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Abstract By using the K -free complex bosons and the K -
free complex fermions, we construct the N = 2 supersym-
metric WK ,K∞ algebra which is the matrix generalization of
previous N = 2 supersymmetric W∞ algebra. By twisting
this N = 2 supersymmetric WK ,K∞ algebra, we obtain the
N = 1 supersymmetric WK∞ algebra which is the matrix gen-
eralization of knownN = 1 supersymmetric topological W∞
algebra. From this two-dimensional symmetry algebra, we
propose the operator product expansion (OPE) between the
soft graviton and gravitino (as a first example), at nonzero
deformation parameter, in the supersymmetric Einstein–
Yang–Mills theory explicitly. Other six OPEs between the
graviton, gravitino, gluon and gluino can be determined com-
pletely. At vanishing deformation parameter, we reproduce
the known result of Fotopoulos, Stieberger, Taylor and Zhu
on the above OPEs via celestial holography.
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1 Introduction

Recently, the celestial holography has been proposed by the
fact that there exists a duality between the gravitational scat-
tering in asymptotically flat spacetimes and the conformal
field theory which lives on the celestial sphere. See the review
papers [1–4] on the celestial holography. By using the low
energy scattering problems, the symmetry algebra of the con-
formal field theory for flat space (a celestial conformal field
theory) has been studied in [5]. Moreover, in [6], the group of
symmetries on the celestial sphere satisfies the wedge sub-
algebra of w1+∞ algebra [7]. This implies that we should
understand the structures behind these findings thoroughly
in order to check the above duality. In [8], the supersymmet-
ric w1+∞ algebra has been identified with the corresponding
soft current algebra in the supersymmetric Einstein–Yang–
Mills theory. The relevant works on the celestial holography
in the various directions can be found in [9–35]. See [1] for
more complete literatures.

The higher-spin extension of the Virasoro algebra has
been found by Zamolodchikov [36]. The so-called W3 alge-
bra consists of the spin-2 stress energy tensor and the spin-
3 current. Subsequently, this W3 algebra is generalized to
the WN algebra [37,38] which is generated by the spin-2
stress energy tensor and the higher-spin currents of each
spin, s = 3, 4, . . . , N . It is also possible to construct a lin-
ear W∞ algebra [39,40] generated by the currents with spins
s = 2, 3, 4, . . . ,∞. A simple contraction of the W∞ alge-
bra leads to the w∞ algebra [7]. Moreover, the W1+∞ algebra
[41] contains all spins s = 1, 2, 3, . . . ,∞. TheN = 2 super-
symmetric W∞ algebra [42] whose bosonic sector is given
by W∞ and W1+∞ is obtained.

Bakas and Kiritsis [43] have found the WK∞ algebra which
is an U (K )-matrix generalization of W∞ algebra. For each
current of spin s, there are K 2 multicomponent generators.
Odake and Sano [44] also have constructed theWL

1+∞ algebra
which is an U (L)-matrix extension of W1+∞ algebra. There
exist L2 multicomponent generators for each current of spin
s. Furthermore, the supersymmetric WK ,L∞ algebra, whose
bosonic sector is given by WK∞ and WL

1+∞, has been studied
in [45].

In this paper, by taking the condition K = L , we
construct the N = 2 supersymmetric WK ,K∞ algebra with
U (K )×U (K ) symmetry. Due to the above condition K = L ,
we can multiply the generators in the fermionic currents. The
N = 2 supersymmetry is reduced to the N = 1 supersymme-
try by topological twisting [46–48]. Then the N = 1 super-

symmetric WK∞ algebra with U (K ) symmetry is obtained.
That is, we obtain the matrix generalization of [48]. The seven
commutator relations between the bosonic and fermionic cur-
rents can be written in terms of the various structure constants
and the deformation parameter. By considering the vanishing
limit of this deformation parameter, we reproduce the pre-
vious result of [49]. We propose that the OPEs between the
graviton, gravitino, gluon and gluino in the supersymmet-
ric Einstein–Yang–Mills theory can be determined from the
above two-dimensional symmetry algebra.1

For the nonvanishing deformation parameter, the commu-
tators contain the possible terms in the right hand sides. In
general, the structure constants depend on the two modes of
the commutator and the weights. Among the weights, the
weights h1 and h2 appearing in the left hand side of the com-
mutator are given. On the other hand, the weight h appearing
in the right hand side vary from its lowest value to the high-
est value depending on the previous weights h1 and h2. The
weight h plays the role of dummy variable in the summa-
tion of the right hand side of the commutator. We would like
to determine the OPEs between the above soft currents in
the supersymmetric Einstein–Yang–Mills theory by looking
at the two dimensional symmetry algebra characterized by
seven commutators. Then the question is how we can deter-
mine the OPEs in the soft currents which will eventually lead
to the commutators we have found in two dimensional con-
formal field theory after performing the appropriate contour
integrals.

As mentioned before, the structure constants consists of
mode dependent part and mode independent part and they do
depend on the above three weights dependence. We should
figure out how the mode dependent part can be read off from
the relevant OPE between the soft currents because the mode
independent part can be multiplied into this inside of the
dummy variable weight h. From the experience of the var-
ious contour integrals [5], we expect that there should be h
dependence in the OPE when we consider the case of the
nonzero deformation parameter. Once we have obtained the
correct OPEs which produces the mode dependent part of
the commutators, then it is straightforward to determine the
full OPEs by multiplying the weights dependence parts and
summing over above dummy variable h within the possible
range.

In Sect. 2, we obtain the N = 2 supersymmetric WK ,K∞
algebra after reviewing the supersymmetric WK ,L∞ algebra.
In Sect. 3, we determine the N = 1 supersymmetric WK∞
algebra. The free field realization is given. At the vanishing
deformation parameter, the previous result [8] is reproduced.

1 We are focusing on the soft currents where the celestial operators
have the specific conformal dimensions for the bosonic and fermionic
fields. For the former � = 1, 0,−1, . . . and for the latter � =
1
2 ,− 1

2 ,− 3
2 , . . . . See also [5,31].
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We also present the seven commutator relations in terms of
the corresponding OPEs. Finally, we propose its realization
in theN = 1 supersymmetric Einstein–Yang–Mills theory. In
Sect. 4, we summarize what we have obtained in this paper.
In Appendices, we provide some details in Sects. 2 and 3.

2 The N = 2 supersymmetric WK,K∞ algebra with
U(K ) × U(K ) symmetry

2.1 The supersymmetric WK ,L∞ algebra with U (K ) ×U (L)

symmetry: review

The nontrivial (anti)commutator relations of WK ,L∞ algebra
[45] (see also [50]) are given by

[
(W ᾱβ

F,h1
)m, (W γ̄ δ

F,h2
)n

] =
h1+h2−3∑

h=−1

λh

2
ph1,h2,h

F (m, n)

×
[
δγ̄ β (W ᾱδ

F,h1+h2−2−h)m+n

+(−1)hδᾱδ(W γ̄ β

F,h1+h2−2−h)m+n

]

+cWF,h1
(m)δᾱδδβγ̄ δh1h2λ2(h1−2)δm+n,

[
(Wāb

B,h1
)m, (Wc̄d

B,h2
)n

] =
h1+h2−4∑

h=−1

λh

2
ph1,h2,h

B (m, n)

×
[
δc̄b (Wād

B,h1+h2−2−h)m+n

+(−1)hδād(Wc̄b
B,h1+h2−2−h)m+n

]

+cWB,h1
(m)δādδbc̄δh1h2λ2(h1−2)δm+n,

[
(W ᾱβ

F,h1
)m, (Qāγ

h2+ 1
2
)r

] =
h1+h2−3∑

h=−1

λh q
h1,h2+ 1

2 ,h
F

×(m, r) δᾱγ (Qāβ

h1+h2− 3
2 −h

)m+r ,

[
(W ᾱβ

F,h1
)m, (Q̄aγ̄

h2+ 1
2
)r

] =
h1+h2−3∑

h=−1

λh (−1)h q
h1,h2+ 1

2 ,h
F

×(m, r) δβγ̄ (Q̄aᾱ

h1+h2− 3
2 −h

)m+r ,

[
(Wāb

B,h1
)m, (Qc̄α

h2+ 1
2
)r

] =
h1+h2−3∑

h=−1

λh q
h1,h2+ 1

2 ,h
B (m, r) δc̄b

×(Qāα

h1+h2− 3
2 −h

)m+r ,

[
(Wāb

B,h1
)m, (Q̄cᾱ

h2+ 1
2
)r

] =
h1+h2−3∑

h=−1

λh (−1)h q
h1,h2+ 1

2 ,h
B

×(m, r) δāc (Q̄bᾱ
h1+h2− 3

2 −h
)m+r ,

{(Qāα

h1+ 1
2
)r , (Q̄

bβ̄
h2+ 1

2
)s} =

h1+h2−1∑

h=0

λh o
h1+ 1

2 ,h2+ 1
2 ,h

F

×(r, s) δāb (W β̄α
F,h1+h2−h)r+s

+
h1+h2−2∑

h=0

λh o
h1+ 1

2 ,h2+ 1
2 ,h

B (r, s) δαβ̄ (Wāb
B,h1+h2−h)r+s

+cQQ̄
h1+ 1

2

(r) δāb δαβ̄ δh1h2 λ2(h1+ 1
2 −1) δr+s . (2.1)

The bosonic WK∞ subalgebra corresponding to the second
equation of (2.1) is generated by the U (K )-adjoint Wāb

B,h
with an integer weight h = 2, 3, . . . ,∞. The subscript
B stands for the bilinear of complex free bosons in next
subsection. The fundamental index a, b, . . . of U (K ) runs
over a, b, . . . = 1, 2, . . . , K and the antifundamental index
ā, b̄, . . . of U (K ) runs over ā, b̄, . . . = 1, 2, . . . , K . The
bosonic WL

1+∞ subalgebra corresponding to the first equa-

tion of (2.1) is generated by the U (L)-adjoint W ᾱβ
F,h with

an integer weight h = 1, 2, . . . ,∞. Note the presence of
weight-1 current. The subscript F stands for the bilinear of
complex free fermions in next subsection. The fundamental
index α, β, . . . of U (L) runs over α, β, . . . = 1, 2, . . . , L
and the antifundamental index ᾱ, β̄, . . . of U (L) runs over
ᾱ, β̄, . . . = 1, 2, . . . , L . There are also the bifundamental

Qāα

h+ 1
2

and the bifundamental Q̄bβ̄
h+ 1

2
under theU (K )×U (L)

with the half-integer weight h+ 1
2 = 3

2 , 5
2 , . . . for the remain-

ing (anti)commutator relations. Note that the lower and upper
limits for the dummy variable h in (2.1) can be determined
by the fact that (i) the maximum weight for the current in
the right hand side is equal to the sum of two weights in the
left hand side minus one and (ii) the minimum weight for the
current in the right hand side is equal to 2, 1 or 3

2 as above.
The λ is a deformation parameter2 and the central terms

in (2.1) except the λ-dependent factors are given by

cWF,h (m) = N k
22(h−3) (h − 1)!) (h − 1)!

(2h − 3)!! (2h − 1)!!
h−1∏

j=1−h

(m + j),

cWB,h (m) = N k
22(h−3)(h − 2)! h!

(2h − 3)!! (2h − 1)!!
h−1∏

j=1−h

(m + j),

cQQ̄h
(r) = N k

22(h− 3
2 )(h − 3

2 )! (h − 1
2 )!

(2h − 2)!! (2h − 2)!!

×
h− 3

2∏

j= 1
2 −h

(
r + j + 1

2

)
. (2.2)

There exists an overall factor N which is related to the
number of free complex bosons (or fermions). The k is the

2 This corresponds to the parameter q in [45] and is nothing to do with
the one in the higher spin algebra in [50].
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level of ˆSU (L) and the corresponding weight-one current
is given by 4 λ√

L N
W ᾱβ

F,1 δβᾱ with cWF,1(m) = N m
16 . By intro-

ducing the k copies of the free field realization, we con-
struct the general level k realization [45] because WK ,L∞
algebra is linear. The Virasoro central charge is given by
c = Nk(2K + L) from cWF,2(m) = 1

12 N k m(m2 − 1) and
cWB,2(m) = 1

6 N k m(m2 − 1) from (2.2) and the Sugawara

stress energy tensor is given by Wāb
B,2 δbā − W ᾱβ

F,2 δβᾱ .
The mode-dependent structure constants appearing in

(2.1) are described as follows:

ph1,h2,h
F (m, n) ≡ 1

2(h + 1)! φ
h1,h2
h (0,− 1

2 ) Nh1,h2
h (m, n),

ph1,h2,h
B (m, n) ≡ 1

2(h + 1)! φ
h1,h2
h (0, 0) Nh1,h2

h (m, n),

qh1,h2,h
F (m, r) ≡ (−1)h

4(h + 2)!
[
(h1 − 1) φ

h1,h2+ 1
2

h+1 (0, 0)

−(h1 − h − 3) φ
h1,h2+ 1

2
h+1 (0,− 1

2 )

]
Nh1,h2
h (m, r),

qh1,h2,h
B (m, r) ≡ −1

4(h + 2)!
[
(h1 − h − 2) φ

h1,h2+ 1
2

h+1 (0, 0)

−(h1) φ
h1,h2+ 1

2
h+1 (0,− 1

2 )

]
Nh1,h2
h (m, r),

oh1,h2,h
F (r, s) ≡ 4(−1)h

h!
[
(h1 + h2 − 1 − h) φ

h1+ 1
2 ,h2+ 1

2
h ( 1

2 ,− 1
4 )

−(h1 + h2 − 3

2
− h) φ

h1+ 1
2 ,h2+ 1

2
h+1 ( 1

2 ,− 1
4 )

]
Nh1,h2
h−1 (r, s),

oh1,h2,h
B (r, s) ≡ − 4

h!
[
(h1 + h2 − 2 − h) φ

h1+ 1
2 ,h2+ 1

2
h ( 1

2 ,− 1
4 )

−(h1 + h2 − 3

2
− h) φ

h1+ 1
2 ,h2+ 1

2
h+1 ( 1

2 ,− 1
4 )

]
Nh1,h2
h−1 (r, s).

(2.3)

The structure constants are polynomials in the modes. The
modes m, n, . . . are integers and the modes r, s, . . . are half-
integers. We introduce the following quantities

Nh1,h2
h (m, n) ≡

h+1∑

l=0

(−1)l
(
h + 1
l

)

×[h1 − 1 + m]h+1−l [h1 − 1 − m]l
×[h2 − 1 + n]l [h2 − 1 − n]h+1−l ,

φ
h1,h2
h (x, y)

≡ 4F3

[ − 1
2 − x − 2y, 3

2 − x + 2y,− h+1
2 + x,− h

2 + x
−h1 + 3

2 ,−h2 + 3
2 , h1 + h2 − h − 3

2
; 1

]
.

(2.4)

We use the falling Pochhammer symbol [a]n ≡ a(a −
1) · · · (a − n + 1) in (2.4) and we use the binomial coef-
ficients for parentheses. Moreover, the generalized hyperge-
ometric function, with four upper arguments ai , three lower
arguments bi and variable z, is defined as the series

4F3

[
a1, a2, a3, a4

b1, b2, b3
; z

]
=

∞∑

n=0

(a1)n(a2)n(a3)n(a4)n

(b1)n(b2)n(b3)n

zn

n! ,

(2.5)

where the rising Pochhammer symbol (a)n ≡ a(a +
1) · · · (a + n − 1) is used in (2.5).3

In this paper, by acting the generators of U (K ) (or U (L))
with the contractions of the (anti)fundamental indices on the
(anti)commutator relations in (2.1), we will determine the
N = 2 supersymmetric WK ,K∞ algebra and theN = 1 super-
symmetric WK∞ algebra. Then the fermionic currents will not
have any (anti)fundamental indices.

