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Abstract The estimation of parameters from data is a com-
mon problem in many areas of the physical sciences, and
frequently used algorithms rely on sets of simulated data
which are fit to data. In this article, an analytic solution
for simulation-based parameter estimation problems is pre-
sented. The matrix formalism, termed the Linear Template
Fit, calculates the best estimators for the parameters of inter-
est. It combines a linear regression with the method of least
squares. The algorithm uses only predictions calculated for
a few values of the parameters of interest, which have been
made available prior to its execution. The Linear Template
Fit is particularly suited for performance-critical applica-
tions and parameter estimation problems with computation-
ally intense simulations, which are otherwise often limited
in their usability for statistical inference. Equations for error
propagation are discussed in detail and are given in closed
analytic form. For the solution of problems with a nonlinear
dependence on the parameters of interest, theQuadratic Tem-
plate Fit is introduced. As an example application, a deter-
mination of the strong coupling constant from inclusive jet
cross section data at the CERN Large Hadron Collider is
studied and compared with previously published results.

1 Introduction

The interpretation of collected research data is a frequent and
important step of the data analysis procedure in many scien-
tific fields. A common task in this interpretation is the estima-
tion of parameters using predictions obtained from analytic
calculations or simulation programs, usually referred to as
fitting. Frequently used fitting algorithms rely on numeri-
cal methods and utilize iterative function minimization algo-
rithms [1–7]. The availability of more computational power
and the development of improved algorithms such as machine
learning techniques [8,9] have led to more comprehensive
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statistical methods that can be employed for the estimation
of parameters [10–13]. At the same time, simulation pro-
grams have become more complex and more computationally
demanding, placing constraints on the inference algorithms.
For example, in the field of particle physics, such simulations
provide fully differential predictions in perturbative quan-
tum chromodynamics and the electroweak theory (see Refs.
[14–22] for some recent advances) and may take several hun-
dreds up to a few thousand years on a single, modern CPU
core. Sometimes, the simulation of the physical process is
followed by a detailed simulation of the experimental appa-
ratus in order to provide synthetic data as close as possible
to the recorded raw data. At the experiments at the CERN
Large Hadron Collider (LHC), the simulated data include the
physics of the proton–proton collision [23–25] and the simu-
lation of processes that take place subsequently in the detec-
tor material [26]. This results in the simulation of about 100
million electronic channels [27], which are processed sim-
ilarly to real data [28]. Consequently, these simulated data
cannot be used in iterative optimization algorithms because
of their computational cost. In addition, these predictions
can be provided only for a few selected values of the theory
parameters of interest.

Besides the restrictions associated with computationally
demanding simulations, there exist other reasons why less
complex simulations cannot be used by certain optimization
algorithms. Numerical instabilities or statistical fluctuations
in the predictions can result in fit instabilities, input quantities
for the predictions are sometimes only available for selected
discrete values of the parameters of interest [for example,
parameterizations of the parton distribution functions of the
proton (PDFs) which are only available for a few values of the
strong coupling constant αs [29,30]], or simply because there
are technical limitations when interfacing a simulation pro-
gram to the inference algorithm and the parameter(s) of inter-
est cannot be made explicit to the minimization algorithm.
A further frequent limitation for simulation-based inference
is related to the intellectual property of the simulation pro-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10581-w&domain=pdf
mailto:britzger@mpp.mpg.de


731 Page 2 of 28 Eur. Phys. J. C (2022) 82 :731

gram, where the computer code is not publicly available, but
the obtained predictions are available for a given set of refer-
ence values. In short, in many cases, the inference algorithm
can only use predictions that have been provided previously
since a recomputation by the inference algorithm is not pos-
sible.

Several variants of simulation-based template fits, or
template-like fits, are nowadays used in high-energy physics
[13,31–44]. These make use of polynomial interpolation or
regression between the reference points or apply related tech-
niques [45–47]. Some algorithms use un-binned quantities,
while others make use of summary statistics. Furthermore,
different algorithms to find the best estimator are employed;
for example, numerical methods or iterative minimization
algorithms are used to find the extremum of a likelihood or
χ2 function. In general, typical iterative minimization algo-
rithms can be considered to be template fits, since every itera-
tion generates a new template at a new reference point, which
are then used to find the extremum of the likelihood function.

In this article, the equations of the Linear Template Fit
(LTF) are derived, which can be written in a closed matrix
equation form. The Linear Template Fit provides an ana-
lytic solution for the determination of the best estimator in
a least-squares problem under the assumption that the pre-
dictions are available only for a finite set of values of the
parameters of interest. The equations are obtained from a
two-step marginalization of the underlying statistical model,
which assumes normally distributed uncertainties. The first
step provides a linearized, but continuous, estimate of the
prediction 1, and the second step provides the best estimator
of the fitting problem. The Linear Template Fit is suited for
a wide range of parameter estimation problems, where the
input data can be cross section measurements, event counts,
or other summary statistics like histograms.

This article is structured as follows. After a brief review
of the method of template fits in Sect. 2, the equation of
the Linear Template Fit is derived in Sect. 3 for a univari-
ate problem. While the Linear Template Fit turns out to be
a simple matrix equation, to the author’s knowledge it has
not been published in its closed form before. The emphasis
of this article is on variations of the Linear Template Fit, its
applicability, and the propagation of uncertainties. The mul-
tivariate Linear Template Fit is discussed in Sect. 5, and the
Linear Template Fit with relative uncertainties is presented
in Sect. 7. A detailed discussion on error treatment and prop-
agation is given in Sect. 8. A (detector) response matrix is
inserted into the Linear Template Fit in Sect. 9. Several con-

1 Usually, there exists prior knowledge about the value of the param-
eters of interest, for example from previous studies or theoretical con-
siderations. The templates are then constructed in the vicinity of the
expected best estimator, such that the linearized model is a good approx-
imation in general.

siderations for the applicability of the Linear Template Fit
are provided in Sect. 10, as well as a simple algorithm for
cross-checks and the relation to other algorithms. While the
prerequisite of the Linear Template Fit is the linearity of
the prediction in the parameters of interest, potential nonlin-
ear effects are estimated and discussed in Sect. 11. There,
the Quadratic Template Fit is introduced, an algorithm with
fast convergence using second-degree polynomials for the
parameter dependence of the model. Three toy examples are
discussed in Sects. 4, 6, and 13, and are also remarked upon
occasionally in between. A comprehensive and real example
application of the Linear Template Fit is given in Sect. 14,
where the value of the strong coupling constant αs(mZ) is
determined from inclusive jet cross section data obtained by
the CMS experiment at the LHC. The best estimators are
compared with previously published results, obtained with
other inference algorithms. Section 15 provides a summary.
Additional details are collected in the Appendix, where a
table can be found of the notation adopted in this article.

2 Template fits

The objective function of a multivariate optimization prob-
lem assuming normally distributed random variables is a like-
lihood function calculated as the joint probability distribution
of Gaussians

L =
n∏

i

1√
2πσ 2

i

exp

(
−(di − λi (α))2

2σ 2
i

)
, (1)

where di are the i data values, σ 2
i the variances, and λi is the

value that is dependent on the model parameters of interest
α. Gaussian probability distributions are often appropriate
assumptions for real data due to the central limit theorem
[48,49]. For numerical computation and optimization algo-
rithms, it is convenient to rewriteL in terms of a least-squares
equation using χ2 = −2 logL and omitting constant terms.
In matrix notation, and using a covariance matrix, the objec-
tive function becomes 2

χ2(α) = (d − λ(α))TV−1(d − λ(α)) . (2)

The maximum likelihood estimators (MLE) of the parame-
ters α are found by minimizing χ2

α̂ = arg min
α

χ2(d;α) . (3)

For this task, iterative function optimization algorithms are
commonly employed (see e.g. Refs. [4–6,50]). The least-

2 A table of the notation is provided in Appendix A. It is assumed, that
the hypothesized function λ is obtained from the simulator and will
be denoted as model, since it represents commonly a comprehensive
calculation from a complicated theoretical model.
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squares method is then equivalent to the maximum likelihood
method in Eq. (1).

A common problem that physicists often face at this point
is that the model λ(α) may be computationally intense, time-
consuming to calculate, or not be available in a compatible
implementation. Hence, the objective function χ2 cannot be
evaluated repeatedly and for arbitrary values of α, as it would
be required in gradient methods. In contrast, it is often the
case that the model is available for a set of j model param-
eters α̇( j). These predictions y( j) := λ(α̇( j)) are denoted
as templates for given reference values α̇( j) in the follow-
ing. Consequently, a template fit exploits only previously
available information and can be considered as a two-step
algorithm:

1. In a first step, a (continuous) representation of the model
in the parameter α needs to be derived from the templates.
This can be done by interpolation, regression, or any other
approximation of the true model with some reasonable
function y(α, θ̂), like

λ(α) ≈ y(α, θ̂) , (4)

where y(α, θ̂) is dependent on α and several parameters
θ . The values θ are then determined from the templates,
for example with a least-squares method and a suitable
χ2, similar to

θ̂ = arg min
θ

χ2( y(0), . . . , y( j); θ) . (5)

Such a procedure can be done for each point i separately,
or for all points simultaneously.

2. In a second step, which is often decoupled from the first,
the best estimators of the parameter of interest are deter-
mined using the approximated true model from the first
step. It can be expressed as

α̂ = arg min
α

χ2(d;α) , (6)

where the objective function could be a least-squares
expression, like the one of Eq. (2), but using the approxi-
mated model y(α, θ̂) from the first step, like

χ2(α) = (d − y(α, θ̂))TV−1(d − y(α, θ̂)) . (7)

Such a two-step algorithm appears to be cumbersome, and in
the following the equation of the Linear Template Fit is intro-
duced, which combines the two steps into a single equation,
under certain assumptions.

3 The basic method of the Linear Template Fit

The basic methodology of the Linear Template Fit is intro-
duced, and in order to simplify the discussion, a univariate
model λ(α) is considered, where the parameter of interest is
denoted as α. It is assumed that the model is available for
several values α̇( j) of the parameter of interest, and these
j predictions are denoted as the templates, λ(α̇( j)). These
templates will be confronted with the vector of the data d in
order to obtain the best estimator α̂.

We consider a basic optimization problem based on Gaus-
sian probability distributions, and the objective function is
written in terms of a least-squares equation

χ2(α) = (d − λ(α))TV−1(d − λ(α)) . (8)

In a first step, the model λ(α) is approximated linearly from
the template distributions, and in every entry i , λi (α) is
approximated through a linear function yi (α; θ0, θ1) like

λi (α) ≈ yi (α; θ̂) using yi (α; θ (i)) := θ
(i)
0 + θ

(i)
1 α . (9)

The best estimators of the function parameters, θ̂ , are
obtained from the templates by linear regression (“straight
line fit,” see e.g. Refs. [51–53]), whose formalism also fol-
lows the statistical concepts that were briefly outlined above.
Each of the templates is representative of a certain value of
α, which will be denoted in the following as reference points
α̇ j , and all reference values form the j vector α̇. Next, an
extended Vandermonde design matrix [54], the regression
matrix, is constructed from a unit column vector and α̇:

M := (
1 α̇

) =
( 1 α̇1

...
...

1 α̇ j

)
. (10)

From the method of least squares, the best estimators of the
polynomial parameters for the i th entry are [55]

θ̂ (i) =
(

θ̂0

θ̂1

)

(i)

= M+
(i)

⎛

⎜⎝
y(1),i

...

y( j),i

⎞

⎟⎠ using

M+
(i) = (MTW(i)M)−1MTW(i) , (11)

where the matrix M+
(i) is a g-inverse of a least-squares prob-

lem [54,56], y( j),i denotes the i th entry of the j th template
vector, and W(i) is an inverse covariance matrix which rep-
resents uncertainties in the templates, e.g. W(i), j, j = σ−2

y( j),i .
However, for the purpose of the Linear Template Fit, an
important simplification is obtained since the special case
of an unweighted linear regression is applicable to a good
approximation. The (inverse) covariance matrix W(i) in this
problem has two features: it is a diagonal matrix, since the
templates are generated independently, and secondly, it has,
to a very good approximation, equally sized diagonal ele-
ments, W(i), j, j ≈ W(i), j+1, j+1. This simplification is com-
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monly well applicable, for example, if the model is obtained
from an exact calculation or if Monte Carlo event generators
were employed and the templates all have a similar statistical
precision. Consequently, the size of the uncertainties in the
templates σy( j),i factorizes from W(i) and subsequently can-
cels in the calculation of M+

(i), eq. (11). Thus, an unweighted
polynomial regression is applicable, and the g-inverse sim-
plifies to a left-side Moore–Penrose pseudoinverse matrix
[57–59],

M+
(i) � M+ = (MTM)−1MT , (12)

with M as defined in Eq. (10). It is observed that the matrix
M+ is universal, so it is independent on the quantities y( j),i
and W(i), but is calculated only from the reference points α̇.
Consequently, it is equally applicable in every bin i .

