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Abstract In this work, the extension of concept of cracking
in modified f (R) theory of gravity is presented for spheri-
cally symmetric compact objects. We develop general frame-
work to observe the instabilities in self-gravitating spheri-
cal system through cracking with anisotropic inner matter
configuration. For this purpose, the local density perturba-
tion is applied on the hydrostatic equilibrium equation to
identify cracking points/intervals. The physical viability of
developed technique is tested on the data of three different
stars namely 4U 1820-30, Her X-1 and SAX J1808.4-3658,
presented in f (R) model developed in Zubair and Abbas
(Astrophys Space Sci 361:342, 2016). It is concluded that
these objects exhibit cracking in different interior regions
and identification of cracking points refine the stability anal-
ysis of the system by extracting instabilities.

1 Introduction

Structure of the universe can be described via cosmic expan-
sion and density fluctuations among galaxies. A galaxy may
contain millions of stars in it that are building blocks of the
cosmos. Thus, being a component of galaxy, stars and their
evolution has great importance in the consideration of stel-
lar structure. Generally, stars are luminous compact objects,
that tends to make use of internal nuclear fuel during vari-
ous nuclear processes. Such nuclear phenomenon generates
a large amount of energy that is the main cause of a star’s
luminosity. Stability analysis of a gravitating system is of
fundamental significance in the field of astronomy and astro-
physics. A compact object is in stable state if outward drawn
forces of the system are being balanced by the inward directed
gravitational pull. Due to continuous consumption of energy
in fusion process of the compact objects the inward directed
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gravitational force dominates the outward directed pressure
stresses that leads to collapse of gravitating system. The grav-
itational collapse of compact objects may result in the for-
mation of neutron stars, white dwarfs or black holes. It is the
fundamental phenomenon to account evolution within galax-
ies and assemble supergiant structures, these stellar residues
are extremely dense in nature [2].

Stellar evolution can be well described by considering
small fluctuations in the gravitating system through some
suitable perturbation approach. Perturbation theory includes
mathematical methods to find an approximate solution to the
problem. These techniques splits the problem into two parts,
solvable and perturbed part. It plays vital role in approximat-
ing the solution to the problems that do not have a coupled
exact solution. Accounting perturbation in physical parame-
ters assist in the estimation of different evolutionary phases of
a star defining stability/instability levels. Regge and Wheeler
[3] described a metric perturbation in the mode of stability
in a seminal paper on dynamics of relativistic objects. Den-
sity fluctuations, termed as local density perturbation (LDP)
can also be catered to analyze range for stable or unstable
regions, in which all physical parameters are considered to
be density dependent.

General theory of relativity (GR) is the geometric theory
of gravitation introduced by Albert Einstein [4]. According
to GR, the objects warp spacetime around it, causing it to
become curved. Consequently, gravitating bodies experience
gravitational effects. This warping of spacetime explains how
objects behave as they move through the space. Eventually,
Einstein’s theory is strongly based on three basic postulates
that must hold in relativistic analysis i.e., principle of rela-
tivity, equivalence principle, principle of general covariance.
Theory of GR is best fit in weak gravitational fields but do
not provide extensive description of strong field eras. Current
image of universe suggests refinement in theoretical frame-
work, that strongly necessitates alternative gravitational the-
ories. Due to combined motivation from high energy physics,
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cosmology and astrophysics in recent years modified theories
of gravity have received a lot of consideration.

The alternative theories have become a gauge in the explo-
rations related to gravitational interaction, expected to con-
tribute in exploring strong field eras such as approaching
black hole singularities or at the Planck scales. The latest data
sets from cosmic microwave background, supernovae type Ia
and Planck data shows that 95% of energy budget of the uni-
verse consist of hidden matter constituting of dark matter and
dark energy, leading to current accelerated cosmic expansion
[5–9]. Till now, large number of extended theories have been
introduced, these can be classified as scalar tensor gravities,
extra spatial dimension and the theories with higher order
curvature invariants. Inclusion of dark source terms having
negative pressure on right side of field equations (FEs) is
an approach to induce modification that cover quintessence,
k-essence and perfect fluid models. Modifying left side of
FEs is another approach to contribute modifications accom-
panying minimal or non minimal matter geometry coupling
[10,11].

Herein, we are considering f (R) gravity as extended the-
ory of gravitation. Many researchers have worked on modi-
fication of the Einstein Hilbert (EH) action to include higher
order curvature invariants [12–15]. This constitutes non-
linear terms of curvature in a way that gravitational action of
GR modifies to a general action, incorporating an arbitrary
function of Ricci scalar (R) in it. The EH action in f (R)

modifies to

S = 1

2κ

∫
d4x

√−g f (R), (1)

where R is Ricci scalar, g stands for determinant of the metric
gμν and κ = 8πG

c4 is coupling constant.
In the inner matter distribution of stars, anisotropic mat-

ter configuration implies that radial pressure (pr ) and tan-
gential pressure (pt ) are not equal i.e., (pr �= pt ). Kasuar
and Noureen [16] discussed about a gravitational collapse
using f (R) = R+αRn model and electromagnetic field for
stability/instability regions. A charged anisotropic fluid was
assumed in [16] that dissipate energy through heat flow and
showed that electromagnetic field, shear and phase transi-
tion, density irregularity on astrophysical objects can be inte-
grated by locally anisotropic background. It was also shown
that adiabatic index depend upon mass, radius and electro-
magnetic background of spherical objects. Dynamical equa-
tions become a gauge in evolution of self gravitating compact
objects. Noureen et al. [17] presented dynamical instability
of supersymmetric supergravity f (R) model that represents
the more practical substitute of higher order curvature correc-
tions. Significant attention has been paid to alternative grav-
itational theories to explore cosmological and astrophysical
aspects of our universe. Many authors have worked on min-
imally and non-minimally coupled higher order curvature

theories to incorporate exotic matter and study gravitational
interaction with such generalizations [18–22].