2.2 Free field realization: review

The WK ,L∞ algebra with level k = 1 is realized by K -free
complex bosons of weight-1 (∂̄ φ ī,a and ∂̄ φ̄i,ā) and L-free
complex fermions of weight- 1

2 (ψ ī,α and ψ̄ i,ᾱ). The index i is
the fundamental index ofU (N ) and the index ī is the antifun-
damental index of U (N ). Their operator product expansions
in the antiholomorphic sector are

∂̄ φ̄i,ā(z̄) ∂̄ φ j̄,b(w̄) = 1

(z̄ − w̄)2 δi j̄ δāb + · · · ,

ψ̄ i,ᾱ(z̄) ψ j̄,β(w̄) = 1

(z̄ − w̄)
δi j̄ δᾱβ + · · · . (2.6)

TheU (N )-singlet currents of WK ,L∞ algebra are described by
the bilinears of these free fields as follows (See also [51]):

W ᾱβ
F,h = nWF,h

h−1∑

l=0

N∑

i, ı̄=1

δi,ı̄ (−1)l
(
h − 1
l

)2

× ( ∂̄h−l−1ψ̄ i,ᾱ ∂̄ lψ ı̄,β ),

Wāb
B,h = nWB,h

h−2∑

l=0

N∑

i, ı̄=1

δi,ı̄
(−1)l

(h − 1)

(
h − 1
l

)(
h − 1
l + 1

)

× ( ∂̄h−l−1φ̄i,ā ∂̄ l+1φ ı̄,b ),

Qāα

h+ 1
2

= nQ
h+ 1

2

h−1∑

l=0

N∑

i, ı̄=1

δi,ı̄ (−1)l
(
h − 1
l

) (
h
l

)

× ( ∂̄h−l φ̄i,ā ∂̄ lψ ı̄,α ),

Q̄aᾱ

h+ 1
2

= nQ̄
h+ 1

2

h−1∑

l=0

N∑

i, ı̄=1

δi,ı̄ (−1)h−1+l
(
h − 1
l

)(
h
l

)

3 In the right hand side of (2.4), the h1 and h2 play the role of (i + 2)

(or (i + 3
2 )) and ( j + 2) (or ( j + 3

2 )) of [45]. The h corresponds to their
r . Due to the typos in [42] (See also the footnote 2 of [48]), the structure
constants in [45] are different from the ones in [42]. For example, the
structure constantai α

l (m, r) of [42] is given by our (−1)h qh1,h2,h
B (m, r)

with the identification h1 = i + 2, h2 = α + 3
2 , h = l − 1 and the

structure constant ãi α
l (m, r) of [42] is given by our (−1)h qh1,h2,h

F (m, r)
with the identification h1 = i + 2, h2 = α + 3

2 , h = l − 1.
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× ( ∂̄h−lφ ı̄,a ∂̄ lψ̄ i,ᾱ ). (2.7)

The l = 0 cases of single summations correspond to the
lowest weights, 1, 2, 3

2 and 3
2 . The normalizations are given

by

nWF,h = 2h−3(h − 1)!
(2h − 3)!! λh−2, nWB,h = 2h−3 h!

(2h − 3)!! λh−2,

nQ
h+ 1

2
= 2h− 1

2 h!
(2h − 1)!! λh−1 = nQ̄

h+ 1
2

. (2.8)

Then we can check that the modes of (2.7) satisfy the
previous (anti)commutator relations (2.1) by using the mode
expansion for the normal ordering between the free fields in
the conformal field theory. After using the (anti)commutator
relations corresponding to (2.6), the left hand sides of (2.1)
contain the quadratic free fields having the explicit modes
(where the coefficients depend on the weights, the modes
and the dummy variable from the infinite sum) and the cen-
tral terms. Similarly, the right hand sides of (2.1) contain the
quadratic free fields and the central terms in the presence of
the nontrivial structure constants (2.3). For several low values
of the weights and the modes, we can check the several non-
trivial identities. Alternatively, after using the Thielemans
package [52] for low values of the weights, simplifying the
right hand sides of the OPEs between the currents and rewrit-
ing down them in terms of the (anti)commutator relations
with the help of the explicit formula in [53,54], the previous
algebra (2.1) can be checked also explicitly.4

2.3 The N = 2 supersymmetric WK ,K∞ algebra with
U (K ) ×U (K ) symmetry

Let us consider the case of K = L . Then the number of
(anti)fundamental indices is the same. From the decomposi-
tion of U (K + K ) = U (K ) ⊕ U (K ) ⊕ (K, K̄) ⊕ (K̄,K),
the generators consists of t Â

αβ̄
, t Â

ab̄
, t Âαā and t Âaᾱ in addition to

δαβ̄ , δab̄, δαā and δaᾱ with Â = 1, 2, . . . , (K 2 − 1).
By multiplying the generators into the four kinds of cur-

rents, we obtain four kinds of singlets and adjoints of U (K )

as follows:

WF,h ≡ W ᾱβ
F,h δβᾱ, W Â

F,h ≡ W ᾱβ
F,h t

Â
βᾱ,

WB,h ≡ Wāb
B,h δbā, W Â

B,h ≡ Wāb
B,h t

Â
bā,

Qh+ 1
2

≡ Qāα

h+ 1
2
δαā, QÂ

h+ 1
2

≡ Qāα

h+ 1
2
t Âαā,

Q̄h+ 1
2

≡ Q̄aᾱ

h+ 1
2
δaᾱ, Q̄ Â

h+ 1
2

≡ Q̄aᾱ

h+ 1
2
t Âaᾱ,

Â = 1, 2, . . . , (K 2 − 1). (2.9)

4 This paragraph is based on the discussion with S. Odake some years
ago.

Now we would like to rewrite down (2.1) in terms of (2.9)
after multiplying the various generators 5.

2.3.1 The WK
1+∞ algebra

Now we can multiply the generators into the first equation of
(2.1) and the three commutator relations can be obtained as
follows:

[
(WF,h1)m, (WF,h2)n

] =
h1+h2−3∑

h=0,even

λh ph1,h2,h
F (m, n)

×(WF,h1+h2−2−h)m+n + K cWF,h1
δh1h2 λ2(h1−2) δm+n,

[
(WF,h1)m, (W Â

F,h2
)n

] =
h1+h2−3∑

h=0,even

λh ph1,h2,h
F (m, n)

×(W Â
F,h1+h2−2−h)m+n,

[
(W Â

F,h1
)m, (W B̂

F,h2
)n

] = −
h1+h2−3∑

h=−1,odd

λh ph1,h2,h
F (m, n)

× i

2
f Â B̂Ĉ (WĈ

F,h1+h2−2−h)m+n

+cWF,h1
δ Â B̂ δh1h2 λ2(h1−2) δm+n

+
h1+h2−3∑

h=0,even

λh ph1,h2,h
F (m, n)

[1

2
d ÂB̂Ĉ

×(WĈ
F,h1+h2−2−h)m+n + 1

K
δ Â B̂ (WF,h1+h2−2−h)m+n

]
.

(2.10)

This WK
1+∞ algebra (or ˆSU (K )k W1+∞ algebra) was found

in [44]. The first equation of (2.10) generated by the singlet
current of U (K ) is W1+∞ algebra and its extension with the
adjoint of U (K ) appears in the remaining equations. In the
last equation of (2.10), the identity for the product of two

generators t Â t B̂ = 1
K δ Â B̂ 1K + 1

2 (i f + d) Â B̂Ĉ t Ĉ is used.
Note that the weights in the right hand side appear in even
or odd integers. Of course, by taking the contractions of the
currents with the vanishing λ limit, the first equation reduces
to the w1+∞ algebra (which is the weight-1 extension of w∞
algebra [7]) as shown in [8].6

5 From now on, we do not have to distinguish the two (anti) fundamental
indices.
6 By redefining the currents of weights 2, 3, 4 nonlinearly, we can
decouple the weight-1 current from other currents. That is, there are
no singular OPEs between the weight-1 current and others. The OPEs
between the above currents of weights 2, 3, 4 do not contain the weight-
1 current at the poles in the right hand side. The lowest pole we are con-
sidering contains the weight-4 current. For the poles having the higher
spin current of spins, 5, 6, . . . , we need to find out the corresponding
redefined currents step by step. We expect that this will be true for higher
weights. See also the relevant paper [55].
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2.3.2 The WK∞ algebra

The second equation of (2.1) can be rewritten as

[
(WB,h1 )m , (WB,h2 )n

] =
h1+h2−4∑

h=0,even

λh ph1,h2,h
B (m, n)

× (WB,h1+h2−2−h)m+n + K cWB,h1
δh1h2 λ2(h1−2) δm+n,

[
(WB,h1 )m , (W Â

B,h2
)n

] =
h1+h2−4∑

h=0,even

λh ph1,h2,h
B (m, n)

×(W Â
B,h1+h2−2−h)m+n,

[
(W Â

B,h1
)m , (W B̂

B,h2
)n

] = −
h1+h2−4∑

h=−1,odd

λh ph1,h2,h
B (m, n)

i

2
f ÂB̂Ĉ

×(WĈ
B,h1+h2−2−h)m+n + cWB,h1

δ Â B̂ δh1h2 λ2(h1−2) δm+n

+
h1+h2−4∑

h=0,even

λh ph1,h2,h
B (m, n)

[
1

2
d ÂB̂Ĉ (WĈ

B,h1+h2−2−h)m+n

+ 1

K
δ Â B̂ (WB,h1+h2−2−h)m+n

]
. (2.11)

This WK∞ algebra was found in [43]. The first equation of
(2.11) generated by the singlet current of U (K ) is W∞ alge-
bra and its extension with the adjoint of U (K ) appears in the
remaining equations. The algebraic structure of (2.11) looks
similar to the one of (2.10). The upper bound of dummy
variable h and the structure constants are different from each
other. By taking the contractions of the currents with the van-
ishing λ limit, the first equation reduces to the w∞ algebra
[7].

2.3.3 The commutators between the bosonic and fermionic
currents

In this case, we have four commutator relations after multi-
plying the generators into the third equation of (2.1)

[
(WF,h1 )m , (Qh2+ 1

2
)r

] =
h1+h2−3∑

h=−1

λh q
h1,h2+ 1

2 ,h
F (m, r)

×(Qh1+h2− 3
2 −h)m+r ,

[
(WF,h1 )m , (QÂ

h2+ 1
2
)r

] =
h1+h2−3∑

h=−1

λh q
h1,h2+ 1

2 ,h
F (m, r)

×(QÂ
h1+h2− 3

2 −h
)m+r ,

[
(W Â

F,h1
)m , (Qh2+ 1

2
)r

] =
h1+h2−3∑

h=−1

λh q
h1,h2+ 1

2 ,h
F (m, r)

×(QÂ
h1+h2− 3

2 −h
)m+r ,

[
(W Â

F,h1
)m , (QB̂

h2+ 1
2
)r

] =
h1+h2−3∑

h=−1

λh q
h1,h2+ 1

2 ,h
F (m, r)

i

2
f ÂB̂Ĉ

×(QĈ
h1+h2− 3

2 −h
)m+r +

h1+h2−3∑

h=−1

λh q
h1,h2+ 1

2 ,h
F (m, r)

×
[

1

2
d ÂB̂Ĉ (QĈ

h1+h2− 3
2 −h

)m+r + 1

K
δ Â B̂ (Qh1+h2− 3

2 −h)m+r

]
.

(2.12)

2.3.4 The commutators between the other bosonic and
fermionic currents

From the fifth equation of (2.1), the following four commu-
tator relations can be obtained by multiplying the generators

[
(WB,h1)m, (Qh2+ 1

2
)r

] =
h1+h2−3∑

h=−1

λh q
h1,h2+ 1

2 ,h
B (m, r)

×(Qh1+h2− 3
2 −h)m+r ,

[
(WB,h1)m, (QÂ

h2+ 1
2
)r

] =
h1+h2−3∑

h=−1

λh q
h1,h2+ 1

2 ,h
B (m, r)

×(QÂ
h1+h2− 3

2 −h
)m+r ,

[
(W Â

B,h1
)m, (Qh2+ 1

2
)r

] =
h1+h2−3∑

h=−1

λh q
h1,h2+ 1

2 ,h
B (m, r)

×(QÂ
h1+h2− 3

2 −h
)m+r ,

[
(W Â

B,h1
)m, (QB̂

h2+ 1
2
)r

]

= −
h1+h2−3∑

h=−1

λh q
h1,h2+ 1

2 ,h
B (m, r)

i

2
f Â B̂Ĉ

×(QĈ
h1+h2− 3

2 −h
)m+r +

h1+h2−3∑

h=−1

λh q
h1,h2+ 1

2 ,h
B (m, r)

×
[

1

2
d ÂB̂Ĉ (QĈ

h1+h2− 3
2 −h

)m+r

+ 1

K
δ Â B̂ (Qh1+h2− 3

2 −h)m+r

]
. (2.13)

We present here (2.12) and (2.13) which are necessary to
describe the discussion of next section and the remaining
(anti)commutator relations are presented in Appendix A.

2.4 Free field realization

From (2.9) and (2.7) with (2.8), we obtain the following free
field realization

WF,h = nWF,h

h−1∑

l=0

N∑

i, ı̄=1

δi,ı̄ (−1)l
(
h − 1
l

)2

× ( ∂̄h−l−1ψ̄ i,ᾱ δβᾱ ∂̄ lψ ı̄,β ),
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W Â
F,h = nWF,h

h−1∑

l=0

N∑

i, ı̄=1

δi,ı̄ (−1)l
(
h − 1
l

)2

× ( ∂̄h−l−1ψ̄ i,ᾱ t Âβᾱ ∂̄ lψ ı̄,β ),

WB,h = nWB,h

h−2∑

l=0

N∑

i, ı̄=1

δi,ı̄
(−1)l

(h − 1)

(
h − 1
l

) (
h − 1
l + 1

)

× ( ∂̄h−l−1φ̄i,ā δbā ∂̄ l+1φ ı̄,b ),

W Â
B,h = nWB,h

h−2∑

l=0

N∑

i, ı̄=1

δi,ı̄
(−1)l

(h − 1)

(
h − 1
l

) (
h − 1
l + 1

)

× ( ∂̄h−l−1φ̄i,ā t Âbā ∂̄ l+1φ ı̄,b ),

Qh+ 1
2

= nQ
h+ 1

2

h−1∑

l=0

N∑

i, ı̄=1

δi,ı̄ (−1)l
(
h − 1
l

)(
h
l

)

× ( ∂̄h−l φ̄i,ā δαā ∂̄ lψ ı̄,α ),

QÂ
h+ 1

2
= nQ

h+ 1
2

h−1∑

l=0

N∑

i, ı̄=1

δi,ı̄ (−1)l
(
h − 1
l

)(
h
l

)

× ( ∂̄h−l φ̄i,ā t Âαā ∂̄ lψ ı̄,α ),

Q̄h+ 1
2

= nQ̄
h+ 1

2

h−1∑

l=0

N∑

i, ı̄=1

δi,ı̄ (−1)h−1+l
(
h − 1
l

) (
h
l

)

× ( ∂̄h−lφ ı̄,a δaᾱ ∂̄ lψ̄ i,ᾱ ),

Q̄ Â
h+ 1

2
= nQ̄

h+ 1
2

h−1∑

l=0

N∑

i, ı̄=1

δi,ı̄ (−1)h−1+l
(
h − 1
l

) (
h
l

)

× ( ∂̄h−lφ ı̄,a t Âaᾱ ∂̄ lψ̄ i,ᾱ ). (2.14)

The number N which is contracted in (2.14) does not play any
role of our discussion. In this basis, the singlet and adjoint
property ofU (K ) is clear. It is evident that the above free field
realizations satisfy (2.12) and (2.13) and Appendices (A.1),
(A.3) and (A.5). Except the last two of (2.14), the remaining
ones will be used in next section.

2.5 The existence of N = 2 supersymmetric w
K ,K∞ algebra

with U (K ) ×U (K ) symmetry?

By taking the simple rescalings

Wh → λWh, W Â
h → λW Â

h ,

Qh+ 1
2

→ λ Qh+ 1
2
, QÂ

h+ 1
2

→ λ QÂ
h+ 1

2
, (2.15)

and putting the λ to vanish, we obtain the following commu-
tator relations

[
(W Â

F,h1
)m , (W B̂

F,h2
)n

] = − i

4
f ÂB̂Ĉ (WĈ

F,h1+h2−1)m+n,

[
(W Â

B,h1
)m , (W B̂

B,h2
)n

] = − i

4
f ÂB̂Ĉ (WĈ

B,h1+h2−1)m+n,

[
(WF,h1 )m , (Qh2+ 1

2
)r

] = −1

4
(Qh1+h2− 1

2
)m+r ,

[
(WF,h1 )m , (QÂ

h2+ 1
2
)r

] = −1

4
(QÂ

h1+h2− 1
2
)m+r ,

[
(W Â

F,h1
)m , (Qh2+ 1

2
)r

] = −1

4
(QÂ

h1+h2− 1
2
)m+r ,

[
(W Â

F,h1
)m , (QB̂

h2+ 1
2
)r

] = − i

8
f ÂB̂Ĉ (QĈ

h1+h2− 1
2
)m+r

−1

4

[
1

2
d ÂB̂Ĉ (QĈ

h1+h2− 1
2
)m+r + 1

K
δ Â B̂ (Qh1+h2− 1

2
)m+r

]
,

[
(WB,h1 )m , (Qh2+ 1

2
)r

] = 1

4
(Qh1+h2− 1

2
)m+r ,

[
(WB,h1 )m , (QÂ

h2+ 1
2
)r

] = 1

4
(QÂ

h1+h2− 1
2
)m+r ,

[
(W Â

B,h1
)m , (Qh2+ 1

2
)r

] = 1

4
(QÂ

h1+h2− 1
2
)m+r ,

[
(W Â

B,h1
)m , (QB̂

h2+ 1
2
)r

] = − i

8
f ÂB̂Ĉ (QĈ

h1+h2− 1
2
)m+r

+1

4

[
1

2
d ÂB̂Ĉ (QĈ

h1+h2− 1
2
)m+r + 1

K
δ Â B̂ (Qh1+h2− 1

2
)m+r

]
.