Henceforth, we decompose the matrix M+ (Eq. (12)),
which is a 2× j matrix, into two row vectors, like

M+ =:
(
m̄T

m̃T

)
, so

m̄ = (M+)T
(

1
0

)

m̃ = (M+)T
(

0
1

) . (13)

This introduces the j column vectors m̄ and m̃.
We further introduce the template matrix Y , a i× j matrix,

which is constructed from the column vectors of the template
distributions, and can be written as

Y :=
⎛

⎜⎝
Y1,1 . . . Y1, j

...
. . .

...

Yi,1 . . . Yi, j

⎞

⎟⎠ =
(
y(α̇1)

. . . y(α̇ j )

)

=
⎛

⎜⎝
y(1),1 . . . y( j),1

...
...

...

y(1),i . . . y( j),i

⎞

⎟⎠ . (14)

Hence, substituting the best estimators θ̂ (Eq. (11)) into
the linearized model y(α, θ̂) (Eq. (9)), and using m̄ and m̃
(Eq. (13)) and Y (Eq. (14)), the model can be expressed as a
matrix equation3:

λ(α) ≈ y(α, θ̂) = Y m̄ + Y m̃α . (15)

It is seen that the polynomial parameters θ are no longer
explicit in this expression. Consequently, the objective func-
tion (Eq. (8)) becomes a linear least-squares expression

χ2(α) = (d − Y m̄ − Y m̃α)TW (d − Y m̄ − Y m̃α) , (16)

where W is the inverse covariance matrix, W = V−1.

3 Note that Eq. (15) represents already a very useful (linearly approx-
imated) representation of the simulation, since it transforms a discrete
representation of the model into a continuous function. This equa-
tion may become useful for several other purposes, or optimization
algorithms, whenever only templates are available, but a (quickly cal-
culable) continuous function is required. Higher-degree polynomials
beyond the linear approximation can also be used for that purpose, so
λT(α) � (

α0 . . . αn
)M+Y T, using a n-degree regression matrix M

(Eq. (81)).

In the second step of the derivation of the Linear Template
Fit, the best estimator α̂ is determined. Due to the linearity
of χ2 in α, the best-fit value of α is defined by the stationary
point of χ2[49,55,60], and the best linear unbiased estimator
of the parameter of interest is

α̂ = (Y m̃)TW

(Y m̃)TWY m̃
(d − Y m̄) . (17)

When introducing the g-inverse of least squares, a 1 × i
matrix,

F := (Y m̃)TW

(Y m̃)TWY m̃
, (18)

the master formula of the Linear Template Fit is found to be

α̂ = F(d − Y m̄) , (19)

where Eqs. (13), (14), and (18) were used, and d denotes the
vector of the data.

Since the distribution of the data is assumed to be normally
distributed, from the linearity of the least squares, it follows
that the estimates are also normally distributed. From error
propagation, the variance of the best estimator is

σ 2
α̂

= FV FT = (FTWF)−1 . (20)

Given the case that the approximation in Eq. (15) holds, the
estimator α̂ represents a best and unbiased estimator accord-
ing to the Gauß–Markov theorem [49,55], and also the vari-
ances are the smallest among all possible estimators. Since
d does not enter the calculation of the variances, Eq. (20),
the uncertainties are equivalent to the expected uncertainties
from the Asimov [61] data λ(α̂).

When using the right expression of Eq. (13), it can be
directly seen that the best estimator is indeed obtained from
a single matrix equation using only the template quantities
(Y , α̇) and the data details (d, W ), and the Linear Template
Fit can alternatively be written as

α̂ =
((

Υ
(

0
1

))T
WΥ

(
0
1

))−1 (
Υ

(
0
1

))T
W

(
d − Υ

(
1
0

))

using (21)

Υ = Y (M+)T = Y
(
1 α̇

) ((
1 α̇

) (
1 α̇

)T
)−1

. (22)

In contrast, when the (commonly well-justified) approxima-
tion of the unweighted regression in each bin is not applicable
[see left side of Eq. (12)], then the bin-dependent regression
matrices M+

(i) remain explicit. Such a case may be present
when a Monte Carlo event generator is used for the gener-
ation of the templates and the statistical uncertainties have
to be considered, and one sample was generated with higher
statistical precision than the others, for instance, since it also
serves for further purposes like unfolding. However, when
using such a weighted regression, the best estimator may
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still be expressed using Eq. (17), but the elements of the two
vectors Y m̄ and Y m̃ would need to be calculated separately
and become

(Y m̄)i = (
1
0

)T
M+

(i)x(i) and

(Y m̃)i = (
0
1

)T
M+

(i)x(i) , (23)

where the vectors x(i) denote the i th row of the template
matrix, x(i) = Y T

i , and the matrices M+
(i) may include uncer-

tainties in the templates x(i) through W(i) (see Eq. (11),
right). This case, however, will not be considered any fur-
ther in that article.

In the following sections, an example application of the
Linear Template Fit is presented, and subsequently, general-
izations of the Linear Template Fit are discussed, and formu-
lae for error propagation are presented.

4 Example 1: the univariate Linear Template Fit

An example application is constructed from a random num-
ber generator within the ROOT analysis framework [62]. The
physics model is a normal distribution with a standard devi-
ation of 6.0. The mean value, denoted as α, is subject to the
inference. Similarly to particle physics, a counting experi-
ment is simulated, and the (pseudo-)data are generated from
500 events at a true mean value of α = 170.2, while limited
acceptance restricts the measurement to values larger than
169. Some measurement distortions are simulated by using a
standard deviation of 6.2 for the pseudo-data. Limited accep-
tance of the experimental setup is simulated by considering
only one side of the normal distribution, and altogether 14
“bins” with unity width are “measured.” Let us assume that
from a previous measurement it is known that the physics
parameter of interest has a value of about α ≈ 170.5 ± 1.0.
Therefore, seven templates in a range from α̇ = 169.0 to
172.0 in steps of 0.5 are generated, and each template is gen-
erated using 40,000 random numbers. From Eq. (20) it is
then found that the pseudo-data will be able to determine the
value of α approximately with an uncertainty of ±0.5, and
subsequently, additional templates at values of α̇ = 169.0,
169.5, 170.5, 171, and 171.5 are generated.

The Linear Template Fit using these seven templates is
illustrated in Fig. 1. The Linear Template Fit from Eq. (19)
reports a value of α̂ = 170.03 ± 0.41, which is fully consis-
tent within the statistical uncertainty with the generated true
value of 170.2, although a somewhat different standard devia-
tion was used. In Fig. 1 (right), the result from a hypothesized
weighted linear regression is shown (cf. Eq. (23)), but it is
almost indistinguishable from the unweighted linear regres-
sion as is used in the Linear Template Fit. This is because the
generation of the individual templates always employs the
same methodology, as already argued above. Furthermore,

the estimated best model is displayed in Fig. 1 (left), which
is defined from Eq. (15) when substituting the best estima-
tor, ŷ = y(α̂). This results in χ2 = 5.6 for 14 data points
and one free parameter. Other seeds for the random num-
ber generator of course result in different values. It should
be noted that this example is purposefully constructed with
large (statistical) uncertainties in order to obtain a visually
clearer presentation in the figures, although in some bins the
assumption of normally distributed random variables is then
a rather poor approximation to the Poisson distribution.

5 The multivariate Linear Template Fit

Phenomenological models often depend on multiple param-
eters, and thus it is a common task to determine multi-
ple parameters at a time. Such k parameters of interest are
referred to as α1, …, αk , or simply α, and the best estimators
are denoted as α̂1, …, α̂k , or α̂. The linear representation of
the model is a hyperplane yi (α) in each of the i data points,
defined as

λ(α) ≈ y(α; θ̂) = θ̂0 + θ̂(1,1)α1 + · · · + θ̂(1,k)αk , (24)

where a constant θ0 and the first-degree parameters θ(1,k) are
considered. Since higher-degree terms or interference terms
are not included, the fit parameters need to be (sufficiently)
independent or they have been made orthogonal by applying
a variable transformation beforehand.

In the multivariate case, each template y( j) is representa-
tive of a reference point α̇( j) in the k-dimensional space. The
regressor matrix M is constructed as a j × (1 + k) design
matrix:

M :=
⎛

⎜⎝
1 α̇(1),1 . . . α̇(1),k
...

...
...

...

1 α̇( j),1 . . . α̇( j),k

⎞

⎟⎠ . (25)

As in the univariate case, the pseudoinverse M+ is calculated
from Eq. (12), and also the same considerations for the justi-
fication of the unweighted multiple regression are applicable.
Instead of a single vector m̃, there is now a vector for each
regression parameter θk . Therefore, the j × k matrix M̃ is
introduced, which is defined by decomposing M+ like

M+ =:
(
m̄T

M̃T

)
. (26)

Hence, the best estimator for the linearized multivariate
model y(α; θ) becomes

λ(α) ≈ ŷ(α) = Y m̄ + Y M̃α , (27)

where the θ parameters are again no longer explicit.
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Fig. 1 Two views of the template matrixY of an example application of
the Linear Template Fit. Left: the template distributions Y as a function
of the observable. The full circles display a pseudo-data set with sta-
tistical uncertainties, and the dotted line indicates the estimated model
after the fit, y(α̂). Right: the template distributions Y of an example
application of the Linear Template Fit, but as a function of the refer-

ence values of the parameter of interest α. Only nine selected “bins” i
are displayed. The red line shows the linearized model ŷi (α), Eq. (15),
in the respective bin, and the full circles are again the pseudo-data. The
dotted line indicates a weighted linear regression, which is not used in
the Linear Template Fit

When using the linear approximation of the model,
λ(α) ≈ ŷ(α), the χ2 function (Eq. (2)) for the multivariate
Linear Template Fit becomes

χ2 � (
d − ŷ(α)

)T
W

(
d − ŷ(α)

)
(28)

=
(
d − Y m̄ − Y M̃α

)T
W

(
d − Y m̄ − Y M̃α

)
(29)

= (
d − ∑

l ε̂l s(l) − ŷ(α)
)T

V
−1

× (
d − ∑

l ε̂l s(l) − ŷ(α)
) + ∑

l ε̂
2
l . (30)

The last equation introduces an equivalent expression in
terms of nuisance parameters [63]. The factors ε̂l are related
to uncertainties with full bin-to-bin correlations when writing
the covariance matrix as

V = V + Vcorr using Vcorr = ∑
l s(l)s

T
(l) , (31)

where the sum l runs over all uncertainties with full bin-
to-bin correlations and the vectors sl denote the individual
systematic uncertainties (also called shifts), while the matrix
V includes all other uncertainty components. It is common
practice that the systematic shifts are calculated from relative
uncertainties and multiplied with the measured data. Impli-
cations of this practice are discussed in Sects. 7 and 8.7, and
care must be taken that the result does not become biased

[64–69]; a common technique to avoid that bias is discussed
in Sect. 8.7.

Equation (30) is again a linear least-squares expression,
and the best linear unbiased estimators for the parameters α̂

and the nuisance parameters ε̂ are obtained from the station-
ary point. Hence, the best estimators from the multivariate
Linear Template Fit become

â =
(

α̂

ε̂

)
= F(d − Y m̄) , (32)

where â was introduced and the shorthand notations F (a
g-inverse of least squares), and D are calculated as

F := D−1 (
Y M̃ S

)T
W

:=
((
Y M̃ S

)T
W

(
Y M̃ S

)+
(

0k 0
0 1l

))
−1 (

Y M̃ S
)T

W, (33)

using W = V
−1. The matrix with the fully bin-to-bin corre-

lated uncertainties S is composed from the column vectors
of the systematic shifts s(l) as

S := (
s(1) . . . s(l)

)
, (34)

and the symbol
(
Y M̃ S

)
denotes a composed i × (k + l)

matrix from Y M̃ and S, while 0k and 1l denote a k×k or l×l
zero or unit matrix, respectively. The matrix D is commonly
a full-ranked symmetric matrix and thus invertible. A brief
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discussion about a more efficient numerical calculation of
D−1 is given in Appendix D. If all uncertainty components
are represented through a single covariance matrix V , cf.
left side of Eq. (31), the multivariate Linear Template Fit
simplifies to

α̂ =
(
(Y M̃)TWY M̃

)−1
(Y M̃)TW (d − Y m̄) . (35)

6 Example 2: the multivariate Linear Template Fit

In Example 1, only the mean value of the model (which is
a normal distribution) was determined, although the pseudo-
data had a slightly different standard deviation than the
model. In the following example, a multivariate Linear
Template Fit is performed and the same pseudo-data as in
Example 1 are used, but both values of the model will be
determined: the mean value and the standard deviation of
the Gaussian. Therefore, templates are generated for some
selected values for the mean (between values of 169.5 and
171) and the standard deviation (between values of 5.8 and
6.4) of a Gaussian, and again, 40,000 events are used for each
template. The four “extreme” variations of the two parame-
ters are omitted. The multivariate Linear Template Fit using
all these templates is illustrated in Fig. 2.

