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Abstract This work is devoted to the construction of a new
static and spherical solution for an anisotropic fluid distribu-
tion. The construction is based in the framework of gravita-
tional decoupling through a particular case of the extended
minimal geometric deformation called 2-steps GD. In this
sense, the differential equations arising from gravitational
decoupling are closed using the vanishing complexity fac-
tor. The Heintzmann IIa solution is used as seed solution.
The solution fulfills the fundamental physical acceptability
conditions for a restricted set of compactness parameters.

1 Introduction

Since Schwarzschild [1] found the first exact solution of
the Einstein field equations (EFE), the aim for obtaining
new solutions to the EFE has become the subject of active
research. Thus a wide variety of exact solutions of EFE has
been obtained [2–11]. Particularly those solutions associated
with the interior of self-gravitating compact objects represent
an important and active area for the theoretical astrophysics.
Initially for a long time, the interior of these self-gravitating
objects was considered as an isotropic fluid (equal principal
stresses). However recently in [12] it is proved that the state
of isotropic pressure is unstable by the presence of dissipa-
tion, energy density inhomogeneities and shear. In fact, such
result implies that any equilibrium configuration as a result
of the final stage of a dynamic stellar regime always will be
an anisotropic pressure state, even when the initially state
was the isotropic regime. In this sense, there is strong evi-
dence of the possible sources of deviations of the isotropy
and fluctuations of the local anisotropy in the interior of
relativistic compact objects, such as high density, intense
magnetic fields, presence of solid interior cores, superflu-
ids, phase transitions, rotation, among others [13–31]. There-
fore, the importance of modelling stellar compact objects
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considering them as self-gravitating spheres of anisotropic
fluids is proved as valid.

Now, due to in static and spherically symmetric space-
imes, there are only three independent EFE but five unknown
functions, namely two metric functions (temporal and radial)
and three physical quantities (density energy, the radial and
tangential pressures) results that is necessary to provide two
extra conditions in order to solve the problem, which can
be relations between the metric functions or state equations
that can relate the physical quantities. In such way the Grav-
itational Decoupling (GD) through the Minimal Geometric
Deformation (MGD) or its Extended version (MGDe) permit
us to solve the EFE and also extend isotropic known solu-
tions to anisotropic case. This framework permit us use a
known isotropic solution as a seed and extra condition (exam-
ples of such conditions are the mimic constrain for the pres-
sure or energy density, barotropic equation of state, regular-
ity of anisotropic pressure, complexity factor, among other)
in order to close the entire system of EFE (for the imple-
mentation of this framework with the use of several seed
solutions see Refs. [32–49]). Even this framework has been
used widely in several scenarios such as 2 + 1 space-times
[50–55], higher dimensions [56,57], asymptotically (A-)dS
space-times [58], for axially symmetric systems and rotat-
ing black holes [59], hairy black holes [60–62], Cosmology
[63,64], solutions in the background of Reissner–Nordström
space-time [65–67], modified gravity theories [68–78], as
well in braneworld gravity [79–81], among others. Precisely
one of the extra conditions used to close the system of dif-
ferential equations arising from GD through MGD or MGDe
is the complexity factor, which results interesting since it
permits us to play with the concept of complexity of self-
gravitating fluids [82] in order to obtain new stellar models
(see Refs. [83,84] as examples where it condition was used
with the GD through MGD).

However, the number of works where solutions with an
isotropic regime of pressure are extended to solutions in
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the anisotropic regime through MGDe is very limited (see
Refs. [51,67,85–93]), even though the framework of GD
through MGDe is well established since the seminal works
[94] and [95]. Particularly, in this work we use the interpre-
tation of gravitational decoupling through MGDe described
in [85] (this approach is called in [85] as 2-steps GD being a
particular case of GD). Such interpretation consists in real-
ize consecutive deformations of metrics of a seed solution.
In specific, we begin realizing the deformation of radial met-
ric and subsequently the temporal deformation is considered
(such consecutive deformation is known as Left-path). How-
ever, this work differs from [85] since the extra condition
used to close the EFE system is the vanishing complexity for
self-gravitating spheres fluids (see Refs. [96–101] where this
condition is used in order to obtain new static and spherically
symmetric solutions).