(2.16)

There are no mode dependent terms in the right hand side.
In the OPE language, the 1

λ term in the first order pole in the
original OPEs survives. Other reduced commutator relations
similar to (2.16) appear in Appendix A. Once we keep the
commutators in the bosonic singlet currents, then we have
some 1

λ dependence in other commutators.

3 The N = 1 supersymmetric WK∞ algebra with U(K )

symmetry

3.1 The N = 1 supersymmetric WK∞ algebra with U (K )

symmetry

3.1.1 The commutators between the bosonic currents

In [48], the bosonic current of weight h is given by the lin-
ear combination of WB,h , WF,h , ∂̄ WB,h−1 and ∂̄ WF,h−1. In
terms of their modes with correct deformation parameter λ
(the power of λ should be equal to (h − 2)), we obtain the
following U (K )-singlet and U (K )-adjoint currents together
with (2.9)

(Wh)m ≡ (WB,h)m + (WF,h)m

+λ
2(h − 2)(m + (h − 2) + 1)

2(h − 2) + 1
(WB,h−1)m

−λ
(2(h − 2) + 2)(m + (h − 2) + 1)

2(h − 2) + 1
(WF,h−1)m ,

(W Â
h )m ≡ (W Â

B,h)m + (W Â
F,h)m

+λ
2(h − 2)(m + (h − 2) + 1)

2(h − 2) + 1
(W Â

B,h−1)m

−λ
(2(h − 2)+2)(m+(h − 2)+1)

2(h − 2) + 1
(W Â

F,h−1)m . (3.1)
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According to the construction of (3.1), the lowest value for
the weight h of the bosonic current WB,h is given by h = 2.
When h = 2, the third term of each expression vanishes due
to the coefficient. The U (K )-adjoint current is new and is
the matrix generalization of [48]. The mode m dependence
in the coefficients appears in the third and fourth terms when
we write down the mode of derivative of current in terms of
mode of the current itself.7

Then we can determine their commutator relations explic-
itly by using both (2.10) and (2.11) as follows:

[
(Wh1)m, (Wh2)n

] =
h1+h2−4∑

h=0

λh qh1,h2,h(m, n)

×(Wh1+h2−2−h)m+n + cW,h1(m),

[
(Wh1)m, (W Â

h2
)n

] =
h1+h2−4∑

h=0

λh qh1,h2,h(m, n)

×(W Â
h1+h2−2−h)m+n,

[
(W Â

h1
)m, (W B̂

h2
)n

] = −
h1+h2−4∑

h=−1

λh q̃h1,h2,h(m, n)

× i

2
f Â B̂Ĉ (WĈ

h1+h2−2−h)m+n

+ 1

K
δ Â B̂ cW,h1(m) +

h1+h2−4∑

h=0

λh qh1,h2,h(m, n)

×
[

1

2
d ÂB̂Ĉ (WĈ

h1+h2−2−h)m+n

+ 1

K
δ Â B̂ (Wh1+h2−2−h)m+n

]
. (3.2)

Again, the last two relations in (3.2) are new. Compared to
(2.11), the algebraic structure looks similar, but the structure
constants are different from each other and the range for the
dummy variable h in the right hand sides is different. It is
claimed in [48] that the algebra in the first relation of (3.2)
is isomorphic to the W∞ algebra [39,40].8 Here the central
terms appearing in the first and the last equations of (3.2) are
given by the following expression

cW,h1(m) = K

[
cWB,h1

(m) δh1h2 λ2(h1−2)

+λ
2(h2 − 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1
cWB,h1

×(m) δh1,h2−1 λ2(h1−2)

7 In principle [55], we can add the weight-1 currents by reversing the
procedure in the footnote 6 and obtain the WK

1+∞ algebra and by con-
tractions the corresponding wK

1+∞ algebra can be obtained).
8 It is known in [48] that the diagonal W∞ algebra from the current Wh
is generated in W∞ algebra (generated by WB,h) and W1+∞ algebra
(generated by WF,h).

+λ
2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
cWB,h1−1

×(m) δh1−1,h2 λ2(h1−1−2)

+λ2 2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

×2(h2 − 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

×cWB,h1−1(m) δh1−1,h2−1 λ2(h1−1−2)

+cWF,h1
(m) δh1h2 λ2(h1−2)

−λ
(2(h2 − 2) + 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1
cWF,h1

×(m) δh1,h2−1 λ2(h1−2)

−λ
(2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
cWF,h1−1

×(m) δh1−1,h2 λ2(h1−1−2)

+λ2 (2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

× (2(h2 − 2) + 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

×cWF,h1−1(m) δh1−1,h2−1 λ2(h1−1−2)

]
δm+n .

(3.3)

We can check that the above expression (3.3) vanishes (topo-
logical property) by using the Kronecker delta conditions
properly. The second and the sixth, the third and the seventh,
and the remaining ones can be combined as the independent
terms. We introduce the following structure constants

qh1,h2,h(m, n) ≡ q
h1,h2− 1

2 ,h
B

(
m, n + 1

2

)

+2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
q
h1−1,h2− 1

2 ,h−1
B

×
(
m, n + 1

2

)
+ q

h1,h2− 1
2 ,h

F

(
m, n + 1

2

)

− (2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
q
h1−1,h2− 1

2 ,h−1
F

×
(
m, n + 1

2

)
,

q̃h1,h2,h(m, n) ≡ q
h1,h2− 1

2 ,h
B

(
m, n + 1

2

)

+2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
q
h1−1,h2− 1

2 ,h−1
B

×
(
m, n + 1

2

)
− q

h1,h2− 1
2 ,h

F

(
m, n + 1

2

)

+ (2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
q
h1−1,h2− 1

2 ,h−1
F

×
(
m, n + 1

2

)
. (3.4)
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The first relation of (3.4) was found in [48] with our conven-
tion and is more natural in the commutator relation between
the bosonic current and the fermionic current in next sub-
section. That is the reason why there are shifts in the weight
h2 and the mode n. The second and the fourth terms have
the explicit mode m dependence due to the derivative terms
as we explained before. Note that there are precise relations
between the structure constants (pB, pF ) which appear in
the equations (2.10) and (2.11) and the structure constants
(qF , qB) which appear in the equations (2.12) and (2.13) at
each term in the commutator relations. Their relations will
appear later.

3.1.2 The commutators between the bosonic currents and
the fermionic currents

Now we obtain the commutator relations including the
fermionic currents. By using (2.12), (2.13) and (2.9), the fol-
lowing relations satisfy

[
(Wh1 )m , (Qh2+ 1

2
)r

] =
h1+h2−3∑

h=−1

λh qh1,h2+1,h
(
m, r − 1

2

)

×
(
Qh1+h2− 3

2 −h

)

m+r
,

[
(Wh1 )m , (QÂ

h2+ 1
2
)r

] =
h1+h2−3∑

h=−1

λh qh1,h2+1,h
(
m, r − 1

2

)

×
(
QÂ

h1+h2− 3
2 −h

)

m+r
,

[
(W Â

h1
)m , (Qh2+ 1

2
)r

] =
h1+h2−3∑

h=−1

λh qh1,h2+1,h
(
m, r − 1

2

)

×(QÂ
h1+h2− 3

2 −h
)m+r ,

[
(W Â

h1
)m , (QB̂

h2+ 1
2
)r

] =
h1+h2−3∑

h=−1

λh q̂h1,h2+ 1
2 ,h(m, r)

i

2
f ÂB̂Ĉ

×(QĈ
h1+h2− 3

2 −h
)m+r +

h1+h2−3∑

h=−1

λh q̌h1,h2+ 1
2 ,h(m, r)

×
[

1

2
d ÂB̂Ĉ (QĈ

h1+h2− 3
2 −h

)m+r + 1

K
δ Â B̂ (Qh1+h2− 3

2 −h)m+r

]

+
h1+h2−3∑

h=−1

λh q̇h1,h2+ 1
2 ,h(m, r)

i

2
f ÂB̂Ĉ (QĈ

h1−1+h2− 3
2 −h

)m+r

+
h1+h2−3∑

h=−1

λh q̄h1,h2+ 1
2 ,h(m, r)

[
1

2
d ÂB̂Ĉ (QĈ

h1−1+h2− 3
2 −h

)m+r

+ 1

K
δ Â B̂ (Qh1−1+h2− 3

2 −h)m+r

]
. (3.5)

Again, the first relation of (3.5) was found in [48]. The
remaining ones are the matrix generalization. In the last equa-
tion of (3.5), the following structure constants are introduced
by collecting each contribution

q̂h1,h2,h(m, r) ≡ −qh1,h2,h
B (m, r) + qh1,h2,h

F (m, r),

q̌h1,h2,h(m, r) ≡ qh1,h2,h
B (m, r) + qh1,h2,h

F (m, r),

q̇h1,h2,h(m, r) ≡ −2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
qh1−1,h2,h

B (m, r)

− (2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
qh1−1,h2,h

F (m, r),

q̄h1,h2,h(m, r) ≡ 2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
qh1−1,h2,h

B (m, r)

− (2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
qh1−1,h2,h

F (m, r). (3.6)

Although we introduce the weight h2 in the structure constant
in (3.6), their appearance in (3.5) takes the form of (h2 + 1

2 )

which is the weight of the fermionic current in the left hand
side. The shift in the weight h1 of the structure constants
(qB, qF ) in the last two of (3.6) can be understood from
the derivative of the bosonic current in the left hand side.
Moreover, the last three terms in the last equation of (3.5)
have the weight of the first three terms minus one. We can
combine the last three terms by introducing a new dummy
variable (h+ 1) with the first three terms in addition to other
term. In this way, we can simplify the last equation of (3.5)
further.

Then one of our main results with a deformation parameter
λ is summarized by (3.2) and (3.5) together with (3.4) and
(3.6). We will present the realization of this algebra in the
supersymmetric Einstein–Yang–Mills theory.

3.2 Free field realization

By combining (2.9) and (2.14), we can write down the free
field realization for the singlet current and the adjoint current
of U (K ) as follows:

Wh = WB,h + WF,h − λ
2(h − 2)

2(h − 2) + 1
∂̄ WB,h−1

+λ
2(h − 2) + 2

2(h − 2) + 1
∂̄ WF,h−1,

= 2h−2(h − 1)!
(2(h − 2) + 1)!! λh−2

h−2∑

l=0

N∑

i, ı̄=1

δi,ı̄ (−1)l

×
(
h − 2
l

)(
h − 1
l

)

×
(

∂̄h−l−1φ̄i,ā δbā ∂̄ l+1φ ı̄,b + ∂̄h−l−1ψ̄ i,ᾱ δβᾱ ∂̄ lψ ı̄,β
)

,

W Â
h = W Â

B,h + W Â
F,h − λ

2(h − 2)

2(h − 2) + 1
∂̄ W Â

B,h−1

+λ
2(h − 2) + 2

2(h − 2) + 1
∂̄ W Â

F,h−1

= 2h−2(h − 1)!
(2(h − 2) + 1)!! λh−2

h−2∑

l=0

N∑

i, ı̄=1

δi,ı̄ (−1)l

×
(
h − 2
l

)(
h − 1
l

)

123
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×
(

∂̄h−l−1φ̄i,ā t Âbā ∂̄ l+1φ ı̄,b + ∂̄h−l−1ψ̄ i,ᾱ t Âβᾱ ∂̄ lψ ı̄,β
)

.

(3.7)

There is some difference in the sign when we compare with
the result of [48] because this comes from the fact that we
are using different normalization in the Footnote 3.

The remaining superpartner currents come from (2.14) as
follows:

Qh+ 1
2

= 2h− 1
2 h!

(2h − 1)!! λh−1
h−1∑

l=0

N∑

i, ı̄=1

δi,ı̄ (−1)l
(
h − 1
l

)(
h
l

)

× ( ∂̄h−l φ̄i,ā δαā ∂̄ lψ ı̄,α ) ,

QÂ
h+ 1

2
= 2h− 1

2 h!
(2h − 1)!! λh−1

h−1∑

l=0

N∑

i, ı̄=1

δi,ı̄ (−1)l
(
h − 1
l

)(
h
l

)

× ( ∂̄h−l φ̄i,ā t Âαā ∂̄ lψ ı̄,α). (3.8)

In principle, we can check the previous commutator relations
by using these free field realizations, calculating the various
OPEs and rewriting down these in terms of commutator rela-
tions. The power of deformation parameter is given by the
weight minus 2 or 3

2 . As in the abstract, the results of (3.7)
and (3.8) are the matrix generalization of previous work of
[48].

3.3 The N = 1 supersymmetric wK∞ algebra with U (K )

symmetry

In order to keep the nonzero lowest power of the deformation
parameter in each term of (3.2) and (3.5), we consider the
scales for the currents with the deformation parameter whose
power depends on the weights. According to the following
transformations,

Wh → λh−2 Wh, W Â
h → λh W Â

h ,

Qh+ 1
2

→ λh+ 1
2 −2 Qh+ 1

2
, QÂ

h+ 1
2

→ λh+ 1
2 QÂ

h+ 1
2
, (3.9)

we obtain the following the N = 1 supersymmetric wK
1+∞

algebra with U (K ) symmetry after redefining as (3.9) and
taking λ → 0 limit with the help of (3.4) and (3.6)

[
(Wh1 )m , (Wh2 )n

] → qh1,h2,0(m, n) (Wh1+h2−2)m+n

=
[
m(h2 − 1) − n(h1 − 1)

]
(Wh1+h2−2)m+n,

[
(Wh1 )m , (W Â

h2
)n

] → qh1,h2,0(m, n) (W Â
h1+h2−2)m+n

=
[
m(h2 − 1) − n(h1 − 1)

]
(W Â

h1+h2−2)m+n,

[
(W Â

h1
)m , (W B̂

h2
)n

] → −q̃h1,h2,−1(m, n)
i

2
f ÂB̂Ĉ (WĈ

h1+h2−1)m+n

= − i

4
f ÂB̂Ĉ (WĈ

h1+h2−1)m+n,

[
(Wh1 )m , (Qh2+ 1

2
)r

] → qh1,h2+1,0
(
m, r − 1

2

)
(Qh1+h2− 3

2
)m+r

=
[
m(h2 + 1 − 1) −

(
r − 1

2

)
(h1 − 1)

]
(Qh1+h2− 3

2
)m+r ,

[
(Wh1 )m , (QÂ

h2+ 1
2
)r

] → qh1,h2+1,0
(
m, r − 1

2

)
(QÂ

h1+h2− 3
2
)m+r

=
[
m(h2 + 1 − 1) −

(
r − 1

2

)
(h1 − 1)

]
(QÂ

h1+h2− 3
2
)m+r ,

[
(W Â

h1
)m , (Qh2+ 1

2
)r

] → qh1,h2+1,0
(
m, r − 1

2

)
(QÂ

h1+h2− 3
2
)m+r

=
[
m(h2 + 1 − 1) −

(
r − 1

2

)
(h1 − 1)

]
(QÂ

h1+h2− 3
2
)m+r ,

[
(W Â

h1
)m , (QB̂

h2+ 1
2
)r

] → q̂h1,h2+ 1
2 ,−1(m, r)

i

2
f ÂB̂Ĉ

×(QĈ
h1+h2− 1

2
)m+r = − i

4
f ÂB̂Ĉ (QĈ

h1+h2− 1
2
)m+r . (3.10)

Due to the weight (h2 + 1
2 ) for the fermionic current rather

than (h2 + 3
2 ), the shift in h2 in the right hand side appears.

Note that the structure constant qh1,h2+1,−1(m, r − 1
2 ) van-

ishes. In other words, the lowest dummy variable h in the
first three equations of (3.5) starts with h = 0. Moreover,

the structure constant q̌h1,h2+ 1
2 ,−1(m, r) in the last equation

of (3.5) vanishes. This algebra (3.10) with a rescaling of the

structure constant f Â B̂Ĉ was found in [8] previously. The
point here is that the present description is more transparent
because the last three commutator relations of (3.10) in [8]
are introduced abstractly but in this paper we prove that they
can be obtained from the above N = 1 supersymmetric WK∞
algebra by taking the vanishing λ limit. Therefore, at least,
the celestial holography between the above two-dimensional
symmetry algebra and the OPEs [49] from the supersymmet-
ric Einstein–Yang–Mills theory holds at vanishing λ limit.