The best estimators from the multivariate Linear Template
Fit (Eq. (35)) are 169.91±0.46 for the mean and 6.28±0.38
for the standard deviation. Their correlation coefficient is
found to be −0.3. Within the statistical uncertainties, both
values are in very good agreement with the simulated input
values of 170.2 and 6.2, respectively. Thus, this example
illustrates the application of the multivariate Linear Template
Fit with two free parameters, where a visual representation
of the linearized model is still possible. However, any num-
ber of free parameters is in principle possible, and for an
n-parameter fit, the minimum number of linearly indepen-
dent templates is just n + 1.

7 The Linear Template Fit with relative uncertainties

In this section we present the equations for the Linear Tem-
plate Fit when the estimators obey a log-normal distribu-
tion. This could be the case for data when the determina-
tion of a variable is affected by a number of multiplicative
factors that are subject to uncertainties. Consequently, the
variable follows a log-normal distribution due to the central
limit theorem [48,49]. Also, when the value of an observed
variable is a random proportion of the previous observation,
it follows a log-normal distribution [49]. An example would
be the measurement of the electron energy in a calorimeter
which is affected by a number of fractional energy losses and
corrections [10]. Another example would be measurements

that are dominated by systematic multiplicative uncertain-
ties: a prominent multiplicative error is due to uncertainties
of the luminosity measurement in particle collider experi-
ments which results in a relative uncertainty. Contrary to
additive errors, multiplicative errors cannot change the sign
of the variable, and a positively defined observable always
remains positive, which is an important prerequisite for sev-
eral physical quantities such as cross sections. A comparison
of the log-normal, the normal, and the Poisson probability
distribution function for two selected values of their mean
value are displayed in Fig. 3.

The likelihood of a set of i measurements is a joint function
of log-normal PDFs

L =
N∏

i

1√
2πς2

i d
2
i

exp

(
−(log di − μi )

2

2ς2
i

)
. (36)

When writing μi = logmi [70,71], it can be directly seen
from the residuals that the ratios di/mi enter the likeli-
hood calculation instead of their differences. The variance ς

denotes a relative quantity, thus it represents relative uncer-
tainties. In fact, the log-normal distribution is equivalent to
considering random variables with normally distributed rela-
tive uncertainties. For small relative errors, ςi � 20 %, which
is a common case in particle physics, the log-normal, the
normal, and the Poisson distributions become similar. For
larger relative errors, the log-normal distribution provides
some approximation of the Poisson distribution, and for prac-
tical purposes one benefits from its strictly positiveness, in
contrast to the often used normal distribution.

Similarly to the case for normally distributed data, we
choose as a first-order approximation of the model in every
bin

μi (α) ≈ θ
(i)
0 + θ

(i)
(1,1)α1 + · · · + θ

(i)
(1,k)αk , (37)

and the best estimators for the θ parameters are again deter-
mined from the templates; consequently, the best estimator
of the approximated model is

μ(α) ≈ μ̂(α) = log(Y )m̄ + log(Y )M̃α . (38)

The term log(Y ) denotes a coefficient-wise application of the
logarithm to the elements of the template matrix Y , and it is
used to match the logarithmized data (log di ) in the likeli-
hood. Equation (38) is an equally valid first-order approx-
imation of the model as compared with the default linear
approximation in Eq. (24).

As an illustration, the linearized model from Eq. (38) is
displayed in Fig. 4 for some selected bins of Example 1
(Sect. 4) and compared with the approximations of Eq. (27).
The two are reasonably similar in that example, since the
templates are present in the vicinity of the best estimator and
in a range where a linear approximation is valid. Although
the parameter dependence in Example 1 is in fact truly linear,
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Fig. 2 Two views of the template matrix Y of an example application
of the multivariate Linear Template Fit. Left: the template distributions
Y as a function the observable. More details are given in the caption of
Fig. 1. Right: the template distributions Y (open medium-sized circles)

as a function of the two reference values for four selected “bins” i . The
plane displays the linearized model ŷi (α), Eq. (27), in the respective
bin. The large open circles are again the pseudo-data, and small circles
indicate the projection onto the plane ŷ
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Fig. 3 The log-normal, normal, and Poisson probability distribution
functions with mean values of 10 (left) and 100 (right) on a linear
and logarithmic axis. These values are commonly referred to as relative
uncertainties of 32 % and 10 %, respectively. For larger uncertainties, the
log-normal distribution provides a good approximation of the Poisson
distribution around the peak. The log-normal and the Poisson distribu-
tions are strictly positive. For large N , all distributions become similar

from the generated statistical precision of the templates, the
templates cannot discriminate between these two best model
estimators.

When using log-normally distributed variables, which cor-
responds to relative uncertainties, the objective function χ2

of the Linear Template Fit becomes

χ2 = (
log d − ∑

lεls(l) − μ̂(α)
)T

W

× (
log d − ∑

lεls(l) − μ̂(α)
) + ∑

lε
2
l . (39)

The covariance matrix V = W
−1 comprises normally dis-

tributed relative uncertainties, and the uncertainties with bin
correlations s also enter the calculation through their relative
values. The notation log d denotes a coefficient-wise appli-
cation of the logarithm. A common relation between relative
and absolute uncertainties would be

s(l),i � s(l),i
di

, (40)

and although this equation does not strictly translate between
normal and log-normal uncertainties, it is often used in prac-
tical applications. Note that we use a Roman font s for relative
uncertainties, and italic s for absolute uncertainties.

This χ2 function is again a linear least-squares problem,
and the best estimators for α and ε in the Linear Template
Fit are

â :=
(

α̂

ε̂

)
= F(

log d − log(Y )m̄
)
, (41)
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where the matrix F is defined in a similar way as Eq. (33),
but from relative uncertainties in V and s (S) and employing
the substitution Y M̃ → log(Y )M̃ . Due to the treatment of
systematic uncertainties as relative uncertainties, the Linear
Template Fit with the log-normal p.d.f.’s may be preferred
in practical applications over the Linear Template Fit with
absolute uncertainties.

When repeating Example 1 (Sect. 4) with relative uncertainties, the
best estimator for the mean value is found according to Eq. (41) to be
α̂ = 170.40 ± 0.46, which is in good agreement with the generated
value of 170.2. Some details are further displayed in Fig. 4.

When considering Example 2 (Sect. 6), under the assumption of
log-normally distributed pseudo-data, the best estimators are found
to be 170.18 ± 0.47 for the mean and 6.33 ± 0.39 for the standard
deviation, with a correlation coefficient of −0.3. When further con-
sidering a normalization uncertainty of the size of 10 %, so a relative
uncertainty, the best estimators for the mean and variance become
α0 = 170.20 ± 0.76 and α1 = 6.33 ± 0.49, respectively. Their
correlation coefficient is −0.6, and the nuisance parameter of the
normalization uncertainty is ε̂ = −0.02 ± 0.5.

8 Errors and error propagation

In many applications and fields, like particle physics, it is of
great importance to provide detailed uncertainties together
with the fit parameters and to propagate uncertainties from
all relevant input quantities. Due to its analytic and closed
form, the Linear Template Fit provides unique opportunities
for detailed error propagation and analysis, that is otherwise
not easily possible in other inference algorithms. For exam-
ple, every single uncertainty component can be propagated
separately and analytically to the fit results. In the following,
the equations for error propagation are discussed, based on
the equation of the Linear Template Fit in Eq. (32).

8.1 Statistical uncertainties and uncertainties without
bin-to-bin correlations

Statistical or epistemic uncertainties in the data are repre-
sented by the covariance matrixV. The matrixVmay include
further uncertainty components with or without bin-to-bin
correlations, like systematic or aleatoric uncertainties. From
linear error propagation [60], the covariance matrix is prop-
agated to the best estimators â as

V̂â = FVFT , (42)

using F as defined in Eq. (33). Due to the Gauß–Markov
theorem, the estimators â for the given objective function
χ2, Eqs. (30) and (39), have the least variance among all
possible estimators.

If V is a sum of multiple individual matrices, like V =
Vstat. + ∑

Vuncorr. + ∑
Vcorr. + · · · , each covariance matrix

can be propagated separately using Eq. (42). By doing so,

the contribution from each uncertainty component to the full
uncertainty is determined separately.

8.2 Systematic uncertainties or uncertainties with
bin-to-bin correlations

Systematic uncertainties associated with the input data are
often represented as uncertainties with full bin-to-bin cor-
relations and are represented either as systematic shifts, s(l)
(Eq. (34)), or as covariance matrices, Vcorr

l = s(l)s
T
(l). Using

linear error propagation, these are propagated to the best esti-
mators â as

σ
(s(l))
â = F s(l) . (43)

Alternatively, Eq. (42) can be employed. For the Linear Tem-
plate Fit with relative uncertainties, one literally has the same
equation but using relative values s(l) (compare Eq. (40)).

In Example 2, where a normalization uncertainty of 10 % was con-
sidered the uncertainty breakdown for the two parameters would
be σα̂0 = ±0.56(stat.) ± 0.51(norm.) and σα̂1 = ±0.42(stat.) ±
−0.25(norm.).

When systematic uncertainties are included in the Lin-
ear Template Fit, their corresponding nuisance parameters εl
are constrained by data, and the obtained reduction of the
systematic uncertainty may be used for further analyses. In
applications where the fitted parameters are dominated by
systematic uncertainties in the input data, it is good practice
to constrain the associated systematic shifts by adding addi-
tional measurements to the fitting problem [31,35,72,73].
This practice provides additional constraints on the related
parameters, εl , and smaller experimental uncertainties can be
obtained. The uncertainty in the nuisance parameter becomes
smaller than unity.

8.3 External uncertainties

The generalized transfer matrix F provides the straightfor-
ward opportunity for linear error propagation; see Eqs. (42)
or (43). While these equations are predominantly employed
to propagate the uncertainties that are included in the Lin-
ear Template Fit, equivalent equations are also applicable to
propagate further uncertainties that are not used in the fit,
but which would still need to be propagated to the fit result.
For example, these may be uncertainties in the underlying
theory prediction which cannot be constrained by the data.
An actual case for such an uncertainty is given below for the
non-perturbative correction factors (cf. Fig. 10).
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Fig. 4 The best estimate of the parameter dependence of the model,
Eq. (38) for four selected bins of Example 1, when performing a Lin-
ear Template Fit with log-normally distributed estimators. Note that the
y-axis indicates the logarithmized values of the templates. The pseudo-

data are displayed for comparison at the best estimator α̂ of the Linear
Template Fit. For comparison, the linearized model from Eq. (15) is also
displayed, which is otherwise not used when log-normally distributed
estimators are considered

8.4 Unconstrained uncertainties with full bin-to-bin
correlations

A special case of an uncertainty with full bin-to-bin correla-
tions may be considered through anunconstrained systematic
uncertainty. These are defined by including the respective
systematic shift s(l) into the Linear Template Fit, but in con-
trast to common constrained systematic uncertainties, these
have a zero value (instead of unity) in the respective diagonal
element of the l × l matrix 1l in Eq. (33). As a consequence,
the Linear Template Fit can exploit the degree of freedom
of that systematic shift, but the data does not provide any
constraint on that uncertainty source. A possible application
would be fits to data, where the normalization is unknown
and is a free, unconstrained, systematic uncertainty.

8.5 Uncertainties in the templates

The template distributions Y may be associated with uncer-
tainties from various sources. These can be statistical uncer-
tainties in the elements Yi j or systematic uncertainties with
correlations among all entries of Y . One may think about Y
being determined from two distinct models, or templates that
were generated with different parameters, and the resulting
difference in Y may be considered as a systematic uncer-
tainty.

The uncertainties in â due to uncertainties in Y are
obtained from linear error propagation. The uncertainty in a
single element ofY is denoted asσYi j , and using the shorthand
notation D from Eq. (33), the partial derivative of Eq. (32) is

∂ â
∂Yi j

= D−1
[ (

1(i j)M̃ 0il
)T

W(d − Y m̄)

− (
Y M̃ S

)T
W1(i j)m̄

−
[(
Y M̃ S

)T
W

(
1(i j)M̃ 0il

)

+ (
1(i j)M̃ 0il

)T
W

(
Y M̃ S

)]
â
]

, (44)

where 1(i j) denotes an i × j zero matrix with only the ele-
ment (i, j) being unity, and 0il denotes an i×l zero matrix. It
should be noted that the usage of the matrices 1(i j) and 0il in
numerical calculations is discouraged, since a naive matrix
multiplication becomes numerically inefficient, but that it
remains instructive to write the equations in that extensive
format. The resulting size of the uncertainty of the best esti-
mators due to σYi j becomes

σ
(Yi j )
â = ∂ â

∂Yi j
σYi j . (45)

Hence, uncertainties without entry-to-entry correlations,
such as statistical uncertainties, are propagated to the esti-
mated parameters as

σ
(Yuncorr.)