2 Gravitational decoupling

In this section we briefly review the Gravitational Decoupling
by MGDe (for more details, see [95]) for self-gravitating
static spheres. Let us start with the EFE

Gμν = Rμν − 1

2
gμνR = κTμν, (1)

with

Tμν = T (s)
μν + θμν, (2)

where κ = 8πG
c4 and T (s)

μν represents the matter content of

a known solution of Einstein’s field equations,1 namely the
seed sector, and θμν describes an extra source. Note that,
since the Einstein tensor fulfills the Bianchi identities, the
total energy–momentum tensor satisfies

∇μT
μν = 0. (3)

In a static and spherically symmetric space-time sourced by

Tμ(s)
ν = diag(ρ(s),−p(s)

r ,−p(s)
t ,−p(s)

t ) (4)

θμ
ν = diag(θ0

0 , θ1
1 , θ2

2 , θ2
2 ), (5)

and a metric given by

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2), (6)

Eqs. (1) and (2) lead to

κρ = 1

r2 + e−λ

(
λ′

r
− 1

r2

)
, (7)

κpr = − 1

r2 + e−λ

(
ν′

r
+ 1

r2

)
, (8)

κpt = e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
, (9)

1 In this work we shall use c = G = 1.

where we have defined

ρ = ρ(s) + θ0
0 , (10)

pr = p(s)
r − θ1

1 , (11)

pt = p(s)
t − θ2

2 . (12)

The conservation equation (3) is a linear combination of
Eqs. (7)–(9), and yields

(pr )
′ + ν′

2
(ρ + pr ) + 2

r
(pr − pt ) = 0, (13)

which in terms of the two sources in Eq. (2) read,

(p(s)
r )′ + ν′

2

(
ρ(s) + p(s)

r

)
+ 2

r

(
p(s)
r − p(s)

t

)

−
(
θ1

1

)′ + ν′

2

(
θ0

0 − θ1
1

)
+ 2

r

(
θ2

2 − θ1
1

)
= 0. (14)

Is clear that the non-linearity of Einstein’s equations
avoids that the decomposition (2) lead to two set of equa-
tions; one for each source involved. Nevertheless, contrary
to the broadly belief, such a decoupling is possible in the
context of MGDe as we shall demonstrate in what follows.

Let us introduce a geometric deformation in the metric
functions given by

ν −→ ξ + αg, (15)

e−λ −→ e−μ + α f, (16)

where { f, g} are the so-called decoupling functions and α is
the same free parameter that “controls” the influence of θμν

on T (s)
μν . Now, replacing (15) and (16) in the system (7)–(9),

we are able to split the complete set of differential equations
into two subsets: one describing a seed sector sourced by the
conserved energy-momentum tensor, T (s)

μν

κρ(s) = 1

r2 − e−μ

(
1

r2 − μ′

r

)
, (17)

κp(s)
r = − 1

r2 + e−μ

(
1

r2 + ξ ′

r

)
, (18)

κp(s)
t = e−μ

4

(
2ξ ′′ + ξ ′2 − μ′ξ ′ + 2

ξ ′ − μ′

r

)
, (19)

and the other set corresponding to source θμν

κθ0
0 = −α f

r2 − α f ′

r
(20)

κθ1
1 + αZ1 = −α f

(
1

r2 + ν′

r

)
(21)

κθ2
2 + αZ2 = −α f

4

(
2ν′′ + ν′2 + 2ν′

r

)
− α f ′

4

(
ν′ + 2

r

)
,

(22)

where Z1 = e−μg′
r and 4Z2 = e−μ(2g′′ + αg′2 + 2g′

r +
2ξ ′g′ − μ′g′).
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By another hand if we insert ν′ = ξ ′ + αg′ in Eq. (14)
results[

− (p(s)
r )′ − ξ ′

2

(
ρ(s) + p(s)

r

)
− 2

r

(
p(s)
r − p(s)

t

) ]

−αg′

2

(
ρ(s) + p(s)

r

)
+ (θ1

1 )′ − ν′

2
(θ0

0 − θ1
1 )

−2

r
(θ2

2 − θ1
1 ) = 0, (23)

where the bracket in Eq. (23) represents the divergence of
T (s)

μν calculated with the metric {ξ, μ}, and due to T (s)
μν satis-

fies with

∇(ξ,μ)
σ T σ(s)

ν = 0 (24)

since T σ(s)
ν correspond a known “seed” source that satisfies

its respective EFE.
Note that

∇σ T
σ(s)
ν = ∇(ξ,μ)