3.4 The seven OPEs

In order to present the above commutator relations in terms
of OPEs, we need to introduce the following quantity [40]

Mh1,h2
h (m, n) ≡

h+1∑

k=0

(−1)k
(
h + 1
k

)
(2h1 − h − 2)k

×[2h2 − 2 − k]h+1−k m
h+1−k nk . (3.11)

The degree of this polynomial is given by (h + 1). Then the
above seven commutator relations can be written in terms of
the OPEs (see also [50])

123
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Wh1 (z̄)Wh2 (w̄) =
h1+h2−4∑

h=0

λh (−1)h−1 f h1,h2,h(∂̄z̄, ∂̄w̄)

×
[
Wh1+h2−2−h(w̄)

(z̄ − w̄)

]
+ · · · ,

Wh1 (z̄)W
Â
h2

(w̄) =
h1+h2−4∑

h=0

λh (−1)h−1 f h1,h2,h(∂̄z̄, ∂̄w̄)

×
[
W Â

h1+h2−2−h(w̄)

(z̄ − w̄)

]
+ · · · ,

W Â
h1

(z̄)W B̂
h2

(w̄) =
h1+h2−4∑

h=−1

λh (−1)h−1 f̃ h1,h2,h(∂̄z̄, ∂̄w̄)

×
[− i

2 f ÂB̂Ĉ W Ĉ
h1+h2−2−h(w̄)

(z̄ − w̄)

]
+ · · · ,

+
h1+h2−4∑

h=0

λh (−1)h−1 f h1,h2,h(∂̄z̄, ∂̄w̄)

×
[ 1

2 d ÂB̂Ĉ W Ĉ
h1+h2−2−h(w̄) + 1

K δ Â B̂ Wh1+h2−2−h(w̄)

(z̄ − w̄)

]
+ · · · ,

Wh1 (z̄) Qh2+ 1
2
(w̄) =

h1+h2−3∑

h=−1

λh (−1)h−1 f h1,h2+1,h(∂̄z̄, ∂̄w̄)

×
[ Qh1+h2− 3

2 −h(w̄)

(z̄ − w̄)

]
+ · · · ,

Wh1 (z̄) Q
Â
h2+ 1

2
(w̄) =

h1+h2−3∑

h=−1

λh (−1)h−1 f h1,h2+1,h(∂̄z̄, ∂̄w̄)

×
[ QÂ

h1+h2− 3
2 −h

(w̄)

(z̄ − w̄)

]
+ · · · ,

W Â
h1

(z̄) Qh2+ 1
2
(w̄) =

h1+h2−3∑

h=−1

λh (−1)h−1

×
[
f h1,h2+1,h(∂̄z̄, ∂̄w̄)

QÂ
h1+h2− 3

2 −h
(w̄)

(z̄ − w̄)

]
+ · · · ,

W Â
h1

(z̄) QB̂
h2+ 1

2
(w̄) =

h1+h2−4∑

h=−1

λh (−1)h−1 f̂ h1,h2+ 1
2 ,h(∂̄z̄, ∂̄w̄)

×
[ i

2 f ÂB̂Ĉ QĈ
h1+h2− 3

2 −h
(w̄)

(z̄ − w̄)

]

+
h1+h2−4∑

h=0

λh (−1)h−1 f̌ h1,h2+ 1
2 ,h(∂̄z̄, ∂̄w̄)

×
[ 1

2 d ÂB̂Ĉ QĈ
h1+h2− 3

2 −h
(w̄) + 1

K δ Â B̂ Qh1+h2− 3
2 −h(w̄)

(z̄ − w̄)

]

+
h1+h2−4∑

h=−1

λh (−1)h ḟ h1,h2+ 1
2 ,h(∂̄z̄, ∂̄w̄)

×
[ i

2 f ÂB̂Ĉ QĈ
h1−1+h2− 3

2 −h
(w̄)

(z̄ − w̄)

]

+
h1+h2−4∑

h=0

λh (−1)h f̄ h1,h2+ 1
2 ,h(∂̄z̄, ∂̄w̄)

×
[ 1

2 d ÂB̂Ĉ QĈ
h1−1+h2− 3

2 −h
(w̄)+ 1

K δ Â B̂ Qh1−1+h2− 3
2 −h(w̄)

(z̄ − w̄)

]
+ · · · .

(3.12)

The various differential operators coming from the structure
constants act on the two complex coordinates (z̄, w̄). The
currents in the right hand sides do depend on the coordinate
w̄.

From the structure constants where the quantity Nh1,h2
h (m, n)

in (2.4) is replaced by the quantity Mh1,h2
h (m, n) in (3.11)

f h1,h2,h
F (m, r) ≡ (−1)h

4(h + 2)!
[
(h1 − 1) φ

h1,h2+ 1
2

h+1 (0, 0)

−(h1 − h − 3) φ
h1,h2+ 1

2
h+1 (0,− 1

2 )

]
Mh1,h2

h (m, r),

f h1,h2,h
B (m, r) ≡ −1

4(h + 2)!
[
(h1 − h − 2) φ

h1,h2+ 1
2

h+1 (0, 0)

−(h1) φ
h1,h2+ 1

2
h+1 (0,− 1

2 )

]
Mh1,h2

h (m, r), (3.13)

the previous structure constants together with (3.13) can be
expressed as follows:

f h1,h2,h(m, n) ≡ f
h1,h2− 1

2 ,h
B

(
m, n + 1

2

)

+2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
f
h1−1,h2− 1

2 ,h−1
B

×
(
m, n + 1

2

)
+ f

h1,h2− 1
2 ,h

F

(
m, n + 1

2

)

− (2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
f
h1−1,h2− 1

2 ,h−1
F

×
(
m, n + 1

2

)
,

f̃ h1,h2,h(m, n) ≡ f
h1,h2− 1

2 ,h
B

(
m, n + 1

2

)

+2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
f
h1−1,h2− 1

2 ,h−1
B

×(m, n + 1

2
) − f

h1,h2− 1
2 ,h

F

(
m, n + 1

2

)

+ (2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
f
h1−1,h2− 1

2 ,h−1
F

×
(
m, n + 1

2

)
,

f̂ h1,h2,h(m, r) ≡ − f h1,h2,h
B (m, r) + f h1,h2,h

F (m, r),

f̌ h1,h2,h(m, r) ≡ f h1,h2,h
B (m, r) + f h1,h2,h

F (m, r),

ḟ h1,h2,h(m, r) ≡ −2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

× f h1−1,h2,h
B (m, r)

− (2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
f h1−1,h2,h
F (m, r),

123
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f̄ h1,h2,h(m, r) ≡ 2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

× f h1−1,h2,h
B (m, r)

− (2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1
f h1−1,h2,h
F (m, r).

(3.14)

In Appendix B, we present the explicit OPEs between the cur-

rents W4, W Â
4 , Q 7

2
and QÂ

7
2
. On the one hand, from the con-

struction of free field realization, the OPEs can be obtained
from either by hands or by Thielemans package [52] for fixed
weights h1 and h2. On the other hand, we can write down
(3.12) explicitly by substituting the structure constants which
are differential operators into (3.12). The crucial point here
is that from the transformation of (3.14) to the ones in (3.12)
where m → ∂̄z̄ and n, r → ∂̄w̄, we should keep only the
terms having a degree (h + 1) of the polynomial. In general,
the structure constants in (3.14) do have the terms having a
power sum of two variables less than the above (h+1) of the
polynomial, contrary to the case of (3.13). We will provide
some details in Appendix B.

3.5 The possible realization in the N = 1 supersymmetric
Einstein–Yang–Mills theory

It is known, in [5], that the leading OPE for two positive helic-
ity gluons is given by the simple pole in the holomorphic sec-
tor with Euler beta function whose arguments depend on the
two conformal weights appearing on the left hand side. They
consider the scattering states in MHV (Maximally Helicity
Violating) tree amplitudes. The celestial amplitudes can be
written as the massless n particle amplitudes, which depend
on the energies and the points on the celestial sphere, in the
Mellin space. These amplitudes can be interpreted as correla-
tion functions of n primary operators on the celestial sphere.
The simplest nontrivial scattering process occurs in the n = 4
gluons. Then the leading order behavior for the above mass-
less four particle amplitudes can be obtained by taking the
holomorphic collinear limit for the positive helicity (outgo-
ing) gluons. Then it is possible to relate the full n = 4 ampli-
tude to n = 3 amplitude and the corresponding celestial four
point correlation function can be expressed as an integral
over some integral parameter where the integrand contains
the three point correlation function. Moreover the OPE of
two positive helicity (outgoing) gluons can be described as
a conformal block including all the antiholomorphic descen-
dants. Then the leading OPE for two positive helicity gluons
we mentioned before can be further simplified after perform-
ing a Taylor expansion. Finally, the OPE of the conformally
soft gluon operators takes the simple pole in the holomorphic
sector with finite sum of antiholomorphic derivatives acting
on the second gluon appearing on the left hand side of the

OPE. In this soft limit, the poles appearing in the OPE coef-
ficients (Euler beta function) disappear and the rescaled soft
gluon operators with specific weights occur in the OPE.

For the supersymmetric Einstein–Yang–Mills theory which
is a generalization of previous paragraph, from the collinear
limit of the respective Feynman matrix element, the OPEs can
be obtained by performing the Mellin transforms [49]. For
example, the OPE of the conformal primary graviton and the
conformal primary gravitino of arbitrary weights takes the
simple pole in the holomorphic sector and the OPE coeffi-
cient is given by Euler beta function which depends on the
two previous weights on the left hand side of the OPE. By tak-
ing the soft limit, this OPE between the soft positive helicity
graviton and the soft positive helicity gravitino can be written
in terms of binomial coefficient which depends on the two
weights of the soft operators on the left hand side and dummy
variable for the finite sum for the antiholomorphic derivatives
acting on the soft positive helicity gravitino [8]. The struc-
ture of this OPE looks like the one in previous case between
two soft gluon operators in the sense that the numerical val-
ues appearing in the binomial coefficient and the power of
the difference in the antiholomorphic coordinates are little
different.

The MHV gluon amplitudes in previous paragraph are
the simplest amplitudes in Yang–Mills theory. The next-to-
simplest amplitudes, Next-to-MHV or NMHV sector is stud-
ied in [20] based on the non minimal couplings of gluons and
gravitons by following the work of [32]. From the six-point
NMHV analysis, the amplitude is no longer a finite poly-
nomial in the complex coordinates (and its complex conju-
gated ones) of the soft particle. This leads to the fact that
the lower limits of the holomorphic and the antiholomorphic
mode expansions of the soft graviton, gravitino, gluon and
gluino are given by −∞ instead of finite values in MHV
sector. Furthermore, the upper limits in the dummy variable
appearing on the right hand sides of the OPEs between these
soft operators are not finite values but ∞. This allows us to
obtain the mode dependent function, which also depends on
the three weights, when we express the OPEs in terms of the
commutators between the soft operators.

According to [20,32], the OPE between the soft positive
helicity graviton, where the weights are h1 = k−2

2 and h2 =
l−2

2 , is given by, after taking the soft limit,

Hk(z1, z̄1) Hl (z2, z̄2) = −κ

2

1

z12

∞∑

n=0

(
2 − 2h − k − l − n

1 − h − l

)

× z̄n+h+1
12
n! ∂̄n Hk+l+h(z2, z̄2) + · · · . (3.15)

123
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We can check the weights in the antiholomorphic sector
both sides.9 The left hand side has the weight k−2

2 + l−2
2

while the right hand side has the weight −(n + h + 1)+ n +
k+l−2

2 +h from the last three factors. We observe that for the
n and h dependences in (3.15), there are no additional weight
contributions. In other words, they are cancelled each other
and the inclusion of h does not change the weight in the form
of (3.15). Note that there exists the h-dependence on the right
hand side of (3.15) and for h = 0, we reproduce the result
of [5] with proper upper limit for the summation variable n.
It turns out that by performing the explicit contour integrals
presented in [20], the following commutator relation from
(3.15) is satisfied10

[
(ŵh1)m, (ŵh2)n

]

= (−1)h+1 Nh1,h2
h (m, n) (ŵh1+h2−2−h)m+n . (3.16)

Here ŵh is the rescaled weight-h current and does not depend
on the complex coordinate [8,20]. The mode dependent func-
tion Nh1,h2

h (m, n) is given by the equation (2.4).
By using the two relations in (3.15) and (3.16) with asso-

ciated other relations for the gravitino, gluon and gluino,
we would like to construct the OPEs in the supersymmet-
ric Einstein–Yang–Mills theory related to the previous seven
commutator relations. Note how the weights (h1, h2) and the
modes (m, n) of the left hand side appear on the right hand
side of (3.16).

3.5.1 The OPE between the soft positive helicity graviton
and the soft positive helicity gravitino

At vanishing deformation parameter, the OPE of the confor-
mal primary graviton and the conformal primary gravitino

9 We denote the antiholomorphic weights as h1, h2 and h without
barred notation by taking the notations in previous sections. For the
notation of derivative, we are using the barred notation as in ∂̄z̄ . Tak-
ing the holomorphic and antiholomorphic expansions for the above

soft graviton current we obtain: Hk(z, z̄) = ∑ 2−k
2

n=−∞
Hk
n (z)

z̄n+ k−2
2

=
∑ −2−k

2
m=−∞

∑ 2−k
2

n=−∞
Hk
m,n

zm+ k+2
2 z̄n+ k−2

2
. The operator Hk

m,n is therefore inde-

pendent of z and z̄ and we focus on the case where the mode m is equal
to (1 − h): Ĥ k

n ≡ Hk
m=− k

2 ,n
.

10 In [20], there are two important identities around their equations (3.8)

and (3.10). Their p corresponds to our (h + 1). In their equation (3.8),
we see that the summation over dummy variable with the upper bound p
reflects the mode dependent function Nh1,h2

h (m, n) (2.4). They manage
to express the infinite sum over their α variable in terms of a product of
binomial coefficients. The final result is given by their equation (3.16)
after changing the nontrivial transformation in the mode expansion [6].
Note that the general expression for the binomial coefficient is given by( −2h1 − 2h2 − 2(1 + h) − n

−2h2 − (1 + h)

)
and their results will be used later.

of arbitrary weights is given by [49].11 Then the question is
how the contributions from the nonzero deformation param-
eter occur on the right hand side of this OPE.

(i) At least, we should have the OPE structure found by [32]
which is the fact that the OPE contains the h dependence
in the z̄12, the binomial coefficient and the weight of the
operator appearing on the right hand side. These OPE
coefficients are also obtained from the analysis in the
collinear limits. See also the equation (3.2) of [32] in
which the addition of fermions is also valid.

(ii) As mentioned before (in the non minimal couplings of
gluons and gravitons), after taking the soft limit for the
OPE in (i) in order to absorb the infinite number of poles
appearing in the binomial coefficient, we also require that
there is no restriction on the lower limits of the holomor-
phic and antiholomorphic mode expansions of the soft
operators [20]. See also the equation (A.17) of [20].

(iii) We also should sum over all the contributions from each
fixed h on the right hand side of the OPE. Moreover, due
to the construction of N = 1 supersymmetric theory in
previous section, we should also consider the contribu-
tions from the antiholomorphic derivatives acting on the
soft currents on the left hand sides of the OPEs. In some
sense, we make the supersymmetric generalization of the
work of [20].

Let us consider the case where one of the soft current on
the left hand side in the OPE contains the fermionic current.

First of all, the OPE between the conformally soft positive
helicity gravitons and the conformally soft positive helicity
gravitinos, where the weights in the antiholomorphic sector

are given by h1 = k−2
2 and h2 = l− 3

2
2 , can be generalized to

the following expression

Hk(z1, z̄1) I l (z2, z̄2) = −κ

2

1

z12

h1+h2−3∑

h=0

(−1)h+1 λh

×
[
q
h1,h2+ 1

2 ,h
B + q

h1,h2+ 1
2 ,h

F

]

×
∞∑

n=0

(
3
2 − 2h − k − l − n

1
2 − h − l

)
z̄n+h+1

12
n! ∂̄n I k+l+h(z2, z̄2)

−κ

2

1

z12

h1+h2−3∑

h=0

(−1)h λh
[

2(h1 − 2)

2(h1 − 2) + 1
q
h1−1,h2+ 1

2 ,h−1
B

−2(h1 − 2) + 2

2(h1 − 2) + 1
q
h1−1,h2+ 1

2 ,h−1
F

]

11 We have O�1,+2(z1, z̄1)O�2,+ 3
2
(z2, z̄2) = − κ

2
z12

∑∞
n=0 B(�1 −

1 + n,�2 − 1
2 )

z̄n+1
12
n! ∂̄n O�1+�2,+ 3

2
(z2, z̄2) + · · · .
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×
∞∑

n=0

(
3
2 − 2(h − 1) − (k − 2) − l − n

1
2 − (h − 1) − l

)
∂̄z̄1 z̄

n+(h−1)+1
12
n!