â =
√√√√

∑

i, j

(
∂ â
∂Yi j

σYi j

)2

, (46)

where the square root and the exponentiation are performed
coefficient-wise, while uncertainties that have full entry-to-
entry correlations are propagated as

σ
(Ycorr.)

â =
∑

i, j

∂ â
∂Yi j

σYi j . (47)

In examples 1 and 2 (Sects. 4 and 6), the templates are each gener-
ated with 40 000 events and independently from each other. Hence,
all their entries have statistical uncertainties. Using Eq. (46), the
statistical uncertainties from Y under Gaussian approximation are
±0.025 in Example 1, and ±0.042 and ±0.060 for the two param-
eters in Example 2.

The equations for error propagation of the Linear Template
Fit with relative uncertainties (Sect. 7) are altogether similar
to the presented equations and do not need to be repeated.
However, since relative uncertainties are considered, the par-
tial derivatives for error propagation in Eqs. (46) and (47)
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become

∂ â
∂Yt j

→ ∂ â
∂ log Yt j

. (48)

Example 2 with log-normal uncertainties would report statistical
uncertainties from Y of ±0.052 and ±0.066 for the two fit param-
eters.

Note that the uncertainties in Y are not considered within
the fit, but propagated separately, since it is assumed that
these are negligibly small and independent of the model
parameter α, and cannot be constrained by the data.

8.6 Full uncertainty

The covariance matrix for the best estimators, including all
uncertainty components that are considered in the Linear
Template Fit, are calculated from Eqs. (42) and (43):

Vâ = Vâ + ∑
lσ

(s(l))
â (σ

(s(l))
â )T (49)

Further uncertainties, which are not explicitly considered in
the fit, can be propagated to the result by using Eqs. (42)
and (43) or also Eqs. (46) and (47).

8.7 Error (re-)scaling

When multiple data points are considered in the fit and
they are correlated through some (systematic) uncertainties,
the best-fit estimators may become biased [64–69]. This is
mainly because uncertainties with bin-to-bin correlations are
commonly valid as relative uncertainties, or so-called multi-
plicative uncertainties, such as normalization uncertainties,
but those are included in the fit with absolute values (i.e., as
variances). Since the data are subject to random noise from
statistical fluctuations, or simply because of the different size
of the values, for example when considering different data
sets, the result may become biased since smaller values are
effectively preferred by the fit. While such a bias is largely
reduced or even absent from first principles when working
with relative uncertainties, it may still be useful to discuss
possible solutions to this problem, and several solutions are
discussed in the literature (see e.g. Ref. [69]).

A common solution is to consider (multiplicative) uncer-
tainties with bin-to-bin correlations through their relative val-
ues in the χ2 computation, and their relative values are mul-
tiplied coefficient-wise with the prediction(s) rather than the
data values [68]. However, since the minimization of χ2 is
then no longer linear in the fit parameters, there is no closed
analytic solution for the best estimators. However, an approx-
imately equivalent result is obtained when calculating the
covariance matrices and systematic shifts (cf. Eq. (31)) from
theoretical predictions [66], and the coefficients of the shifts

are recalculated according to

s(l),i → s(l),i yi
di

= s(l),i yi , (50)

and analogously for covariance matrices. Various options for
the predictions y for this error rescaling may be considered,
and the prediction y could be chosen to be

– One of the template distributions, y( j);
– The prediction of the linearized model with ad hoc

selected parameters α, ŷ(α);
– The best estimator of the linear model, ŷ(â); or
– The Linear Template Fit may be iteratively repeated with

the best estimator, ŷ(â).

The rather compact equations of the Linear Template Fit are
well suited for an iterative algorithm. Such procedures are
equivalent to an alternative formulation of the χ2 quantity,
but the convergence of such iterative algorithms should be
critically assessed.

9 Linear Template Fit with a detector response matrix

Many measurements need to be corrected for detector effects
like resolution or acceptance in order to compare the mea-
surement with theoretical predictions. This is referred to as
unfolding (for reviews see e.g. [10,74–79]) and is commonly
performed by first simulating the detector response and rep-
resenting it in terms of a response matrix A,

y = Ax , (51)

where y denotes the measured detector-level distribution
and x the “true” underlying distribution. However, it is not
straightforward to apply the inverse response matrix to the
distribution y, since the unfolding problem represents an ill-
posed inverse problem, or the matrix A needs to be a square
matrix, and thus more sophisticated unfolding algorithms
need to be employed to determine the “true” distribution x
[80–85]. When performing a parameter determination, how-
ever, it is equivalent whether using the unfolded distribu-
tion x together with templates of the predictions, or alterna-
tively using the detector-level measurement y and applying
the response matrix to the templates instead. These two pro-
cedures are supposed to be equivalent if the unfolding prob-
lem and algorithm are unbiased, and are referred to as folding,
up-folding, or forward folding. Because the simulation of the
detector effects and the determination of the response matrix
A may be computationally expensive, as is the case for com-
plex particle physics experiments, it may be reasonable to
determine the matrix A only once and with high precision,
and then apply it to the templates.
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The inclusion of the detector effects in the Linear Template
Fit is straightforward and is realized by the simple substitu-
tion

Y → AX (52)

in Eqs. (32) and (33), where X represents the template matrix
without detector effects at the “truth” or “particle” level.
When using relative uncertainties, the substitution becomes

log(Y ) → log(AX) , (53)

and the full expression of the Linear Template Fit becomes
(

α̂

ε̂

)
= F(

log d − log(AX)m̄
)

using

F =
((

log(AX)M̃ S
)T

W
(
log(AX)M̃ S

)

+
(

0k 0
0 1l

))−1 (
log(AX)M̃ S

)T
W . (54)

Since Y and AX are i × j matrices, the index t for the
number of entries (“bins”) on the truth level was introduced.
Thus, A is an i × t matrix and X has dimension t × j , and
in order to obtain a higher resolution, it may be reasonable
to consider a non-square response matrix A, i.e., i �= t . It
is important that the detector response A is required to be
independent from the physics parameter of interest.

The response matrix A is typically associated with uncer-
tainties, and these may be entry-to-entry correlations (like
systematic or “model” uncertainties) or without such corre-
lations (like statistical uncertainties). Note, that the response
matrix is commonly normalised and therefore the statistical
uncertainties are without entry-to-entry correlations only in
an approximation.

Uncertainties of the best estimators that arise from uncer-
tainties in A can be obtained from linear error propagation.
After applying Eq. (52), the partial derivative of Eq. (32) is

∂ â
∂Ait

= D−1
[ (

1(i t)X M̃ 0il
)T

W(d − AX m̄)

− (
AX M̃ S

)T
W1(i t)X m̄

−
[(
AX M̃ S

)T
W

(
1(i t)X M̃ 0il

)

+ (
1(i t)X M̃ 0il

)T
W

(
AX M̃ S

)]
â
]

. (55)

Consequently, uncertainties in the response matrix A without
or with entry-to-entry correlations are propagated to the fitted
results as

σ
(Auncorr.)

â =
√√√√

∑

i,t

(
∂ â

∂Ait
σAit

)2

and

σ
(Acorr.)

â =
∑

i,t

∂ â
∂Ait

σAit , (56)

respectively, where σAit denotes the size of the uncertainty
in the element Ait , and the power and square-root operations
are applied coefficient-wise. When using a response matrix,
the uncertainties in the template matrix X (cf. Sect. 8.5) are
propagated using

∂ â
∂Xt j

= D−1
[ (

A1(t j)M̃ 0il
)T

W (d − AX m̄)

− (
AX M̃ S

)T
WA1(t j)m̄

−
[(
AX M̃ S

)T
W

(
A1(t j)M̃ 0il

)

+ (
A1(t j)M̃ 0il

)T
W

(
AX M̃ S

)]
â
]

. (57)

Note that for the Linear Template Fit with relative uncer-
tainties, it is reasonable to consider uncertainties in Ait

as absolute uncertainties, rather than relative, because the
elements Ait represent already relative quantities and may
be interpreted as probabilities. Therefore, one employs the
partial derivative ∂ â/∂Ai j for error propagation, instead
of ∂ â/∂ log Ai j , although elsewhere relative uncertainties
are considered. This partial derivative is straightforward to
derive. The propagation of uncertainties in the templates Xt j ,
however, becomes somewhat more complicated when using
a response matrix A, since one has to calculate the partial
derivative ∂ â/∂ log Xt j for error propagation of the relative
uncertainties σXt j .

4

10 Considerations, validations, and cross-checks

As in any optimization problem, the result of the Linear Tem-
plate Fit needs to be validated and cross-checked. Due to
its close similarity to the iterative Gauß–Newton minimiza-
tion algorithm of nonlinear least squares [5,50,51,86,87],
the Linear Template Fit is expected to result in an unbi-
ased and optimal result, in particular if the templates provide
a sufficiently accurate approximation of the model and its
Jacobi matrix at the best estimator. In fact, when assuming
that the model λ(α) could be used with continuous values of
α for inference, the best estimator from the Linear Template
Fit becomes equivalent to the best estimator that would be
obtained when using λ(α) directly, if two approximations are

4 In brief, the partial derivative ∂ â/∂ log Xt j is similar to Eq. (57),
but each element of the i × j matrix (A1(t j)) becomes (A1(t j))i j =
(A1(t j)Xt j )i j/(AX)i j .
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exactly fulfilled,5

λ(α̂) ≈ ŷ(α̂) = Y m̄ + Y M̃α̂ and (58)

∂λ(α)

∂α

∣∣∣∣
α=α̂

≈ ∂ ŷ(α)

∂α

∣∣∣∣
α=α̂

= Y M̃ . (59)

The first equation requires that the model is correctly rep-
resented by the interpolated templates at the best estima-
tor, which is needed for the value of the best estimator,
and the second equation demands that the first derivatives
are correctly approximated, which is a requirement for the
error propagation and minimization. These equations taken
together represent just a linear approximation of λ(α) at α̂,
but using the templates only. However, since for the moti-
vation of the Linear Template Fit it was assumed that λ(α)

cannot be used for inference itself, these two approximations
also cannot be validated directly. In the following, some pos-
sible studies for the validation of the results and the practical
application of the Linear Template Fit are discussed.

10.1 Template range

If the model is nonlinear in the parameters α, an unbiased
result may only be obtained if the best estimator α̂ lies within
the interval of the reference values,

α̂ ∈ [α̇(1), α̇( jmax)] . (60)

This is because the templates provide the approximation of
the model and its first derivatives, but an extrapolation beyond
the template range is inappropriate for a nonlinear model. If
Eq. (60) does not hold, additional templates at further ref-
erence points should be generated and the Linear Template
Fit should be repeated with an improved selection of refer-
ence values. For similar reasons, the templates should be in
the close vicinity of the best estimator, such that the linear
approximations are justified. As a rule of thumb, the distance
between the reference points should not greatly exceed the
size of the variance of the best estimator

α̇( j) − α̇( j+1) � σ α̂ . (61)

For similar reasons, the best estimator should ideally be found
in the center of the template range, rather than at its boundary,

â − α̇(0) ≈ α̇( jmax) − â . (62)

However, for rather linear parameter dependencies, these
requirements may be more relaxed.

The choice of the reference values may be related to the
size of the uncertainties of the best estimator. If one consid-
ers the uncertainties of the best estimator to be normally dis-

5 One would have to further require that there is no second minima
when using λ(α) within the range covered by the reference values.

tributed,6 as a consequence, the model also needs to exhibit
a sufficiently linear behavior at least within a few σ . As a
rule of thumb, one could demand that the reference values
are approximately within 3 standard deviations:

α̇( j) ∈ [α̂ − 3σ α̂, α̂ + 3σ α̂] . (63)

10.2 The value of χ̂2, its uncertainty, and the partial χ2

The value of χ2 at the minimum, χ̂2, is a meaningful quan-
tity to assess the agreement between the data and the model.
Since the calculation of χ2 is not explicit in the Linear Tem-
plate Fit, its value needs to be calculated separately, and χ̂2 is
calculated from data and the templates at â using the some-
what simplified equation

χ̂2 =
(
d − Y m̄ − Y M̃ â

)T
W (d − Y m̄) . (64)

Since the data and the templates are associated with uncer-
tainties, the value of χ̂2 consequently may also be considered
as uncertain. The uncertainty in χ̂2 is obtained from linear
error propagation of the input uncertainties and calculated as

σχ̂2 =
√

ξT
Vξ +

∑

l

(ξ sT
(l))

2 , (65)

where the i-vector ξ is introduced and whose coefficients

represent the partial derivatives ∂χ̂2

∂di
, which are calculated

as ξi = 2Wi (d − ŷ(â)), and Wi denotes the i th row of the
matrix W . Also, the uncertainties in the templates Y may be
propagated to χ̂2 with similar equations. The interpretation
of σχ̂2 is not trivial, but it may well be that this quantity has
interesting features and may serve as an additional quality
parameter in the future.