σ T σ(s)
ν − αg′

2
(T 0(s)

0 − T 1(s)
1 )δ1

ν (25)

where the divergence ∇σ is calculated with the metric {ν, λ}.
Explicitly Eq. (24) give us

(p(s)
r )′ + ξ ′

2
(ρ(s) + p(s)

r ) + 2

r
(p(s)

r − p(s)
t ) = 0, (26)

which is a linear combination of Eqs. (17)–(19). By the way
if we take in account the Eqs. (24) and (23) results that

∇σ T
σ(s)
ν = −αg′

2
(T 0(s)

0 − T 1(s)
1 )δ1

ν (27)

and

∇σ
ν θσ

ν = −∇T σ(s)
ν = αg′

2
(T 0(s)

0 − T 1(s)
1 )δ1

ν , (28)

which encodes the information of energy-momentum
exchange 
 E between the sources, namely


 E = g′

2
(ρ + pr ) , (29)

which we can write in terms of pure geometric functions as


 E = g′

2 κ

e−μ

r

(
ξ ′ + μ′) . (30)

From the expression (30) we can see that g′ > 0 yields 
 E >

0. This indicates ∇σ θσ
ν > 0, according to the conservation

equation (29), which means that the source θμν is giving
energy to the environment. The opposite occurs when g′ < 0
(see Refs. [102,103] for a recent study of the exchange of
energy between a perfect fluid and a polytrope).

Now, in order to take in account that the metric should be
continuous at surface � of star we have to match smoothly
the interior metric with the outside, we require

eν
∣∣∣
�− =

(
1 − 2M

r

) ∣∣∣∣
�+

, (31)

e−λ
∣∣∣
�− =

(
1 − 2M

r

) ∣∣∣∣
�+

, (32)

pr (r)
∣∣∣
�− = pr (r)

∣∣∣
�+ , (33)

where M and R are the mass and radius of the star, respec-
tively. Equations (31)–(33) correspond to the continuity of
the first and second fundamental form across that surface.

Note that the system of Eqs. (7)–(9) represents three dif-
ferential equations with five unknowns functions, namely
{ν, λ, ρ, pr , pt } represents a static and spherically symmet-
ric space time sourced by an anisotropic fluid. In such sense,
two auxiliary conditions must be provided, namely metric
conditions, equations of state, etc. Then using GD approach
we use a seed solution which reduce the number of degrees
of freedom to four and, as a consequence, only one extra
condition is required. Thus the extra condition have been
implemented in the decoupling sector given by Eqs. (20)–
(22) as some equation of state which leads to a differential
equation for the decoupling functions f and g. However, we
will take an alternative route in order to obtain the decou-
pling functions, which is the complexity factor that we shall
introduce in the next section.

3 Complexity of compact sources

In order to characterize the complexity of self-gravitating
fluid distributions, recently in Ref. [82] a new definition
of such property has been introduced. This definition is
based on the intuitive idea that the least complex gravita-
tional system should be characterized by a homogeneous
energy density distribution and isotropic pressure. Thus one
expects that a complexity factor should measure the rela-
tion between the inhomogeneity in the energy density and
the pressure anisotropy of a system. In such sense in [82]
has been proposed a structure scalar function (such scalar
and others were analyzed in detail by first time in [104])
associated to the orthogonal splitting of the Riemann ten-
sor [105,106] in spherically symmetric space–times which
capture the essence of what we mean by complexity, namely

YT F = κ� − κ

2r3

∫ r

0
r̃3ρ′dr̃ , (34)

with � ≡ pr − pt . Also, it can be shown that (34) allows to
write the Tolman mass as,

mT = (mT )�

(
r

r�

)3

+ r3
∫ r�

r

e(ν+λ)/2

r̃
YT Fdr̃ , (35)

which can be considered as a solid argument to define the
complexity factor by means of this scalar given that this
function, encompasses all the modifications produced by the
energy density inhomogeneity and the anisotropy of the pres-
sure on the active gravitational mass. This scalar represents
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a suitable quantity that define the property of complexity
of self-gravitating static spheres (the extension for the time
dependent case is defined in [107]) that permits us to study
them in a deepen way.

It is worth noticing that the condition YT F = 0 (also
known called as vanishing complexity condition) is satisfied
not only in the simplest case of isotropic and homogeneous
system, but also in the cases where

� = 1

2r3

r∫
0

r̃3ρ′dr̃ . (36)

In fact, the Eq. (36) represents a non-local equation of state,
which can be use as a complementary condition to close the
system of EFE.

