones to generate nine neu-
trino mass eigenstates. Three of them have very light masses,
that can be explained through the inverse seesaw mecha-
nism [21–23]. The six remaining neutrinos can have masses
of order TeV which may be observable in collider experi-
ments. The presence of heavy neutrinos allows the neutrino
Yukawa couplings to be large. Hence heavy neutrinos and
their superpartners loops can give significant contributions to
loop-corrected Higgs boson masses even though their mix-
ings with active neutrinos are small. This is the focus of our
study.

In the literature, there exist many studies on the effects of
the (s)neutrinos on the loop-corrected Higgs boson masses
in the context of a supersymmetric theory with the type I
or inverse seesaw mechanism. We briefly review here those
studies that are close to our subject. The impact of the
extended neutrino and sneutrino sector on the lightest CP-
even Higgs mass in the NMSSM with the inverse seesaw
mechanism (ISS), was presented in [24] using an approxi-
mate one-loop correction neglecting the effects from external
momentum dependence and mixings between Higgs bosons.
The authors of [25] have computed the one-loop corrections
stemming solely from the neutrino/sneutrino sector to the
lightest CP-even Higgs boson in the NMSSM extended by a
right-handed neutrino superfield with R-parity conservation.
The full one-loop corrections to neutral Higgs boson masses
were presented in a mixed on-shell (OS)-DR scheme for the
μνSSM model with only one generation in [26] and for three
generations of right-handed neutrinos in [27]. In the μνSSM,
the Higgs sector contains two Higgs doublets while the neu-
trino sector is extended to include singlet right-handed neu-
trino superfields. Lepton number and R-parity are not pro-
tected in the μνSSM so that the superpartners of the singlet
right-handed neutrinos can develop vacuum expectation val-
ues (VEVs). In the Minimal Supersymmetric Standard Model
(MSSM) extended by the type I seesaw mechanism, the full
one-loop corrections with full momentum dependence com-
bined with the dominant two-loop corrections to the Higgs
boson masses were presented in [28], which showed a non-
decoupling effect for a large right-handed neutrino scale.
The authors of [29] have shown that the decoupling prop-
erty is preserved with a suitable renormalization scheme of
the parameter tan β, which denotes the ratio of the two vac-
uum expectation values of the two Higgs doublets in the
MSSM. With the inverse seesaw mechanism incorporated

in the MSSM, the one-loop corrections of (s)neutrinos have
been studied in [30,31] by using the one-loop effective poten-
tial approach.

Our goal is to present here the complete one-loop correc-
tions with full momentum dependence to the Higgs boson
masses in a mixed OS-DR renormalization scheme using
the Feynman diagrammatic approach. The calculation has
been done both in the real and the complex NMSSM. We
consistently combine our result with the dominant two-
loop corrections of O(αsαt ) [32] and O(α2

t ) [33] com-
puted by our group. In order to investigate the impact of
our newly computed corrections, we perform a numerical
study where we apply constraints from the Higgs data, the
neutrino oscillation data, the charged lepton flavor-violating
decays li → l j + γ , and the constraints on new physics
from the oblique parameters S, T,U . The explicit compu-
tation of the one-loop decay width for li → l j + γ is also
presented in this study. We furthermore provide the Fortran
code, dubbed NMSSMCALC-nuSS, for the computation of
the loop-corrected Higgs boson masses and Higgs boson
decay branching ratios incorporating higher-order correc-
tions. This code is adapted from the code NMSSMCALC [34]
published by our group.1

The paper is organized as follows. In Sect. 2, we describe
the model and the masses and mixings of each sector at tree
level. In Sect. 3, we present details of our calculation of
the loop-corrected Higgs boson masses and mixing. We also
discuss our renormalization scheme for parameters and fields
needed to obtain finite renormalized Higgs self-energies. In
Sect. 4 we present all constraints related to the Higgs data, the
neutrino oscillation data, the oblique parameters S, T,U , and
the charged lepton flavor-violating decays li → l j + γ that
we apply in our phenomenological study. Section 5 is ded-
icated to the numerical analysis. We present the size of the
loop corrections and their dependencies on the parameters
of the neutrino and sneutrino sectors. We furthermore dis-
cuss the effects of different constraints on the neutrino sector
parameters. Finally, we present our conclusions in Sect. 6.

2 The NMSSM with inverse seesaw mechanism

The NMSSM realization of the seesaw mechanism through
the Z3 discrete symmetry with a unit charge of ω = ei2π/3

has been introduced in [20,24]. Depending on the Z3 charge
assignment for the lepton doublet superfields and the two
Higgs doublet superfields, the neutrino masses may arise
from effective dimension five, six or seven operators. We con-
sider in this paper the case of the dimension six operator. Tiny

1 Our recently published code NMSSMCALCEW also includes the super-
symmetric (SUSY) electroweak [35] and SUSY-QCD corrections to the
NMSSM Higgs boson decay widths and branching ratios [36].
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Table 1 Quantum numbers associated with the gauge symmetry group
SU (2)L ,U (1)Y , the Z3 charge (ω = ei2π/3) and the lepton number L
for the NMSSM superfields. The generation index i runs from one to
three

SU (2)L U (1)Y Z3 L

Q̂i 2 1/3 1 0

Û c
i 1 − 4/3 ω2 0

D̂c
i 1 2/3 ω2 0

L̂i 2 − 1 1 1

Êc
i 1 2 ω2 − 1

Ĥu 2 1 ω 0

Ĥd 2 − 1 ω 0

Ŝ 1 0 ω 0

N̂ c
i 1 0 ω2 − 1

X̂i 1 0 ω 1

neutrino masses are obtained through the well-known inverse
seesaw mechanism. This is an interesting case because the
dimension six operators generating neutrino masses are not
present in the non-supersymmetric seesaw models.2 Another
reason that makes this case more interesting is that the new
appearing particles need not to be too heavy in order to obtain
tiny masses for the observed neutrinos. They can be at the
TeV scale and hence in the reach of present and future col-
liders. We consider the simple case where we introduce six
gauge singlet chiral superfields, N̂i , X̂i (i = 1, 2, 3). These
superfields carry lepton number. The Z3 charge assignment3

used in this paper for the relevant NMSSM superfields is
given in Table 1.

The NMSSM superpotential including the new superfields
is given by

WNMSSM = WMSSM − εabλŜ Ĥ
a
d Ĥ

b
u + 1

3
κ Ŝ3

− yνεab Ĥ
a
u L̂

b N̂ c + λX Ŝ X̂ X̂ + μX X̂ N̂ c, (2.1)

where εab is the totally antisymmetric tensor with ε12 =
ε12 = 1, Ĥu, Ĥd denote the two complex Higgs doublet
superfields and Ŝ the complex singlet superfield. The MSSM
superpotential reads

WMSSM = −εab
(
yu Ĥ

a
u Q̂

bÛ c

− yd Ĥ
a
d Q̂

b D̂c − ye Ĥ
a
d L̂

b Êc), (2.2)

in terms of the left-handed quark and lepton superfield
doublets Q̂ and L̂ and the right-handed up-type, down-type

2 In non-supersymmetric seesaw models, effective dimension five oper-
ators give masses for light neutrinos while dimension six operators affect
their kinetic terms.
3 Other assignments of the Z3 charge were also discussed in [20].

and electron-type superfield singlets Û , D̂ and Ê , respec-
tively. Charge conjugation is denoted by the superscript c, and
color and generation indices have been omitted. The NMSSM
superpotential contains the coupling κ of the self-interaction
of the singlet superfield Ŝ, the coupling λ for the Ŝ interaction
with the two Higgs doublet superfields, and the coupling λX

for the interaction of the Higgs singlet with the two singlets
X̂ . In general, the coupling λX is a 3 × 3 matrix. This is the
only term in the superpotential that violates the lepton num-
ber. Note that in the model we consider here, we allow for
explicit lepton number violation, however, we consider only
the violation of two units (�L = 2). This will forbid the
nine scalar fields that carry lepton number to develop VEVs.
As consequence, lepton number violation appears only in
the (s)neutrino sector and we stay in the simplest possible
parameter space. The 3 × 3 matrix μX is the only parame-
ter with the dimension of mass in the superpotential so that
it can be of the order of the SUSY conserving mass scale
and is naturally large. This is essential for the seesaw mecha-
nism. The quark and lepton Yukawa couplings yd , yu, ye, yν
and the couplings λ, κ, λX , μX are in general complex. In
the numerical analysis, we chose yd , yu, ye, λX , μX to be
diagonal. However in the code λX , μX can be chosen to be
non-diagonal. The soft SUSY breaking NMSSM Lagrangian
respecting the gauge symmetry and the Z3 symmetry reads

Lsoft
NMSSM = Lsoft

MSSM − m̃2
S|S|2 +

(
εab AλλSH

a
d H

b
u

−1

3
AκκS3 + εab yν AνH

a
u L̃

b Ñ∗ + λX AX S X̃ X̃

+μX BμX X̃ Ñ∗ + h.c.
)
− m̃2

X |X̃ |2− m̃2
N |Ñ |2,

(2.3)

and contains the soft SUSY breaking trilinear couplings
Aλ, Aκ , Aν and AX , the soft SUSY breaking masses m̃2

S,

m̃2
X , m̃2

N and the soft SUSY breaking bilinear mass BμX .
In general, Aλ, Aκ , Aν, AX and BμX are complex param-
eters. For simplicity, in our numerical analysis we chose
m̃X , m̃N , AX , and BμX to be diagonal. The SM-type and
SUSY fields corresponding to a superfield (denoted with
a hat) are represented by a letter without and with a tilde,
respectively. The soft SUSY breaking MSSM contribution
can be cast into the form

Lsoft
MSSM = − m̃2

Hd
|Hd |2 − m̃2

Hu
|Hu |2 − m̃2

Q |Q̃|2 − m̃2
U |ũ R |2

− m̃2
D|d̃R |2 − m̃2

L |L̃|2 − m̃2
E |ẽR |2

+ εab

(
yu AuH

a
u Q̃

bũ∗
R

−yd Ad H
a
d Q̃

bd̃∗
R − ye AeH

a
d Q̃

bẽ∗
R + h.c.

)

− 1

2
(M1 B̃ B̃ + M2W̃i W̃i + M3G̃G̃ + h.c).

(2.4)
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The indices of the soft SUSY breaking masses, Q (L),
stand for the left-handed doublet of the three quark (lep-
ton) generations, and U, D, E are the indices for the right-
handed up-type and down-type quarks and charged lep-
tons, respectively. In the trilinear coupling parameters, the
indices u, d, e represent the up-type and down-type quarks
and charged leptons. While the trilinear couplings Au , Ad

and Ae are complex, the soft SUSY breaking mass terms m̃2
x

(x = S, Hu, Hd , Q,U, D, L , E) are real. The soft SUSY
breaking mass parameters of the gauginos, M1, M2, M3, for
the bino, the winos and the gluinos, B̃, W̃i (i = 1, 2, 3)
and G̃, corresponding to the weak hypercharge U (1)Y , the
weak isospin SU (2)L and the colour SU (3)C symmetry,
are in general complex. In this paper we are working in
complex NMSSM where the parameters are kept complex.
Furthermore, we apply flavor conservation in the charged
(s)lepton and (s)quark sectors so that all matrices including
soft mass matrices m̃2

L , m̃2
E , m̃2

Q, m̃2
U , m̃2

D , the trilinear cou-
plings Ae,d,u and the Yukawa matrices Ye,d,u are diagonal in
any basis. Flavor mixing occurring in our model arises solely
from the neutrino and sneutrino sectors. The Lagrangian con-
tains two lepton number violating terms, namely λX Ŝ X̂ X̂ and
λX AX S X̃ X̃ .