×∂̄n I (k−2)+l+(h−1)(z2, z̄2)

+ · · · . (3.17)

The numerical factor 3
2 in the first line of the first binomial

coefficient is given by (2 + 3
2 ) (which is the sum of numer-

ical numbers with minus sign in the numerator of previous
weights) minus 2. The numerical factor 1

2 in the second line
of the first binomial coefficient is given by 3

2 (which is the
numerical number for the gravitino with minus sign in the
numerator of previous weights) minus 1.12 The first bino-
mial coefficient above can be obtained from (3.15) by taking
the shift l → (l + 1

2 ).
In the above, we multiplied the factor (−1)h+1 in order

to absorb (−1)h+1 factor on the right hand side of (3.16).
Here the graviton current is replaced by the gravitino current
on the left hand side of the OPE in (3.15).13 Now we sum
over the dummy variable h from 0 to (h1 + h2 − 3) together
with the structure constant, which depends on h1, h2 and
h only without mode-dependent factor in (2.3), in order to
obtain the first two lines of (3.17). In other words, from the
first equation of (3.5) and (3.4), the full structure constant

contains q
h1,h2+ 1

2 ,h
B (m, n)+q

h1,h2+ 1
2 ,h

F (m, n), which is rede-

fined as (q
h1,h2+ 1

2 ,h
B + q

h1,h2+ 1
2 ,h

F ) N
h1,h2+ 1

2
h (m, n) together

with (2.3). Then we can apply the property of (3.16) to the
commutator, the first equation of (3.5), and arrive at the first
two lines of above OPE. Here the mode-independent fac-

tor, (q
h1,h2+ 1

2 ,h
B + q

h1,h2+ 1
2 ,h

F ), can be combined to other h-
dependent factor, (−1)h+1 λh , inside the h summation. We
observe that the weights in the antiholomorphic sector are
preserved at both sides because the powers of the dummy
variable n and the weight h are the same as before.

In the third and fourth lines of (3.17), we use the
property between the mode of current and the current
itself in (3.1) and (3.7). Note that there exists minus sign
between them. Recall the remaining full structure con-

stant contains 2(h1−2)(m+(h1−2)+1)
2(h1−2)+1 q

h1−1,h2+ 1
2 ,h−1

B (m, n) −
(2(h1−2)+2)(m+(h1−2)+1)

2(h1−2)+1 q
h1−1,h2+ 1

2 ,h−1
F (m, n). As we did

before, we factorize the mode-dependent term (m + (h1 −
2) + 1) N

h1−1,h2+ 1
2

h−1 (m, n) and the other mode-independent
terms. The partial derivative ∂̄z̄1 of Hk−2(z1, z̄1) on the left
hand side appears in the form of ∂̄z̄1 z̄

n+(h−1)+1
12 on the right

hand side of the OPE. Further shifts in the weights h1 and h

12 Or we can use the formula in the Footnote 10.

13 That is, Hk(z1, z̄1) I l (z2, z̄2)=− κ
2

1
z12

∑∞
n=0

( 3
2 −2h−k−l−n

1
2 − h − l

)

z̄n+h+1
12
n! ∂̄n I k+l+h(z2, z̄2) + · · · . For h = 0 with proper upper limit of

dummy variable n, we observe the result of [8].

in the structure constant affect the shifts in the corresponding
the k and the weight h in the OPE. Note that the weight in the
antiholomorphic sector in the last line of (3.17) behaves cor-
rectly because two additional weight 2 in the derivative term
∂̄z̄1 z̄

n+(h−1)+1
12 is cancelled by the corresponding additional

−2 coming from the factors (k − 2) and (h − 1), compared
to the second line of (3.17).

Then by performing the contour integrals as in [20] (See
also [5,8]), the above OPE (3.17), from the analysis of two
previous paragraphs, provides the first equation of (3.5) pre-
cisely.14 Therefore, we have determined the OPE between
the soft positive helicity graviton and the soft positive helic-
ity gravitino which can be obtained from (or leads to) the
corresponding commutator in two dimensions studied in pre-
vious section. We present the details for other OPEs including
the soft positive helicity gravitinos or soft positive helicity
gluinos in Appendix C explicitly where other structure con-
stants (3.6) can be used appropriately.

3.5.2 The OPE between the soft positive helicity gravitons

Let us consider the second example, which is more nontrivial,
for the appearance of the two dimensional symmetry algebra
in the four dimensional Einstein–Yang–Mills theory. Based
on the three features (i), (ii) and (iii), in previous subsection,
we can write down the corresponding OPE for soft positive
helicity graviton in the supersymmetric Einstein–Yang–Mills
theory, by comparing (3.16) with the first equation of (3.2),
as follows:

Hk(z1, z̄1) H
l (z2, z̄2) = −κ

2

1

z12

h1+h2−4∑

h=1,odd

(−1)h λh

14 In an expression of ∂̄z̄1 z̄
n+(h−1)+1
12 , we can write down this as

(n + (h − 1) + 1) z̄n+(h−1)
12 after a differentiation. Compared to the

one without a derivative, there is an extra factor (n + (h − 1) +
1) with different power of z̄12. Now we can combine this with

the binomial coefficient

(
n + (h − 1)

−m − h1

)
appearing in the z̄1 inte-

gral when we calculate the commutator from the OPE. Then it is
easy to check that the following relation is satisfied (n + (h − 1) +
1)

(
n + (h − 1)

−m − h1

)
= −(m + h1 − 1)

[
(n+(h−1)+1)!

(n+(h−1)+m+h1)!(1−m−h1)!
]

=

−(m + h1 − 1)

[
(n+(h−1)+1)!

(n+(h−1)+1+m+h1)!(−m−h1)!
]∣
∣∣
∣
h1→h1−1

. This implies

that the remaining calculation is the same as the one in [20]
with an overall factor −(m + h1 − 1) = −(m + (h1 −
2) + 1) which appears in the second term of the first struc-
ture constant in (3.4) as we expected. Of course, the factor
(−z̄2)

n+(h−1)+m+h1 coming from the z̄1 integral can be written as

(−z̄2)
n+(h−1)+1+m+(h1−1) = (−z̄2)

n+(h−1)+1+m+h1

∣
∣∣
∣
h1→h1−1

. More-

over, the binomial coefficient is

( 3
2 − 2(h − 1) − (k − 2) − l − n

1
2 − (h − 1) − l

)
=

( 3
2 − 2(h − 1) − k − l − n

1
2 − (h − 1) − l

) ∣
∣∣
∣
h1→h1−1

. Of course, I (k−2)+l+(h−1) =

I k+l+(h−1)

∣∣
∣∣
h1→h1−1

.
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×
[
f h1−1,h2,h−1
1 ×

∞∑

n=0

(
2 − 2(h − 1) − (k − 2) − l − n

1 − (h − 1) − l

)

× ∂̄z̄1 z̄
n+(h−1)+1
12

n! ∂̄n H (k−2)+l+(h−1)(z2, z̄2)

+ f h1,h2−1,h−1
2

∞∑

n=0

(
2 − 2(h − 1) − k − (l − 2) − n

1 − (h − 1) − (l − 2)

)

× 1

n! ∂̄z̄2

[
z̄n+(h−1)+1

12 ∂̄n Hk+(l−2)+(h−1)(z2, z̄2)
]
]

−κ

2

1

z12

h1+h2−4∑

h=0,even

(−1)h+1 λh
[
f h1,h2,h
3

×
∞∑

n=0

(
2 − 2h − k − l − n

1 − h − l

)
z̄n+h+1

12

n! ∂̄n Hk+l+h(z2, z̄2)

+ f h1−1,h2−1,h−2
4

∞∑

n=0

(
2 − 2(h − 2) − (k − 2) − (l − 2) − n

1 − (h − 2) − (l − 2)

)

× 1

n! ∂̄z̄1 ∂̄z̄2

[
z̄n+(h−2)+1

12 ∂̄n H (k−2)+(l−2)+(h−2)(z2, z̄2)
]] + · · · .

(3.18)

Here we introduce the following quantities

f h1−1,h2,h−1
1 ≡

[
2(h1 − 2)

2(h1 − 2) + 1

× (h1 + h2 − 2 − h)

2(h1 + h2 − 2 − h) + 1
ph1−1,h2,h−1
B

− (h1 + h2 − 2 − h − 1)

2(h1 + h2 − 2 − h − 1) + 1

2(h1 − 2) + 2

2(h1 − 2) + 1
ph1−1,h2,h−1
F

]
,

f h1,h2−1,h−1
2 ≡

[
2(h2 − 2)

2(h2 − 2) + 1

(h1 + h2 − 2 − h)

2(h1 + h2 − 2 − h − 1) + 1

× ph1,h2−1,h−1
B − (h1 + h2 − 2 − h − 1)

2(h1 + h2 − 2 − h − 1) + 1

2(h2 − 2) + 2

2(h2 − 2) + 1
ph1,h2−1,h−1
F

]
,

f h1,h2,h
3 ≡

[
(h1 + h2 − 2 − h)

2(h1 + h2 − 2 − h − 1) + 1
ph1,h2,h
B

+ (h1 + h2 − 2 − h − 1)

2(h1 + h2 − 2 − h − 1) + 1
ph1,h2,h
F

]
,

f h1−1,h2−1,h−2
4 ≡

[
2(h1 − 2)

2(h1 − 2) + 1

2(h2 − 2)

2(h2 − 2) + 1

× (h1 + h2 − 2 − h)

2(h1 + h2 − 2 − h − 1) + 1
ph1−1,h2−1,h−2
B

+2(h1 − 2) + 2

2(h1 − 2) + 1

2(h2 − 2) + 2

2(h2 − 2) + 1

× (h1 + h2 − 2 − h − 1)

2(h1 + h2 − 2 − h − 1) + 1
ph1−1,h2−1,h−2
F

]
. (3.19)

Let us describe how we obtain this result. Now we return
to the OPE (3.18) for the soft positive helicity gravitons.
We multiply the factor (−1)h+1 into the relation (3.15) and

sum over the variable h from 0 to (h1 + h2 − 4) together
with the structure constant which depends on h1, h2 and h
without mode-dependent factor in (2.3) as before. For the
mode-dependent part, we want to use the previous relation
(3.16). In the first three lines of (3.18), we again use the
property between the mode of current and the current itself
in (3.1) and (3.7). The partial derivative ∂̄z̄1 of Hk−2(z1, z̄1)

appears in the form of ∂̄z̄1 z̄
n+(h−1)+1
12 on the right hand side of

the OPE. The mode-independent coefficients come from the
second and the fourth terms of the first equation in (C.2) with
(3.19). Further shifts in the weights h1 and h in the structure
constant affect the shifts in the corresponding k and h. Note
that the weight in the antiholomorphic sector here behaves
correctly. See also the Footnote 14.

In the next line, the ∂̄z̄2 acts on both the coordinate
z̄12 and Hk+(l−2)+(h−1)(z2, z̄2) (corresponding to ∂̄z̄2 of
Hl−2(z2, z̄2) in the left hand side).15 In this case, the mode-
independent coefficients come from the first and the third
terms of the first equation in (C.2).

For the remaining lines, we describe similarly by apply-
ing the first and the third terms in the second equation of
(C.2) without any derivatives in the summation over even
weight h. Finally, the second and the fourth terms in the sec-
ond equation of (C.2) with two derivatives play the role in
the second summation over even weight h.16 The additional
weight-2 from the two derivatives is cancelled by those from
the power of (k − 2) and (l − 2) in the soft current.

15 From the contribution of ∂̄z̄2 z̄
n′+(h−1)+1
12 , there is an extra fac-

tor −(n′ + (h − 1) + 1) with z̄n
′+(h−1)

12 where n′ is a previous
dummy variable n. By recalling the z̄1 contour integral, we have

−(n′ + (h − 1) + 1)

(
n′ + (h − 1)

−m − h1

)
(−1)n

′+(h−1)+m+h1 where

h1 = k−2
2 . Then this can be rewritten as (n′ + (h − 1) + 1 +

m + h1)

(
n′ + (h − 1) + 1

−m − h1

)
(−1)n

′+(h−1)+1+m+h1 . Note that the

power of z̄12 is n′ + (h − 1). This implies that there exists a fac-
tor (n′ + (h − 1) + 1 + m + h1) in the presence of ∂̄z̄2 . Of course,
the factor (z̄2)

n′+(h−1)+m+h1+n+h2−1 coming from the z̄1 integral
and the exponent of z̄2 in the contour integral can be written as
(z̄2)

n′+(h−1)+1+m+h1+n+(h2−1)−1 which can be obtained by taking
h2 → (h2 − 1) from the expression without a derivative. Further-
more, from the contribution of ∂̄z̄2 Hk+(l−2)+(h−1)(z2, z̄2), we have the
extra factor (−m − n − h1 − (h2 − 1) − (h − 1) − 1 − n′) (with
h2 = l−2

2 ) which can be obtained by taking h2 → (h2 − 1) from the
expression without a derivative factor. The exponent of z̄2 is given by
(z̄2)

n′+(h−1)+1+m+h1+n+h2−1 originally and from the above derivative
∂̄z̄2 we have an additional z̄−1

2 , compared to the case without this deriva-
tive. Note that the power of z̄12 is n′ + (h−1)+1. Therefore, the above
power can be written asn′+(h−1)+1+m+h1+n+(h2−1)−1 which is
obtained by taking h2 → h2−1. The binomial coefficient can be shifted
similarly as in the footnote 14. Then finally we are left with the factor
[n′+(h−1)+1+m+h1]+[−m−n−h1−(h2−1)−(h−1)−1−n′] =
−n − (h2 − 1) by adding these two contributions.
16 We can analyze the action of ∂̄z̄1 ∂̄z̄2 appearing at the end of (3.18)
by taking the procedures in the Footnote 14 and the Footnote 15.
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Then by performing the contour integrals as in [20] simi-
larly (See also [5,8]), the above OPEs (3.17) and (3.18) pro-
vide the first equations of (3.5) and (3.2) respectively. We can
extract other five OPEs similarly by taking into account of
the weights for the soft graviton, gravitino, gluon and gluino
in the binomial coefficient above. We present the details in
Appendix C explicitly. In particular, the useful structure con-
stants q̃h1,h2,h(m, n) we are using, which appear in the third
equation of (3.2), are given at the end of Appendix C. There-
fore, we have found the precise correspondence between the
OPEs between the conformally soft operators in the N = 1
supersymmetric Einstein–Yang–Mills theory and the two
dimensional symmetry algebra.

4 Conclusions and outlook

The main result of this paper can be summarized by (3.2)
and (3.5) together with (3.4) and (3.6). That is, we have
determined the three commutator relations by combining the
corresponding commutator relations from the bosonic cur-
rents made of the bosonic free fields with the corresponding
commutator relations from the bosonic currents made of the
fermionic free fields. Similarly, the remaining four commu-
tator relations can be obtained from two different kinds of
commutator relations. Their OPE version can be found in
(3.12) with (3.13) and (3.14). We observe that there are also
the nontrivial singular terms whose poles are greater than two
and they play the role of the contributions from the deforma-
tion.