In specific, YT F = 0 in terms of the complexity factors of
seed solution (Y (s)

T F ) and extra source (Y θ
T F ) is

YT F = Y (s)
T F + Y θ

T F = 0, (37)

namely

Y (s)
T F + κ�θ − κ

2r3

∫ r

0
r̃3ρ′

θdr̃ = 0. (38)

4 Radial metric deformation

In order to obtain a convenient solution with zero complexity
we consider the case when g = 0 and f �= 0, namely, MGD
(see [32,108,109] for details). Then from Eqs. (15), (16),
(20)–(22) we obtain the matter sector of the source θμν

κρθ = κθ0
0 = −α f

r2

(
1 + r f ′

f

)
(39)

κpθr = −κθ1
1 = α f

r2

(
1 + rξ ′) (40)

κpθ t = −κθ2
2

= α f

4

[
2ξ ′′ + ξ ′2 + 2

ξ ′

r
+ f ′

f

(
ξ ′ + 2

r

)]
, (41)

in such that Eq. (38) turns into

f ′ +
(

2
ξ ′′

ξ ′ + ξ ′ − 2

r

)
f − 4Y (s)

T F

αξ ′ = 0. (42)

The Eq. (42) allows us to find the function f given the infor-
mation of a seed solution. In this work we use the Heintz-
mann IIa solution [110,111] as a seed solution whose metric
components reads

eξ(r) = A2
(
Br2 + 1

)3
(43)

e−μ(r) = 1 − 3Br2

2

(
C√

4Br2+1
+ 1

)
(
Br2 + 1

) , (44)

where A, B and C are constants.
The complexity factor of this seed solution can be obtained

from EFE and (34), thus it is

Y (s)
T F =

3B2r2
(
C

(
6Br2 + 3

) + (
4Br2 + 1

)3/2
)

2
(
Br2 + 1

)2 (
4Br2 + 1

)3/2 . (45)

Now, using (43) and (45) in (42) we obtain the deformation

f = c0

Br2 + 1
+ Br2

2α
(
Br2 + 1

)
(

3C√
4Br2 + 1

+ 1

)
, (46)

where c0 is a integration constant. It can be shown that to
ensure regularity in the matter sector the constant c0 must be
zero.

Now replacing (44) and (46) in (16) we find the new radial
metric component

e−λ = 1

Br2 + 1
. (47)

So using the EFE (7)–(9) we arrive at

ρ = B
(
Br2 + 3

)
κ

(
Br2 + 1

)2 , (48)

pr = B
(
5 − Br2

)
κ

(
Br2 + 1

)2 , (49)

pt = 5B

κ
(
Br2 + 1

)2 . (50)

Due to this solution depends only one constant B, we
will not analyze their physical acceptability, but however it
is useful since it can be used as seed solution.

5 Temporal metric deformation

In this section we use the solution found in the above section
as seed solution. Specifically we consider the case when f =
0 and g �= 0, such choose of deformation on the metric is
known as Temporal Geometric Deformation (TGD) (for a
detailed discussion see Ref. [101]). Then, from of Eqs. (15),
(16), (20)–(22) we obtain

ρθ = κθ0
0 = 0, (51)

pθr = −κθ1
1 = αZ1, (52)

pθ t = −κθ2
2 = αZ2, (53)

therefore

�θ = pθr − pθ t = α

κ
(Z1 − Z2). (54)

In this way Eq. (38) becomes to

Y (s)
T F = α(Z2 − Z1), (55)
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implicitly it give us

g′′ + α

2
g′2 + 1

2

(
2ξ ′ − μ′ − 2

r

)
g′ − 4eμ

α
Y (s)
T F = 0, (56)

which is a differential equation for g as unknown quantity
due to ξ and μ can be known since we assign a seed solution
in order to close our problem.