The Higgs, neutralino, chargino, (s)quark and charged
(s)lepton sectors are the same as in the usual NMSSM with-
out seesaw. For completeness, we recall briefly these sectors
here to introduce our notation. The sectors that receive sig-
nificant changes are the neutrino and sneutrino ones. We will
present them in detail later on. Expanding the scalar Higgs
fields about their vacuum expectation values (VEVs) vu , vd ,
and vs , we have

Hd =
(

1√
2
(vd + hd + iad)

h−
d

)

,

Hu = eiϕu

(
h+
u

1√
2
(vu + hu + iau)

)

,

S = eiϕs
1√
2
(vs + hs + ias), (2.5)

where two additional complex phases, ϕu, ϕs , have been
introduced. The fields hi and ai with i = d, u, s correspond
to the CP-even and CP-odd part, respectively, of the neu-
tral entries of Hu , Hd and S. The charged components are
denoted by h±

d,u .
After EWSB, there are mixings between the three CP-

even and the three CP-odd Higgs interaction states. In the
basis φ = (hd , hu, hs, ad , au, as), the mass term is given by

L = 1

2
φT Mφφφ. (2.6)

The explicit expression of the mass matrix Mφφ can be found
in [33]. The transformation into mass eigenstates at tree-level
can be performed in two steps. First, RG is used to single
out the Goldstone boson whose mass is equal to the Z boson
mass in the ’t Hooft-Feynman gauge,

M (6)
hh = RGMφφ

(
RG

)T
, (2.7)

(hd , hu, hs, a, as,G)T = RG(hd , hu, hs, ad , au, as)
T .

(2.8)

Here one can remove the Goldstone state from the rest by
crossing out the sixth row and column of M (6)

hh , so that it
becomes a 5 × 5 mass matrix in the basis (hd , hu, hs, a, as).
In the second step, we diagonalize the thus obtained 5 × 5
matrix Mhh with an orthogonal matrix R

diag(m2
h1

,m2
h2

,m2
h3

,m2
h4

,m2
h5

) = RMhhRT , (2.9)

(h1, h2, h3, h4, h5)
T = R(hd , hu, hs, a, as)

T . (2.10)

The tree-level Higgs mass eigenstates are denoted by the
small letter h. The masses are ordered as mh1 ≤ mh2 ≤
mh3 ≤ mh4 ≤ mh5 .

The mass matrix in the ’t Hooft-Feynman gauge for the
charged components of the Higgs doublets,

(
h+
d , h+

u

)
Mh+h+

(
h−
d

h−
u

)
, (2.11)

is given by

Mh+h+ = 1

2

(
tβ 1
1 1/tβ

)

×
[
M2

Ws2β + |λ|vs
cos (ϕλ + ϕu + ϕs)

(√
2 ReAλ

+|κ|vs cos (ϕκ + 3ϕs))

− 2|λ|2M2
Ws2

θW

e2 s2β

]
+ M2

W

(
cβ

2 −cβsβ
−cβsβ sβ2

)
,

(2.12)

where MW is the mass of the W boson, θW the electroweak
mixing angle, e the electric charge and ϕλ, ϕκ the complex
phases of λ and κ , respectively. The angle β is defined as

tan β = vu

vd
. (2.13)

Here and in the following we use the short hand notation
cx = cos x , sx = sin x and tx = tan x . The mass matrix,
Mh+h+ , can be diagonalized by a rotation matrix with the
angle βc = β leading to the charged Higgs mass given by
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M2
H± = M2

W + |λ|vs
s2β cos(ϕλ + ϕu + ϕs)

×
(√

2 ReAλ + |κ|vs cos(ϕκ + 3ϕs)
)

− 2|λ|2M2
Ws2

θW

e2 .

(2.14)

The mass of the charged Goldstone boson G± is equal to
MW .

The fermionic superpartners of the neutral Higgs bosons,
H̃0
d , H̃0

u , S̃, and of the neutral gauge bosons, B̃, W̃3, mix,
and in the Weyl spinor basis ψ0 = (B̃, W̃3, H̃0

d , H̃0
u , S̃)T the

neutralino mass matrix MN is given by

MN =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

M1 0 −cβMZsθW MZsβsθW e
−iϕu 0

0 M2 cβMW −MWsβe−iϕu 0

−cβMZsθW cβMW 0 −λ vs√
2
eiϕs −

√
2MWsβ sθW λeiϕu

e

MZsβsθW e
−iϕu −MWsβe−iϕu −λ vs√

2
eiϕs 0 −

√
2MWcβ sθW λ

e

0 0 −
√

2MWsβ sθW λeiϕu

e −
√

2MWcβ sθW λ

e

√
2κvseiϕs

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

(2.15)

after EWSB, where MZ is the Z boson mass. The neutralino
mass matrix is symmetric and can be diagonalized by a
5×5 matrix N , yielding diag(mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
,mχ̃0

5
) =

N∗MN N †, where the mass values are ordered as mχ̃0
1

≤
· · · ≤ mχ̃0

5
. The neutralino mass eigenstates χ̃0

i , expressed
as a Majorana spinor, are then obtained by

χ̃0
i =

(
χ0
i

χ0
i

)

with χ0
i = Ni jψ

0
j , i, j = 1, . . . , 5,

(2.16)

where

χ0
i = iσ2χ

0∗
i (2.17)

in terms of the Pauli matrix σ2.
The fermionic superpartners of the charged Higgs and

gauge bosons are given in terms of the Weyl spinors H̃±
d ,

H̃±
u , W̃−, and W̃+. With

ψ−
R =

(
W̃−
H̃−
d

)
and ψ+

L =
(
W̃+
H̃+
u

)
, (2.18)

the mass term for these spinors reads

L = (ψ−
R )T MCψ+

L + h.c., (2.19)

where

MC =
(

M2
√

2sβMWe−iϕu√
2cβMW λ vs√

2
eiϕs

)

. (2.20)

The chargino mass matrix MC can be diagonalized with the
help of two unitary 2 × 2 matrices, U and V , resulting in

diag(mχ̃±
1
,mχ̃±

2
) = U∗MCV

†, (2.21)

with mχ̃±
1

≤ mχ̃±
2

. The left-handed and the right-handed part
of the mass eigenstates are

χ̃+
L = Vψ+

L and χ̃−
R = Uψ−

R , (2.22)

respectively, with the mass eigenstates (i = 1, 2)

χ̃+
i =

(
χ̃+
Li

χ̃−
Ri

T

)

(2.23)

written as Dirac spinors.
The scalar partners of the left- and right-handed quarks are

denoted as q̃L and q̃R , respectively. Assuming no generation
mixing in the squark sector the mass matrix for the top squark
in the interaction basis (t̃L , t̃R) reads

Mt̃ =
⎛

⎝
m2
Q̃3

+ m2
t + M2

Z c2β( 1
2 − 2

3 s
2
θW

) mt

(
A∗
t e

−iϕu − μeff/tβ
)

mt

(
At eiϕu − μeff

∗/tβ
)

m2
t + m2

t̃R
+ 2

3 M
2
Z c2β s

2
θW

⎞

⎠ ,

(2.24)

while the bottom squark mass matrix is given by

Mb̃ =
(
m2

Q̃3
+ m2

b + M2
Z c2β(− 1

2 + 1
3 s

2
θW

) mb
(
A∗
b − eiϕu μefftβ

)

mb
(
Ab − e−iϕu μeff

∗tβ
)

m2
b + m2

b̃R
− 1

3 M
2
Z c2β s2

θW

)

,

(2.25)

where

μeff = λvseiϕs√
2

. (2.26)

The mass eigenstates are obtained by diagonalizing these
squark matrices with the unitary transformations

diag(m2
q̃1

,m2
q̃2

) = Uq̃Mq̃U
†
q̃ ,

(
q̃1
q̃2

)
= Uq̃

(
q̃L
q̃R

)
, q = t, b,

(2.27)
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with the usual convention mq̃1 ≤ mq̃2 .
For the charged leptonic sector, we use the same assump-

tion of no generation mixing as in the squark sector. In
each generation, the left- and right-handed sleptons mix. For
example, the mixing matrix for the third generation, i.e. for
the left- and right-handed stau, is given by

Mτ̃ =
⎛

⎝
m2
L̃3

+ m2
τ + M2

Z c2β

(
− 1

2 + s2
θW

)
mτ

(
A∗

τ − eiϕuμefftβ
)

mτ

(
Aτ − e−iϕuμeff

∗tβ
)

m2
τ + m2

τ̃R
− M2

Z c2β s
2
θW

⎞

⎠ ,

(2.28)

Upon diagonalization we obtain the mass eigenstates τ̃1

and τ̃2 whose masses are ordered as m τ̃1 ≤ m τ̃2 .
In the neutral leptonic sector, the three left-handed neutri-

nos, νLi , mix with the six leptonic component fields of the
six singlet superfields N̂ c

i , X̂i , i = 1, 2, 3, and the mass term
in the Lagrangian reads

Lν
mass = −1

2

(
νL Nc X

)
Mν

ISS

⎛

⎝
νL
Nc

X

⎞

⎠ (2.29)

where the mixing mass matrix is given by

Mν
ISS =

⎛

⎝
0 MD 0
MT

D 0 μX

0 μT
X MX

⎞

⎠ . (2.30)

Note that νLi , N
c
i , Xi are left-handed Weyl spinors and the

products of them are defined in such a way that they are
Lorentz invariant. For example, νLi N

c
j = εabνLi ,aN

c
j,b,

where the spinor indices are denoted by a, b = 1, 2, and
the generation indices by i, j = 1, 2, 3. The blocks MD, μX

and MX are 3 × 3 matrices with μX defined in Eq. (2.1) and

MD = vueiϕu√
2

yν, MX = vseiϕs√
2

(λX + λT
X ). (2.31)

The mass matrix Mν
ISS can be diagonalized by a 9×9 unitary

matrix as

U∗
ν M

ν
ISSU

†
ν = diag(mn1, . . . ,mn9). (2.32)

The diagonalization process is done numerically in our code.
It can be performed, however, by using an expansion approx-
imation [37,38] to separate the 3 × 3 light neutrino mass
matrix from the 6 × 6 heavy states exploiting the fact that
all matrix elements of MD, MX are much smaller than the
eigenvalues of μX . In particular, at the lowest order, the 3×3
light neutrino mass matrix can be expressed as

Mlight = MDM
−1
N MT

D, with MN = μXM
−1
X μT

X . (2.33)

One then defines Majorana neutrino fields as

ni =
(

νi
νi

)

with νi = (Uν)ikνL ,k + (Uν)i(k+3)N
c
k + (Uν)i(k+6)Xk,

(2.34)

where i = 1, . . . , 9, k = 1, 2, 3, and

νi = iσ2ν
∗
i . (2.35)

The neutrino spectrum should contain three light active neu-
trinos ni (i = 1, 2, 3) with masses of order eV and six heavy
neutrinos nI , I = 4, . . . , 9. Their masses can be of order
TeV. The diagonalization process can lead to negative mass
eigenvalues, mnx , which in the version of the code for the
CP-violating NMSSM we make positive by multiplying the
corresponding xth rotation matrix row with the imaginary
unit i . So in our convention, the neutrino masses are all posi-
tive. In principle, one gives arbitrary inputs for MD, μX , MX

and then obtains the corresponding neutrino masses and their
rotation matrix. However, the obtained masses and mixing
angles must satisfy the experimental data of the three active
neutrinos. The chance to get parameter points passing these
constraints starting from arbitrary input values is very low. A
way out of this technical difficulty is to use a parameteriza-
tion of MD in terms of μX , MX and the light neutrino masses
and mixing angles. We follow the Casas–Ibarra parameteri-
zation [39], that makes use of the leading order relation for
the light neutrino mass matrix

U∗
PMNSMlightU

†
PMNS = mν, (2.36)

with

mν = diag(mν1,mν2 ,mν3). (2.37)

Using the expression of Mlight given in (2.33) one then gets

MD = UT
PMNS

√
mνR

√
MNV, (2.38)

where

MN = diag(MN1, MN2 , MN3). (2.39)

The Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix
UPMNS and the active neutrino masses mνi (i = 1, 2, 3) are
input values based on the available experimental data, while
MN1, MN2 , MN3 are the positive roots of MN and V is a
unitary matrix diagonalizing MN as

diag(MN1, MN2 , MN3) = V ∗MNV
†, (2.40)

123
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and R is a complex orthogonal matrix that can be written in
terms of three complex angles θi (i = 1, 2, 3)

R =
⎛

⎝
c2s3 −c1s3 − s1s2c3 s1s3 − c1s2c3

c2s3 c1c3 − s1s2s3 −s1c3 − c1s2s3

s2 s1c2 c1c2

⎞

⎠ , (2.41)

with ci = cos θi , si = sin θi . In this study we set the three
angles θ1,2,3 to be real. Using this Casas–Ibarra parameter-
ization, the light neutrino masses denoted mni (i = 1, 2, 3)
in (2.32) are approximately the input neutrino masses mνi in
(2.36). If the relative difference, defined as the maximum of
|(mni − mνi )/mνi | (i = 1, 2, 3), is more than one percent,
the code will print out a warning about the breakdown of the
Casas–Ibarra parameterization.