The pioneer work on studying the instabilities was pre-
sented by Chandrasekhar [23] for spherically symmetric
compact objects with the help of adiabatic index. Another
way to check the instabilities occuring in compact objects
was introduced by Herrera [24] named as cracking technique.
Cracking originates in gravitating bodies from the evolu-
tion of radial forces, it occurs when perturbation in these
forces changes the sign. In other words, cracking takes place
when the inward directed forces in the inner part and out-
ward directed forces of the configuration changes the sign
from negative to positive values at some point, and over-
turning occurs when these forces changes sign from positive
to negative values. Cracking plays significant role in refine-
ment of stability regions of physically viable compact star
models. The authors in [25] used Raychaudhuri equation to
define departure from equilibrium state and discussed the
constraints on occurrence of cracking. Herrera and Santos
[26] worked on the causes of local anisotropy in a gravitating
system and presented Jeans analysis of the system to identify
occurrence of cracking. Prisco et al. [27] considered two fam-
ilies of homogeneous fluid distributions and concluded that
the deviations in anisotropy may lead to the the appearance of
cracking. Herrera and Varela [28] studied the effect of axially
symmetric perturbations of matter variables in a perfect fluid
matter distribution. Hernandez and Nunez [29] used nonlocal
equation of state for anisotropic spherically symmetric distri-
bution to obtain different physically acceptable solutions. To
demonstrate the physical plausibility for different solutions
which satisfied the nonlocal equation of state, the constraints
imposed by energy, some spontaneous physical conditions
and junction was studied. They [29] showed that fluids hav-
ing nonlocal equation of state are anisotropic by satisfying
Tolman Oppenheimer Volkov equation. It was also shown
that starting from known density profiles, it is possible to
obtain static anisotropic spherically symmetric matter con-
figurations as well as for configuration in which tangential
pressure disappear. Gonzalez et al. [30] extended the concept
of cracking for isotropic general relativistic fluid spheres as
well as described the behavior of anisotropic matter distri-
butions just after its departure from equilibrium. The idea of
cracking has been used in [30] with barotropic equations of
state i.e., p = p(ρ) and pt = pt (ρ) concluding that both
isotropic/anisotropic models could exhibit cracking or over-
turning. Azam and Mardan [31] analyzed the appearance of
cracking using density perturbation in physical parameters.
The same authors [32] studied about the existence of crack-
ing in charged anisotropic cylindrical polytropes by consid-
ering generalized polytropic equation of state. Mak et al. [33]
showed the presence of a cosmological constant upper limits
for the mass-radius ratio, which are derived for arbitrary gen-
eral relativistic matter distributions. Many researchers have
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explored the stability/instability levels of charged sphere
using the mass-radius ratio. Bohmer and Harko [34] proved
that for compact charged general relativistic objects there
is a lower bound for the mass-radius ratio as in Buchdahl
type inequality for charged objects which has been widely
used for the proof of the existence of an upper bound to this
ratio. Giuliani and Rothman [35] found an exact solution for
the stability limit of relativistic charged spheres for the con-
stant gravitational mass density and constant charge density.
Andreasson [36] found an upper bound for given radius and
charge on the critical stability radius for relativistic charged
sphere

In modified gravitational theories, extension of cracking
technique is not available for compact star models. For this
purpose, we have developed the FEs for static spherically
symmetric compact anisotropic star in context of f (R) grav-
ity and making use of Krori Barua spacetime [37] coefficients
for perturbation in equilibrium state. Up till now local density
perturbation (LDP) is not available for stability/instability
analysis. Here, we have worked on generalization of LDP
Scheme to identify cracking of f (R) gravity model, in par-
ticular Starobinsky model [38,40]. Considered f (R) model
is interesting in a way that it indicates both the accelerated
and decelerated regimes in expansion of the universe. Also,
it caters the quadratic correction of Ricci scalar when it is
inserted in FEs of gravitational part. In past Starobinsky
model has been widely used in literature of cosmological
and astrophysical context. In Starobinsky model [40] shows
that this model can satisfy cosmological observational tests.

This paper is arranged as follows: in Sect. 2, we have
developed the FEs for static spherically symmetric compact
object for anisotropic source and making use of Krori Barua
spacetime coefficients. In Sect. 3, we have used LDP on
f (R) gravity model and presented physical analysis by using
graphical representation of distribution force. Discussion of
cracking or overturning for modified gravity is given in Sect.
4. In last section we have summarized our findings followed
by appendix and list of references used in this work.

2 Development of field equations

The degree of freedom of constitutive equations can be
reduced if a symmetry is present in the system that simpli-
fies complications in the analysis. The gravitating sources are
commonly analyzed with the consideration of spherical sym-
metry, observational data demonstrate that deformations in
spherical symmetry are very rare and identical [41]. The devi-
ations are not fundamental feature of gravitating sources, that
is why mostly gravitating systems are discussed via spher-
ical symmetry [42]. The line element for static spherically
symmetric compact object is given by

ds2 = −eμ(r)dt2 + eν(r)dr2 + r2dθ2 + r2sin2θdφ2, (2)

where eμ(r) and eν(r) represent the metric potentials
/coefficients. The contribution of dark source constituent is
induced by following tensor.