Thus using the metrics of the found solution in the above
section (43) and (47) in (56), we obtain

g = β − 2

α
ln

(
α − 6Bη

(
Br2 + 1

)3/2
)

− 3

α
ln

(
Br2 + 1

)
, (57)

where β and η are integration constants.
Now using this geometric deformation g in (15) we obtain

the temporal metric

eν = a

(
α − 6Bη

(
Br2 + 1

)3/2
)2

, (58)

where a = A2eαβ . So between the above and the present
sections, we obtain the new interior space-time given by

eν = a

(
α − 6Bη

(
Br2 + 1

)3/2
)2

(59)

e−λ = 1

Br2 + 1
. (60)

Now using the metric components (60) and (59) in the EFE
(7)–(9) the matter sector obtained is

ρ = B
(
Br2 + 3

)
κ

(
Br2 + 1

)2 (61)

pr =
B

(
α − 6Bη

(
Br2 − 5

) √
Br2 + 1

)

κ
(
Br2 + 1

) (
6Bη

(
Br2 + 1

)3/2 − α
) (62)

pt =
B

(
α + 30Bη

(
Br2 + 1

)3/2
)

κ
(
Br2 + 1

)2
(

6Bη
(
Br2 + 1

)3/2 − α
) . (63)

Note that (60) was obtained through the MGD and (59)
through the TGD using the vanishing complexity as com-
plementary condition, namely, this new solution is obtained
through the use of 2-steps GD approach considering the
Heintzmann IIa as seed solution, which has been modified as
result of the influence of source θμν over the Tμν . Such influ-
ence firstly modified the radial metric of seed solution, and
after modified the temporal one, in such a way that we obtain
a deformed Heintzmann IIa solution whose matter sector is
in the anisotropic regime of pressure.

Now using the continuity conditions given by Eqs. (31)–
(33) we arrive at

η = α

6B2R2
√
BR2 + 1 − 30B

√
BR2 + 1

(64)

B2 = 4M2

R4(R − 2M)2 (65)

a = (12M − 5R)2

36α2R(R − 2M)
. (66)

It is worth mentioning that from (65) and (66) is clear that
compactness parameter satisfies R > 2M , which is in accor-
dance with the restriction that any stable configuration should
be greater than Schwarzschild radius.

6 Discussion

In this section we analyze the solution obtained previously
in order to verify its physical acceptability [112].

6.1 Metrics

In Figs. 1 and 2 we show the metric functions for the compact-
ness factors showed in the caption. We can observe that eν is
a monotonously increasing function with eν(0) = constant .
For other hand e−λ is a monotonously decreasing function
with e−λ(0) = 1, as expected.

Fig. 1 eν for compactness factors of 0.403 (blue line), 0.405 (black
line) and 0.410 (red line)

Fig. 2 e−λ for compactness factors of 0.403 (blue line), 0.405 (black
line) and 0.410 (red line)
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Fig. 3 κρ for compactness factors of 0.403 (blue line), 0.405 (black
line) and 0.410 (red line)

Fig. 4 κpr for compactness factors of 0.403 (blue line), 0.405 (black
line) and 0.410 (red line)

Fig. 5 κpt for compactness factors of 0.403 (blue line), 0.405 (black
line) and 0.410 (red line)

6.2 Matter sector

In Figs. 3, 4 and 5 we show the profile of matter sector as a
function of radial coordinate. All quantities, ρ, pr and pt are
finite at center of star and decrease monotonously toward the
surface. Furthermore, pr (0) = pt (0) and pt (r) > pr (r) for
all r > 0, as expected (see Fig. 6). So the matter sector fulfill
the physical requirements for acceptable interior solution.

Fig. 6 κ(pt − pr ) for compactness factors of 0.403 (blue line), 0.405
(black line) and 0.410 (red line)

Fig. 7 κ(ρ − pr ) for compactness factors of 0.403 (blue line), 0.405
(black line) and 0.410 (red line)

6.3 Energy conditions and causality

An acceptable interior solution must be satisfies the dominant
energy condition (DEC) in order to avoid the violation of
causality. The DEC requires

ρ − pr ≥ 0 and ρ − pt ≥ 0. (67)

In Figs. 7 and 8 the profiles ofρ−pr andρ−pt are showed.
Note that the solution satisfy the DEC for all compactness
factors involved. In Figs. 9 and 10 we show the radial and
tangential sound velocities are less than unity, as required
since we are assuming c = 1.

6.4 Redshift

In Fig. 11 we show the redshift z(r) = e−ν/2−1 as a function
of the radial coordinate. Observe that z is a monotonously
decrease function and its value is less than universal surface
bound for solutions satisfying the DEC, namely zbound =
5.211 [113].