With the introduction of the new superfields, the sneu-
trino sector is also changed. To incorporate CP violation,
each sneutrino field is separated into its CP-even and CP-
odd components as

ν̃ = 1√
2

(ν̃+ + i ν̃−) (2.42)

Ñ∗ = 1√
2

(
Ñ+ + i Ñ−

)
(2.43)

X̃ = 1√
2

(
X̃+ + i X̃−

)
. (2.44)

The mass term in the basis ψ = (ν̃+, Ñ+, X̃+, ν̃−, Ñ−,

X̃−)T (generation indices are suppressed) is given by

L = 1

2
ψT Mν̃ψ, (2.45)

where the mass matrix Mν̃ is an 18 × 18 symmetric matrix
that can be found in Appendix B. An orthogonal matrix Uν̃

can be used to find the masses of the sneutrinos as follows,

diag
(
m2

ñ1
, . . . ,m2

ñ18

)
= Uν̃Mν̃Uν̃

T , (2.46)

where their mass values are ordered as m2
ñ1

≤ · · · ≤ m2
ñ18

.

3 Calculation of the neutral Higgs boson masses and
mixings

In this section, we describe in detail our computation of the
complete one-loop contribution to the loop-corrected neutral
Higgs boson masses including the full momentum depen-
dence and give a detailed description of the renormaliza-
tion procedure. We apply dimensional reduction (DRED)
[40,41] to regularize the UV-divergences, which has been
proven to conserve SUSY at one-loop order. We have used
several programs to compute the one-loop self-energies. To
generate the Feynman diagrams and self-energies we use

FeynArts [42,43] together with a model file created by
SARAH [44–47]. The output self-energies were further pro-
cessed using FeynCalc [48,49] for the simplification of
the Dirac matrices and for the tensor reduction. The one-
loop one- and two-point integrals were evaluated with a
modified loop library of NMSSMCALC [50], in particular
we used quadruple precision and complex external momen-
tum squared for the two-point integrals to increase the con-
vergence and stability of the code.4 The new model and
the calculation of the loop-corrected Higgs boson masses
and mixings have been implemented in the code, called
NMSSMCALC-nuSS. The code can be downloaded from the
url:

https://www.itp.kit.edu/~maggie/NMSSMCALC-nuSS/

3.1 Loop-corrected Higgs boson masses and mixings

The loop-corrected Higgs boson masses can be obtained from
the real parts of the complex mass eigenvalues of the 5 × 5
Higgs mass matrix with its elements

Mhi h j = m2
hi δhi h j − �̂hi h j (p

2), i, j = 1, . . . , 5, (3.47)

where �̂hi h j (p
2) is the renormalized self-energy of the tran-

sition hi → h j at external momentum squared p2. We do not
include the contributions due to the transitions hi → G/Z ,
since their contributions are negligible for light Higgs bosons.
For extremely heavy Higgs bosons, they can have some effect
as shown in [51].

The renormalized Higgs self-energies at one-loop level
can be written in terms of the unrenormalized self-energies
�hi h j (p

2) and the counterterms as

�̂hi h j (p
2) = �hi h j (p

2) + 1

2
p2

[
R

(
δZ†

hh + δZhh

)
RT

]

i j

− 1

2

[
R

(
δZ†

hhMhh + MhhδZhh

)
RT

]

i j

−
[
RδMhh(R)T

]

i j
. (3.48)

where the Higgs mass counterterm matrix is denoted by δMhh

and the wave-function renormalization constant matrix by
δZhh in the basis (hd , hu, hs, a, as). In Fig. 1, the one-loop
Feynman diagrams contributing to the unrenormalized self-
energies �hi h j (p

2) are shown. In the following sections, we
will discuss the counterterms and renormalization conditions

4 It is also possible to use double precision for the evaluation of the
loop-corrected Higgs boson masses. This can be set in the makefile.
However, for some parameter points, the convergence of the iterative
method is not good compared to the usage of quadruple precision. This
does not happen in the NMSSM without the seesaw mechanism.
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x = G,G−,H−

hi hj

x

x = h, ñ, ẽγ , ũγ , d̃γ

hi hj

xk

x = Z,W−

hi hj

x

x = n, χ̃0

hi

hj

xk

xl

x = e, u, d, χ̃−

hi

hj

xk

xl

x = H−, G−

hi

hj

x

x

x = h, ñ, ẽγ , ũγ , d̃γ

hi

hj

xk

xl

x = ηZ , η+, η−

hi

hj

x

x

x = G,hk

hi

hj

x

Z

x = H−, G−

hi

hj

x

W−

x = H−, G−

hi

hj

x

W−

x = Z,W−

hi

hj

x

x

Fig. 1 Generic Feynman diagrams contributing to the one-loop neutral
Higgs self-energies. The indices k, l take several sets of values depend-
ing on the fields that they go with: k, l = 1, . . . , 5 for x = h, χ̃0,
k, l = 1, . . . , 3 for x = e, u, d, ẽ, ũ, d̃ , k, l = 1, . . . , 18 for x = ñ
and k, l = 1, . . . , 9 for x = n. The index γ denotes the left- and right-
handed scalars. Color indices for the quarks and squarks are suppressed

in detail. We furthermore include the dominant two-loop cor-
rections of order O(αsαt ) [52] and O(α2

t ) [33], which are
available both for the real and for the complex NMSSM,
to increase the precision for the phenomenological analysis
presented in Sect. 5.

For the diagonalization of the loop-corrected mass matrix
we apply the iterative method presented in [33,52–54].5 For
the loop-corrected n-th Higgs boson mass in the first itera-
tion, the external momentum squared is set equal to the tree-
level Higgs boson mass, p2 = m2

hn
. The obtained matrix is

then diagonalized, yielding the n-th diagonal element. This
value is then used as input momentum squared for the new
iteration. The process is repeated until the change in p2

between two consecutive iterations is less than 10−9. The
n-th loop-corrected mass squared M2

hn
is then defined as the

real part of the last iterative n-th diagonal element.6 The algo-
rithm is repeated for all neutral Higgs boson masses. The
loop-corrected masses are then sorted in ascending order,
Mh1 ≤ Mh2 ≤ Mh3 ≤ Mh4 ≤ Mh5 . These loop-corrected
masses obtained by the iterative method will be the outputs
used in the decay width calculations and in the phenomeno-
logical study, if not stated otherwise.

5 While this method includes contributions beyond the fixed-order
renormalized self-energies, it can give rise to the gauge-parameter
dependence of the loop-corrected masses due to the incomplete higher-
order terms as studied in [35,51,55].
6 We use capital M to denote loop-corrected masses in contrast to
m for tree-level masses. For masses that are renormalized on-shell
(MH± , MZ , MW , cf.Sect. 3.2.3) where the distinction need not be made,
we use capital M as well.

We now define the loop-corrected mixing matrix that will
be used to compute the effective couplings of the Higgs
bosons with gauge bosons, fermions and among themselves.
We define the loop-corrected mixing matrix R0 to be the rota-
tion of the loop-corrected mass matrix in the approximation
of vanishing external momentum,

diag(M2
0,H1

, M2
0,H2

, M2
0,H3

, M2
0,H4

, M2
0,H5

)

= R0Mhh(0)(R0)T . (3.49)

The corresponding loop-corrected mass eigenvalues are
denoted by an index 0 and sorted in ascending order, M0,H1 ≤
M0,H2 ≤ M0,H3 ≤ M0,H4 ≤ M0,H5 . In this approximation,
the mixing matrix R0 is unitary but does not capture the
proper OS properties of the external loop-corrected states
as momentum-dependent effects are neglected. Using these
thus defined mixing matrix elements, we obtain the Higgs
effective couplings. Following the strategy presented in the
NMSSMCALC [50], these Higgs effective couplings will be
used to compute the Higgs decay widths, taking into account
also higher-order QCD corrections when available.

3.2 Counterterms of the Higgs sector

Closely following the renormalization procedure at one-loop
level described in [53,54], we choose the following set of
quantities as our independent input,

(
thd , thu , ths , tad , tas , e, MW , MZ , MH± ,

tan β, vs, |λ| , |κ| , ReAκ , ϕλ, ϕκ, ϕu, ϕs) , (3.50)

where the five soft SUSY breaking parameters m̃2
Hd

, m̃2
Hu

,

m̃2
S, ReAλ, ReAκ have been replaced by the five indepen-

dent tadpoles thd , thu , ths , tad , tas which vanish at tree level.
The complex phases ϕλ, ϕκ, ϕu, ϕs do not need to be renor-
malized at one-loop level. The remaining input parameters
are replaced by the sum of the corresponding renormalized
parameters and their counterterm as

tφ → tφ + δtφ with φ = (hd , hu, hs, ad , as) (3.51)

M2
H± → M2

H± + δM2
H± (3.52)

M2
W → M2

W + δM2
W (3.53)

M2
Z → M2

Z + δM2
Z (3.54)

e → e(1 + δZe) (3.55)

tan β → tan β + δ tan β (3.56)

vs → vs + δvs (3.57)

|λ| → |λ| + δ |λ| (3.58)

|κ| → |κ| + δ |κ| (3.59)

ReAκ → ReAκ + δ ReAκ (3.60)

123
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The neutral Higgs boson counterterm matrix δMhh in (3.48)
can be written in terms of the counterterms of the input
parameters. The analytical expression of δMhh in terms of
these counterterms can be found in Appendix C. In order to
determine the counterterms, we need renormalization condi-
tions. In this study, we use a mixture of the DRand the OS
scheme specified as

thd , thu , ths , tad , tas , e, MW , MZ , MH±
︸ ︷︷ ︸

OS scheme

,

tan β, vs, |λ| , |κ| , ReAκ︸ ︷︷ ︸
DRscheme

. (3.61)

In our code, there is also the possibility to chose ReAλ to be
the input parameter instead of the charged Higgs mass. In
this case �Aλ is renormalized in the DRscheme, while MH±
is computed at the same order as the one of the neutral Higgs
boson masses.

The neutral Higgs wave function renormalization con-
stants are introduced for the neutral components of both dou-
blets and the singlet as

Hd →
(

1 + 1

2
δZHd

)
Hd , Hu →

(
1 + 1

2
δZHu

)
Hu,

S →
(

1 + 1

2
δZS

)
S. (3.62)

Hence the wave-function renormalization constant matrix
introduced in (3.48) in the basis φ = (hd , hu, hs, a, as)T

is given by

φ →
(

1 + 1

2
δZhh

)
φ, (3.63)

δZhh = diag
(
δZHd , δZHu , δZS, s

2
βδZHd + c2

βδZHu , δZS

)
.