By using the celestial holography, we have obtained the
results, summarized by (3.17), (3.18), Appendices (C.3),
(C.4), (C.5), (C.6), and (C.7) in the supersymmetric Einstein–
Yang–Mills theory at nonzero deformation parameter. The
common behavior is as follows. There exist a simple pole
in the holomorphic sector, the nontrivial structure constants
which depend on the three weights, binomial coefficients
containing the dummy variable also as well as the three
weights and the descendant fields associated with the sec-
ond soft currents on the left hand sides. Furthermore, after
calculating the various commutator relations by using these
seven OPEs between the soft currents, we have checked the
above seven commutators in two dimensions discussed in
previous paragraph.17

17 So far, we have focused on the soft currents as mentioned in the
Footnote 1. According to the findings of [31,32], the leading tree level
celestial OPEs from the cubic vertices of three spinning massless parti-
cles contains the OPE coefficients given by Euler beta function whose
arguments are (�1 + s2 − s3 − 1) and (�2 + s1 − s3 − 1) where si is
a helicity or spin. In particular, in [31], it is found that all the previous
known seven nontrivial celestial OPEs are obtained from this general
formula. We can ask whether the OPEs between the hard operators,
which do not satisfy the conditions for the conformal dimensions in

We have not discussed about the implications of the
N = 2 supersymmetric WK ,K∞ algebra in the Sect. 2. It
would be interesting to find out whether the possibility of
the N = 2 supersymmetric w

K ,K∞ algebra occurs or not by
further examination. In the context of AdS3/CFT2 corre-
spondence, the previous algebra in (2.1) is related to the case
of vanishing ’t Hooft-like coupling constant. Therefore, it is
an open question how the another deformed case with non-
vanishing ’t Hooft-like coupling constant [56] will arise in
the context of the present paper. We expect that the currents
from the free field realization will depend on this nonzero
coupling constant explicitly and they will become the cur-
rents we have described in this paper by taking this coupling
constant to be zero.
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Appendix A: The remaining (anti)commutator relations
in the N = 2 supersymmetric WK,K∞ algebra with
U(K ) × U(K ) symmetry

In this Appendix, we present some details which are related
to the contents in Sect. 2.

the footnote 1, provide any two dimensional symmetry algebra similar
to the ones in this paper or not. It seems that the infinite number of
poles appearing in the above Euler beta function can appear only for
the corresponding conformal dimensions of the soft operators. In other
words, for the conformal dimensions of the hard operators, we cannot
cover the infinite number of poles and therefore we cannot remove all
of them.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2022) 82 :630 Page 17 of 28 630

A.1 The commutators between the bosonic and the other
fermionic currents

We can multiply the generators into the fourth equation of
(2.1) and obtain the following commutator relations

[
(WF,h1 )m , (Q̄h2+ 1

2
)r

] =
h1+h2−3∑

h=−1

λh (−1)h q
h1,h2+ 1

2 ,h
F (m, r)

×(Q̄h1+h2− 3
2 −h)m+r ,

[
(WF,h1 )m , (Q̄ Â

h2+ 1
2
)r

] =
h1+h2−3∑

h=−1

λh (−1)h q
h1,h2+ 1

2 ,h
F (m, r)

×(Q̄ Â
h1+h2− 3

2 −h
)m+r ,

[
(W Â

F,h1
)m , (Q̄h2+ 1

2
)r

] =
h1+h2−3∑

h=−1

λh (−1)h q
h1,h2+ 1

2 ,h
F (m, r)

×(Q̄ Â
h1+h2− 3

2 −h
)m+r ,

[
(W Â

F,h1
)m , (Q̄ B̂

h2+ 1
2
)r

] = −
h1+h2−3∑

h=−1

λh (−1)h q
h1,h2+ 1

2 ,h
F (m, r)

× i

2
f Â B̂Ĉ (Q̄Ĉ

h1+h2− 3
2 −h

)m+r

+
h1+h2−3∑

h=−1

λh (−1)h q
h1,h2+ 1

2 ,h
F (m, r)

×
[

1

2
d ÂB̂Ĉ (Q̄Ĉ

h1+h2− 3
2 −h

)m+r

+ 1

K
δ Â B̂ (Q̄h1+h2− 3

2 −h)m+r

]
. (A.1)

It is easy to check the following reduced commutator rela-
tions by taking (2.15)

[
(WF,h1 )m , (Q̄h2+ 1

2
)r

] = 1

4
(Q̄h1+h2− 1

2
)m+r ,

[
(WF,h1 )m , (Q̄ Â

h2+ 1
2
)r

] = 1

4
(Q̄ Â

h1+h2− 1
2
)m+r ,

[
(W Â

F,h1
)m , (Q̄h2+ 1

2
)r

] = 1

4
(Q̄ Â

h1+h2− 1
2
)m+r ,

[
(W Â

F,h1
)m , (Q̄ B̂

h2+ 1
2
)r

] = − i

8
f ÂB̂Ĉ (Q̄Ĉ

h1+h2− 1
2
)m+r

+1

4

[
1

2
d ÂB̂Ĉ (Q̄Ĉ

h1+h2− 1
2
)m+r + 1

K
δ Â B̂ (Q̄h1+h2− 1

2
)m+r

]
.

(A.2)

A.2 The commutators between the other bosonic and the
other fermionic currents

The sixth equation of (2.1) with the addition of generators
leads to the following commutator relations

[
(WB,h1 )m , (Q̄h2+ 1

2
)r

] =
h1+h2−3∑

h=−1

λh (−1)h

×q
h1,h2+ 1

2 ,h
B (m, r) (Q̄h1+h2− 3

2 −h)m+r ,

[
(WB,h1 )m , (Q̄ Â

h2+ 1
2
)r

] =
h1+h2−3∑

h=−1

λh (−1)h q
h1,h2+ 1

2 ,h
B (m, r)

×(Q̄ Â
h1+h2− 3

2 −h
)m+r ,

[
(W Â

B,h1
)m , (Q̄h2+ 1

2
)r

] =
h1+h2−3∑

h=−1

λh (−1)h q
h1,h2+ 1

2 ,h
B (m, r)

×(Q̄ Â
h1+h2− 3

2 −h
)m+r ,

[
(W Â

B,h1
)m , (Q̄ B̂

h2+ 1
2
)r

] =
h1+h2−3∑

h=−1

λh (−1)h q
h1,h2+ 1

2 ,h
B (m, r)

× i

2
f ÂB̂Ĉ (Q̄Ĉ

h1+h2− 3
2 −h

)m+r

+
h1+h2−3∑

h=−1

λh (−1)h q
h1,h2+ 1

2 ,h
B (m, r)

×
[

1

2
d ÂB̂Ĉ (Q̄Ĉ

h1+h2− 3
2 −h

)m+r

+ 1

K
δ Â B̂ (Q̄h1+h2− 3

2 −h)m+r

]
. (A.3)

By taking (2.15), the following reduced commutator rela-
tions hold

[
(WB,h1 )m , (Q̄h2+ 1

2
)r

] = −1

4
(Q̄h1+h2− 1

2
)m+r ,

[
(WB,h1 )m , (QÂ

h2+ 1
2
)r

] = −1

4
(Q̄ Â

h1+h2− 1
2
)m+r ,

[
(W Â

B,h1
)m , (Q̄h2+ 1

2
)r

] = −1

4
(Q̄ Â

h1+h2− 1
2
)m+r ,

[
(W Â

B,h1
)m , (QB̂

h2+ 1
2
)r

] = − i

8
f ÂB̂Ĉ (Q̄Ĉ

h1+h2− 1
2
)m+r

−1

4

[
1

2
d ÂB̂Ĉ (Q̄Ĉ

h1+h2− 1
2
)m+r + 1

K
δ Â B̂ (Q̄h1+h2− 1

2
)m+r

]
.

(A.4)

A.3 The anticommutators between the fermionic currents

Finally, the seventh equation of (2.1) provides the following
anticommutator relations

{(Qh1+ 1
2
)r , (Q̄h2+ 1

2
)s} =

h1+h2−1∑

h=0

λh o
h1+ 1

2 ,h2+ 1
2 ,h

F (r, s)

×(WF,h1+h2−h)r+s +
h1+h2−2∑

h=0

λh o
h1+ 1

2 ,h2+ 1
2 ,h

B (r, s)

×(WB,h1+h2−h)r+s ,

+K cQQ̄
h1+ 1

2

δh1h2 λ2(h1+ 1
2 −1)δr+s ,

{(Qh1+ 1
2
)r , (Q̄

Â
h2+ 1

2
)s} =

h1+h2−1∑

h=0

λh o
h1+ 1

2 ,h2+ 1
2 ,h

F (r, s)

×(W Â
F,h1+h2−h)r+s +

h1+h2−2∑

h=0

λh o
h1+ 1

2 ,h2+ 1
2 ,h

B (r, s)
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×(W Â
B,h1+h2−h)r+s ,

{(QÂ
h1+ 1

2
)r , (Q̄h2+ 1

2
)s} =

h1+h2−1∑

h=0

λh o
h1+ 1

2 ,h2+ 1
2 ,h

F (r, s)

×(W Â
F,h1+h2−h)r+s +

h1+h2−2∑

h=0

λho
h1+ 1

2 ,h2+ 1
2 ,h

B (r, s)

×(W Â
B,h1+h2−h)r+s ,

{(QÂ
h1+ 1

2
)r , (Q̄

B̂
h2+ 1

2
)s} =

h1+h2−1∑

h=0

λh o
h1+ 1

2 ,h2+ 1
2 ,h

F (r, s)

× i

2
f ÂB̂Ĉ (WĈ

F,h1+h2−h)r+s +
h1+h2−1∑

h=0

λh o
h1+ 1

2 ,h2+ 1
2 ,h

F (r, s)

×
[

1

2
d ÂB̂Ĉ (WĈ

F,h1+h2−h)r+s + 1

K
δ Â B̂ (WF,h1+h2−h)r+s

]

−
h1+h2−2∑

h=0

λh o
h1+ 1

2 ,h2+ 1
2 ,h

B (r, s)
i

2
f ÂB̂Ĉ (WĈ

B,h1+h2−h)r+s

+
h1+h2−2∑

h=0

λh o
h1+ 1

2 ,h2+ 1
2 ,h

B (r, s)

[
1

2
d ÂB̂Ĉ (WĈ

B,h1+h2−h)r+s

+ 1

K
δ Â B̂ (WB,h1+h2−h)r+s

]
+ cQQ̄

h1+ 1
2

δ Â B̂ δh1h2 λ2(h1+ 1
2 −1)δr+s .

(A.5)

Then the complete algebra consists of (2.10), (2.11),
(2.12), (2.13), Appendix (A.1), Appendix (A.3) and
Appendix (A.5).

Note that there are no nontrivial reduced anticommuta-
tor relations after taking (2.15). Then we have the complete
results, (2.16), Appendix (A.2) and Appendix (A.4).

Appendix B: The operator product expansions in the
N = 1 supersymmetric WK∞ algebra with U(K ) sym-
metry

In this Appendix, we present some details which are related
to the contents in Sect. 3.

B.1 The seven OPEs for fixed h1 and h2

It is straightforward to calculate the following OPEs by using
the Thielemans package [52] inside the mathematica [57]. We
use the Eqs. (2.6), (3.7) and (3.8). For fixed h1 and h2, we
perform each pole starting from the highest order pole. For
each pole, we can consider the possible terms (descendant
terms and new higher spin current). The higher spin cur-
rents are, in general, not quasiprimary. Although the current
Wh(w̄) for fixed h does not appear in the particular pole, its
derivative term ∂̄ Wh(w̄) appears at the next order pole. This
derivative term plays the role of the quasiprimary current of
the weight-(h + 1). Once we rearrange each OPE in terms
of quasiprimary currents then the standard expressions in the

right hand sides appear.18 We have the following OPEs for
fixed h1 and h2

W4(z̄)W4(w̄) = 1

(z̄ − w̄)6

9216λ4

5
W2(w̄)

+ 1

(z̄ − w̄)5

4608λ4

5
∂̄ W2(w̄)

+ 1

(z̄ − w̄)4

[
1536λ4

5
∂̄2 W2 + 2304λ3

125
∂̄ W3 + 8256λ2

25
W4

]
(w̄)

+ 1

(z̄ − w̄)3

[
384λ4

5
∂̄3 W2 + 1152λ3

125
∂̄2 W3 + 4128λ2

25
∂̄ W4

]
(w̄)

+ 1

(z̄ − w̄)2

[
384λ4

25
∂̄4 W2 + 2304λ3

875
∂̄3 W3

+ 8256λ2

175
∂̄2 W4 + 8λ

15
∂̄ W5 + 6 W6

]
(w̄)

+ 1

(z̄ − w̄)

[
64λ4

25
∂̄5 W2 + 96λ3

175
∂̄4 W3 + 344λ2

35
∂̄3 W4

+ 4λ

15
∂̄2 W5 + 3 ∂̄ W6

]
(w̄)

+ · · · ,

W4(z̄)W
Â

4 (w̄) = 1

(z̄ − w̄)6

9216λ4

5
W Â

2 (w̄)

+ 1

(z̄ − w̄)5

4608λ4

5
∂̄ W Â

2 (w̄)

+ 1

(z̄ − w̄)4

[
1536λ4

5
∂̄2 W Â

2 + 2304λ3

125
∂̄ W Â

3 + 8256λ2

25
W Â

4

]
(w̄)

+ 1

(z̄ − w̄)3

[
384λ4

5
∂̄3 W Â

2 + 1152λ3

125
∂̄2 W Â

3 + 4128λ2

25
∂̄ W Â

4

]
(w̄)

+ 1

(z̄ − w̄)2

[
384λ4

25
∂̄4 W Â

2 + 2304λ3

875
∂̄3 W Â

3 + 8256λ2

175
∂̄2 W Â

4

+ 8λ

15
∂̄ W Â

5 + 6 W Â
6

]
(w̄)

+ 1

(z̄ − w̄)

[
64λ4

25
∂̄5 W Â

2 + 96λ3

175
∂̄4 W Â

3 + 344λ2

35
∂̄3 W Â

4

+ 4λ

15
∂̄2 W Â

5 + 3 ∂̄ W Â
6

]
(w̄)

+ · · · ,

W Â
4 (z̄)W B̂

4 (w̄) = 1

(z̄ − w̄)6

9216λ4

5

[
1

K
δ Â B̂W2 + 1

2
d ÂB̂Ĉ W Ĉ

2

]
(w̄)

+ 1

(z̄ − w̄)5

[
4608λ4

5

(
1

K
δ Â B̂ ∂̄ W2 + 1

2
d ÂB̂Ĉ ∂̄ WĈ

2

)

+ 1536λ4

25

(
− i

2

)
f ÂB̂Ĉ ∂̄ WĈ

2 + 29952λ3

25

(
− i

2

)
f Â B̂Ĉ W Ĉ

3

]
(w̄)

+ 1

(z̄ − w̄)4

[
1536λ4

5

(
1

K
δ Â B̂ ∂̄2 W2 + 1

2
d ÂB̂Ĉ ∂̄2 WĈ

2

)

+ 2304λ3

125

(
1

K
δ Â B̂ ∂̄ W3 + 1

2
d ÂB̂Ĉ ∂̄ WĈ

3

)
+ 8256λ2

25

18 Note that W4,W Â
4 , Q 7

2
and QÂ

7
2

are not quasiprimary under the W2

stress energy tensor which has zero central charge. We can make them
to be quasiprimary by adding the derivatives of currents having lower

weights. The weights for Q 7
2

and QÂ
7
2

are 4 not 7
2 after topological

twisting.
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×
(

1

K
δ Â B̂ W4 + 1

2
d ÂB̂Ĉ W Ĉ

4

)

+ 768λ4

25

(
− i

2

)
f Â B̂Ĉ ∂̄2 WĈ

2 + 14976λ3

25

(
− i

2

)
f Â B̂Ĉ ∂̄ WĈ

3

]
(w̄)

+ 1

(z̄ − w̄)3

[
384λ4

5

(
1

K
δ Â B̂ ∂̄3 W2 + 1

2
d ÂB̂Ĉ ∂̄3 WĈ

2

)

+ 1152λ3

125

(
1

K
δ Â B̂ ∂̄2 W3 + 1

2
d ÂB̂Ĉ ∂̄2 WĈ

3

)

+ 4128λ2

25

(
1

K
δ Â B̂ ∂̄ W4 + 1

2
d ÂB̂Ĉ ∂̄ WĈ

4

)

+ 1152λ4

125

(
− i

2

)
f ÂB̂Ĉ ∂̄3 WĈ

2 + 22464λ3

125

(
− i

2

)
f Â B̂Ĉ ∂̄2 WĈ

3

+ 96λ2

25

(
− i

2

)
f Â B̂Ĉ ∂̄ WĈ

4 + 1344λ

25

(
− i

2

)
f Â B̂Ĉ W Ĉ

5

]
(w̄)

+ 1

(z̄ − w̄)2

[
384λ4

25

(
1

K
δ Â B̂ ∂̄4 W2 + 1

2
d ÂB̂Ĉ ∂̄4 WĈ

2

)

+ 2304λ3

875

(
1

K
δ Â B̂ ∂̄3 W3 + 1

2
d ÂB̂Ĉ ∂̄3 WĈ

3

)

+ 8256λ2

175

(
1

K
δ Â B̂ ∂̄2 W4 + 1

2
d ÂB̂Ĉ ∂̄2 WĈ

4

)

+ 8λ

15

(
1

K
δ Â B̂ ∂̄ W5 + 1

2
d ÂB̂Ĉ ∂̄ WĈ

5

)