The value of χ2 is inherently obtained from a sum of var-
ious sources of uncertainties. It is instructive to calculate the
contribution from any uncertainty source  to χ̂2 separately
using [92]

χ̂2
 = (d − ŷ(â))TWVW (d − ŷ(â)) , (66)

where V is any of the covariance matrices, see Eq. (31). It
is obvious that χ̂2 = ∑

 χ̂2
 . This may become particularly

useful when multiple measurements are considered in the fit,
and thus their individual contributions to χ̂2, i.e. the partial
χ2’s, may be calculated by summing the respective χ̂2

 values.

6 A reasonable argument for a normally distributed parameter can also
be obtained from previous analyses, for example, if these published
normally distributed uncertainties, or if the results are input to some
combination procedure which considers uncertainties to be normally
distributed [48,88–91].
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10.3 Interpretation of the χ2
j values as a cross-check

An obviously simple validation of the result from the Lin-
ear Template Fit is performed by comparing χ̂2 with the χ2

values calculated from the individual templates, defined as

χ2
j = (d − y( j))

TW (d − y( j)) or

χ2
j = (log d − log y( j))

TW (log d − log y( j)) , (67)

whether absolute or relative normally distributed uncertain-
ties are considered.

An alternative best estimator, denoted in the following as
α̌, is obtained from the interpretation of all of the χ2

j val-
ues, and serves as a validation of the best estimator from the
Linear Template Fit (α̂). Based on the assumption that the
χ2 distribution χ2(α) follows a second-degree polynomial,
the so-called χ2 parabola, its minimum is interpreted as best
estimator. For a univariate problem, when introducing

χ2 =
⎛

⎜⎝
χ2

1
...

χ2
j

⎞

⎟⎠ , C(pol-2) =
⎛

⎜⎝
1 α̇1 α̇2

1
...

...
...

1 α̇ j α̇2
j

⎞

⎟⎠ and

ϑ =
⎛

⎝
ϑ0

ϑ1

ϑ2

⎞

⎠ , (68)

with χ2
j from Eq. (67), the best estimator of the model param-

eter is given by the stationary point of the polynomial

α̌ = ϑ̂1

−2ϑ̂2
, (69)

where the best estimators of the (three) polynomial parame-
ters are ϑ̂ = (CTC)−1Cχ2. An illustration for Example 1 is
shown in Fig. 5. The uncertainty in α̌ is given by the criterion
χ2

min + 1 [10] and hence

σα̌ =
√

ϑ̂2
1 − 4ϑ̂2(ϑ̂0 − χ̌2 − 1)

−2ϑ̂2
using

χ̌2 = (χ2 − Cϑ̂)T(χ2 − Cϑ̂) . (70)

The equations for the multivariate case are straightforward
and not repeated here. This alternative best estimator, α̌, as
well as its variance σα̌ and the minimum χ2, should be suffi-
ciently consistent with the results from the Linear Template
Fit:

α̌ ∼ α̂ , σα̌ ∼ σα̂ and χ̌2 ∼ χ̂2 , (71)

and may serve as a valuable cross-check. As a quick and
practical visual test, if the templates line up on the parabolic
fit (as seen in Fig. 5), the problem is essentially linear, and the
Linear Template Fit will provide an unbiased and optimal best
estimator. Note that for the calculation of Eq. (69), at least
three templates are required, whereas the minimum number

Fig. 5 Illustration of various χ2/ndf values in the scope of the Linear
Template Fit for Example 1 (Sect. 4). The red star indicates the best-fit
χ2 of the Linear Template Fit, χ̂2. The full circles display the χ2 values
of the individual templates and the red line displays the χ2 parabola
calculated from them, and its minimum is indicated with an open circle
(χ̌2, see text)

of templates for the univariate Linear Template Fit is only
two.

10.4 Power law factor for the linear regression

In the Linear Template Fit, the functions ŷ(α) are (multi-
dimensional) linear functions, see Eqs. (15), (27), and (38).
Although the use of higher-degree polynomials or multivari-
ate polynomials with interference terms could in principle be
considered (see next Sect. 11), in such cases the optimization
problem cannot be solved analytically, and no closed matrix
expression for the best estimators is found. However, an ana-
lytic solution is still obtained when only power law factors
are introduced, and in a univariate Linear Template Fit the
model approximation becomes

yi (α; θ0, θ1) = θ
(i)
0 + θ

(i)
1 αγ (72)

with γ > 0 being a real number. The matrix M , Eq. (10), then
has elements Mj,0 = 1 and Mj,1 = α̇

γ

j . In the multivariate
case, different power law factors for each fit parameter can
be introduced, and one writes γk and has Mj,(k+1) = α̇

γk
( j),k .

The best estimators of the multivariate Linear Template Fit,
Eq. (32), then become

α̂k =
(
F(d − Y m̄)

) 1
γk

k
. (73)

This solution can immediately be seen by a variable substitu-
tion of αγ in Eqs. (32) and (72). The application of the power
law factor(s) γ when working with relative uncertainties (see
Sect. 7) is straightforward, since all equations remain linear
in αk . Similarly, the equations for the error propagation (see
Sect. 8) can easily be adopted with that variable substitu-
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tion. For instance, the elements of the systematic shifts (see
Eq. (43)) become

(σ
(s(l))
â )k =

(F s(l)
)
k

γk α̂
γk−1
k

, (74)

and similarly for other uncertainty components or covariance
matrices. The power law factor γ may be of practical use
in order to validate the assumptions of the linearity of the
regression analysis, or to improve the fit, such as when it is
known that the model is proportional to α2. This would be
the case in determinations of the strong coupling constant
from n-jet production cross sections at the LHC, which are
proportional to αn

s (mZ ) at the leading order in perturbative
quantum chromodynamics (QCD).

10.5 Finite differences

In a use case where a larger number of templates are available,
various choices of subsets of these templates can become
input to the Linear Template Fit, and some of such potential
choices have already been suggested in the previous para-
graphs. In the case where only two (or three) templates are
provided as input to the Linear Template Fit, the selected
templates may have a special meaning, because the templates
can also be considered as a numerical first derivative through
finite differences. Such numerically calculated derivatives
are the essence of many gradient descent optimization meth-
ods [5,49,50,86,87], and it is instructive to study the relation.

As an example, let us consider a univariate problem where
the objective function χ2 is given by Eq. (8). Close to the
minimum, χ2 is nearly quadratic, and the Newton step, Δα =
−(χ2)′/(χ2)′′, exhibits a good convergence [5,50,51,87].
The first and second derivatives at an expansion point α0 are

(χ2)′ = −2λ′T(α0)W (d − λ(α0)) and

(χ2)′′ = 2λ′T(α0)Wλ′(α0) , (75)

where the second derivatives λ′′ are zero or neglected in the
latter equation. Hence, one obtains the estimator from the
Newton step as

α̂(Newton) = α0 +
[
λ′T(α0)Wλ′(α0)

]−1

×λ′T(α0)W (d − λ(α0)) , (76)

and the calculation of the first derivative could be done
numerically using a finite difference with nonzero step size
h

λ′(α0) = λ(α0 + h) − λ(α0)

h
. (77)

The analogous Linear Template Fit makes use of the tem-
plates at α0 and α0 + h and defines the following matrices:

Y = (
λ(α0) λ(α0 + h)

)
and M =

(
1 α0

1 α0 + h

)
, hence

M+ =
(

α0+h
h −α0

h− 1
h

1
h

)
=

(
m̄T

m̃T

)
. (78)

From the Linear Template Fit, Eq. (17), when resolving m̄,
one obtains the best estimator

α̂ = α0 +
[
(Y m̃)TW (Y m̃)

]−1
(Y m̃)TW (d − λ(α0)) , (79)

and since Y m̃ = λ′(α0), it can be directly seen that it is
equivalent to the estimator α̂(Newton) from the Newton step
using a numerical finite difference.

11 Nonlinear model approximation

The Linear Template Fit can be regarded such that linear
functions are fitted to every row i of the template matrix
Y .7 In the following, nonlinear functions are considered for
the model λi (α) in each “bin” i . For a simplified discus-
sion, the formulae for only a univariate model are sometimes
discussed, while the multivariate case is commonly straight-
forward. Also, the concepts of the γ factor, relative uncer-
tainties, or “systematic shifts” sl can equally be considered
in a multivariate formulation.

The model can be approximated from the templates in
every bin i with an nth-degree polynomial function

λi (α) ≈ yi (α; θ̂ (i)) =: ŷi (α) using

yi (α; θ (i)) = θ
(i)
0 + θ

(i)
1 α + · · · + θ(i)

n αn . (80)

The best estimators for the polynomial parameters are
obtained from regression analysis,

θ̂ (i) =
⎛

⎜⎝

θ̂0

θ̂1

...
θ̂n

⎞

⎟⎠

(i)

= M+

⎛

⎜⎝
y(1),i

...

y( j),i

⎞

⎟⎠ , (81)

where y( j),i is the i th value of the j th template, and the g-
inverse is

M+ =
(
MTM

)−1 MT using here

7 Conceptionally, (nonlinear) functions can also be fitted to the ele-
ments of each column j , and so interpreting the shape of the tem-
plates and the data distributions. Subsequently, the resulting functions,
when normalized, can be interpreted as probabilities and are often used
as input to binned or un-binned maximum-likelihood optimizations
[31,35,40]. Similarly, the parameters of such a transformation can also
become again input to a (Linear) Template Fit. An example of this
approach is discussed in Appendix B.
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M =
⎛

⎜⎝
1 α̇1 . . . α̇n

1
...

...
...

...

1 α̇ j . . . α̇n
j

⎞

⎟⎠ . (82)

For reasons outlined in Sect. 3, an unweighted regression is
considered. Using this model approximation in the objective
function of the fitting problem, Eq. (2), the χ2 expression for
a univariate model becomes of order O(2n) in α,

χ2
O(2n) := (

d − ŷ(α)
)T

W
(
d − ŷ(α)

)
(83)

= (
d − Ym0 − Ym1α − · · · − Ymnα

n)T

× W
(
d − Ym0 − Ym1α − · · · − Ymnα

n) , (84)

where the vectors m were used as the representation of M+
according to

M+ =:

⎛

⎜⎜⎜⎝

m0
T

m1
T

...

mn
T

⎞

⎟⎟⎟⎠ . (85)

It is obvious that forn = 1, this is the Linear Template Fit, and
the generalizations to the multivariate fit (Eq. (30)), and with
relative uncertainties (Eq. (39)), are straightforward. Note
that for different degrees n, the vectors m differ unless the
equations are not rewritten for orthogonal polynomials [93].

Since the first derivative of χ2
O(2n)

is nonlinear, in α, no
analytic solution of the optimization problem is found. There-
fore, in the following, two iterative algorithms to find the min-
imum of the objective function χ2

O(2n)
are discussed, which

refer to the Gauß–Newton and the Newton algorithm (see
also Refs. [5,50,51,87]). In both cases, if the starting value
is identified with the best estimator from the Linear Tem-
plate Fit, α = α̂, the step size of the next iterative step can
be interpreted as convergence criterion or uncertainty of the
Linear Template Fit. Reasonable values for n are n = 2, 3,
or at most 4 (since M becomes quickly ill-conditioned for
large n, e.g., Refs. [94,95] and therein), while for n = 1,
consistent results with the Linear Template Fit are found.

11.1 Linearization of the nonlinear approximation ŷ(α)

An iterative minimization algorithm based on first deriva-
tives is defined through linearly approximating the (nonlin-
ear) function ŷ(α), Eq. (80). For the purpose of validating
the result from the Linear Template Fit, we consider α̂ as the
expansion point, although this could be any other value as
well. Hence, the linear approximation of ŷ(α) in every bin i is

ỹi (α) ≈ ŷi (α̂) + ∂ ŷi (α)

∂α

∣∣∣∣
α=α̂

(α − α̂)

= Y (
∑n

0(1 − n)m(n)α̂
n) + Y

(∑n
0nm(n)α̂

n−1
)
α

=: Y ˜̄m + Y ˜̃mα . (86)

The last term defines the shorthand notations ˜̄m and ˜̃m. From
comparison with Eq. (15), it is seen that an alternative best
estimator of the template fit (see Eq. (19)) is obtained as

˜̂α = (Y ˜̃m)TW

(Y ˜̃m)TWY ˜̃m
(d − Y ˜̄m) . (87)

The difference α̂ − ˜̂α is supposed to become small for a valid
application of the Linear Template Fit, and one should find

|α̂ − ˜̂α| 	 σα̂ . (88)

If Eq. (88) holds for a particular application, then nonlinear
effects are negligible, and the best estimator of the Linear
Template Fit is insensitive to nonlinear effects in the model
λ. If Eq. (88) does not hold, then it should be studied if the
nonlinearity is present in the vicinity of α̂ or if it is rather
introduced by a long-range nonlinear behavior of λ(α). In
the latter case, the range of the templates should be reduced
such that one has about

α̇max − α̇min � 2σα̂ (89)

and the Linear Template Fit should be repeated. Note that if
the templates are subject to statistical fluctuations and if only
a few templates are provided, then a nonlinear approximation
is more sensitive to those fluctuations than linear approxima-
tions, and |α̂− ˜̂α| may become larger. In such an application,
σ Y

α̂
should also be considered as a relevant source of uncer-

tainty (see Eqs. (46) and (47)).