(3.64)

3.2.1 The neutral wave function renormalization constants

We use the DRscheme to define the Higgs wave function
renormalization constants.7 The DRscheme requires that the

7 While this renormalization is simple in practice, corrections arising
from �̂hi hi (∂�̂hi hi (p

2)/∂p2) and from �̂hi h j �̂h j hi /(m
2
hi

−m2
h j

) enter
the loop-corrected masses, which are of higher order compared to the
fixed order correction included in �̂hi h j . It is also possible to choose
the OS scheme for the wave function renormalization constants, so that
(∂�̂hi h j (p

2)/∂p2) and �̂hi h j vanish at the tree-level Higgs masses. This
can be done in the case where m2

hi
,m2

h j
are very different in magnitude

so that mixing effects can be expected to be small. In the other cases
where the mixing terms are significant, by using the DRscheme they
are absorbed into the loop-corrected masses.

divergent part of the first derivative of the renormalized self-
energies with respect to the momentum squared vanishes,

R̃e
∂�̂hi h j (p

2)

∂p2

∣∣
∣∣
div

= 0, ∀i, j = 1, . . . , 5, (3.65)

where the notation R̃e means that only the real part of the
loop integral is taken, and the superscript ‘div’ denotes the
divergent part. This equation should hold for any external
momentum. In practice we chose p2 = 0. This renormaliza-
tion condition leads to the equation

δZhi hi = −
[
RT R̃e

∂�hh

∂p2

∣∣
∣∣
div

R
]

i i
, (3.66)

which is real by definition and the off-diagonal elements
vanish. Since δZhh contains only three unknown variables
δZHu , δZHd and δZS , one needs a set of three independent
equations. Any chosen set must give the same solution due
to the SU (2)L symmetry.

3.2.2 Tadpole renormalization

The tadpole counterterms are defined such that the minima of
the Higgs potential do not change at higher order. The tadpole
counterterms hence have to cancel any contribution from the
diagrams at one-loop level leading to the renormalization
conditions

δtφ = tφ, φ = hd , hu, hs, ad , as, (3.67)

with the one-loop tadpole diagrams contributing to tφ
depicted in Fig. 2.

3.2.3 Renormalization of MW , MZ , MH±

For the masses MW , MZ of the massive gauge bosons as well
as MH± of the charged Higgs boson we apply OS renor-
malization by requiring that the pole of the corresponding
two-point correlation function at one-loop level occurs at the
value of the input mass. In particular, the mass counterterms
are given by the unrenormalized self-energies as

δM2
H± = R̃e�H+H−(M2

H±), (3.68)

δM2
W = R̃e�T

WW (M2
W ), (3.69)

δM2
Z = R̃e�T

Z Z (M2
Z ), (3.70)

where the superscript T denotes the transverse parts of the
respective self-energies. The wave function renormalization
constants δZH+H− for the charged Higgs boson, δZH+G− ,
δZH+W− for the H+ − G+/W+ mixings, δZW+W− for the
W boson, δZZ+Z− for the Z boson and δZZG, δZZγ for the
Z −G/γ mixings are all renormalized in the OS scheme, so
that there is no additional contribution to Eqs. (3.68)–(3.70).
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x = n, χ̃0

hi

xk

x = e, u, d, χ̃−

hi

xk

x = G,G−,H−

hi

x

x = ñ, h, ẽγ , ũγ , d̃γ

hi

xk

x = ηZ , η−, η+

hi

x

x = Z,W−

hi

x

Fig. 2 Generic Feynman diagrams contributing to the one-loop tadpole
counterterms. The index k is given by k = 1, . . . , 18 for x = ñ, k =
1, . . . , 5 for x = h, χ0, k = 1, . . . , 9 for x = n and k = 1, . . . , 3
for x = e, u, d, ẽ, ũ, d̃ . The index γ denotes the left- and right-handed
scalars. Color indices for the quarks and squarks are suppressed

3.2.4 Renormalization of the electric charge

The electric charge is renormalized in the OS scheme [56,57].
We take, however, the fine structure constant at the Z boson
mass, α(M2

Z ), as input so that the counterterm is given by

δZe = 1

2

∂�T
γ γ (k2)

∂k2

∣∣∣∣∣
k2=0

+ sW
cW

�T
γ Z (0)

M2
Z

− 1

2
�α(MZ ), (3.71)

�α(MZ ) = ∂�
light,T
γ γ (k2)

∂k2

∣∣∣
∣∣
k2=0

− R̃e�light,T
γ γ (M2

Z )

M2
Z

, (3.72)

where the photon self-energy �
light,T
γ γ includes only the light

SM fermion ( f with m f < mt ) contributions.

3.2.5 Renormalization of tan β

The ratio of the two vacuum expectation values, tan β, is
renormalized in the DRscheme with the counterterm given
by [58–60],

δ tan β = 1

2
tan β

(
δZHu − δZHd

)
∣∣
∣∣
div

. (3.73)

3.2.6 Renormalization of the remaining DR quantities

The renormalization of the remaining DRquantities, δvS,

δ |λ| , δ |κ| , δReAk is defined such that

�̂hi h j

∣
∣∣∣
div

= 0. (3.74)

This system has more equations than the number of unknown
counterterms. We need only four independent equations to
solve for the four counterterms. Any set of four chosen

equations resulted in the same values for the counterterms,
confirming that the renormalization procedure works. The
resulting counterterms are checked numerically against the
ones extracted from the one-loop beta-functions and anoma-
lous dimensions obtained from the package SARAH [44–47].
The differences between our computed counterterms and
SARAH’s are less than one per-mille.

4 Constraints

In this section, we discuss all constraints that have been
taken into account in our present study. Since we concen-
trate on the effects of the loop corrections of the extended
(s)neutrino sector on the loop-corrected Higgs masses and
their mixing, we consider here only the most relevant con-
straints from the Higgs data, the active light neutrino oscilla-
tions, the electroweak precision observables, and the lepton
flavor-violating radiative decays l1 → l2 + γ .

4.1 Higgs data

Our model, which contains five neutral and two charged
Higgs bosons, must satisfy the experimental results on the
125 GeV Higgs boson and the experimental constraints on
new scalars. For a parameter point, we will calculate the
Higgs boson masses including the available two-loop correc-
tions at O (

αtαs + α2
t

)
described in Sect. 3 and the Higgs

decay widths and branching ratios including the state-of-the-
art higher-order QCD corrections which we take from the
code NMSSMCALC [50]. To check if a parameter point passes
all the exclusion limits from searches at LEP, Tevatron and
LHC we make use of the code HiggsBounds-5 [61]. We
provide the Higgs spectrum, decay widths, and the effective
couplings as required by HiggsBounds in an SLHA file
[62]. If the parameter point is allowed by HiggsBounds,
it then will be checked against the 125 GeV Higgs boson
data by using the code HiggsSignals [63]. We allow the
uncertainty of the SM-like Higgs boson mass to be 3 GeV
which means that at least one Higgs boson must have a mass
in the range [122, 128] GeV. For the experimental data set,
we use the “latestresults” option. Using our input parameters,
HiggsSignals computes the χ2 from 107 observables
including the signal strength peak, simplified template cross
sections, the LHC Run-1 signal rates, and Higgs masses. We
allow the total χ2 to vary within 2σ from the total χ2 obtained
from the SM Higgs boson. In HiggsSignals-2.5.1, the
SM χ2 is 84.44 and the 2σ for two degrees of freedom cor-
responds to a 6.18 χ2 difference. Therefore the NMSSM χ2

is allowed in the range [78.26, 90.62].
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4.2 The active light neutrino data

In our neutrino sector, there are three light neutrinos which
correspond to the three types of neutrinos observed in experi-
ments. As discussed in Sect. 2, for the neutrino sector, we use
the Casas–Ibarra parameterization. This means that we need
three light mass values mνi , i = 1, 2, 3, three angles and one
complex phase of the PMNS matrix, three complex angles
of the orthogonal matrix R, defined in Eq. (2.41), together
with the matrices μX and MX to compute the mass matrix
MD specified in (2.38). The obtained MD will be used to
compute the neutrino Yukawa couplings yν and the neutrino
mass matrix in (2.30). We then diagonalize this mass matrix
using quadruple precision. The obtained mass eigenvalues
mn j ( j = 1, . . . , 9) are the neutrino mass eigenvalues. From
the 9 × 9 neutrino mixing matrix we take the 3 × 3 block
which describes the mixing between the three light neutrinos
and define

Ni j = U ν
i j , i, j = 1, 2, 3. (4.75)

The N matrix is not unitary and can be written as

N = (I − η)UPMNS. (4.76)

We require that our input parameters, mνi , i = 1, 2, 3, and
UPMNS, satisfy the active light neutrino data. We take the best
fit points and the 3σ ranges from the global fit, NuFIT 5.0
[64]. For convenience, we list here the 3σ ranges for the mass
differences and the mixing angles that are obtained from the
combined analysis including the latest neutrino oscillation
data presented at the “Neutrino2020” conference with the
Super-Kamiokande atmospheric neutrino data. As usual, we
define

�m2
i j = m2

νi
− m2

ν j
,

UPMNS =
⎛

⎝
c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

⎞

⎠ , (4.77)

where the short-hand notation ci j = cos θi j and si j = sin θi j
has been used. We request that

�m2
21 ∈ [6.82, 8.04] × 10−5 eV2, s2

12 ∈ [0.269, 0.343],
(4.78)

and for the normal ordering

�m2
31 ∈ [2.435, 2.598] × 10−3 eV2,

s2
23 ∈ [0.415, 0.616],
s2

13 ∈ [0.02032, 0.02410], δCP ∈ [120, 369], (4.79)

and for the inverted ordering

�m2
23 ∈ [2.414, 2.581] × 10−3 eV2,

s2
23 ∈ [0.419, 0.617],
s2

13 ∈ [0.02052, 0.02428], δCP ∈ [193, 352]. (4.80)

In our analysis we use the constraint on the non-unitary
N matrix that arises from a combined analysis of short
and long-baseline neutrino oscillation data [65]. We use the
three most stringent bounds at the 3σ CL expressed in a
parameterization-independent way, in particular

1 −
3∑

k=1

NekN
∗
ek < 0.07,

1 −
3∑

k=1

Nμk N
∗
μk < 0.07,

3∑

k=1

Nek N
∗
μk < 0.03. (4.81)

This constraint will be denoted as non-unitary constraint in
the numerical Sect. 5.2.

Furthermore, we use the Planck 2018 results for the upper
limit of the sum of the three light neutrino masses,

3∑

i=1

mνi < 0.12 eV. (4.82)

4.3 The oblique parameters

The presence of the supersymmetric particles, multiple Higgs
boson states and sterile neutrinos affects the masses and

decay properties of the electroweak bosons and the low-
energy data. We use the three well-known gauge self-energy
parameters S, T and U [66] at the one-loop level to describe
the effects arising from new particles. Following [67], we
also define the parameters S, T,U from the transverse part
of the gauge boson self-energies as

T = 1

α

(
�new

WW (0)

M2
W

− �new
Z Z (0)

M2
Z

)

, (4.83)

S = 4s2
Wc2

W

α

(
�new

Z Z (M2
Z ) − �new

Z Z (0)

M2
Z
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Fig. 3 Generic Feynman
diagrams contributing to the
charged lepton flavor-violating
decays l1 → l2 + γ . The ranges
of the indices are
i = 1, . . . , 18, k = 1, 2 and
l = 1, . . . , 9
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nl
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− c2
W − s2

W

sWcW

�new
Zγ (M2

Z )

M2
Z

− �new
γ γ (M2

Z )

M2
Z

)
, (4.84)

S +U = 4s2
W

α

(
�new

WW (M2
W ) − �new

WW (0)

M2
W

− cW
sW

�new
Zγ (M2

Z )

M2
Z

− �new
γ γ (M2

Z )

M2
Z

)
, (4.85)

where the fine structure constant α is given at the scale MZ .
The superscript “new” means that we have subtracted the SM
contribution computed with a Higgs boson mass of 125 GeV
so that only new physics contributions remain. Using data
from physics at the Z pole, [67] has found the following best
fit point and 1σ uncertainties for these parameters,

T = 0.03 ± 0.12, (4.86)

S = −0.01 ± 0.10, (4.87)

U = 0.02 ± 0.11. (4.88)

In our analysis, a valid parameter point satisfies constraints
on new physics if the S, T,U values vary within the 1σ uncer-
tainty ranges around the best fit point.