T (D)
αβ = 1

κ

[
f − R fR

2
gαβ + ∇α∇β fR − gαβ� fR

]
, (3)

The modified FEs incorporating dark source together with
usual matter can be written as

Gαβ = Rαβ − 1

2
Rgαβ = κ

fR

[
T (m)

αβ + T (D)
αβ

]
, (4)

where Gαβ represents the geometric part of FEs correspond-
ing to metric (2), leads to following set of FEs.

G00 = eμ

fR

[
− f − R fR

2
+ 1

eν
f ′′
R + 2

reν
f ′
R − ν′

2eν
f ′
R

]

+ κ

fR
ρeμ, (5)

G11 = 1

fR

[
f − R fR

2
eν − 2

r
f ′
R − μ′

2
f ′
R

]
+ κ

fR
Pr e

ν, (6)

G22 = 1

fR

[
f − R fR

2
r2 − r

eν
f ′
R − r2

eν
f ′′
R − r2μ′

2eν
f ′
R

+r2ν′

2eν
f ′
R

]
+ κ

fR
Ptr

2, (7)

G33 = 1

fR

[
f − R fR

2
r2 sin2 θ − r sin2 θ

eν
f ′
R

−r2 sin2 θ

eν
f ′′
R − r2 sin2 θμ′

2eν
f ′
R + r2 sin2 θν′

2eν
f ′
R

]

+ κ

fR
Ptr

2 sin2 θ. (8)

Here prime (′) denotes the differentiation with respect to
‘r ’ and fR = d f

dR , we assumed κ = 1. From the modified
FEs (5)–(8), we obtain hydrostatic equilibrium equation for
anisotropic fluid as follows:

dpr
dr

= −μ′

2
ρ −

(
μ′

2
+ 2

r
+ f ′

R R
′

fRρ′

)
pr + 2

r
pt

+e−ν

(
−μ′

2
− 2

r

)
f ′′
R

+e−ν

(
3μ′ν′

4
+ (μ′)2

4
+ 3ν′

r
+ 2

r2

)
f ′
R

−ν′( f − R fR
2

)

+eν fR

[
e−2ν

fR

{(
2

r
+ μ′

2

)
f ′
R − f − R fR

2
eν

}]
,1

, (9)
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leading to


 = −dPr
dr

− μ′

2
ρ −

(
μ′

2
+ 2

r
+ f ′

R R
′

fRρ′

)
pr + 2

r
pt

+e−ν

(
−μ′

2
− 2

r

)
f ′′
R

+e−ν

(
3μ′ν′

4
+ (μ′)2

4
+ 3ν′

r
+ 2

r2

)
f ′
R

−ν′
(

f − R fR
2

)

+eν fR

[
e−2ν

fR

{(
2

r
+ μ′

2

)
f ′
R − f − R fR

2
eν

}]
,1

.

(10)

Equation (10) describes the behavior of anisotropic inner
fluid of compact star in equilibrium state, we shall use it
for discussion of cracking by considering its perturbed form.
Making use of Krori Barua spacetime coefficients [37] that is
ν = Ar2 and μ = Br2 +C where A, B and C are constants
in Eq. (10). We have


 = −dPr
dr

− Brρ −
(
Br + 2

r
+ f ′

R R
′

fRρ′

)
pr

+2

r
pt + e−Ar2

(
−Br − 2

r

)
f ′′
R

+
(

3ABr2e−Ar2 +B2r2e−Ar2 + 2e−Ar2

r2 + 6Ae−Ar2

)
f ′
R

− f − R fR
2

(2Ar) + eAr
2
fR

×
[
e−2ν

fR

{(
2

r
+ Br

)
f ′
R − f − R fR

2
eAr

2
}]

,1
, (11)

simplified form of above expression turns out to be.


 = −dPr
dr

− Brρ −
(
Br + 2

r
+ f ′

R R
′

fRρ′

)
pr

+2

r
pt +

(
−Br − 2

r
+ 2R′

rρ′

+ Br R′

ρ′

)
f ′′
Re

−Ar2 +
(
−ABr2e−Ar2

−2Ae−Ar2 + Be−Ar2 + B2r2e−Ar2

+ R′ f
2ρ′ fR

)
f ′
R − R′ f ′

2ρ′ + R′ fR
2ρ′

−
(
Br + 2

r

)
( f ′

R)2R′e−Ar2

fRρ′ . (12)

This is the main equation that will help us to employe LDP
and analyze instabilities in gravitating system.

3 Local density perturbation in f (R) gravity

The technique we explored is LDP, according to perturbation
of density ρ → ρ + δρ in system with barotropic equations
of state i.e.,pr = pr (ρ) and pt = pt (ρ) which perturbed the
anisotropy of the system. We apply LDP i.e., δρ on three stars
Her X-1, SAX J1808.4-3658 and 4U 1820-30 in equilibrium
state. Cracking takes place when the inward directed forces in
the inner part and outward directed forces of the configuration
changes the sign (δ
 < 0 → δ
 > 0) and vice-versa. We
apply the LDP to perturb all the physical variables as follow:

pr (ρ + δρ) = pr (ρ) + dPr
dρ

δρ, (13)

dPr
dr

(ρ + δρ) = dPr
dr

(ρ)