+6

(
1

K
δ Â B̂ W6 + 1

2
d ÂB̂Ĉ W Ĉ

6

)

+ 256λ4

125

(
− i

2

)
f Â B̂Ĉ ∂̄4 WĈ

2 + 4992λ3

125

(
− i

2

)
f ÂB̂Ĉ ∂̄3 WĈ

3

+ 48λ2

25

(
− i

2

)
f Â B̂Ĉ ∂̄2 WĈ

4 + 672λ

25

(
− i

2

)
f Â B̂Ĉ ∂̄ WĈ

5

]
(w̄)

+ 1

(z̄ − w̄)

[
64λ4

25

(
1

K
δ Â B̂ ∂̄5 W2 + 1

2
d ÂB̂Ĉ ∂̄5 WĈ

2

)

+ 96λ3

175

(
1

K
δ Â B̂ ∂̄4 W3 + 1

2
d ÂB̂Ĉ ∂̄4 WĈ

3

)

+ 344λ2

35

(
1

K
δ Â B̂ ∂̄3 W4 + 1

2
d ÂB̂Ĉ ∂̄3 WĈ

4

)

+ 4λ

15

(
1

K
δ Â B̂ ∂̄2 W5 + 1

2
d ÂB̂Ĉ ∂̄2 WĈ

5

)

+3

(
1

K
δ Â B̂ ∂̄ W6 + 1

2
d ÂB̂Ĉ ∂̄ WĈ

6

)

+ 64λ4

175

(
− i

2

)
f Â B̂Ĉ ∂̄5 WĈ

2 + 1248λ3

175

(
− i

2

)
f ÂB̂Ĉ ∂̄4 WĈ

3

+ 8λ2

15

(
− i

2

)
f ÂB̂Ĉ ∂̄3 WĈ

4 + 112λ

15

(
− i

2

)
f ÂB̂Ĉ ∂̄2 WĈ

5

+ 3

55

(
− i

2

)
f Â B̂Ĉ ∂̄ WĈ

6 + 1

2 λ

(
− i

2

)
f Â B̂Ĉ W Ĉ

7

]
(w̄) + · · · ,

W4(z̄) Q 7
2
(w̄) = 1

(z̄ − w̄)6

9216λ4

5
Q 3

2
(w̄)

+ 1

(z̄ − w̄)5

4608λ4

5
∂̄ Q 3

2
(w̄)

+ 1

(z̄ − w̄)4

[
1536λ4

5
∂̄2 Q 3

2
+ 2304λ3

125
∂̄ Q 5

2
+ 8256λ2

25
Q 7

2

]
(w̄)

+ 1

(z̄ − w̄)3

[
384λ4

5
∂̄3 Q 3

2
+ 1152λ3

125
∂̄2 Q 5

2
+ 4128λ2

25
∂̄ Q 7

2

]
(w̄)

+ 1

(z̄ − w̄)2

[
384λ4

25
∂̄4 Q 3

2
+ 2304λ3

875
∂̄3 Q 5

2
+ 8256λ2

175
∂̄2 Q 7

2

+ 8λ

15
∂̄ Q 9

2
+ 6 Q 11

2

]
(w̄)

+ 1

(z̄ − w̄)

[
64λ4

25
∂̄5 Q 3

2
+ 96λ3

175
∂̄4 Q 5

2
+ 344λ2

35
∂̄3 Q 7

2

+ 4λ

15
∂̄2 Q 9

2
+ 3 ∂̄ Q 11

2

]
(w̄)

+ · · · ,

W4(z̄) Q
Â
7
2
(w̄) = 1

(z̄ − w̄)6

9216λ4

5
QÂ

3
2
(w̄)

+ 1

(z̄ − w̄)5

4608λ4

5
∂̄ QÂ

3
2
(w̄)

+ 1

(z̄ − w̄)4

[
1536λ4

5
∂̄2 QÂ

3
2

+ 2304λ3

125
∂̄ QÂ

5
2

+ 8256λ2

25
QÂ

7
2

]
(w̄)

+ 1

(z̄ − w̄)3

[
384λ4

5
∂̄3 QÂ

3
2

+ 1152λ3

125
∂̄2 QÂ

5
2

+ 4128λ2

25
∂̄ QÂ

7
2

]
(w̄)

+ 1

(z̄ − w̄)2

[
384λ4

25
∂̄4 QÂ

3
2

+ 2304λ3

875
∂̄3 QÂ

5
2

+ 8256λ2

175
∂̄2 QÂ

7
2

+ 8λ

15
∂̄ QÂ

9
2

+ 6 QÂ
11
2

]
(w̄)

+ 1

(z̄ − w̄)

[
64λ4

25
∂̄5 QÂ

3
2

+ 96λ3

175
∂̄4 QÂ

5
2

+ 344λ2

35
∂̄3 QÂ

7
2

+ 4λ

15
∂̄2 QÂ

9
2

+ 3 ∂̄ QÂ
11
2

]
(w̄)

+ · · · ,

W Â
4 (z̄) Q 7

2
(w̄) = 1

(z̄ − w̄)6

9216λ4

5
QÂ

3
2
(w̄)

+ 1

(z̄ − w̄)5

4608λ4

5
∂̄ QÂ

3
2
(w̄)

+ 1

(z̄ − w̄)4

[
1536λ4

5
∂̄2 QÂ

3
2

+ 2304λ3

125
∂̄ QÂ

5
2

+ 8256λ2

25
QÂ

7
2

]
(w̄)

+ 1

(z̄ − w̄)3

[
384λ4

5
∂̄3 QÂ

3
2

+ 1152λ3

125
∂̄2 QÂ

5
2

+ 4128λ2

25
∂̄ QÂ

7
2

]
(w̄)

+ 1

(z̄ − w̄)2

[
384λ4

25
∂̄4 QÂ

3
2

+ 2304λ3

875
∂̄3 QÂ

5
2

+ 8256λ2

175
∂̄2 QÂ

7
2

+ 8λ

15
∂̄ QÂ

9
2

+ 6 QÂ
11
2

]
(w̄)

+ 1

(z̄ − w̄)

[
64λ4

25
∂̄5 QÂ

3
2

+ 96λ3

175
∂̄4 QÂ

5
2

+ 344λ2

35
∂̄3 QÂ

7
2

+ 4λ

15
∂̄2 QÂ

9
2

+ 3 ∂̄ QÂ
11
2

]
(w̄)

+ · · · ,

W Â
4 (z̄) QB̂

7
2
(w̄) = 1

(z̄ − w̄)6

9216λ4

5

[
1

K
δ Â B̂ Q 3

2

+ 1

2
d ÂB̂Ĉ QĈ

3
2

]
(w̄)

+ 1

(z̄ − w̄)5

[
4608λ4

5

(
1

K
δ Â B̂ ∂̄ Q 3

2
+ 1

2
d ÂB̂Ĉ ∂̄ QĈ

3
2

)

− 1536λ4

25

(
i

2

)
f ÂB̂Ĉ ∂̄ QĈ

3
2

− 29952λ3

25

(
i

2

)
f Â B̂Ĉ W Ĉ

5
2

]
(w̄)

+ 1

(z̄ − w̄)4

[
1536λ4

5

(
1

K
δ Â B̂ ∂̄2 Q 3

2
+ 1

2
d ÂB̂Ĉ ∂̄2 QĈ

3
2

)
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+ 2304λ3

125

(
1

K
δ Â B̂ ∂̄ Q 5

2
+ 1

2
d ÂB̂Ĉ ∂̄ QĈ

5
2

)
+ 8256λ2

25

×
(

1

K
δ Â B̂ Q 7

2
+ 1

2
d ÂB̂Ĉ QĈ

7
2

)

− 768λ4

25

(
i

2

)
f Â B̂Ĉ ∂̄2 QĈ

3
2

− 14976λ3

25

(
i

2

)
f Â B̂Ĉ ∂̄ QĈ

5
2

]
(w̄)

+ 1

(z̄ − w̄)3

[
384λ4

5

(
1

K
δ Â B̂ ∂̄3 Q 3

2
+ 1

2
d ÂB̂Ĉ ∂̄3 QĈ

3
2

)

+ 1152λ3

125

(
1

K
δ Â B̂ ∂̄2 Q 5

2
+ 1

2
d ÂB̂Ĉ ∂̄2 QĈ

5
2

)

+ 4128λ2

25

(
1

K
δ Â B̂ ∂̄ Q 7

2
+ 1

2
d ÂB̂Ĉ ∂̄ QĈ

7
2

)

− 1152λ4

125

(
i

2

)
f Â B̂Ĉ ∂̄3 QĈ

3
2

− 22464λ3

125

(
i

2

)
f Â B̂Ĉ ∂̄2 QĈ

5
2

− 96λ2

25

(
i

2

)
f Â B̂Ĉ ∂̄ QĈ

7
2

− 1344λ

25

(
i

2

)
f Â B̂Ĉ QĈ

9
2

]
(w̄)

+ 1

(z̄ − w̄)2

[
384λ4

25

(
1

K
δ Â B̂ ∂̄4 Q 3

2
+ 1

2
d ÂB̂Ĉ ∂̄4 QĈ

3
2

)

+ 2304λ3

875

(
1

K
δ Â B̂ ∂̄3 Q 5

2
+ 1

2
d ÂB̂Ĉ ∂̄3 QĈ

5
2

)
+ 8256λ2

175

×
(

1

K
δ Â B̂ ∂̄2 Q 7

2
+ 1

2
d ÂB̂Ĉ ∂̄2 QĈ

7
2

)

+ 8λ

15

(
1

K
δ Â B̂ ∂̄ Q 9

2
+ 1

2
d ÂB̂Ĉ ∂̄ QĈ

9
2

)

+6

(
1

K
δ Â B̂ Q 11

2
+ 1

2
d ÂB̂Ĉ QĈ

11
2

)

− 256λ4

125

(
i

2

)
f Â B̂Ĉ ∂̄4 QĈ

3
2

− 4992λ3

125

(
i

2

)
f Â B̂Ĉ ∂̄3 QĈ

5
2

− 48λ2

25

(
i

2

)
f Â B̂Ĉ ∂̄2 QĈ

7
2

− 672λ

25

(
i

2

)
f Â B̂Ĉ ∂̄ QĈ

9
2

]
(w̄)

+ 1

(z̄ − w̄)

[
64λ4

25

(
1

K
δ Â B̂ ∂̄5 Q 3

2
+ 1

2
d ÂB̂Ĉ ∂̄5 QĈ

3
2

)

+ 96λ3

175

(
1

K
δ Â B̂ ∂̄4 Q 5

2
+ 1

2
d ÂB̂Ĉ ∂̄4 QĈ

5
2

)

+ 344λ2

35

(
1

K
δ Â B̂ ∂̄3 Q 7

2
+ 1

2
d ÂB̂Ĉ ∂̄3 QĈ

7
2

)

+ 4λ

15

(
1

K
δ Â B̂ ∂̄2 Q 9

2
+ 1

2
d ÂB̂Ĉ ∂̄2 QĈ

9
2

)

+3

(
1

K
δ Â B̂ ∂̄ Q 11

2
+ 1

2
d ÂB̂Ĉ ∂̄ QĈ

11
2

)

− 64λ4

175

(
i

2

)
f Â B̂Ĉ ∂̄5 QĈ

3
2

− 1248λ3

175

(
i

2

)
f Â B̂Ĉ ∂̄4 QĈ

5
2

− 8λ2

15

(
i

2

)
f Â B̂Ĉ ∂̄3 QĈ

7
2

− 112λ

15

(
i

2

)
f Â B̂Ĉ ∂̄2 QĈ

9
2

− 3

55

(
i

2

)
f Â B̂Ĉ ∂̄ QĈ

11
2

− 1

2 λ

(
i

2

)
f Â B̂Ĉ QĈ

13
2

]
(w̄) + · · · . (B.1)

Note that the structure constants appearing in the third and
last equations in Appendix (B.1) are common. Of course,
the corresponding currents in the right hand sides are dif-
ferent from each other. We will see in next subsection
that the sum of structure constants q̂h1,h2+ 1

2 ,h(m, n) and
q̇h1,h2+ 1

2 ,h−1(m, n) is equal to −q̃h1,h2+1,h(m, n) up to the

degree (h + 1) of the polynomial and the sum of structure

constants q̌h1,h2+ 1
2 ,h(m, n) and q̄h1,h2+ 1

2 ,h−1(m, n) is equal
to the structure constant qh1,h2+1,h(m, n) up to the degree
(h + 1) of the polynomial. This implies that in the OPE lan-
guage, the independent structure constants are given by (3.4).

B.2 The structure constants for fixed h1, h2

Let us check whether the equations (3.12) are consistent with
Appendix (B.1) obtained from the free field realizations for
fixed h1 and h2. First of all, we need to obtain the following
possible polynomials explicitly

q4,4,4(m, n) = 4

25

(
16m5 − 16m4n + 32m4 + 16m3n2

−16m3n − 12m3 − 16m2n3 + 12m2n

+4m2 + 16mn4 + 16mn3 − 4mn − m − 16n5

−32n4 − 24n3 − 8n2 − n
)
,

q4,4,3(m, n) = − 6

875

(
80m4 − 64m3n + 288m3

−384m2n − 192m2 + 64mn3 + 384mn2

+336mn + 80m − 80n4 − 288n3 − 312n2 − 136n − 21
)
,

q4,4,2(m, n) = 86

175

(
20m3 − 36m2n + 12m2 + 36mn2

−9m − 20n3 − 12n2 + 3n + 2
)
,

q4,4,1(m, n) = 1

15

(
− 4m2 − 20m + 4n2 + 20n + 9

)
,

q4,4,0(m, n) = 3(m − n),

q̃4,4,4(m, n) = − 4

875

(
80m5 − 48m4n + 256m4

+16m3n2 − 208m3n − 108m3 + 16m2n3

+192m2n2 + 180m2n + 44m2 − 48mn4 − 208mn3

−240mn2 − 108mn − 17m

+80n5 + 256n4 + 312n3 + 184n2 + 53n + 6
)
,

q̃4,4,3(m, n) = 78

875

(
80m4 − 128m3n + 96m3 + 144m2n2

−48m2n − 60m2 − 128mn3

−48mn2 + 48mn + 20m + 80n4 + 96n3 + 24n2 − 8n − 3
)
,

q̃4,4,2(m, n) = − 2

75

(
20m3 − 12m2n + 84m2 − 12mn2

−120mn − 57m + 20n3 + 84n2

+69n + 16
)
,

q̃4,4,1(m, n) = 28

75

(
20m2 − 32mn + 4m + 20n2 + 4n − 3

)
,

q̃4,4,0(m, n) = − 3

55
(m + n + 6), q̃4,4,−1(m, n) = 1

2
,

q̂4, 7
2 ,4(m, n) = − 32

525

(
m5 − 2m4n + 3m3n2

−4m2n3 + 5mn4 − 6n5
)
,

q̂4, 7
2 ,3(m, n) = −416

875
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×
(

5m4 − 12m3n + 18m2n2 − 20mn3 + 15n4
)
,

q̂4, 7
2 ,2(m, n) = − 4

75

×
(

5m3 − 12m2n + 15mn2 − 10n3
)
,

q̂4, 7
2 ,1(m, n) = −112

45

(
2m2 − 4mn + 3n2

)
,

q̂4, 7
2 ,0(m, n) = 1

110
(6n − 5m),

q̂4, 7
2 ,−1(m, n) = −1

2
,

q̇4, 7
2 ,3(m, n) = 32

375
(m + 3)

×
(

5m4 − 4m3n + 3m2n2 − 2mn3 + n4
)
,

q̇4, 7
2 ,2(m, n) = −416

875
(m + 3)

×
(

10m3 − 12m2n + 9mn2 − 4n3
)
,

q̇4, 7
2 ,1(m, n) = 4

25
(m + 3)

(
5m2 − 6mn + 3n2

)
,

q̇4, 7
2 ,0(m, n) = −112

225
(m + 3)

(
5m − 4n

)
,

q̇4, 7
2 ,−1(m, n) = 1

10
(m + 3),

q̇4, 7
2 ,−2(m, n) = 0,

q̌4, 7
2 ,4(m, n) = 32

75

×
(
m5 − 2m4n + 3m3n2 − 4m2n3 + 5mn4 − 6n5

)
,

q̌4, 7
2 ,3(m, n) = 32

875

×
(

5m4 − 12m3n + 18m2n2 − 20mn3 + 15n4
)
,

q̌4, 7
2 ,2(m, n) = 172

175

×
(

5m3 − 12m2n + 15mn2 − 10n3
)
,

q̌4, 7
2 ,1(m, n) = 4

45

(
2m2 − 4mn + 3n2

)
,

q̌4, 7
2 ,0(m, n) = 1

2
(5m − 6n),

q̌4, 7
2 ,−1(m, n) = 0,

q̄4, 7
2 ,3(m, n) = 32

75
(m + 3)

×
(

5m4 − 4m3n + 3m2n2 − 2mn3 + n4
)
,

q̄4, 7
2 ,2(m, n) = − 64

875
(m + 3)

(
10m3 − 12m2n + 9mn2 − 4n3

)
,

q̄4, 7
2 ,1(m, n) = 172

175
(m + 3)

(
5m2 − 6mn + 3n2

)
,

q̄4, 7
2 ,0(m, n) = − 4

45
(m + 3)(5m − 4n), q̄4, 7

2 ,−1(m, n)

= 1

2
(m + 3),

q̄4, 7
2 ,−2(m, n) = 0. (B.2)

Note that all the terms in some of these structure constants
have the degree (h + 1) while some terms in other structure
constants have the degree (h + 1).