In Example 1, when using a second-degree polynomial, a value
|α̂ − ˜̂α| = 0.02 is found, which is much smaller than σα̂ = ±0.41
and of similar size than the statistical uncertainties from Y (see
Sect. 8.5). When working with log-normal uncertainties, a value
|α̂ − ˜̂α| = 0.05 is found. Although the model is highly nonlin-
ear in log(y), the assumptions of the linear template fit are well
justified, since the templates are in the close vicinity of the best
estimator. In Example 2, for a second-degree approximation, val-
ues of |α̂0 − ˜̂α0| = 0.03 and |α̂1 − ˜̂α1| = 0.14 are found. When
further considering interference terms (see Appendix C), the values
are 0.01 and 0.11, respectively. All these values are smaller than the
respective statistical uncertainties in the data, although the values
suggest that for α1 (the variance of the Gaussian model), a finer grid
for the reference values may be preferred for a more accurate linear
approximation.

Furthermore, the notation of Eq. (86) suggests an alterna-
tive interpretation of the nonlinear behavior of the model. The
vectors ˜̄m and ˜̃m may be interpreted in terms of uncertainties
of m̄ and m̃ when writing

σ m̄ := ˜̄m − m̄ and σ m̃ := ˜̃m − m̃ . (90)

Through linear error propagation, one can define an uncer-
tainty in α̂ as

σ
(m)

α̂
=

∑

j

(
− FY1 jσm̄ j + D−1

[
(Y1 j )

TW (d − Y m̄)
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−
[
(Y1 j )

TWYm̃ + (Y m̃)TWY1 j

]
â
]
σm̃ j

)

=
∑

i

(
− F1iσYmi

+ D−1[1T
i W (d − Y m̄)

−
[
1T
i WY m̃ + (Y m̃)TW1i

]
â
]
σỸmi

)
. (91)

Note that the sum runs over j in the first and over i in the
second expression. The second expression makes use of

σYm := Yσ m̄ and σ
˜Ym := Yσ m̃ (92)

and it has the advantage that the summands represent a useful
quantifier for every bin i . For a sufficiently linear problem,
both the linear sum (Eq. (91)) and the quadratic sum should be
sufficiently small. In particular, one should find σ

(m)

α̂
≈ ˜̂α−α̂

for reasonable nth-degree polynomials, i.e. n=2, and also,
according to Eq. (88),

|σ (m)

α̂
| 	 |σα̂| . (93)

11.2 Minimization of χ2
O(2n)

When α̂ is obtained from the Linear Template Fit, the objec-
tive function χ2

O(2n)
, Eq. (84), is expected to exhibit a mini-

mum in the close vicinity of α̂. This provides good motivation
for the application of the Newton optimization at α̂, which is
based on second derivatives of χ2

O(2n)
, so a parabolic approx-

imation. The Newton distance to the minimum is given by

Δα = − (χ2
O(2n)

)′

(χ2
O(2n)

)′′
= −

(
∂2χ2

O(2n)

∂2α

∣∣∣∣∣
α=α̂

)−1
∂χ2

O(2n)

∂α

∣∣∣∣∣
α=α̂

(94)

and in the multivariate case by [5,55]

Δα = −H−1g
∣∣∣
α=α̂

. (95)

The gradient vector g and the Hesse matrix H are defined
by the first and second derivatives of χ2

O(2n)
, respectively.

Both quantities can be calculated directly at an expansion
point α0, which was identified in the above equations with α̂,
since χ2

O(2n)
is just a known second-degree polynomial and

dependent on M , Y , d, S, and W . The value of Δα can be
interpreted as the expected distance to the minimum (EDM)
based on the nonlinear model approximation.8

For practical purposes and to validate the result of the Lin-
ear Template Fit, one should require that its value be smaller

8 When the widely used approximation of the Hesse matrix with the
Jacobi matrix of first derivatives is used, H ≈ JT J (truncated Hesse),
then the Newton step becomes equivalent to the Gauß–Newton step,
which is equivalent to linearization of the model, Eq. (87), and one
obtains α + Δα = ˜̂α, when using JT J as H .

than the uncertainty from the fit

|Δα| 	 σα̂ . (96)

The most reasonable degree for this purpose is n = 2 (which
is exploited in the following in greater detail), and one expects
that Δα will be negligibly small. This observation can also
be interpreted such that the result from the Linear Td an alter-
native result from a minimization of χ2

O(2n)
are consistent.

If the reference points are in the vicinity of α̂, this is to be
expected because of the underlying statistical model of (log-
)normally distributed estimators. In contrast, if Δα becomes
large, it may well be that in such a case not even the reported
uncertainties in the best estimator, σα̂ , can be considered to
be normally distributed.

12 The Quadratic Template Fit

Despite all the considerations and cross-checks as discussed
in the previous sections, in some problems the linearized
model may simply be an inaccurate approximation of the
true model (cf. Eq. (27)). Reasons could be that the templates
cannot be generated in a sufficiently close vicinity around
the best estimator, perhaps for technical reasons, or in mul-
tivariate problems some parameters are highly nonlinear, a
dimension is poorly constrained and the reference points span
a large range, or interference terms between the parameters
are non-negligible. In such cases, the quantities ˜̂α − α̂, σ (m)

α̂
,

or Δα (Eqs. (88), (91) and (95)) become non-negligible when
they are calculated for second-degree polynomials n = 2.

An improved approximation of the model is obtained
when using a second-order approximation, which may also
include interference terms. The equations are summarized
in Appendix C (Eqs. (C.7)–(C.9)). Using such a second-
degree polynomial model ŷ(α) that includes terms O(αk),
O(α2

k ), and O(αk1αk2) in the optimization problem results
in a nonlinear least-squares problem. Therefore, an iterative
algorithm is required to obtain the best estimator.

A robust algorithm, denoted as Quadratic Template Fit,
to obtain the best estimator and to perform a full error prop-
agation is defined as

1. The Linear Template Fit is performed to obtain a first
estimator α̂(0), for example using Eq. (32);

2. The Newton algorithm [5,50,51,87], Eq. (95), is employed
with a few m iterations in order to obtain improved best
estimators α̂(m) = α̂(m−1) + Δα(m) and for which the
Hesse matrix H is directly analytically calculable;

3. The best estimator and the error calculation are obtained
using the linearized approximations for ˜̄m and ˜̃M (see
Eqs. (86) or (C.13)) in the equations of the Linear Tem-
plate Fit.
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The first step provides the starting point for the Newton algo-
rithm, and since it is obtained with the Linear Template Fit, it
is already close to the minimum. The second step provides a
fast and stable convergence for several reasons: i) the starting
point is already in the vicinity of the minimum, ii) the Hesse
matrix is commonly positive definite and it is analytically
exactly calculable9, as well as the gradient vector, and iii) the
Newton method has good convergence for nearly quadratic
functions [5,46,47], which is the case for χ2

O(4)
. Although

the algorithm is expected to converge quickly after a few
iterations, several stopping criteria are thinkable, for exam-
ple when EDM	 |Δα| or Δα(m) ≈ Δα(m−1). The last step
provides an even more improved best estimator, but mainly
gives access to the equations of the error propagation. Note
that in the first step, the true model λ(α) is linearly approxi-
mated, and in the latter steps, by quadratic functions.

When applying the Quadratic Template Fit to Example 2, and using
m = 2 Newton iterations, the best estimator for the mean is found to
be 169.90 ± 0.44 and for the variance it is 6.23 ± 0.32. Both values
are very close to the best estimators from the Linear Template Fit;
see Sect. 6. The EDM Δα and ˜̂α − α̂ are found to be smaller than
10−4 for both parameters, and σ

(m)

α̂
is equally small.

13 Example 3: the Quadratic Template Fit

As an application of the Quadratic Template Fit, an example
is constructed where the model is nonlinear and the templates
purposefully span a (too) large range. Therefore, the criteria
for a valid application of the Linear Template Fit as discussed
in Sect. 10 are mainly not fulfilled.

As in Examples 1 and 2 (Sects. 4, 6), the model is consid-
ered to be a normal distribution, and the same pseudo-data as
in the previous examples are also used. In contrast to Exam-
ples 1 and 2, only the variance of the normal distribution
shall be determined. Six templates are generated similarly
to Examples 1 and 2, with variances between 3 and 8, and
each template is generated using 4 · 106 events. The pseudo-
data and the templates are displayed in Fig. 6. Recall that the
pseudo-data were generated with a variance of 6.2 (due to
statistical fluctuations, the true variance is about 6.3).

In this example, the Linear Template Fit results in a best
estimator of 6.61 ± 0.32, and is thus not quite consistent
with the expectation. The EDM is comparably large, with
a value of −0.27, and σ

(m)

α̂
= −0.27, and the minimum

of the χ2-parabola results in 6.52 ± 0.27. Consequently,
Eqs. (61), (62), (71), and (93) are not well fulfilled. In Fig. 6

9 The analytic calculation of the Hesse matrix results in an exact
application of the Newton minimization, which is in contrast to many
other iterative minimization algorithms, where the Hesse matrix is only
approximated, iteratively improved, or numerically calculated. This
results in a quick convergence with only a few steps, and no adapta-
tions to the Newton steps are required.

(right), the parameter dependence in some selected bins is
displayed, and it is clearly seen that the templates are not
described by a linear function. It is also observed from the
χ2 values of the individual templates that these cannot be
described by a parabola as would be the case for a linear
problem, as displayed in Fig. 7.

The Quadratic Template Fit, in contrast, results in a best
estimator of 6.36 ± 0.40 and is thus in excellent agreement
with the expectation. This is because the algorithm employs a
second-degree polynomial in each bin to represent the model.
This provides an adequate representation of the parameter
dependence even of a nonlinear model, as also seen in Fig. 6
(right). A linearization at the value of the best estimator is
used only for linear error propagation, and appears to be
appropriate given the size of the final uncertainties, ±0.40.

14 Validation study: determination of the strong
coupling constant from inclusive jet cross section
data

As an example application of the Linear Template Fit,
the strong coupling constant in quantum chromodynamics
(QCD), αs(mZ), is determined from a measurement of inclu-
sive jet cross sections in proton–proton collisions at a center-
of-mass energy of

√
s = 7 TeV [96]. The data were taken

with the CMS detector at the LHC at CERN. Inclusive jets
were measured as a function of the transverse momentum pT

in five regions of absolute rapidity |y|. Altogether 133 data
points are available, and 24 different sources of uncertainties
are associated with the data.

The model is obtained from a calculation in next-to-
leading order perturbative QCD (NLO pQCD) using the
program nlojet++ [97,98] that was interfaced to the tool
fastNLO [99–101]. The latter makes it possible to provide
templates for any value of αs(mZ) and different parameteri-
zations of parton distribution functions of the proton (PDFs)
without rerunning the calculation of the pQCD matrix ele-
ments. Multiplicative non-perturbative (NP) [102] and elec-
troweak corrections [103] are applied to the NLO predictions.

The value of αs(mZ) was already determined earlier from
these data and in NLO accuracy in two independent analy-
ses [104,105]. The two analyses differ in the assumption of
the statistical model, the inference algorithm, and the uncer-
tainties considered in the fit. This provides a comprehensive
testing ground to compare the results from the Linear Tem-
plate Fit.