+
[
d

dr

(
dPr
dρ

)
+ dPr

dρ

d2ρ

dr2

dr

dρ

]
δρ, (14)

pt (ρ + δρ) = pt (ρ) + dPt
dρ

δρ, (15)

R(ρ + δρ) = R(ρ) + R′

ρ′ δρ, (16)

R′(ρ + δρ) = R′(ρ) + R′′

ρ′ δρ, (17)

fR(ρ + δρ) = fR(ρ) + f ′
R
R′

ρ′ δρ, (18)

f ′
R(ρ + δρ) = f ′

R(ρ) + f ′′
R
R′

ρ′ δρ, (19)

f ′′
R(ρ + δρ) = f ′′

R(ρ) + f ′′′
R
R′

ρ′ δρ, (20)

f (ρ + δρ) = f (ρ) + f ′ R′

ρ′ δρ, (21)

f ′(ρ + δρ) = f ′(ρ) + f ′′ R′

ρ′ δρ, (22)

ρ′(ρ + δρ) = ρ′(ρ) + ρ′′

ρ′ δρ. (23)

The radial sound speed ν2
r and tangential sound speed ν2

t are
defined as

ν2
r = dPr

dρ
, ν2

t = dPt
dρ

. (24)

The perturbed form of Eq. (12) can be expressed in following
form.


 = 
o(ρ, ρ′, pr , p′
r , pt , fR, f ′

R, f ′′
R , R′, f, f ′) + δ
,

(25)

where

δ
 = ∂


∂ρ
δρ + ∂


∂ρ′ δρ
′ + ∂


∂pr
δpr + ∂


∂p′
r
δp′

r + ∂


∂pt
δpt
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Table 1 Calculated values of A, B, mass M (M⊙), mass-radius ratio M
R , radius R(km) for Her X − 1, SAX J1808.4 − 3658, 4U 1820 − 30

Compact star M (M⊙) R (km) M/R A (km)−2 B (km)−2

Her X − 1 0.88 7.7 0.168 0.0069062764281 0.0042673646183

SAX J1808.4 − 3658 1.435 7.07 0.299 0.018231569740 0.014880115692

4U 1820 − 30 2.25 10.0 0.332 0.010906441192 0.0098809523811

+ ∂


∂ fR
δ fR + ∂


∂ f ′
R

δ f ′
R + ∂


∂ f ′′
R

δ f ′′
R + ∂


∂R′ δR
′

+∂


∂ f
δ f + ∂


∂ f ′ δ f
′, (26)

that modifies to

δ


δρ
= ∂


∂ρ
+ ∂


∂ρ′ (ρ
′′(ρ′)−1)

+ν2
r

∂


∂pr
+ ∂


∂p′
r

(
(ν2

r )
′ + (ν2

r ρ
′′(ρ′)−1

)

+ν2
t
∂


∂pt
+

(
f ′
R
R′

ρ′

)
∂


∂ fR

+
(
f ′′
R
R′

ρ′

)
∂


∂ f ′
R

+
(
f ′′′
R
R′

ρ′

)
∂


∂ f ′′
R

+
(
R′′

ρ′

)
∂


∂R′

+
(
f ′ R′

ρ′

)
∂


∂ f

+
(
f ′′ R′

ρ′

)
∂


∂ f ′ , (27)

The values of other parameters used in above equation is
given in Appendix as Eqs. (A1)–(A19). The partial deriva-
tives appearing in above expression are given as

∂


∂ρ
= −Br,

∂


∂pr
= −

(
Br + 2

r
+ f ′

R R
′

fRρ′

)
, (28)

∂


∂P ′
r

= −1,
∂


∂Pt
= 2

r
, (29)

∂


∂ f
= R′ f ′

R

2ρ′ fR
,

∂


∂ f ′ = − R′

2ρ′ , (30)

∂


∂ fR
= − f ′

R R
′ pr

( fR)2ρ′ − f ′
R R

′ f
2( fR)2ρ′

+ R′

2ρ′ +
(
Br + 2

r

)
( f ′

R)2R′e−Ar2

( fR)2ρ′ , (31)

∂


∂ f ′
R

= −ABr2e−Ar2 − 2Ae−Ar2

+Be−Ar2 + B2r2e−Ar2 + R′ pr
fRρ′ + R′ f

2ρ′ fR

−2(Br + 2

r
)
f ′
R R

′e−Ar2

fRρ′ , (32)

∂


∂ f ′′
R

= e−Ar2
(

−Br − 2

r
+ 2R′

rρ′ + Br R′

ρ′

)
, (33)

∂


∂ρ′ = − R′ f ′
R pr

fR(ρ′)2 + f ′R′

2(ρ′)2

−2R′ f ′′
Re

−Ar2

(rρ′)2

− Br R′ f ′′
Re

−Ar2

(ρ′)2 − R′ f f ′
R

2(ρ′)2 fR

− R′ fR
2(ρ′)2 + (Br + 2

r
)
( f ′

R)2R′e−Ar2

fR(ρ′)2 , (34)

∂


∂R′ = 2

rρ′ f
′′
Re

−Ar2 + Br

ρ′ f ′′
Re

−Ar2 + f

2ρ′ fR
f ′
R

+ fR
2ρ′ − f ′

2ρ′ + f ′
R pr
fRρ′

−(Br + 2

r
)
( f ′

R)2e−Ar2

fRρ′ . (35)

4 Discussion of cracking and overturning

The f (R) theories can be used for various applications to
cosmology and gravity such as local gravity constraints, dark
energy, inflation, spherically symmetric solutions in weak
and strong gravitational backgrounds and cosmological per-
turbations [10]. Felice et al. [55] discussed a number of ways
to describe the difference between GR and various modified
theories observationally and experimentally. The rapid devel-
opment of observational cosmology shows that the universe
has undergone two phases of cosmic acceleration. The first
phase is called inflation which is believed to have occurred
prior to the radiation domination [56–58]. In order to solve
the flatness and horizon problems plagued in big-bang cos-
mology but also to explain the flat spectrum of temperature
anisotropies observed in cosmic microwave background, the
inflationary phase is of significant importance. The second
accelerating phase has started after the matter domination.
The late time acceleration is covered through dark energy
which is aroused by unknown mysterious component [59].