4.4 The radiative l1 → l2 + γ decays

We work in the NMSSM in which the soft SUSY break-
ing mass matrices m̃2

L , m̃2
E and trilinear couplings Ae as

well as the Yukawa couplings ye are diagonal in any basis.
In general, if off-diagonal elements of these matrices exist,
they have large effects on charged lepton flavor-violating
(LFV) processes which have been severely constrained [68].
Although in our setting these matrices are flavor conserving,
the presence of the low-scale sterile neutrinos and mixings
with active neutrinos can still induce large charged LFV pro-
cesses. The most constraining LFV processes are the radia-
tive decays τ → μγ , τ → eγ and μ → eγ , which are
calculated in this section. The corresponding experimental

bounds at 90% confidence level [67] are

BR(μ− → e−γ ) < 4.2 × 10−13, (4.89)

BR(τ− → e−γ ) < 3.3 × 10−8, (4.90)

BR(τ− → μ−γ ) < 4.4 × 10−8. (4.91)

These processes have been widely studied in the literature
for non-supersymmetric models and the MSSM using the
exact diagonalization of the mass matrices or using the mass
insertion approximation, for a review see [69] and references
therein. In our calculation we use the exact diagonalization
of the relevant (s)neutrino mass matrices. We have used the
model file obtained from SARAH to generate one-loop Feyn-
man diagrams and amplitudes using FeynArts, and fur-
ther simplified the amplitudes with the help of the package
FeynCalc. The one-loop Feynman diagrams contributing
to the decay processes

l1(p) → l2(p − q) + γ (q) (4.92)

are depicted in Fig. 3. The amplitude of this process is given
by

A = iε∗
μ(q)Mμ, (4.93)

where εμ denotes the polarization vector of the external pho-
ton. Using gauge invariance, qμMμ = 0, we can prove that
Mμ must take the form

Mμ = ū2σ
μνqν (FL PL + FR PR) u1, (4.94)

where σμν = i/2
[
γ μ, γ ν

]
, PL/R = (1 ∓ γ5)/2 and FL/R

are left- and right-handed form factors. The partial width is
then given by

�(l1 → l2γ ) = m3
1

16π

(
|FL |2 + |FR |2

)
, (4.95)

where m1 is the mass of l1 and we have neglected the mass of
l2 since m2 
 m1 for the processes considered here. Follow-
ing the common procedure presented in [70], the branching
ratios of the decays l1 → l2γ can be written in terms of the
branching ratios of l1 → l2ν̄2ν1 which are experimentally
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measured. In the NMSSM, the tree-level decay width for the
decays l1 → l2ν̄2ν1 is the same as that of the SM, i.e.

�(l1 → l2ν̄2ν1) = G2
Fm

5
1

192π3 ; (4.96)

therefore,

BR(l1 → l2γ )

= 12π2

G2
Fm

2
1

(
|FL |2 + |FR |2

)
BR(l1 → l2ν̄2ν1). (4.97)

We use the following numerical values taken from [68] for
the branching ratios,

BR(μ → eν̄eνμ) = 1, BR(τ → eν̄eντ ) = 17.82%,

BR(τ → μν̄μντ ) = 17.39%. (4.98)

The contributions to the form factors in our model can be
decomposed into three parts as

FL ,R = FW±
L ,R + FH±

L ,R + F χ̃±
L ,R, (4.99)

where FW±
L ,R , FH±

L ,R and F χ̃±
L ,R denote the contributions from

the one-loop diagrams with W± and charged Goldstone
bosons, charged Higgs bosons and charginos, respectively,
on the internal lines. Their explicit expressions are given in
Appendix A. Since in the numerical analysis, all the DRinput
parameters are given at the SUSY scale, we do not consider
contributions from the off-diagonal elements of m̃2

L , m̃2
E , Ae

due to the renormalization group equations as discussed in
[39].

It is also possible to keep the lepton masses of the external
lines in the three-point loop integrals. However, we explic-
itly checked that the differences between the branching ratios
obtained with the full lepton masses using Mathematica
and the ones with zero lepton masses are below the per-mille
level. The same result has been found in the Standard Model
case [71]. We, therefore, use the zero lepton mass approxi-
mation implemented in the code NMSSMCALC-nuSS in the
numerical analysis.

5 Numerical analysis

In this section we will discuss the numerical impact of the
neutrino and sneutrino sectors on the loop-corrected neu-
tral Higgs boson masses and on the charged lepton flavor-
violating decays. We have performed a scan over the param-
eter space of our model to obtain parameter points that satisfy
all our constrains mentioned in Sect. 4. We chose SM input
parameters as [67,72]

α(MZ ) = 1/127.955, αMS
s (MZ ) = 0.1181 ,

MZ = 91.1876 GeV , MW = 80.379 GeV ,

mt = 172.74 GeV , mMS
b (mMS

b ) = 4.18 GeV ,
mc = 1.274 GeV , ms = 95.0 MeV ,
mu = 2.2 MeV , md = 4.7 MeV ,
mτ = 1.77682 GeV , mμ = 105.6584 MeV ,
me = 510.9989 KeV , GF = 1.16637 · 10−5 GeV−2 .

(5.100)

The light neutrino inputs are in the normal ordering and
according to the constraints in Sect. 4.2 are chosen randomly
in the following ranges

mν1 ∈ [0, 2.98152 × 10−11] GeV,

mν2 ∈
[√

m2
ν1

+ 6.82 × 10−23,

√
m2

ν1
+ 8.04 × 10−23

]
GeV,

mν3 ∈
[√

m2
ν1

+ 2.435 × 10−21,

√
m2

ν1
+ 2.598 × 10−21

]
GeV,

θ12 ∈ [arcsin(
√

0.269), arcsin(
√

0.343)],
θ23 ∈ [arcsin(

√
0.415), arcsin(

√
0.617)],

θ13 ∈ [arcsin(
√

0.02052), arcsin(
√

0.02428)],
δCP ∈ [120, 369]. (5.101)

Following the convention of the SUSY Les Houches Accord
(SLHA) format [62], the soft SUSY breaking masses and
trilinear couplings are understood as DR parameters at the
scale

μR = MSUSY = √
mQ̃3

mt̃R . (5.102)

This is also the renormalization scale that we use in all of our
computations of the higher-order corrections. In the Higgs
sector we use per default the mixed DR-OS scheme specified
in Sect. 3.2 and the OS charged Higgs boson mass as input
parameters. Furthermore, we choose OS renormalization for
the top/stop sector and include the two-loop corrections of
order O(αsαt + α2

t ) which are computed in [32,33] and are
implemented in NMSSMCALC. We perform the scan in the
framework of the CP-violating NMSSM where we chose the
phase δCP in the neutrino sector as the only non-vanishing
complex phase. All other SUSY parameters are assumed to
be real and are varied in the ranges specified in Table 2.

The remaining parameters are fixed as follows
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Table 2 Scan ranges for the random scan over the NMSSM parameter
space

Parameter Scan range

MH± [0.6, 1] TeV

M1, M2 [0.5, 1] TeV

μeff [0.2, 1] TeV

mQ̃3
,mt̃R [1, 3] TeV

mL̃3
,m τ̃R [1, 3] TeV

At [− 4, 4] TeV

�Aκ [− 2, 2] TeV

tan β [1, 10]

λ [0.0001, 0.7]

κ [0.0001, 0.7]

mX̃ [1, 3] TeV

mÑ [1, 3] TeV

Aν [− 2, 2] TeV

AX [− 2, 2] TeV

μX [1, 100] TeV

BμX [1, 1000] GeV

λX [10−12, 10−8]

θ1,2,3 [0, 2π ]

M3 = 1850 GeV, mQ̃1/2
= mL̃1/2

= mx̃R = 3 TeV,

Ab,τ = 2 TeV (5.103)

where x = u, d, c, s, b, e, μ. To ensure perturbativity below
the GUT scale [73] we omit points with

κ2 + λ2 > (0.7)2, (5.104)

and/or any element of the neutrino Yukawa matrix yν being
larger than

√
4π . Note that in our numerical analysis we take

the various input parameters of the (s)neutrino sector to be
the same for all three generations.

5.1 Impact of the (s)neutrinos on the loop-corrected Higgs
boson masses

For the investigation of the impact of the (s)neutrino contribu-
tions on the loop-corrected Higgs boson masses we choose a
parameter point from our generated scan sample satisfying all
the described constraints. We subsequently vary individual
parameters of the neutrino and/or sneutrino sectors to ana-
lyze their impact on the loop-corrected Higgs boson masses.
Our chosen parameter point is called P1. The light neutrino
input parameters are set equal to their best-fit values together
with a fixed value for the lightest neutrino mass, in particular,

mν1 = 10−11 θ12 = arcsin(
√

0.297),

mν2 =
√
m2

ν1
+ 7.37 × 10−23 GeV, θ23 = arcsin(

√
0.425),

mν3 =
√
m2

ν1
+ 2.525 × 10−21 GeV θ13 = arcsin(

√
0.0215),

δCP = 248.4◦.

All other complex phases are set to zero and the remaining
input parameters are given by

MH± = 850 GeV, mX̃ = 1 TeV,

M1 = 660 GeV, mÑ = 1 TeV,

M2 = 580 GeV, Aν = 1.2 TeV,

μeff = 208 GeV, AX = 1 TeV,

mQ̃3
= 1300 GeV, μX = 40 TeV,

mt̃R = 1100 GeV, BμX = 1 TeV,

m τ̃R = 1900 GeV, λX = 6.5 × 10−10,

At = −1500 GeV, θ1 = 2,

ReAk = −791 GeV, θ2 = 3,

tan β = 4.4, θ3 = 4,

λ = 0.30, κ = 0.30. (5.105)

In Table 3, we present the Higgs mass spectrum with and
without inverse seesaw mechanism at tree-level, one-loop,
two-loop O (αtαs) and two-loop O (

αtαs + α2
t

)
. The main

components of the Higgs mass eigenstates are also shown in
the last row. We have chosen the OS condition for the top/stop
sector. In order to quantify the impact of the (s)neutrino con-
tributions on the Higgs boson masses we define the relative
correction �i as

�i =
∣∣∣∣
Mi − Mno

i

Mno
i

∣∣∣∣ (5.106)

where Mi is the loop-corrected mass of the Higgs boson
i computed in the NMSSM with ISS and Mno

i the one in
the NMSSM without ISS. Note that the NMSSM without
ISS mechanism contains three massless neutrinos and three
complex sneutrinos which do not mix with each other. The
massless neutrinos do not interact with the Higgs bosons
while the sneutrinos couple to the Higgs bosons through the
D-terms with couplings proportional to g1 and g2. For this
parameter point the second lightest Higgs boson is the hu-
like one and hence behaves SM-like. The hs -like Higgs boson
is the lightest one with a mass of 90 GeV. The hd - and a-
like states have masses of about 850 GeV while the as-like
Higgs boson mass is about 700 GeV. Although we have a
non-zero complex phase in the UPMNS matrix, the mixing
between CP-even and CP-odd states is negligible. The hu-
like Higgs boson mass is affected the most by the inclusion
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Table 3 Parameter point P1: mass values in GeV and main compo-
nents of the neutral Higgs bosons at tree-level, one-loop, two-loop
O (αtαs) and two-loop O (