In Ref. [104], the value of αs(mZ) is determined from the
minimum of a χ2 parabola, where the χ2 is derived from nor-
mally distributed PDFs. In order to avoid a bias in that proce-
dure [64,68,69], some uncertainty components are treated as
multiplicative [104], which means that the covariance matrix
is calculated from relative uncertainties that are multiplied

123



Eur. Phys. J. C (2022) 82 :731 Page 19 of 28 731

170 172 174 176 178 180 182
Observable [unit]

0

20

40

60

80

100

va
lu

e 
[u

ni
t]

Data =  3.00αTemplate =  4.00αTemplate

=  5.00αTemplate =  6.00αTemplate =  7.00αTemplate

=  8.00αTemplate Estimated best model

Quadratic Template Fit

3 4 5 6 7 8
) [unit]αReference value (

0

10

20

30

40

50

60

70

va
lu

e 
[u

ni
t]

Data
Templates
Second-order model
Linear model
Linear Template Fit Bin 0

3 4 5 6 7 8
) [unit]αReference value (

0

5

10

15

20

25

30

35

40

va
lu

e 
[u

ni
t]

Bin 4

3 4 5 6 7 8
) [unit]αReference value (

0
2

4

6

8

10
12

14

16

18

20

va
lu

e 
[u

ni
t]

Bin 8

3 4 5 6 7 8
) [unit]αReference value (

0

2

4

6

8

10

12

14

16

18

va
lu

e 
[u

ni
t]

Bin 10

Fig. 6 Some illustrations of Example 3. Left: the template distribu-
tions Y as a function of the observable, and more details are given in
the caption of Fig. 1. Right: the templates Y for some selected bins.
The blue line indicates a second-degree polynomial regression of the

templates, as is used by the Quadratic Template Fit. The green dashed
line indicates the linearization at the best estimator, and the red dotted
line indicates the linear regression of the templates as it would be used
by the plain Linear Template Fit
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Fig. 7 Visualization of the χ2 values of the templates in Example 3. A
thin line connects these values. The red line displays a fitted parabola,
which is not able to describe the χ2 values adequately, which is indica-
tive of a nonlinear problem. The star indicates the best estimator from
the Quadratic Template Fit

with theory predictions. We chose predictions obtained with
αs(mZ) = 0.116 for that purpose, and the total covariance
matrix in χ2 is calculated as described in Ref. [104].

The templates are generated in the range 0.112 ≤
αs(mZ) ≤ 0.121 in steps of 0.001 using the MSTW PDF
set [106]. In this methodology, the model predictions are not
available for continuous values of αs(mZ), since the PDFs
also exhibit an αs dependence, but are provided only in a
limited range and for discrete αs(mZ) values [106]. There-

fore, this kind of αs(mZ) inference is a typical use case for
the Linear Template Fit. The templates and the linear model
are displayed for some selected bins in Fig. 8.

The results from the Linear Template Fit (Eq. (32)), the
Quadratic Template Fit (Sect. 12), and the parabolic fit
(Sect. 10.3) are compared with the published results from
CMS in Table 1. An illustration of the χ2 values is displayed
in Fig. 9 (left).

The best estimator for αs(mZ), its uncertainties, and the
value of χ2 are in good agreement among each other, and
with the published CMS values [104], and differences are
only in the rounding digit. It is also found that the total “fit”
uncertainty is reproduced, which comprises the experimental
and the PDF uncertainties, δαs(mZ) = δα

(exp)
s ⊕ δα

(PDF)
s =

±0.0018. The small differences in the individual uncertainty
components between Ref. [104] and the Linear Template Fit
are likely because the error breakdown in Ref. [104] is only
approximate, whereas the Linear Template Fit provides an
analytic error propagation at the value of the best estima-
tor. In fact, all 24 uncertainty components of the data, the
20 symmetrized PDF uncertainties, and the NP uncertainties
are propagated separately (cf. Sect. 8) and are displayed in
Fig. 10. It is observed that the largest individual experimental
uncertainty source is the luminosity uncertainty and the sta-
tistical uncertainty. The nuisance parameters are quite similar
to those from (yet another) fit in Ref. [104]. The uncertainty
component with the largest contribution to the total uncer-
tainty stems from the PDFs and the luminosity uncertainty.
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Fig. 8 Visualization of the templates, the data, and the implicit linearization of the model in some selected bins of the Linear Template Fit to the
CMS inclusive jet cross sections. More details are given in the caption of Fig. 1

Table 1 Results from a Linear Template Fit of NLO pQCD predic-
tions using the MSTW PDF set to CMS inclusive jet cross section data.
The results are compared with the Quadratic Template Fit and to the
analytic calculation of the minimum of the χ2parabola, and to the pub-
lished results by the CMS collaboration in the last row. Shown are the
best estimators for αs(mZ), the quadratic sum of all experimental uncer-
tainties (exp), the propagated PDF uncertainties (PDF), the propagated

NP uncertainties (NP), and the last column shows the χ2/ndof values.
The difference between the linear and the Quadratic Template Fit is only
0.000017, but appears larger due to a rounding effect. Differences to the
CMS result may also be due to numerical limitations of the input data,
or how the PDF uncertainties are symmetrized. The total uncertainties
that are considered in the fit sum to ±0.0018 in all cases

Fit method Best estimator αs(mZ) χ2/ndof

Linear Template Fit 0.1159 ± 0.0014(exp) ± 0.0011(pdf) ± 0.0001(NP) 107.4/132

Quadratic Template Fit 0.1160 ± 0.0014(exp) ± 0.0011(pdf) ± 0.0001(NP) 107.2/132

χ2 parabola 0.1160 ± 0.0018(exp,PDF) 107.2/132

CMS [104] 0.1159 ± 0.0012(exp) ± 0.0014(pdf) ± 0.0001(NP) 107.2/132
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Fig. 9 Illustration of χ2/ndof values in the fit of NLO pQCD predic-
tions to CMS inclusive jet cross section data. Shown are the χ2/ndof
value of the Linear Template Fit at its best estimator (star), the χ2/ndof
values of the individual templates (full circle), and the calculated
χ2parabola (see Sect. 10.3) and its minimum (open circle). Left: χ2/ndof

values of the Linear Template Fit with normally distributed uncertain-
ties. Right: χ2/ndof values of the linear template with log-normally dis-
tributed uncertainties. Note that the left figure uses the PDF set MSTW
for the NLO predictions with a varying αs(mZ) value, whereas the right
one uses the PDF set NNPDF3.0

The statistical and uncorrelated uncertainties have the largest
contribution to χ̂2. The NP uncertainties are not included in
the nominal χ2computation and are propagated separately.
The EDM of the Linear Template Fit is 7 · 10−5 and thus
smaller than the rounding digit of the result.

In Ref. [105], as an intermediate result, the value ofαs(mZ)

was determined from CMS inclusive jet cross sections as
well. In contrast to Ref. [104], the estimators are assumed to

follow a log-normal distribution, and some theoretical uncer-
tainties are further considered in the χ2 expression, which
was then minimized with Minuit [4]. The NNPDF3.0 PDF
sets [107] are used for the NLO predictions and provide a
covariance matrix with PDF uncertainties. This inference
provides a useful testing ground for the Linear Template Fit
with relative uncertainties (Sect. 7). Templates are generated
in the range 0.112 ≤ αs(mZ) ≤ 0.121, and the same uncer-
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Fig. 10 Left: nuisance parameters of the systematic uncertainties in
the αs(mZ) fit to CMS inclusive jet cross section data. Details on these
uncertainties are found in Refs. [96,104]. The gray value(s) are not
included in the χ2computation but are propagated separately. Middle:
size of the individual uncertainty components to the total uncertainty of

the best estimator, αs(mZ), in the Linear Template Fit to CMS inclusive
jet cross section data. The color indicates the sign of the uncertainty,
which, however, is of relevance only for multivariate fits. Right: partial
χ2 from the individual uncertainty components

Fig. 11 Similar visualization of the templates than in Fig. 8, but using relative uncertainties (log-normally distributed PDFs) in the Linear Template
Fit

tainty components as in Ref. [105] are considered. Some
selected bins are displayed in Fig. 11. The results from the
Linear Template Fit (Eq. (41)), the Quadratic Template Fit,
and the parabolic fit are compared with the published results
in Table 2, and an illustration of χ2 values, which here are
calculated from normally distributed relative uncertainties
(Eq. (39)), is displayed in Fig. 9 (right).

The best estimator, the uncertainties, and the value of χ2

are in good agreement among each other and with the results
from Ref. [105]. The results differ only in the rounding digit,
and different sizes of the uncertainty breakdown (into (exp),
(PDF), and (NP) uncertainties) may be explained since the
error breakdown in Ref. [105] is only approximate, but the
total uncertainty is consistently δαs = ±0.0026.

It is worth noting that due to the application of the fac-
torization theorem [108], both the hard coefficients and the
PDFs exhibit an αs sensitivity. Consequently, in the two
approaches discussed above, not only is the value of αs(mZ)

determined, but the PDFs are determined simultaneously as
well [109], which is realized through the inclusion of the PDF
uncertainties in the Linear Template Fit, and which is com-
monly referred to as PDF profiling. This technique avoids
a possible bias that is present when the PDFs are kept fixed
[110], and it is particularly valid since the PDFs and the value
of αs(mZ) are only weakly correlated in PDF determinations,
and thus their correlations are negligible [111]. The different
size of the uncertainties in Tables 1 and 2 is then a conse-
quence of how the PDFs are considered in the fit. Since the
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Table 2 Results from a Linear Template Fit with relative uncertainties
where NLO pQCD predictions using the NNPDF3.0 PDF set are fitted
to CMS inclusive jet cross section data. The results are compared with
the Quadratic Template Fit and to the analytic calculation of the mini-
mum of the χ2parabola, as well as to previously published results in the

last row. Shown are the best estimators for αs(mZ), the quadratic sum
of all experimental uncertainties (exp), the propagated PDF uncertain-
ties (PDF), the propagated NP uncertainties (NP), and the last column
shows the χ2/ndof values

Fit method Best estimator αs(mZ) χ2/ndof

Linear Template Fit 0.1144 ± 0.0024(exp) ± 0.0011(pdf)± <0.0001(NP) 106.1/132

Quadratic Template Fit 0.1145 ± 0.0024(exp) ± 0.0011(pdf)± <0.0001(NP) 106.1/132

χ2 parabola 0.1145 ± 0.0026(exp,PDF) 106.1/132

Ref. [105] 0.1144 ± 0.0022(exp) ± 0.0014(pdf) ± 0.0001(NP) 0.81

PDFs themselves are determined from data as well, the ansatz
from CMS also exploits, to some extent, the αs sensitivity of
these further data by using the αs dependent PDF, whereas
the other ansatz from Ref. [105] exploits only the jet data and
their sensitivity to αs(mZ) in the hard coefficients.

Consequently, these examples represent a comprehensive
application of the Linear Template Fit, where in addition
to determining the value of αs(mZ) a PDF profiling is per-
formed, as well as a simultaneous constraint of the system-
atic uncertainties. Such constraints are obtained when the
uncertainties in the nuisance parameters become smaller than
unity. A PDF determination from these data alone, instead
of a PDF profiling of an existent PDF, would be possible by
considering the PDF uncertainties as unconstrained uncer-
tainties in the Linear Template Fit, as described in Sect. 8.4.
Such a fit exploits the PDF parameter space of the PDF set
that is used to derive the PDF uncertainties. For the given
example of CMS inclusive jet cross sections, however, this
is not possible, since these data do not have sufficient con-
straints on the separate PDF flavors.

15 Summary and conclusions

In this article, the equations of the Linear Template Fit were
presented. The Linear Template Fit provides an analytic
expression for a maximum likelihood estimator in a uni- or
multivariate parameter estimation problem. The underlying
statistical model is constructed from normal or log-normal
probability distribution functions and refers to a maximum
likelihood or a minimum χ2 method. For parameter estima-
tion with the Linear Template Fit, the model needs to be pro-
vided at a few reference values in the parameter(s) of interest:
the templates. The multivariate Linear Template Fit can be
written as

α̂ =
(
(Y M̃)TWY M̃

)−1
(Y M̃)TW (d − Y m̄) ,

where Y is the template matrix, d is the data vector (random
vector), W is the inverse covariance matrix, and m̄ and M̃
are calculated from the reference points (Eq. (26)).

The equation of the Linear Template Fit is derived using
two key arguments: (i) in the vicinity of the best estimator the
model is linear, and (ii) the templates for different reference
values are all generated in the same manner. The first pre-
condition is commonly justified if the templates are provided
within a reasonably small range around the (to be expected)
best estimator. From the second, it follows that the bin-wise
polynomial regression is unweighted, and thus the identical
regression matrix is applicable in all bins. Several quantities
to validate the applicability of the Linear Template Fit in a
particular application were discussed.

If the linearity of the model is not justified, the Quadratic
Template Fit is a suitable alternative algorithm for parameter
estimation. It considers second-degree polynomials for the
parameter dependence of the model and employs the quickly
converging exact Newton minimization algorithm. For error
propagation, the equations of the Linear Template Fit are
applicable.

Both the linear and the Quadratic Template Fit implicitly
transform the discrete representation of the model (the tem-
plates) into analytic continuous functions using polynomial
regression. These expressions themselves may also become
useful in several other applications where templates are avail-
able but continuous functions would be needed.

The equations for error propagation of different sources
of uncertainties were presented. The analytic nature of the
Linear Template Fit allows the straightforward propagation
of each uncertainty component separately, which provides
additional insights into the parameter estimation analysis.