The basic motivation to consider f (R) gravity is to search
for an elementary theory of gravity that is capable to explain
both dark energy and dark matter problems without referring
to mysterious dark energy conception. In our manuscript, we
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(a) (b)

(c)

(e)

(d)

Fig. 1 Graphical representation of δ

δρ

f or Her X-1 A = 0.0069062764281 (km)−2, B = 0.0042673646183 (km)−2, R = 7.7 (km)

consider the model with f (R) = R + λR2 where λ > 0.
This is the first model of inflation presented by Starobinsky
in 1980 [38]. Soonafter construction of this model, Mijić et al.
[39] worked on R2 cosmology by taking different values of λ

concluding that the potential λ has to be positive. Moreover,
same authors remarked that its large values represent flat
potential and inflation is derived by linear term R that leads

to GR corrections. Recent interpretations of this model [43–
46] shows that λ = 1

6M2 , M is a parameter with dimension of
mass that is in fact the inflation mass given by Planck’s mass.
So, λ = 1

6M2 is one value among many possible choices to
witness inflationary phase of the universe.

The fundamental equation for identification of distur-
bances or instabilities in considered model is Eq. (27), we
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 2 Graphical representation of δ

δρ

f or SAX J1808.4 − 3658A = .018231569740 (km)−2, B = .014880115692 (km)−2, R = 7.07 (km)
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have applied LDP on it to arrive at cracking points. For this
purpose, the general framework of LDP through is tested on
an already developed model presented by Zubair and Abbas
[1]. The physically viable theoretical compact star model
developed in [1] describes a class of theoretically stable stars
namely Her X −1, SAX J1808.4−3658 and 4U1820−30.
Table 1 lists down mass, radius and values of constant param-
eters.

Graphical representation of distribution force for each star
is given in following subsections.

4.1 Star 1: Her X-1

In (1972) Tananbaum et al. [50] observed Her X-1 with binary
orbital period 1.7 d and pulse period 1.24 s. Li et al. [51]
showed that X-ray pulsar Her X-1 is a strange star, and as
model of a strange star is more logical with Her X-1 using
parameters as binary orbital period and pulse period are 1.7
d and 1.24 s, pulsar mass M = 0.98 ± 0.12 (M⊙), cyclotron
line energy, companion mass, spin-up rate and X-ray lumi-
nosity. We have plotted δ


δρ
from Eq. (27) for first star by

taking different values of Starobinsky model parameter λ

given in Fig. 1. The Fig. 1a, b, e shows some disturbances in
the form of singularities near the center, while it remains sta-
ble while moving towards boundary. The Fig. 1c, d remains
stable throughout the region.

4.2 Star 2: SAXJ1808.4-3658

Millisecond X-ray pulsar the SAXJ1808.4-3658 was first dis-
covered in (1996) by wide field camera on board BeppoSAX
satellite [52]. Comparison of the mass to radius (M–R) rela-
tion of SAXJ1808.4-3658 with the theoretical M–R relation
for neutron stars and strange stars reveals that it as a low
mass X-ray binary as it emits almost all of its radiation in
X-rays. Its orbital period is 2 h, the authors in [53] have con-
cluded that the model of strange star is more logical with
SAXJ1808.4-3658. The graph of δ


δρ
for different values of

λ is shown as Fig. 2. One can clearly see that in Fig. 2a,
singularities are visible near the center, as we move towards
boundary of the star the graph of distribution force remains
stable. One cracking point occurs in Fig. 2b, c, d, g at differ-
ent values of “r“ summarized in Table 2. Plot of distribution
force for λ ∈ (0.85, 2] shows stable behavior given in Fig.
2e, f.

4.3 Star 3: 4U 1820-30

Another type of low mass X-ray binaries is 4U 1820-30. The
authors in [54] analyzed the spectroscopic data on different
thermonuclear explosion providing well constrained values
for apparent emitting eras and the Eddington flux. They con-
cluded that [54] both depend in a distinct way on the mass

Table 2 Summary of singular and cracking points for λ ∈ (0, 2] and
λ = 1

6M2 in SAXJ1808.4-3658

λ Cracking points (r (km))

0.10157 Cracking occurs at r = 0.278074 and r = 3.21

While a singular point occur at r = 0.0348283

0.51 Cracking occurs at r = 2.39274

0.6 Cracking occurs at r = 3.7309

0.81 Cracking occurs at r = 6.45595

0.85 No cracking point i.e., stable

2 No cracking point i.e., stable

λ = 1
6M2 Singularity occur at r = 1.44286 × 10−7

and radius of a neutron star. Using the distance measurements
to the globular cluster NGC 6624 and the observed spectral
parameters they have determine the mass of the neutron star
in this binary to be M = 1.58 ± 0.06(M⊙) and its radius to
be R = 9.11 ± 0.40 km. Finally, they have shown that only
the smaller value of the two existing distance measurements
to the globular cluster is logical with the spectroscopic data.