αtαs + α2
t

)
obtained for the NMSSM with-

out or with the inverse seesaw mechanism together with OS conditions
in the top/stop sector

h1 h2 h3 h4 h5

Tree-level 84.96 85.38 705.10 847.86 850.00

One-loop

Without ISS 90.31 129.77 700.63 847.76 849.95

With ISS 89.43 136.62 701.07 848.06 850.74

Two-loop O(αtαs)

Without ISS 90.21 114.69 700.65 847.77 849.88

With ISS 89.17 119.52 701.08 848.06 850.62

Two-loop O(αtαs + α2
t )

Without ISS 90.24 120.72 700.65 847.77 849.91

With ISS 89.28 126.37 701.08 848.06 850.67

Main component hs hu as a hd

of the ISS mechanism which raises Mhu by about 7 GeV,
5 GeV and 5.6 GeV at one-loop level, O (αtαs) and O (

α2
t

)
,

respectively. If we quantify this change by using the relative
correction defined in (5.106) we see that �hu is about 5.3%
at one-loop level, then decreases to 4.2% at O (αtαs) and
reaches 4.7% atO (

αtαs + α2
t

)
. We remind the reader that we

have used the iterative method to evaluate the loop-corrected
Higgs boson masses. This means that we have mixed orders
of perturbation theory. As common in supersymmetric theo-
ries, loop contributions from particles and their superpartners
are opposite in sign. This is the case for the neutrinos and
sneutrinos here as well. While the sneutrinos give positive
contributions to the mass Mhu , those of the neutrinos are neg-
ative. Soft-SUSY breaking terms together with electroweak
symmetry breaking prohibit the cancellation between the two
contributions. We will elaborate this further in the following
by varying parameters related to the change of these two con-
tributions. We finish our comments on Table 3 by remarking
that the other Higgs boson masses are only slightly changed
by the ISS for this particular point.

We continue by investigating the effects of the vari-
ous neutrino parameters on the loop-corrected Higgs boson
masses. From now on we present only the masses at two-
loop O (

αtαs + α2
t

)
which is the highest precision of our

numerical code that includes the ISS.8 In Fig. 4 we show the
dependence of the loop-corrected Higgs boson masses on
the coupling λX in the left panel and on the mass μX in the
right panel and the dependence of the correction � defined in
(5.106) in the lower panels. We remind the reader that both

8 We very recently completed the two-loop contributions at
O (

(αt + αλ + ακ)2
)

[74]. They are included in NMSSMCALC and
NMSSMCALCEW and will soon be included in NMSSMCALC-nuSS as
well.

λX and μX appear in the neutrino mixing matrix as shown
in (2.30) and (2.31). In the Casas–Ibarra parameterization
which is used in our computation, both λX and μX enter
the evaluation of the neutrino Dirac mass matrix MD , see
(2.38), therefore directly affect the neutrino Yukawa matrix
Yν = √

2MD/(vueiϕu ) that can be written as

Yν ∝ mν
√

μX

vu
√

λXvs
. (5.107)

We denote the maximum element of the neutrino Yukawa
matrix by Ymax

ν . We chose the range of variation for λX and
μX such that Ymax

ν is smaller than the perturbativity limit√
4π applied in our analysis. On the x-axis on top of each

plot in Fig. 4, we see the variation of Ymax
ν corresponding to

the range of variation for λX and μX . For our chosen param-
eter point P1, the value of Ymax

ν is equal to 1.15. As can
be inferred from the plots, the impact from the (s)neutrino
sector is less than 2.3% on Mhu if Ymax

ν is smaller than 0.85
(0.89) corresponding to λX > 1.2 × 10−9 (μX < 31 TeV)
in the left (right) plot. With increasing value of Ymax

ν (λX

becomes smaller orμX gets larger) the effect increases signif-
icantly. The relative correction �hu can even go up to 100%
for λX = 1.24 × 10−10 (Ymax

ν = 2.63) or μX = 83 TeV
(Ymax

ν = 2.39). This makes us question the perturbativity
limit of

√
4π applied on Ymax

ν at the SUSY scale. A more
stringent constraint that demands Ymax

ν <
√

4π up to the
Planck scale may imply a much smaller value for Ymax

ν at the
SUSY scale. A recent study in [75] found that Ymax

ν < 0.8
at the TeV scale for the SM with inverse seesaw mecha-
nism. We expect a similar value for the model in our study.
The large value of μX results in large mass values for the
sterile neutrinos and additional sneutrinos. One then has to
worry about the validity of the fixed-order calculation used
in the computation of the Higgs mass corrections. In order to
understand the role of yν and μX , we present in Appendix D
the approximate expressions for the additional contributions
from the NMSSM with inverse seesaw mechanism after sub-
tracting the usual NMSSM contributions to the renormalized
hu-like Higgs self-energy. Caution should be taken here when
using these approximate formulae to reproduce the results.
We have applied many conditions specified in the appendix
to derive these approximate formulae. We have checked that
the expression given in Eq. (D.166) can deviate by about
10% from the full one-loop (s)neutrino corrections with full
momentum dependence and mixing between different neu-
tral Higgs bosons. If the specified conditions are not satis-
fied, however, the deviation can be much larger and these
approximations are not reliable. In (D.172), there is a term

proportional to log
(

μX
μR

)
which causes large corrections if

μX  μR . The question of what should be done to improve
the precision and to reduce the theoretical uncertainty of the
loop-corrected Higgs masses will be left for future study. In
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(a) (b)

Fig. 4 Parameter point P1: The loop-corrected Higgs boson masses in
GeV at order O (

αtαs + α2
t

)
as function of the parameter λX (upper

left) and of μX (upper right) The relative corrections � defined in
(5.106) are shown in the lower panels. The five Higgs boson masses

are denoted by their main components (hu , hd , hs , a, as ) correspond-
ing to the five colors (red, black, blue, yellow, green). The gray area on
the plots denotes the points satisfying our constraints. Ymax

ν denotes the
maximum element of the neutrino Yukawa matrix

this study we retain parameter points where log
(

μX
μR

)
is less

than four. The question whether this logarithm is the main
source of the large correction can be answered by choosing
a much smaller value for μX , for example of O(μR). We
can still get a large value for �hu , as long as Ymax

ν is large.
In particular, for μX = 1500 GeV and λX = 1.8 × 10−12,
�hu is of order 5%. With a low mass spectrum of sterile neu-
trinos and sneutrinos one can get large branching ratios for
the charged lepton flavor-violating processes l1 → l2 + γ

that will be discussed in Sect. 5.2. The parameter point with
μX = 1500 GeV and λX = 1.8 × 10−12 does not pass
the charged lepton flavor-violating constraint. The question
arises whether �hu ∼ 5% with low μX can be realized for
parameter points satisfying all our considered constraints. We
can find such parameter points where MD in (2.38) is almost
a diagonal matrix. As a result, the decay widths of l1 → l2+γ

are close to zero, since they are proportional to off-diagonal
components of yν . In such a case, it may be better to use, for
example, the μX -parameterization [76] instead of the Casas–
Ibarra parameterization. In the μX -parameterization, λX is
not an input parameter but computed from the relations

MX = μT
X M

−1
D U∗

PMNSmνU
†
PMNSM

T,−1
D μX ,

MX = vseiϕs√
2

(λX + λT
X ), (5.108)

where yν is now an input parameter. One can easily choose
yν to be the unit matrix, then with μX = 1500 GeV, one can
get �hu ∼ 5%.

From Fig. 4, we see that not only the hu-like Higgs boson
is strongly affected by large Ymax

ν but also the hd - and hs-like
states. While both the hu- and hd -like Higgs boson mass get
positive corrections, the hs-like Higgs boson mass receives
negative corrections. On the left plot �hd can go up to 21%
at Ymax

ν = 2.93 while �hs goes to 12%. Note that neutri-
nos interact with hu interaction states through the interaction
term hu ν̄i (Yν PL + Y †

ν PR)ν j and with hs through the inter-
action term hs ν̄i (λX PL +λ

†
X PR)ν j where λX is a very small

number. Neutrinos do not interact with hd , but sneutrino do
interact through D-terms. For this particular parameter point,
the dominantly hd - and hs-like Higgs mass eigenstates have
a significant admixture of the hu component. The impact of
the neutrinos on the other Higgs bosons depends on their
mixtures with hu . The states a and as are less affected.

We now move on to the discussion of the dependence of the
loop-corrected Higgs boson masses on the neutrino trilinear
coupling parameter Aν that affects only the sneutrino sector
and leaves the neutrino sector unchanged. In Fig. 5 we vary
the value of Aν in the left plots and the complex phase of
Aν in the right plots. The color code and notation of the left
plots are the same as in Fig. 4. In the right plot, we show only
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(a) (b)

Fig. 5 The same as Fig. 4 but now we show the dependence on: a the neutrino trilinear coupling parameter Aν and b the complex phase of Aν .
The gray triangles denote the points satisfying our constraints

the loop-corrected mass of the hu-like Higgs boson, since
the impact of the complex phase on the other Higgs boson
masses is negligible. As can be inferred from the plots, the
loop-corrected hu-like Higgs boson mass is strongly affected
by Aν . This dependence looks like the dependence on the top
trilinear coupling At and its complex phase, see for example
[32,33], but the relative size of the corrections can cover a
larger range ifYmax

ν is large. The correction�hu is about 4.7%
at Aν = 0 and maximal (14.5%) at Aν ≈ ±26 TeV. The
hs-like Higgs boson mass depends slightly on Aν while the
other Higgs boson masses are barely affected by the variation
of Aν . We remind the reader that the maximum value of
Yν that is obtained during the variation of Aν is given by
Ymax

ν = 1.15. In our analysis we also reduced Ymax
ν to 0.8 by

setting λX = 1.33×10−9 and varying Aν . We then obtained
the variation of �hu in the range [2, 3.6]%. In the right panel
of Fig. 5, we observe a change of 0.08% for �hu when the
complex phase ϕAν is varied in the range [−π, π ]. Other
complex phases of the neutrino sector like δCP , of the phases
of λX , and μX have an insignificant impact on the loop-
corrected Higgs masses.

Note that in Figs. 4 and 5 we present parameter points that
satisfy all constraints by the gray area, respectively, the gray
triangles. The other points violate charged flavor-violating
lepton decays, the S, T,U parameters and/or the Higgs data.

In the remainder of this section, we present scatter plots
in Fig. 6 which we obtained from our scan keeping only
parameter points that satisfy all our mentioned constraints.

The points are depicted in two-dimensional planes with MX

on the x-axis and μX on the y-axis. Note that MX is related to
λX and vs as given in (2.31). Since λX and vs are both varied
in the scan, MX may be a more appropriate parameter than
λX for the scatter plots. The color code in the plot quantifies
the size of the relative corrections � for the respective Higgs
boson in the individual plots. The light gray points denote
� ≤ 0.2%, gray 0.2% < � ≤ 0.5%, violet 0.5% < � ≤
1%, purple 1% < � ≤ 2%, yellow 2% < � ≤ 5%, orange
5% < � ≤ 10% and green 10% < � ≤ 20%. The left plot
of the Fig. 6 presents the relative corrections for the hu-like
Higgs boson, while the right plot for the hd -like state. The �

for the other Higgs bosons are less significant and therefore
we do not present them here.