Let us focus on the W2(w̄) in right hand side of the first
OPE of Appendix (B.1). Then from the explicit form of
the first OPE, we should calculate λ4 (−1)3 f 4,4,4(∂̄z̄, ∂̄w̄)[
W2(w̄)
(z̄−w̄)

]
. Here f 4,4,4(∂̄z̄, ∂̄w̄) can be obtained fromq4,4,4(m, n)

in Appendix (B.2) under the constraint by taking the terms
having a degree (h + 1) = 5 and m and n are replaced by ∂̄z̄
and ∂̄w̄ respectively. Then we have

q4,4,4(m, n) → 4

25

(
16m5 − 16m4n + 16m3n2

−16m2n3 + 16mn4 − 16n5
)
. (B.3)

This is due to the fact that qh1,h2,h(m, n) has the second
and the fourth terms in (3.4) from the derivative terms in the
current. The corresponding f h1,h2,h(m, n) has similar terms
in (3.14).

The corresponding differential operator f 4,4,4(∂̄z̄, ∂̄w̄)

from Appendix (B.3) is given by

f 4,4,4(∂̄z̄, ∂̄w̄) → 4

25

(
16∂̄5

z̄ − 16∂̄4
z̄ ∂̄w̄ + 16∂̄3

z̄ ∂̄
2
w̄

−16∂̄2
z̄ ∂̄

3
w̄ + 16∂̄z̄ ∂̄

4
w̄ − 16∂̄5

w̄

)
. (B.4)

The next thing is to calculate −λ4 f 4,4,4(∂̄z̄, ∂̄w̄)

[
W2(w̄)
(z̄−w̄)

]

from Appendix (B.4). It turns out that

1

(z̄ − w̄)6

9216λ4

5
W2(w̄) + 1

(z̄ − w̄)5

4608λ4

5
∂̄ W2(w̄)

+ 1

(z̄ − w̄)4

1536λ4

5
∂̄2 W2(w̄)

+ 1

(z̄ − w̄)3

384λ4

5
∂̄3 W2(w̄) + 1

(z̄ − w̄)2

384λ4

25
∂̄4 W2(w̄)

+ 1

(z̄ − w̄)

64λ4

25
∂̄5 W2(w̄). (B.5)

This Appendix (B.5) are exactly the terms with h1 + h2 −
2 − h = 2 appearing in the first OPE of Appendix (B.1).

In this way, we can check that the equations (3.12) are
right seven OPEs.

Appendix C: Other OPEs for soft currents in the super-
symmetric Einstein–Yang–Mills theory

In this Appendix, we present some details which are related
to the contents in Sect. 3.
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According to (3.2) and (3.4), there is a shift in the weight
h2 coming from the quantity (h2 − 1

2 ) in the structure con-
stant, therefore we cannot use the previous result in (3.16)
directly. This is due to the fact that the corresponding struc-
ture constant is written in terms of the one in previous com-
mutator in the first equation of (3.5). They are equivalent to
each other [48]. We should find out the right basis where the
structure constant can be obtained from the previous rela-
tion like as (3.16). Therefore, we return to the first equation
of (3.2) and read off the structure constant in terms of pB
and pF rather than qB and qF . By substituting the current
in the first equation of (3.1) into the first equation of (3.2),
then there are eight commutators in the left hand side and
there are four current terms in the right hand side. We can
substitute the commutators in the equations (2.10) and (2.11)
into the above expression and collect each independent term.
Then we obtain the structure constants in terms of pB or pF
explicitly. That is,

qh1,h2,h(m, n)

∣
∣∣
∣
h,odd

=
[

2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

]

×ph1−1,h2,h−1
B (m, n)

+
[

2(h2 − 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

]

×ph1,h2−1,h−1
B (m, n)

−
[

2(h1+h2−2−h−1)(m+n+h1+h2−2−h−1+1)

2(h1 + h2 − 2 − h − 1) + 1

]

×qh1,h2,h−1(m, n),

= −
[

(2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

]
ph1−1,h2,h−1
F (m, n)

−
[

(2(h2 − 2) + 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

]
ph1,h2−1,h−1
F (m, n)

+
[

(2(h1+h2−2 − h − 1)+2)(m+n+h1+h2−2−h−1+1)

2(h1+h2−2−h−1)+1

]

qh1,h2,h−1(m, n),

×qh1,h2,h(m, n)

∣∣
∣∣
h,even

= ph1,h2,h
B (m, n)

+
[

2(h1−2)(m+(h1 − 2)+1)

2(h1 − 2)+1

2(h2 − 2)(n+(h2 − 2)+1)

2(h2 − 2)+1

]

×ph1−1,h2−1,h−2
B (m, n)

−
[

2(h1+h2 − 2−h − 1)(m+n+h1+h2−2−h−1+1)

2(h1+h2−2−h−1)+1

]

×qh1,h2,h−1(m, n)

= ph1,h2,h
F (m, n) +

[
(2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

× (2(h2 − 2) + 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

]
ph1−1,h2−1,h−2
F (m, n)

+
[

(2(h1+h2−2−h−1)+2)(m+n+h1+h2−2−h−1+1)

2(h1+h2−2−h−1)+1

]

qh1,h2,h−1(m, n). (C.1)

Note that qh1,h2,0(m, n) = ph1,h2,0
B (m, n) = ph1,h2,0

F (m, n),
which appears in (3.10), because the other terms in (C.1)
vanish. Although there appear the unwanted terms (m + n +
h1 + h2 − 2 − h) qh1,h2,h−1(m, n) in the right hand side of
(C.1) because it is not obvious how we can deal with the mode
dependent piece with a factor (m + n + h1 + h2 − 2 − h+)

and others, we can express this as the linear combination
of pB and pF by realizing that the relative coefficients of
these unwanted terms are different from each other and they
have common behavior of above (m+n+ h1 + h2 − 2 − h)-
dependent factor. Then we can write down it in terms of other
wanted terms by solving each two equations in (C.1). After
substituting (m +n+ h1 + h2 − 2 − h) qh1,h2,h−1(m, n) (for
odd and even cases) written in terms of the structure constants
pB and pF (Note that these structure constants terms contain
only m or n dependence in their coefficients) into the above
equations back then we determine the following relations19

qh1,h2,h(m, n)

∣∣∣
∣
h,odd

=
[

2(h2 − 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

× (h1 + h2 − 2 − h)

2(h1 + h2 − 2 − h − 1) + 1

]
ph1,h2−1,h−1
B (m, n)

×
[

2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

× (h1 + h2 − 2 − h)

2(h1 + h2 − 2 − h − 1) + 1

]
ph1−1,h2,h−1
B (m, n)

−
[

(h1 + h2 − 2 − h − 1)

2(h1 + h2 − 2 − h − 1) + 1

× (2(h2 − 2) + 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

]
ph1,h2−1,h−1
F (m, n)

−
[

(h1 + h2 − 2 − h − 1)

2(h1 + h2 − 2 − h − 1) + 1

× (2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

]
ph1−1,h2,h−1
F (m, n),

qh1,h2,h(m, n)

∣
∣∣∣
h,even

=
[

(h1 + h2 − 2 − h)

2(h1 + h2 − 2 − h − 1) + 1

]
ph1,h2,h
B (m, n)

+
[

2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

×2(h2 − 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

19 Compared to the first equation of (2.10) and the first equation
(2.11), as described before, the h = 0 case leads to the result of
qh1,h2,0(m, n) = ph1,h2,0

B (m, n) = ph1,h2,0
F (m, n). But for general h,

they are different from each other. The range for h is also different. Note
that the sum of coefficients of ph1,h2,h

B (m, n) and ph1,h2,h
F (m, n) in the

second equation of (C.2) is equal to 1.
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× (h1 + h2 − 2 − h)

2(h1 + h2 − 2 − h − 1) + 1

]
ph1−1,h2−1,h−2
B (m, n)

+
[

(h1 + h2 − 2 − h − 1)

2(h1 + h2 − 2 − h − 1) + 1

]
ph1,h2,h
F (m, n)

+
[

(2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

× (2(h2 − 2) + 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

× (h1 + h2 − 2 − h − 1)

2(h1 + h2 − 2 − h − 1) + 1

]
ph1−1,h2−1,h−2
F (m, n). (C.2)

In (C.2), all the mode dependent terms are given by either
(m + (h1 − 2) + 1) or (n + (h2 − 2) + 1). We remove the
previous unwanted (m + n + h1 + h2 − 2 − h) dependence
completely. Instead of using the previous relations for the
structure constants (3.4) which is appropriate for the first
example or the OPEs including the gravitino and gluino, we
use the above basis (C.2) for the structure constants which
is more appropriate for the OPEs including the graviton and
gluon. Therefore, the structure constant consists of both pB
and pF coming from (2.11) and (2.10) respectively and the
corresponding weights for the first current are either h1 or
(h1 − 1) while the corresponding weights for the second
current are either h2 or (h2 − 1). This is reasonable because
from (3.7) we allow to have the first derivative terms. For the
dummy variable h, the corresponding weight is given by h,
(h− 1) or (h− 2). The last one occurs when we consider the
commutators where the corresponding two currents contain
each derivative term.

C.1 The OPE between the graviton and the gluino

The OPE between the conformally soft gravitons and the
gluinos where the weights in the antiholomorphic sector are

given by h1 = k−2
2 and h2 = l− 1

2
2 can be expressed as

Hk(z1, z̄1) L
l, Â(z2, z̄2) = −κ

2

1

z12

h1+h2−3∑

h=0

(−1)h+1

×λh
[
q
h1,h2+ 1

2 ,h
B + q

h1,h2+ 1
2 ,h

F

]

×
∞∑

n=0

( 1
2 − 2h − k − l − n

− 1
2 − h − l
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+ · · · . (C.3)

The numerical factor 1
2 of the first binomial coefficient is

given by (2+ 1
2 ) minus 2. The numerical factor − 1

2 in the sec-
ond line of the first binomial coefficient is given by 1

2 minus
1.20 The first binomial coefficient above can be obtained from
(3.18) by taking l → (l + 3

2 ).

C.2 The OPE between the gluon and the gravitino

The OPE between the conformally soft gluons and the grav-
itinos where the weights in the antiholomorphic sector are

given by h1 = k−1
2 and h2 = l− 3

2
2 can be described as
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+ · · · . (C.4)

The numerical factor 1
2 in the first line of the first binomial

coefficient is given by (1+ 3
2 ) minus 2. The numerical factor

1
2 in the second line of the first binomial coefficient is given
by 3

2 minus 1. The first binomial coefficient above can be
obtained from (3.18) by taking k → (k+1) and l → (l+ 1

2 ).

C.3 The OPE between the gluon and the gluino

The OPE between the conformally soft gluons and the
gluinos where the weights in the antiholomorphic sector are

given by h1 = k−1
2 and h2 = l− 1

2
2 can be written as
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20 As mentioned before, the general form for the element of binomial
coefficient in the Footnote 10 can be used.
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The various structure constants in (3.6) are used. The numer-
ical factor − 1

2 is given by (1 + 1
2 ) minus 2. The numerical

factor − 1
2 in the second line of the first binomial coefficient

is given by 1
2 minus 1. The first binomial coefficient above

can be obtained from (3.18) by taking k → (k + 1) and
l → (l + 3

2 ).

C.4 The OPE between the graviton and the gluon

The OPE between the conformally soft gravitons and gluons
where the weights in the antiholomorphic sector are given by
h1 = k−2

2 and h2 = l−1
2 can be summarized by
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]

+ · · · . (C.6)
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According to the second equation of (3.2), the structure con-
stants are the same as the first equation of (3.2). So we can
repeat what we have done in (3.18). The difference appears in
the first binomial coefficient in Appendix (C.6) in the sense
that the numerical factor 1 is given by 2+1 minus 2. Similarly,
the numerical factor 0 in the second line of the first binomial
coefficient is given by 1 minus 1. The above binomial coef-
ficients can be obtained from (3.18) by taking l → (l + 1).

C.5 The OPE between the gluons

Finally, the OPE between the conformally soft gluons where
the weights in the antiholomorphic sector are given by h1 =
k−1

2 and h2 = l−1
2 can be expressed as
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The numerical factor 0 is given by 1+1 minus 2. The numer-
ical factor 0 in the second line of the first binomial coefficient
is given by 1 minus 1. The first binomial coefficient above
can be obtained from (3.18) by taking k → (k + 1) and
l → (l + 1). We use the following relations between the
structure constants
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× (2(h2 − 2) + 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

]
ph1−1,h2−1,h−2
F (m, n)

+
[

(2(h1 + h2 − 2 − h − 1) + 2)(m + n + h1 + h2 − 2 − h − 1 + 1)

2(h1 + h2 − 2 − h − 1) + 1

]

q̃h1,h2,h−1(m, n), q̃h1,h2,h(m, n)

∣
∣
∣
∣
h,even

=
[

2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

]
ph1−1,h2,h−1
B (m, n)

+
[

2(h2 − 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

]

×ph1,h2−1,h−1
B (m, n)

−
[

2(h1 + h2 − 2 − h − 1)(m + n + h1 + h2 − 2 − h − 1 + 1)

2(h1 + h2 − 2 − h − 1) + 1

]

q̃h1,h2,h−1(m, n)

= −
[

(2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

]
ph1−1,h2,h−1
F (m, n)

−
[

(2(h2 − 2) + 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

]

×ph1,h2−1,h−1
F (m, n)

+
[

(2(h1 + h2 − 2 − h − 1) + 2)(m + n + h1 + h2 − 2 − h − 1 + 1)

2(h1 + h2 − 2 − h − 1) + 1

]

×q̃h1,h2,h−1(m, n). (C.8)

Note that q̃h1,h2,−1(m, n) = ph1,h2,h−1
B (m, n) = 1

2 . From
Appendix (C.8), finally we obtain

q̃h1,h2,h(m, n)

∣∣∣∣
h,odd

= (h1 + h2 − 2 − h)

2(h1 + h2 − 2 − h − 1) + 1
ph1,h2,h
B

+
[

2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

× 2(h2 − 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

(h1 + h2 − 2 − h)

2(h1 + h2 − 2 − h − 1) + 1

]

× ph1−1,h2−1,h−2
B

+ (h1 + h2 − 2 − h − 1)

2(h1 + h2 − 2 − h − 1) + 1
ph1,h2,h
F

+
[

(2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

× (2(h2 − 2) + 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

(h1 + h2 − 2 − h − 1)

2(h1 + h2 − 2 − h − 1) + 1

]

ph1−1,h2−1,h−2
F ,

q̃h1,h2,h(m, n)

∣∣∣∣
h,even

=
[

2(h2 − 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

(h1 + h2 − 2 − h)

2(h1 + h2 − 2 − h − 1) + 1

]

× ph1,h2−1,h−1
B

×
[

2(h1 − 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

(h1 + h2 − 2 − h)

2(h1 + h2 − 2 − h − 1) + 1

]

×ph1−1,h2,h−1
B
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−
[

(2(h2 − 2) + 2)(n + (h2 − 2) + 1)

2(h2 − 2) + 1

(h1 + h2 − 2 − h − 1)

2(h1 + h2 − 2 − h − 1) + 1

]

× ph1,h2−1,h−1
F

−
[

(2(h1 − 2) + 2)(m + (h1 − 2) + 1)

2(h1 − 2) + 1

(h1 + h2 − 2 − h − 1)

2(h1 + h2 − 2 − h − 1) + 1

]

×ph1−1,h2,h−1
F . (C.9)

By considering Appendix (C.9), we can write down the OPE
in Appendix (C.7). The first one of Appendix (C.9) is the
same as the functional form of the second one of (C.2) while
the second one of Appendix (C.9) is the same as the functional
form of the first one of (C.2).
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