Plot of δ

δρ

is given in Fig. 3 for third star 4U 1820-
30. The graph give in Fig. 3a–f shows that compact object
star exhibits cracking at different points for values of λ ∈
(0, 0.65]. However, for λ ∈ (0.65, 02] and λ = 1

6M2 , star
maintains stability.

5 Conclusion and discussion

The main objective of this work is to check the instabilities
for compact objects in the framework of modified theory of
f (R) gravity through cracking technique. For this purpose,
we have developed mathematical expressions for distribution
force by making use of local density perturbations on hydro-
static equilibrium equation. The f (R) model we have cho-
sen for analysis is Starobinsky model that includes quadratic
term of curvature invariant i.e., f (R) = R + λR2, where
λ takes positive value. It describes a cosmological inflation-
ary model. The onset of modified field equations correspond-
ing to anisotropic spherically symmetric matter configuration
is constructed in Eqs. (5)–(8). The hydrostatic equilibrium
equation or generalized TOV equation for static spacetime is
developed by applying Bianchi identities on modified field
equations given in Eq. (12).

The effect of LDP in the framework of GR for anisotropic
configuration is a useful tool to identify cracking in the sys-
tem. However, up till now this technique is not available for
modified theories to analyze static models. Models stable
under LDP will be more suitable for discussion of astro-
nomical objects. In order to check occurrence of cracking
or overturning we have constructed density dependent per-
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(a) (b)

(d)(c)

(f)(e)

(h)(g)

Fig. 3 Graphical representation of δ

δρ

for 4U 1820-30 A = .010906441192 (km)−2, B = .0098809523811 (km)−2, R = 10.0 (km)
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Table 3 Summary of singular and cracking points for λ ∈ (0, 2] and
λ = 1

6M2 in 4U 1820-30

λ Cracking points (r (km))

0.033 Cracking occurs at r = 4.65

While two singular points occur at r = 0.215 and r = 0.43

0.39 Cracking occurs at r = 2, r = 2.7 and r = 4.65

0.49 Cracking occurs at r = 2.593, r = 4.49 and r = 4.64

0.5 Cracking occurs at r = 2.6

0.55 Cracking occurs at r = 2.76, r = 4.64 and r = 5.32

0.65 Cracking occurs at r = 3.01, r = 4.6 and r = 6.6

2 No cracking point i.e., stable

λ = 1
6M2 Singularity occur at r = 1.44286 × 10−7

turbation pattern for f (R) gravity model presented in Eqs.
(13)–(23) for f (R) gravity. Implementation of perturbation

scheme to hydrostatic equilibrium equation leads to the per-
turbed equation that describe very small deviations in the
system and explains distribution of forces acting on the grav-
itating system given by Eq. (27). It is worth mentioning here
that Eq. (27) is the main equation that can identifies crack-
ing points or instabilities occurring in the system. In order to
check efficiency of our developed technique, we have applied
our cracking model on an already developed physical viable
model. In this paper the physical viability of developed tech-
nique is tested on the data of three different stars namely Her
X-1, SAX J1808.4-3658, 4U 1820-30 presented in model of
Zubair and Abbas [1].

Cracking describes the behavior of inner matter distribu-
tion just after its departure from equilibrium condition. It
has been observed that when the system leaves its condition
of equilibrium then cracking takes place for different values
of Starobinsky model parameter λ ∈ (0, 2] and λ = 1

6M2 .

(a) (b)

(c)

Fig. 4 Graphical representation of δ

δρ

for λ = 0 i.e., GR case
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Graphical representation of distribution force for different
values of model parameter with discussion is given in pre-
vious section with summary of cracking points in Tables 2
and 3 for second and third star. No crack appears in the case
of first star (Her X-1). Thus, this technique is very suitable
in refinement of physically acceptable stable compact star
models. As it identifies the possible cracks or singularities in
the system.

Insertion of λ = 0 in considered modified gravity model
and constitutive equations given in Appendix as Eqs. (A1)–
(A19) and hydrostatic equilibrium Eq. (27) leads to the results
in GR. The graphical representation of distribution force for
λ = 0 is given in Fig. 4.

It is worth mentioning here that use of λ = 0 in our devel-
oped LDP frame work coincides with the frameworks of GR
to arrive at cracking [24,30,60,61]. Extension of this work
to charged case is a well motivated generalization that is in
process.

Appendix

The values of physical parameters such as ρ, pr , pt ,
dPr
dr , R,

R′, R′′, R′′′, ρ′, ρ′′, f ′, f ′′, fR , f ′
R , f ′′

R , f ′′′
R , f , ν2

r and ν2
t

from proposed model and are given below.