We have checked that the solution fulfills the fundamental
physical conditions for those compactness parameters such
that 0.403 ≤ u = M/R ≤ 0.411.
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Fig. 8 κ(ρ − pt ) for compactness factors of 0.403 (blue line), 0.405
(black line) and 0.410 (red line)

Fig. 9 vr (r) for compactness factors of 0.403 (blue line), 0.405 (black
line) and 0.410 (red line)

Fig. 10 vt (r) for compactness factors of 0.403 (blue line), 0.405 (black
line) and 0.410 (red line)

Now we go and step further studying the stability of the
solution in the next two subsections.

6.5 Stability against convection

The stability of a self-gravitating sphere to convection
implies the buoyancy principle inside of fluid, which implies
that any fluid element displaced downward floats back to its
initial position. It was demonstrated in [114], in such a way

Fig. 11 z(r) for compactness factors of 0.403 (blue line), 0.405 (black
line) and 0.410 (red line)

Fig. 12 ρ′′ for compactness factors of 0.403 (blue line), 0.405 (black
line) and 0.410 (red line)

that

ρ′′(r) ≤ 0. (68)

We show the profile the ρ′′ in function of radial coordinate
in Fig. 12. We observe that the model is stable after undergo-
ing convective motion at the inner shells, while for the outer
shells is unstable.

6.6 Stability against collapse

Since the model found here has sound velocities profiles that
are not monotonically decreasing with radius (see Figs. 9
and 10), which could be interpreted as a signal of instability.
However, it may not necessarily be definitive given the effects
of anisotropy [115,116]. Then to analyse its stability we study
the behaviour of the adiabatic index (�) in the radial direction
given by

� = ρ + pr
pr

dpr
dρ

, (69)

which should satisfy

� ≥ �cri t (70)
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Fig. 13 � for compactness factors of 0.403 (�cri t = 1.69795) (blue
line), 0.405 (�cri t = 1.69976) (black line), 0.410 (�cri t = 1.70429)
(red line) and 0.411 (�cri t = 1.70519) (green line)

where

�cri t = 4

3
+ 19

21
u. (71)

The above relation takes in account relativistic corrections to
the adiabatic index � that could introduce instabilities inside
the star. So in this way the stability condition (70) applies
to any relativistic compact object supported by anisotropic
fluid (for a detailed discussion about this point see Refs. [41,
117,118]).

Then in this way we show the adiabatic index profile as
a function of radial coordinate in Fig. 13. We observe from
this figure that the model present instability against collapse
for the whole compactness factors showed in the caption.

In summary, the model presented in this manuscript sat-
isfy the fundamental physical conditions detailed in [112],
but however the model present instability against convection
motion and collapse for the restricted set of analysed com-
pactness parameters.

7 Conclusions

We applied the approach of 2-steps GD described in [85],
which is based on performing consecutive, non-simultaneous
deformations of the metric components on a known seed solu-
tion, in specific the left-path approach where the first one met-
ric deformed is the radial and after the temporal one, with the
complement condition of vanishing complexity with success
in order to extend the known Heintzmann IIa isotropic solu-
tion to the anisotropic regime of pressure. The found solution
fulfills the fundamental acceptability physical conditions for
a restricted set of compactness factor; namely, (i) metric func-
tions are regular inside the star, moreover eν(0) = constant
and e−λ(0) = 1, (iii) the material sector (density energies and
pressures) are regular inside star and decrease monotonously
outward, (iii) the solutions satisfies the dominant energy con-

dition. Regarding the convection stability, we found that the
model has instabilities in the outer shells in this sense. Also,
we found that the model is unstable against collapse for the
set of analysed compactness factor. Therefore, results inter-
esting investigate in future works the stability of this model in
presence of small perturbations on matter sector. As well, the
present manuscript represents a clear example of the feasibil-
ity of using 2-steps GD in order to find new physically accept-
able interior solutions in the anisotropic regime of pressure.
Therefore, it turns out that the 2-steps GD is a convenient
alternative to using the GD through MGDe with vanishing
complexity factor as complement condition, since the con-
sideration of MGDe with the simultaneously deformations
of the radial and temporal metrics in general is a difficult
task. Also, is worth to mention that the method used in this
work represent another valid tool in order to obtain interior
solutions in the regime of anisotropic pressure that poses the
simplest complexity, and which could be interesting from the
point of view of stability against small perturbations. As well
it would be interesting to use the same procedure used here
with other values of complexity.
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