As an example application, previously published results
on the determination of the strong coupling constant αs(mZ)

from inclusive jet cross section data taken at the LHC were
repeated. The Linear and the Quadratic Template Fits repro-
duce these previously published results within the rounding
digit.

In summary, key features of the Linear and the Quadratic
Template Fit are its profound statistical model based on
normal- or log-normally distributed PDFs, its simple formu-
lae, stable results, low computational demands, full analytic
error propagation, and its simple applicability. It is believed
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that these template fits may become useful for statistical
inference in a large variety of problems, such as performance-
critical applications, and also in several fields outside of high-
energy particle physics.
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Appendix A: notation

See Table 3.

Table 3 Summary of the notation used. Capital letters denote a matrix,
and small bold letters denote a column vector. The letters i , j , k, l, and
t are indices. Throughout this article, a vector notation is used and, for
instance, the vector d denotes a set of (random) variables, so d = {di }.
The same letters for indices and for the maximum value of an index are
used. A subscript index denotes the entry of a vector (or matrix), and
a bracketed index denotes one vector out of several others. Some let-

ters have multiple meanings, if e.g. normal- or log-normally distributed
random variables are considered, or if nonlinear effects are discussed,
while the meaning always becomes clear from the context. Occasion-
ally, a single entry of a vector will be denoted as a bin, like it would be
a histogram entry. The dot notation, “α̇,” denotes the reference values
and looks similar to a “point” of a grid, but it should not be mistakenly
understood as a derivative

Letter(s) Description Example(s) or definition

di , d Set of random variables {di } (random vector; data distribution) E.g., histogram of an
observable

V Covariance matrix including all uncertainty sources V = V + ∑
s(l)sT

(l)

V Covariance matrix (not including uncertainties s)

s(l), s(l) Uncertainties with full bin-to-bin correlations (shifts)

S Matrix of uncertainties s, Eq. (34) S = (
s(1) . . . s(l)

)
or(

s(1) . . . s(l)
)

W , W Inverse of V or V W = V−1, W = V
−1

A A detector response matrix (migration matrix) [optional]

α, αk , α Model parameter(s) of interest

λ(α) The (physics) model with free parameter(s) α

ŷ(α) Best estimator of the linearized model λ(α) ≈ ŷ(α) ≡ y(α; θ̂)

εl , ε Nuisance parameter(s)

α̂, α̂k , α̂ The best estimator(s) of the model parameter (an MLE)

ε̂l , ε̂ The best estimator(s) of the nuisance parameter(s)

â A k+l vector for the best estimator and nuisance parameters â =
(

α̂

ε̂

)

α̇ j , α̇ j,k , α̇ Reference values of the ( j th) templates (for a multivariate Linear Template Fit,
the vector α̇ becomes a j × k matrix )

y( j), x( j) A template distribution represented as an i-vector (or t vector), E.g., histograms of an
observable

i.e. a model prediction for the reference value α̇ y( j) = λ(α̇( j))

value(s) to match the data distribution in the fit

Y , X Template matrix, Eq. (14) Y = (
y(1) . . . y( j)

)

M Matrix of reference values (i.e., given α̇ j ) and a unit vector Eqs. (10) or (25) (also Eq.
(82))
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Table 3 continued

Letter(s) Description Example(s) or definition

M+ The g-inverse of the linear regression M+ = (MTM)−1MT

m̄ First column of M+T, Eqs. (13) and (26)

M̃ , m̃ A submatrix of M+T (i.e., all but m̄), Eqs. (13) and (26)
(
m̄ M̃

) = M+T

F , F Solution matrix of Linear Template Fit

i Index of an entry of the data vector; number of data points

j Index of the reference points; number of templates and reference points

k Index of the fit parameter for multivariate Linear Template Fit; number of fit
parameters

l Index for uncertainties with full bin-to-bin correlations; number of systematic
uncertainties

t Number of entries (bins) on truth level, if a response matrix A is used

n Degree of a polynomial function, or nth-order expansion

Appendix B: pre-fitting the template distributions

It is tempting to fit the distributions of the templates with
some well-motivated function and then use the best estima-
tors of the function parameters as input parameters to a (lin-
ear) template fit for the determination of a model parameter.
In this common practice, it is often believed that the fitted
function may better exploit the sensitivity of the shape of
the template distribution to the parameter of interest and thus
enhance the quality of the results.

Let us consider to fit the template distribution with a poly-
nomial of degree n. Unless there is no particular motivation
for any particular other n+1 parameter function, e.g. from the
underlying physics model, a polynomial is an equally valid
function as any other n+1 parameter function for that pur-
pose. In matrix notation, the polynomial is expressed using

Pθ =
⎛

⎜⎝
1 ż1 . . . żn1
...

...
...

...

1 żi . . . żni

⎞

⎟⎠ θ , (B.1)

where żi may denote the observable value of the i th bin (bin
center) of the template distribution. The best estimators for
the polynomial parameters from a distribution y( j) are thus

θ̂ = (PTW( j)P)−1W( j)P y( j) := B( j) y( j) , (B.2)

and W( j) = V−1
( j) is the inverse covariance matrix of the

uncertainties of the template values. Since in the Linear Tem-
plate Fit the templates are sufficiently similar (cf. Sect. 10.1,
and α̇( j+1) ∼ α̇( j) + ε), it is appropriate to assume that the
uncertainties are (approximately) equivalent for all templates

V := V(1) ∼ V(2) ∼ · · · ∼ V( j) ∼ c2Vdata , (B.3)

and the uncertainties of the data scale by a constant factor
c2 only, probably because of a different amount of statistics.

Therefore, the g-inverse B of the nth-degree polynomial fit
(Eq. (B.2)) is equivalent for any of the templates and also
for the data distribution, B( j) = B. Thus, the Linear Tem-
plate Fit when using the n+1 polynomial function parameters
becomes

χ2 = (
Bd − BY m̄ − BY m̃

)T
PTWP

(
Bd − BY m̄ − BY m̃

)
, (B.4)

which after re-sorting becomes equivalent to the χ2 equation
of the Linear Template Fit

χ2 = (
d − Y m̄ − Y m̃

)T
W

(
d − Y m̄ − Y m̃

)
, (B.5)

but using

W =
[
P(PTWP)−1WP

]T
W

[
P(PTWP)−1WP

]
.

(B.6)

It is therefore observed that a preceded fit of a function to
the templates results only in a change of the Hesse matrix
W → W . This observation is valid for all pre-fits that behave
linearly, like B, and if Eq. (B.3) holds.

Appendix C: nonlinear approximation of a multivariate
model

In Sect. 11, the nonlinear approximation of a univariate model
using an nth-degree regression was described; see Eq. (81).
When applying a first-order Taylor expansion to it, a lin-
earized model is obtained, and from the equations of the
Linear Template Fit, a best estimator for the fitting problem
is found. A similar ansatz for a nonlinear model approxi-
mation of a multivariate model is straightforward. However,
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in the nonlinear approximation of a multivariate model, it is
also of interest to consider interference terms (∼ αk1αk2 ),
and this will be discussed in the following. It will be shown
that the subsequent linear approximation can again become
input to a linear least-squares problem similar to the Linear
Template Fit.

In each bin i , the parameter dependence of a multivariate
model with k parameters α can be approximated as

λi (α) ≈ yi (α; θ̂(0,i), θ̂ (1,i), θ̂ (2,i), θ̂ (Infrc,i)) =: ŷi (α)

= θ̂(0,i) + θ̂
(1,i)
1 α1 + · · · + θ̂

(1,i)
k αk

+ θ̂
(2,i)
1 α2

1 + · · · + θ̂
(2,i)
k α2

k + θ̂
(Infrc,i)
1 α1α2 + · · ·

(C.7)

The best estimators for the θ parameters are obtained from a
regression analysis using a Vandermonde-like design matrix
(similar to Ref. [113])

M = (
M(linear fit) M(squared) M(interference)

)

=
⎛

⎜⎝

1 α̇1,1 · · · α̇1,k α̇2
1,1 · · · α̇2

1,k α̇1,1α̇1,2 · · · α̇1,k1 α̇1,k2

...
...

. . .
...

...
. . .

...
...

. . .
...

1 α̇ j,1 · · · α̇ j,k α̇2
j,1 · · · α̇2

j,k α̇ j,1α̇ j,2 · · · α̇ j,k1 α̇ j,k2

⎞

⎟⎠ ,

(C.8)

where the entries are calculated from the reference points
of the templates α̇ j,k . The first equation shows literally the
three block matrices that form that design matrix. The best
estimators of the θ parameters in each bin are then obtained
from its g-inverse similar to Eq. (11)
⎛

⎜⎜⎜⎝

θ̂(0,i)

θ̂ (1,i)

θ̂ (2,i)

θ̂ (infrc,i)

⎞

⎟⎟⎟⎠ = M+

⎛

⎜⎝
y(1),i

...

y( j),i

⎞

⎟⎠ . (C.9)

For reasons outlined in the main text, an unweighted
regression is applicable, and thus the regression matrix is
equivalent for every bin i . When substituting the θ̂ estima-
tors into Eq. (C.7), one obtains the approximated model in
every bin, and thus the full model as a second-order function
ŷ(α).

Next, a first-order Taylor expansion is applied to the model
ŷ(α). The expansion point is identified 10 with the best esti-
mator of the Linear Template Fit α̂. For that purpose it is
useful to refer to the columns of the transposed g-inverse
matrix with vectors (m̄ and multiple m̃) like

10 Of course, any other expansion point can be used in these equations,
for instance the result from a previous measurement or the result from a
previous nonLinear Template Fit. The latter defines naturally an iterative
fitting algorithm.

M+T

=: (
m̄ m̃[1] · · · m̃[k] m̃[12] · · · m̃[k2] m̃[1 2] · · · m̃[k1k2]

)
.

(C.10)

The resulting terms from the first-order Taylor expansion are
organized in the k × j matrix

˜̃M =:

⎛

⎜⎜⎝

˜̃m[1]
T

...

˜̃m[k]
T

⎞

⎟⎟⎠ with elements ˜̃m[k] := m̃[k]

+2m̃[k2]α̂k +
∑

k2 �=k

m̃[kk2]α̂k α̂k2 (C.11)

and the vector

˜̄m = m̄ −
∑

k

m̃[k2]α̂2
k −

∑

k1

∑

k2 �=k1

m̃[k1k2]α̂k1 α̂k2 . (C.12)

Hence, the estimated model, similar to Eq. (86), is found as

˜̂y(α) = Y ˜̄m + Y ˜̃Mα . (C.13)

This model, ˜̂y(α) ≈ λ(α), can be used together with the
equations of the Linear Template Fit to calculate the best
estimator, since it is linear in all parameters of interest.

Appendix D: calculation of the template fit matrix F

The calculation of the template fit matrix F (Eq. (33))
involves the calculation of M+ as well as the inversions of
V and D. These calculations shall be briefly discussed in the
following.

The calculation of M+ includes the calculation and sub-
sequent inversion of the sum of squares and cross products
(SSCP) matrix of an extended Vandermonde, (MTM)−1,
which is widely studied in literature (see e.g. Ref. [54]) and
typically does not involve numerical problems for n = 1 (or
2).

The inverse covariance matrix W = V
−1 is commonly

calculable since V includes uncertainties without bin-to-bin
correlations and it is thus positive definite. In fact, it needs to
be invertible for a valid problem, or may be even a diagonal
matrix. An efficient algorithm to prove that V is positive
definite is a Cholesky decomposition, and when successful,
the inverse is almost already calculated [86].

The inversion of the (k+l)×(k+l) matrixD may be more
challenging, but it can be expressed using three sub-matrices
as

D =
(

(Y M̃)T
WY M̃ (Y M̃)T

WS
ST

WY M̃ 1l + ST
WS

)
=:

(
D B
BT Σ

)
, (D.14)

where the right side introduces some shorthand notations (for
D, compare also Eq. (33)). The inverse of D is then given in
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two variants by [114]:

D−1 =
(
D−1 − D−1BL LT

L L−1

)

=
(
K−1 K
KT Σ−1 − Σ−1BTK

)
(D.15)

using

L = −L−1BTD−1 and

K = −K−1BΣ−1 . (D.16)

This requires one to calculate the inverse of only two matri-
ces, L and D, or K and Σ , which are defined as

D = (Y M̃)T
WY M̃ and L := Σ − BTD−1B , (D.17)

or

Σ = 1l + ST
WS and K := D − BΣ−1BT (D.18)

= (Y M̃)T(W − WVsW + WVsV
−1VsW)Y M̃ . (D.19)

It is seen that these either can be inverted similarly to
weighted least-squares matrices [53,115,116] or are just
sums of two matrices, and the Sherman–Morrison–Woodbury
formula can be applied [117,118] (see also Ref. [54]).
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