ρ= 1

r4 e
−2Ar2

{
e2Ar2

(r2 − 2λ)

+2
(

6B3r6 − 5 + B4r8 − 3B2r4 + 12A3r6

(2 + Br2) − A2r4(40 + 11B2r4 + 68Br2)

+A(48Br4 − 4r2 − 2B3r8 + 26B2r6)
)

λ

+eAr
2
(2Ar4 − r2 + 12λ)

}
, (A1)

pr= 1

r4 e
−2Ar2

{
−e2Ar2

(r2 − 2λ)

+2
(

11B2r4 − 7 + 2B3r6 + 3A2r4

× (2 + Br2)2 − B4r8

−2Ar2(B3r6 + 4 + 16Br2 + 9B2r4)
)

λ

+eAr
2
(2Br4 + r2 + 12λ)

}
, (A2)

pt= 1

r4 e
−2Ar2

{
−2(e2Ar2 + 6eAr

2 − 7)λ

+16B3r6λ + 2B4r8λ − 24A3r6(Br2 + 2)λ

+2A2r4(28 + 74Br2 + 17B2r4)λ

+B2r4(22λ + eAr
2
r2)

+2Br2(eAr
2
(r2 + 6λ) − 6λ) − Ar2(4(−7

+25B2r4 + 19Br2 + 3B3r6)λ

+eAr
2
(r2 + 12λ + Br4))

}
, (A3)

ν2
s =

{
−e2Ar2

(r2 − 4λ) + 4(−7 − B3r6

+B4r8 + 3A3r6(2 + Br2)2 − A2r4(8 + 38Br2

+21B2r4 + 2B3r6)

+Ar2(−11 + 20B2r4 + 4B3r6 − B4r8))λ

+eAr
2
(Ar4 + 2ABr6

+24λ + r2(1 + 12Aλ))
}

/
{
e2Ar2

(r2 − 4λ)

+4(−5 − 3B3r6 − B4r8 + 12A4r8(2 + Br2)

−A3r6(52 + 80Br2 + 11B2r4)

+A2r4(−4 + 82Br2 + 37B2r4 − 2B3r6)

+Ar2(−7 − 16B2r4 + 8B3r6 + B4r8))λ

+eAr
2
(−Ar4 + 2A2r6 + 24λ + r2(−1 + 12Aλ))

}
,

(A4)

ν2
t =

{
B2eAr

2
r6 + 4(−7 + 6eAr

2 + e2Ar2
)λ

−12B(−1 + eAr
2
)r2λ + 16B3r6λ

+4B4r8λ + 48A4r8

×(2 + Br2) − 4A3r6(40 + 86Br2 + 17B2r4)λ

+A2r4(4(−14 + 75Br2 + 67B2r4 + 6B3r6)λ

+eAr
2
(r2 + Br4 + 12λ)) − Ar2(−8(−7 + 3eAr

2
)λ

+56B3r6λ + 4B4r8λ + B2r4(eAr
2
r2 + 144λ)

+3Br2(−8λ + eAr
2
(r2 + 4λ)))

}

{−e2Ar2
(r2 − 4λ)

−4(−5 − 3B3r6 − B4r8 + 12A4r8(2 + Br2)

−A3r6(52 + 80Br2 + 11B2r4)

+A2r4(−4 + 82Br2 + 37B2r4 − 2B3r6)

+Ar2(−7 − 16B2r4 + 8B3r6 + B4r8))λ

+eAr
2
(Ar4 − 2A2r6 − 24λ + r2(1 − 12Aλ))

}
, (A5)

dPr
dr

= 1

r5
2e−2Ar2

{
e2Ar2

(r2 − 4λ) − 4(−7 − B3r6

+B4r8 + 3A3r6(2 + Br2)2 − A2r4

×(8 + 38Br2 + 21B2r4 + 2B3r6)

+Ar2(−11 + 20B2r4 + 4B3r6 − B4r8))λ

−eAr
2
(Ar4 + 2ABr6

+24λ + r2(1 + 12Aλ))
}

, (A6)

R= 2Be−Ar2 + 2B2r2e−Ar2

−2ABr2e−Ar2 + 4Be−Ar2

−4Ae−Ar2 + 2

r2 e
−Ar2 − 2

r2 , (A7)

R′= 4

r3 − 4e−Ar2

r3

−4ABe−Ar2
r + 4B2e−Ar2

r − 4Ae−Ar2

r

+8A2e−Ar2
r − 12ABe−Ar2

r

+4A2Be−Ar2
r3 − 4AB2e−Ar2

r3, (A8)

R′′= −4ABe−Ar2 + 4B2e−Ar2 − 12

r4

+12e−Ar2

r4 + 8A2e−Ar2

−12ABe−Ar2 + 12Ae−Ar2

r2
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+20A2Be−Ar2
r2 − 20AB2e−Ar2

r2 + 8A2e−Ar2

−16A3e−Ar2
r2 + 24A2Be−Ar2

r2

−8A3Be−Ar2
r4 + 8A2B2e−Ar2

r4, (A9)

R′′′= 46

r5
− 48e−Ar2

r5

−48Ae−Ar2

r3 + 48A2Be−Ar2
r

−48AB2e−Ar2
r − 24A2e−Ar2

r

−48A3e−Ar2
r + 72A2Be−Ar2

r

−72A3Be−Ar2
r3 + 72A2B2e−Ar2

r3

−16A3e−Ar2
r

+32A4e−Ar2
r3 − 48A3Be−Ar2

r3

+16A4Be−Ar2
r5 − 16A3B2e−Ar2

r5, (A10)

ρ′= 1

r5
2e−2Ar2

{
eAr

2
(r2 − 24λ) − e2Ar2

(r2 − 4λ)

+4(5 + B4r8 + 3B3r6 − A2Br6(11Br2 + 34)

+12A3(r6 + Br8) + A(2r2 + 13B2r6 − 2B3r8))λ

−Ar2(4(6B3r6 − 5 + B4r8 − 3B2r4

+12r6A3(Br2 + 2) − r4A2(68Br2 + 40 + 11B2r4)

+A(48Br4 − 4r2 − 2B3r8 + 26B2r6))λ

+eAr
2
(−r2 + 2Ar4 + 12λ))