Most of the points obtained in our scan have small rela-
tive corrections � ≤ 0.2%. Larger relative corrections are
realized for μX -MX towards the top-left corner of each plot,
corresponding to increasing values of Ymax

ν . In the top-left
corner, there are no points because they either violate the per-
turbativity constraint ofYmax

ν <
√

4π or they lead to unstable
numerical results due to large corrections. The color pattern
is rather clear for the hu-like Higgs boson, which confirms
our conclusion on the strong dependence of �hu on Ymax

ν .
There are some outliers which do not lie in their color bands,
since �hu depends not only on Ymax

ν but also on the sneutrino
soft SUSY breaking parameters.
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Fig. 6 Scatter plots in the plain of two variables of the neutrino sector, (MX , μX ) for the hu-like (left) and the hd -like (right) Higgs boson. The
color code indicates the relative correction � (defined in (5.106)) for each Higgs state in percent

5.2 Impact of the (s)neutrinos on the LFV decays

In this section, we investigate the impact of the neutrinos
and sneutrinos in the NMSSM with ISS on the radiative
l1 → l2γ decays. As explained in Sect. 4.4, we consider
three decay processes, namely μ → eγ , τ → eγ , and
τ → μγ among which the most stringent constraint exists
for the decay μ → eγ . For all processes, the dominant
contributions arise from the right-handed form factors FR .
The ratio between the contributions from the right- and left-
handed form factors is approximately proportional to the ratio
m2

l1
/m2

l2
as can be inferred from the analytic expressions in

Appendix A. One can therefore safely neglect the contribu-
tion from the left-handed form factors. We have divided the
contributions to the form factors into three parts given by

FW±
L ,R , FH±

L ,R , and F χ̃±
L ,R .

In our scan, the constraint on μ → eγ is very impor-
tant and rules out many points. The branching ratios are very
sensitive to the spectrum of the neutrino and sneutrino sec-
tors. In particular, they increase when the mixings between
sterile neutrinos and active neutrinos increase. Both μX and
λX have strong impacts on these mixings. We investigate this
dependence by taking the parameter point P1 of the previous
section and varying again the parameters μX and λX .

In the left plot of Fig. 7, we show the dependence of the
branching ratio (red line) for the decay μ → eγ on λX .
We also depict the individual contributions from the squared
form factors (Fx

L ,R)2 with x = W± (black), H± (blue),
and χ̃± (orange) lines, as well as the interference terms
2(Fx

L ,R)(Fy
L ,R) with (x, y) = (W±, H±) (green) (W±, χ̃±)

(purple), and (H±, χ̃±) (yellow). For this parameter point
scenarios, we find that the contributions from the W boson
and from the charged Higgs boson are dominant, and the
interference term between the W boson and charged Higgs
form factors adds a significant contribution to the sum. We

observed that the form factors FW±
L ,R and FH±

L ,R have the same

sign while they are opposite in sign compared to F χ̃±
L ,R . The

chargino contributions hence suppress the total decay widths.
In the right plot of Fig. 7, we present the branching ratios for
the three considered decay processes, μ → eγ , τ → eγ ,
and τ → μγ . We observe that the branching ratio for the
process μ → eγ is larger than for the other two processes.
While the contributions from the W boson and charged Higgs
form factors depend only on the spectrum and mixing of the
neutrinos, the chargino contributions depend on those of the
sneutrinos. One can vary the parameters of the sneutrino sec-
tor such as mÑ and mX̃ to change the sign and the magnitude
of the chargino contributions. We show the dependence of
the branching ratio (red line) for the decay μ → eγ on mÑ
and mX̃ in the left and right plot of Fig. 8, respectively.

We now investigate the impact of the parameters in the
neutrino sector on the S, T ,U parameters (STU), on the LFV
decays and on the non-unitary 3 × 3 neutrino mixing matrix
(NoU) discussed in Sect. 4.2. We started from the parameter
point P1 and we changed only the following parameters in
the corresponding ranges,

μX ∈ [10, 105] GeV, λX ∈ [10−14, 10−4]. (5.109)

All remaining parameters are kept fixed. We show in Fig. 9
a scatter plot in the plane of μX and λX . We have consid-
ered also theHiggsBounds and theHiggsSignals con-
straints, but simply not shown in this particular plot since
we want to focus on the three mentioned constraints. The
gray color denotes points which pass all three constraints
while dark gray reflects points that violate all three con-
straints. The orange and green colors are for points violating
STU and LFV constraints, respectively. The pink and yellow
points, respectively, violate combinations of two constraints,
namely LFV-STU and LFV-NoU. The white area on the plot
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Fig. 7 Left: Branching ratio and its individual contributions for the
decay μ → eγ as a function of λX . The interference contributions
W± × χ̃± between the chargino and the W± form factors (violet), and
H± × χ̃± between the chargino and charged Higgs form factors (yel-
low) are negative. In order to present them in one plot we have changed

the sign. The black line for W± is hidden under the blue line and the
purple line is under the yellow one. The horizontal black line shows
the experimental upper limit on the branching ratio. Right: Branching
ratios for the three decays μ → eγ (red), τ → eγ (black), and τ → μγ

(blue) as function of λX

Fig. 8 Same as the left plot of Fig. 8, but mÑ (left) and mX̃ (right) are varied instead
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Fig. 9 Scatter plot in the μX and λX plane starting from the parameter
point P1. The color code is used to distinguish between points that pass
all three constraints LFV, STU, NoU (light gray), that do not pass any of
the three constraints (dark gray) and that violate individual constraints
or combinations of two constraints: LFV (green), STU (orange), LFV
and STU (pink), LFV and NoU (yellow). See text for details

is not accessible since we encounter either negative values
for one of the Higgs boson masses or Ymax

ν >
√

4π . As can
be inferred from the plot, small values of λX ( <∼ 10−12) are
not preferred, independent of μX , since this parameter region
is very sensitive to the constraints from LFV and NoU. For
λX > 10−12, the STU constraint is important in the region
μX ∈ [103, 104] GeV and for μX = 320 GeV, independent
of λX . There are also regions such as μX < 300 GeV or
μX > 20 TeV with λX > 8 × 10−10 where the three men-
tioned constraints do not play a role. This plot demonstrates
the importance of taking into account the STU and LFV con-
straints when performing numerical analysis. Although the
magnitude of λX signifies the magnitude of charged lepton
flavor violation, i.e. the larger λX is the more violation we
would expect, the reverse happens here. The reason is as fol-
lows. When we fix light neutrino masses mν , λX becomes
inversely proportional to yν . Smaller λX , or larger yν , yields
a larger mixing between sterile and active neutrinos, or a
weaker GIM mechanism, and thus a larger LFV decay rate.
This is also why small values of λX violate unitarity. Note
that in our scan, we have assumed λX and μX to be diagonal.
The results will change if these assumptions are not applied.
Especially in the case where the off-diagonal components of
yν are close to zero, and the LFV constraint is not as severe
as in our case.

6 Conclusions

In this paper, we studied the impact of an extended neu-
trino sector on the NMSSM Higgs sector. We considered
the framework of both the CP-conserving and CP-violating

NMSSM extended by six singlet leptonic superfields. Their
mixing with the three doublet leptonic superfields allows for
the explanation of the tiny non-zero neutrino masses through
the inverse seesaw mechanism. While R-parity is conserved
in this model lepton number is explicitly violated through
the interaction between two singlet neutrino superfields and
a singlet Higgs superfield.

We quantified the indirect neutrino effects on the NMSSM
Higgs sector by computing the complete one-loop correc-
tions to the Higgs boson masses at non-vanishing external
momentum. For the renormalization, we applied a mixed OS-
DR scheme and consistently combined our one-loop result
with the two-loop O(αt (αs + αt )) results computed previ-
ously by our group. In the numerical analysis, we performed
a parameter scan of the model and kept only those points for
our study that respect the constraints from the Higgs data, the
neutrino oscillation data, the charged lepton flavor-violating
decays li → l j + γ , and the new physics constraints from
the oblique parameters S, T,U . We presented the explicit
calculation of the one-loop decay width for li → l j +γ . Our
one-loop results have been implemented in the Fortran code
NMSSMCALC-nuSS, that has been made publicly available
and is based on the code NMSSMCALC that also computes
the Higgs decays widths and branching ratios.

We found for our investigated benchmark point that the
one-loop corrections from the neutrinos to the hu-like, and
hence SM-like, Higgs boson mass can shift its value by about
5%, decreasing slightly when the two-loop corrections are
included, see Table 3. While the neutrino and sneutrino con-
tributions come with opposite signs, their complete cancella-
tion is prohibited by the soft-SUSY breaking terms in combi-
nation with electroweak symmetry breaking. We furthermore
showed that a large neutrino Yukawa coupling has a signifi-
cant impact on the loop corrections. The same is true for the
soft-SUSY breaking trilinear coupling Aν and its complex
phase that affects the sneutrino sector while leaving the neu-
trino sector unchanged. Our findings on the dependence on
the neutrino Yukawa coupling are confirmed by the presented
scatter plots taking into account all of the parameter points
passing the constraints. Large sterile neutrino masses, char-
acterized by a large value of μX , can lead to large loop correc-
tions due to the presence of the logarithmic term log μX

μR
. In

case of a large ratio μX
μR

the reduction of the theoretical uncer-
tainty is mandatory. This subject will be left for future study.

Our investigation of the one-loop corrected LFV decay
l1 → l2γ shows that the constraints from this decay are
relevant and need to be taken into account. This result is
underlined by an analysis of the impact of all considered
constraints that shows the importance of the S, T,U and LFV
constraints on the validity of the parameter scenarios.

In summary, the one-loop analysis of the impact of an
extended (s)neutrino sector on the NMSSM demonstrates
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the importance of taking into account these indirect effects
through loop contributions. Together with the usual con-
straints from Higgs data and new physics as well as from
LFV decays, they constrain the valid parameter space of the
model.
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Appendix A: Form factors

In this appendix we give the left- and right-handed form fac-
tors for the LFV radiative decays l1 → l2 + γ discussed in
Sect. 4.4. For simplicity, we introduce the following abbre-
viations for the one-loop three-point integrals

CW
i... = Ci...

(
m2

1, 0,m2
2,m

2
νi

, M2
W , M2

W

)
(A.110)

CH
i... = Ci...

(
m2

1, 0,m2
2,m

2
νi

, M2
H± , M2

H±
)

(A.111)

Cχ
i... = Ci...

(
m2

1, 0,m2
2,m

2
ñi

,m2
χ̃±
j
,m2

χ̃±
j

)
. (A.112)

We use the following conventions,

CW
0 = (μ2

Rπ)(4−D)/2

iπ2

∫
dqD 1

Dx
, (A.113)

CW
1 kμ

1 + CW
2 kμ

2 = (μ2
Rπ)(4−D)/2

iπ2

∫
dqD qμ

Dx
, (A.114)

CW
00g

μν + CW
11k

μ
1 k

ν
1 + CW

12(kμ
1 k

ν
2 + kν

1k
μ
2 ) + CW

22k
μ
2 k

ν
2

= (μ2
Rπ)(4−D)/2

iπ2

∫
dqD qμqν

Dx
, (A.115)

where the denominator Dx is given by

Dx = (q2 − m2
ni )((q − k1)

2 − M2
W )((q − k2)

2 − M2
W ),

(A.116)

with k2
1 = m2

1, k
2
2 = m2

2 and (k1 − k2)
2 = 0 and m1 (m2)

denoting the l1 (l2) mass, mni the mass of all the neutrinos,
the active and the sterile ones.