}
, (A11)

ρ′′= − 1

r6 10e−2Ar2

×
(
eAr

2
(r2 − 24λ) − e2Ar2

(r2 − 4λ)

+4(3B3r6 + 5 − A2Br6(34 + 11Br2)

+B4r8 + 12A3(r6 + Br8) + A(2r2

+13B2r6 − 2B3r8))λ

−Ar2(4(6B3r6 − 5 + B4r8 − 3B2r4

+12A3r6(Br2 + 2) − A2r4

×(68Br2 + 40 + 11B2r4)

+A(48Br4 − 4r2 + 26B2r6 − 2B3r8))λ

+ eAr
2
(12λ − r2 + 2Ar4))

)

− 1

r4 8Ae−2Ar2
(
eAr

2
(r2 − 24λ)

−e2Ar2
(r2 − 4λ) + 4(3B3r6 + 5

+B4r8 + 12A3(r6 + Br8) − A2Br6(34 + 11Br2))

+A(2r2 + 13B2r6 − 2B3r8))λ − Ar2(4

×(6B3r6 + B4r8 − 5 − 3B2r4 + 12A3r6(Br2 + 2)

−A2r4(68Br2 + 40 + 11B2r4) + A(48Br4

−4r2 − 2B3r8 + 26B2r6))λ

+eAr
2
(2Ar4 − r2 + 12λ))

)

+ 1

r5
2e−2Ar2

(
2eAr

2
r − 2e2Ar2

r

+4(18B3r5 − 22A2B2r7 + 8B4r7

−6A2Br5(34 + 11Br2)

+12A3(6r5 + 8Br7) + A(4r

+78B2r5 − 16B3r7))λ + 2AeAr
2
r(r2 − 24λ)

−4Ae2Ar2
r(r2 − 4λ) − 2Ar(4(6B3r6 − 5

+B4r8 − 3B2r4 + 12A3r6(2 + Br2)

−A2r4(68Br2 + 40 + 11B2r4) + A(48Br4 − 4r2

−2B3r8 + 26B2r6))λ + eAr
2
(2Ar4 − r2 + 12λ))

−Ar2(eAr
2
(−2r + 8Ar3) + 4(−12B2r3

+36B3r5 + 24A3Br7 + 8B4r7 + 72A3r5(2 + Br2)

−A2r4(136Br + 44B2r3)

−4A2r3(40 + 68Br2 + 11B2r4)

+A(−8r + 192Br3 + 156B2r5 − 16B3r7))

λ + 2AeAr
2

r(−r2 + 2Ar4 + 12λ)
)

, (A12)

f = 2e−2Ar2

r4(
− 1 + eAr

2 − 3Br2 − B2r4 + Ar2(2 + Br2)
)

(
eAr

2
(r2 − 2λ) + 2λ(1

+3Br2 + B2r4 − Ar2(2 + Br2)
)
, (A13)

f ′= 1

r5
4e−2Ar2

(eAr
2
(r2 − 4λ)

+4(1 + 3Br2 + B2r4 − Ar2(2 + Br2))λ)(−1 + eAr
2

−ABr4 + B2r4 + Ar2(−1 − 3Br2

−B2r4 + Ar2(2 + Br2))), (A14)

f ′′= − 1

r6 4e−2Ar2
(
e2Ar2

(3r2 − 20λ)

−4(5 + 9Br2 + 3B3r6 + 3B4r8 + A2Br6(2 + 3Br2)λ

−Ar2(6 + 5B2r4 + 6B3r6))

+eAr
2
((A − B)Br6 + 40λ − 3r2(1 + 8Aλ − 12Bλ))

+Ar2(4(−7 − 18Br2 + 11B2r4 + 30B3r6 + 9B4r8

+A2r4(4 + 20Br2 + 9B2r4) − 2Ar2

×(−6 + 7Br2 + 25B2r4 + 9B3r6))λ

+eAr
2
(5B(−A + B)r6 + 28λ

−3r2(1 + 8Aλ − 12Bλ)

+r4(B(3 − 4Bλ) + A(−2 + 4Bλ))))

−2A2r4(−1 − 3Br2 − B2r4 + Ar2(2 + Br2))

×(−eAr
2
(r2 − 4λ)

−8(1 + 3Br2 + B2r4 − Ar2(2 + Br2))λ)
)

, (A15)

fR= 1 − 8Ae−Ar2
λ + 12Be−Ar2

λ

−4λ

r2 + 4e−Ar2
λ

r2

−4ABe−Ar2
r2λ + 4B2e−Ar2

r2λ, (A16)

f ′
R= 4e−Ar2

r3 (B2r4 − 1 − ABr4

+2eAr
2
λ + Ar2(Ar2(2 + Br2) − 1 − 3Br2 − B2r4)), (A17)

f ′′
R= − 1

r4 4e−Ar2
(
−3 + 3eAr

2 − B2r4

+2ABr4λ + Ar2(−3 + 3Br2 + 5B2r4 − Ar2(2

+5Br2)) + 2A2r4(−1 − 3Br2 − B2r4
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+Ar2(2 + Br2))
)

, (A18)

f ′′′
R = 1

r5
8e−Ar2

(
−6 + 12eAr

2
λ

+6Ar2(−1 + ABr4 − B2r4) − 3A2r4(1 − 3Br2

−3B2r4 + Ar2(2 + 3Br2))

+2A3r6(−1 − 3Br2 − B2r4 + Ar2(2 + Br2))
)

. (A19)
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