In the ’t Hooft–Feynman gauge, the left- and right-handed

form factors, FW±,H±,χ±
L ,R , defined in (4.99) are given by

FW±
L = e3m2

16π2M2
Ws2

W

9∑

i=1

Uν il1U
∗
ν il2

×
[
m2

ni

(
CW

0 + CW
1 + 2CW

2 + CW
12 + CW

22

)

+ M2
W

(
−2CW

1 + 2CW
12

+2CW
22

)
+ m2

1

(
CW

1 + CW
11 + CW

12

) ]
(A.117)

FW±
R = e3m1

16π2M2
Ws2

W

9∑

i=1

Uν il1U
∗
ν il2

×
[
m2

ni

(
CW

0 + 2CW
1 + CW

2 + CW
11 + CW

12

)

+ M2
W

(
−2CW

2 + 2CW
11 + 2CW

12

)

+ m2
2

(
CW

2 + CW
12 + CW

22

) ]
, (A.118)

for the W± and charged Goldstone boson triangle diagrams,

FH±
L = e3m2

16π2M2
Ws2

W

9∑

i=1

Uν il1U
∗
ν il2

×
[
m2

ni

(
−(CH±

0 + CH±
1 + CH±

2 )

+ 1

t2
β

(CH±
2 + CH±

12 + CH±
22 )

)

+ m2
1t

2
β

(
CH±

1 + CH±
11 + CH±

12

) ]
(A.119)

FH±
R = e3m1

16π2M2
Ws2

W

9∑

i=1

Uν il1U
∗
ν il2

×
[
m2

ni

(
−(CH±

0 + CH±
1 + CH±

2 )

+ 1

t2
β

(
CH±

1 + CH±
11 + CH±

12

)
)

+ m2
2t

2
β

(
CH±

2 + CH±
12 + CH±

22

) ]
, (A.120)
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for the charged Higgs triangle diagram, and

F χ̃±
L = − e

8π2

18∑

i=1

2∑

j=1

×
[
m1g

L∗
e+
l1

χ̃ j ν̃i
gL
e+
l2

χ̃ j ν̃i

(
C

χ̃±
j

1 + C
χ̃±
j

12 + C
χ̃±
j

11

)

+ mχ̃±
j
gR∗
e+
l1

χ̃ j ν̃i
gL
e+
l2

χ̃ j ν̃i

(
C

χ̃±
j

1 + C
χ̃±
j

2

)

+ m2g
R∗
e+
l1

χ̃ j ν̃i
gR
e+
l2

χ̃ j ν̃i

(
C

χ̃±
j

2 + C
χ̃±
j

22 + C
χ̃±
j

12

) ]

(A.121)

F χ̃±
R = − e

8π2

18∑

i=1

2∑

j=1

×
[
m2g

L∗
e+
l1

χ̃ j ν̃i
gL
e+
l2

χ̃ j ν̃i

(
C

χ̃±
j

2 + C
χ̃±
j

12 + C
χ̃±
j

22

)

+ mχ̃±
j
gL∗
e+
l1

χ̃ j ν̃i
gR
e+
l2

χ̃ j ν̃i

(
C

χ̃±
j

1 + C
χ̃±
j

2

)

+ m1g
R∗
e+
l1

χ̃ j ν̃i
gR
e+
l2

χ̃ j ν̃i

(
C

χ̃±
j

1 + C
χ̃±
j

11 + C
χ̃±
j

12

) ]
,

(A.122)

for the triangle diagrams with sneutrinos and charginos in the
internal lines. The left- and right-handed couplings between
the leptons, charginos and sneutrinos are defined in the inter-
action Lagrangian,

ēk(ig
L
e+
k χ̃ j ν̃i

PL + igR
e+
k χ̃ j ν̃i

PR)χ−
j ν̃i , (A.123)

where

gL
e+
k χ̃ j ν̃i

= mk

vcβ

(
U ν̃
ik + iU ν̃

i(k+9)

)
U∗

j2 (A.124)

gR
e+
k χ̃ j ν̃i

= −g2Vj1√
2

(
U ν̃
ik + iU ν̃

i(k+9)

)

+ 1√
2
Vj2

3∑

n=1

(
U ν̃
i(n+3) + iU ν̃

i(n+12)

)
Y ∗

ν,kn . (A.125)

In the numerical analysis we used the massless limit for the
external lines. In this limit, one has the following simple
expressions for the one-loop three-point integrals [70]

C0(0, 0, 0, x, y, y) = 1

x

(
− 1

t − 1
+ ln(t)

(t − 1)2

)
(A.126)

C1(0, 0, 0, x, y, y) = 1

x

(
(t − 3)

4(t − 1)2 + ln(t)

2(t − 1)3

)

(A.127)

C11(0, 0, 0, x, y, y) = 1

x

(
(−2t2 + 7t − 11)

18(t − 1)3 + ln(t)

3(t − 1)4

)

(A.128)

C2(0, 0, 0, x, y, y) = C1(0, 0, 0, x, y, y) (A.129)

C22(0, 0, 0, x, y, y) = 2C12(0, 0, 0, x, y, y)

= C11(0, 0, 0, x, y, y), (A.130)

where t = y/x .

Appendix B: Sneutrino mass matrix

The mass matrix of the sneutrinos written in each 3×3 block
is given by

(Mν̃ )ν̃+ ν̃+ = 1

2
I3M

2
z cos 2β + 1

2

(
m̃2

L + m̃2T
L

)

+ 1

2
v2
uRe

(
yν y

†
ν

)
(B.131)

(Mν̃ )ν̃+ Ñ+ = 1√
2
vuRe

(
eiϕu yν Aν

)
− 1

2
vdvsRe

(
(eiϕsλy∗

ν

)

(B.132)

(Mν̃ )ν̃+ X̃+ = 1√
2
vuRe

(
eiϕu yνμ

∗
X

)
(B.133)

(Mν̃ )ν̃+ ν̃− = i

2

(
m̃2

L − m̃2T
L

)
+ 1

2
v2
u�

(
yν y

†
ν

)
(B.134)

(Mν̃ )ν̃+ Ñ− = 1√
2
vu�

(
eiϕu yν Aν

)
− 1

2
vdvs�

(
eiϕsλy∗

ν

)
(B.135)

(Mν̃ )ν̃+ X̃− = 1√
2
vu�

(
eiϕu yνμ

∗
X

)
(B.136)

(Mν̃ )Ñ+ Ñ+ = 1

2

(
m̃2

N + m̃2T
N

)
+ Re

(
μXμ

†
X

)
+ 1

2
v2
uRe

(
yTν y∗

ν

)

(B.137)

(Mν̃ )Ñ+ X̃+ = Re
(
μX BμX

) + 1√
2
vsRe

[
e−iϕsμX

(
λ

†
X + λ∗

X

)]
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2
vu�

(
eiϕu AT
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T
ν
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2
vdvs�

(
eiϕsλy†

ν
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(Mν̃ )Ñ+ Ñ− = i
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X
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μX BμX
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2
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(Mν̃ )X̃+ X̃+ = 1
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2
vu�
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eiϕuμ†

X y
T
ν

)
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(Mν̃ )X̃+ Ñ− = �
(
BT

μX
μT
X

)
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+ 1√
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Appendix C: Neutral Higgs mass matrix counterterm

In this section we present the counterterm mass matrix for
the neutral Higgs bosons in the basis (hd , hu, hs, a, as)T . We
use the convention ϕy = ϕκ −ϕλ +2ϕs −ϕu , ϕω = ϕκ +3ϕs

and the short-hand notation sx ≡ sin x, cx ≡ cos x .

(
δ(1)Mhh

)

hdhd

= c3
βsβδ(1)tβ

(
v2 |λ|2 − 2M2

W − 2M2
Z + 2M2

H±
)

+ v2 |λ| s2
βδ(1)|λ| + v |λ|2 s2

βδ(1)v −
(
c2β − 3

)
cβδ(1)thd

2v

− c2
βsβδ(1)thu

v
+ c2

βδ(1)M2
Z − s2

βδ(1)M2
W + δ(1)M2

H±s2
β

(C.152)
(
δ(1)Mhh

)

hdhu

= 1

2
c2βc

2
βδ(1)tβ

(
v2 |λ|2 + 2M2

W − 2M2
Z − 2M2

H±
)

+ v2 |λ| cβsβδ(1)|λ| + v |λ|2 cβsβδ(1)v + c3
βδ(1)thu

v

+ cβsβδ(1)M2
W − cβsβδ(1)M2

Z

− cβδ(1)M2
H±sβ + s3

βδ(1)thd
v

(C.153)

(
δ(1)Mhh

)

hdhs
= −vc2

βδ(1)tβ

2vs

(
2c2

βsβ
(
v2 |λ|2 − 2M2

W + 2M2
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× |λ| cβv2
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(
−
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v2 |λ|2 − 2M2

W + 2M2
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))
+ 2 |λ|2 sβv2

s
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+
vδ(1)vs
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s2
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W
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δ(1)v
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(
M2

Ws2β − |κ| |λ| v2
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2 |λ|2 v2

s − s2
β

(
3v2 |λ|2 + 2M2

H±
)))

2vs

+ δ(1)|λ|
(

cβ

(

2v |λ| vs − v3 |λ| s2
β

vs

)

− 1
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− 1
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(1)ϕy

+ c3
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(
δ(1)Mhh

)

hda
= δ(1)tad cot β

v
(C.155)

(
δ(1)Mhh

)
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2
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2
v |λ| sβvsδ

(1)|κ|sϕy

+ 3

2
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δ(1)Mhh

)

huhu
= c3

βsβδ(1)tβ
(
−v2 |λ|2 + 2M2

W + 2M2
Z − 2M2

H±
)

+ v2 |λ| c2
βδ(1)|λ| + v |λ|2 c2

βδ(1)v − cβs2
βδ(1)thd
v

+
(
c2β + 3

)
sβδ(1)thu

2v
− c2

βδ(1)M2
W + c2

βδ(1)M2
H± + s2

βδ(1)M2
Z (C.157)
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δ(1)Mhh
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Appendix D: Neutrino-sneutrino contributions to the
hu-like Higgs self-energy

In this section we present approximate expressions for the
hu-like self-energy. We have used several assumptions which
are mentioned in the following. For simplicity, we take
(yν)i j = yνδi j , (μX )i j = μXδi j , (λX )i j = λXδi j , (Aν)i j =
Aνδi j , (AX )i j = AXδi j , (Ae)i j = Aeδi j , (BμX )i j =
BμX δi j , (m̃L)i j = m̃Lδi j , (m̃N )i j = m̃N δi j , (m̃X )i j =
m̃Xδi j , (m̃E )i j = m̃Eδi j , and assume that m̃X = m̃N . More-
over, we restrict ourselves to the CP-conserving case where
additionally μX , BμX , m̃X , m̃N , m̃L , Aν  v, the couplings
yν and λ are small, and λX 
 yν, λ. We use the DR renormal-
ization scheme for MW , MZ and MH± . Excluding the con-
tribution from the NMSSM without seesaw mechanism, we
obtain the new contributions from the inverse seesaw mech-
anism to the renormalized self-energy of the hu-like Higgs
in the vanishing external momentum limit

�̂huhu (0) ⊃ 3c4
β y

2
ν

8π2 μ2
X log

(
μ2
X

μ2
R

)

− 3α+y2
ν

512π2 m
2
ñ+ log

(
m2

ñ+
μ2
R

)

− 3α−y2
ν

512π2 m
2
ñ− log

(
m2

ñ−
μ2
R

)

+ 3y2
ν

256π2

[
16c4

β

(
Ã2

ν + m̃2
L + m̃2

N

)
− ρ

]

− 3y2
ν

256π2 log

(
m̃2

L

μ2
R

) (
16ρ̃c4

β

CβM2
Z

m̃2
L + ρ1 + ρ2

)

, (D.167)

withm2
ñ± = m̃2

N±μX BμX +μ2
X , Ãν = Aν+λvStβ/

√
2, Cβ

= 19c2β + 2c4β + c6β − 14, μ2 = m̃2
N + μ2

X − m̃2
L , and

α± = 16c4
β + 16c4

β

( Ãν ± μX )2

m2
ñ± − m̃2

L
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M2
Z (Aν ± μX )2

(m2
ñ± − m̃2

L)2
,

(D.168)

(∼)
ρ = CβM
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In the limit μX  BμX , m̃X , m̃N , m̃L , Aν , the renormalized
hu-like Higgs self-energy is further simplified as follows

�̂huhu (0) ⊃ − 3y2
ν

256π2 log

(
μ2
X

μ2
R

)

×
(

16c4
β Ã

2
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Ãν − 2BμX

)
+ 2C ′
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, (D.172)

with C ′
β = 4c2β + c4β + 3.
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