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Abstract In Vaidya–Bonner de Sitter black hole space-
time, the tunneling radiation characteristics of fermions and
bosons are corrected by taking Lorentz symmetry breaking
theory into account. The corresponding gamma matrices and
aether-like field vectors of the black hole are constructed,
then the new modified form of Dirac equation for the fermion
with spin 1/2 and the new modified form of Klein–Gordon
equation for boson in the curved space-time of the black
hole are obtained. Through solving the two equations, new
and corrected expressions of surface gravity, Hawking tem-
perature and tunneling rate of the black hole are obtained,
and the results obtained are also discussed.

1 Introduction

In recent years, a series of significant studies have been
conducted on quantum tunneling radiation and related con-
tents of various static, stationary and non-stationary black
holes [1–18]. These studies have involved the tunneling radi-
ation characteristics of fermions and bosons. Notably, the
Lorentz dispersion relation has long been considered funda-
mental to modern physics, and both the theories of general
relativity and quantum field seem to be based on this rela-
tion. However, the study on the theory of quantum gravity
shows that the Lorentz dispersion relation may need to be
modified in the high energy case, which must lead to the cor-
rection of the dynamical equations for bosons and fermions.
Although a set of theories of dispersion relation in the high
energy field has not been effectively established, it is certain
that the order of magnitude of this correction term should be
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at Planck scale [19–25]. Considering the role of the Lorentz
breaking in curved space-time, necessary corrections have
been made to the tunneling radiation of bosons and fermions
in static and stationary curved space-times, and some mean-
ingful conclusions have been obtained [26–29]. However, for
the case of non-stationary black holes, the problem of tun-
neling radiation correction to bosons and fermions in whose
non-stationary curved space-time has not been investigated
deeply, therefore, in this paper the characteristics of fermion’s
and boson’s tunneling radiation from Vaidya–Bonner de Sit-
ter black hole will be studied in detail. By constructing the
gamma matrices and the aether-like field vectors in the curved
space-time of the black hole, the modified Dirac equation and
Klein–Gordon equation in the curved space-time of the black
hole will be obtained, and the results obtained through solv-
ing the two modified equations will be discussed in depth.

The second section below will focus on constructing the
gamma matrices of the black hole and obtaining the dynami-
cal equation of Dirac particles. In the third section, the aether-
like vectors associated with the black hole will be constructed
and the characteristics of the tunneling radiation of the Dirac
particle from the black hole will be studied. In the forth sec-
tion, the Klein–Gordon equation will be reconstructed using
aether-like vectors according to Lorentz breaking theory, and
the properties of the tunneling radiation of the boson from
the black hole will be studied. The last section will summa-
rize the conclusions obtained above and will have a further
discussion about black hole physics.

2 Gamma matrices in Vaidya–Bonner de Sitter black
hole space-time and modified Dirac dynamical
equation

Fermions with spin 1/2 are Dirac particles. After adding
Lorentz symmetry violating term to the action of Dirac parti-
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cles in flat space-time, the Dirac equation of Lorentz symme-
try breaking in flat space-time can be derived by using Hamil-
ton principle. To generalize the modified Dirac equation from
flat space-time to the Vaidya–Bonner de Sitter curved space-
time [30], we need to determine the corresponding gamma
matrices γ μ of the space-time of the black hole, and to extend
the ordinary derivative to the covariant derivative. Taking into
account the effect of Lorentz symmetry violating, the dynam-
ical equation of the Fermion with spin 1/2 in the Vaidya–
Bonner de Sitter black hole space-time is [31,32]

{
γ μDμ

[
1 + h̄2 a

m2

(
γ μDμ

)2
]}

Ψ

+
{
b

h̄
γ 5 + ch̄(uμDμ)2 − m

h̄

}
Ψ = 0, (1)

where uμ are the aether-like field vectors, a, b, and c are all
small quantities and a

m , b
m and c

m are constants far less than
1, and h̄ is the Planck constant.

The space-time line element of the Vaidya–Bonner de Sit-
ter black hole is [30]

ds2 = −
(

1 − 2M

r
+ Q2

r2 − χ2r2
)

dv2

+2dr + r2(dθ2 + sin2 θdφ2) , (2)

from which the non-zero components of the contravariant
metric tensor gμν are respectively

grr = g11 = 1 − 2M

r
+ Q2

r2 − χ2r2

grv = g10 = g01 = 1 .

gθθ = g22 = 1

r2

gφφ = g33 = 1

r2 sin2 θ

(3)

In Eqs. (2) and (3), M = M(v), Q = Q(v), where v is the
advanced Eddington coordinate, χ is the parameter related to
de Sitter space. According to Eqs. (2) and (3), the constructed
gamma matrices γ μ in Eq. (1) are

γ v = 1√
grr

[
i

(
I 0
0 −I

)
+
(

0 σ 1

σ 1 0

)]

= 1√
grr

⎛
⎜⎜⎝

i 0 0 1
0 i 1 0
0 1 −i 0
1 0 0 −i

⎞
⎟⎟⎠

γ r = √
grr

(
0 σ 1

σ 1 0

)
= √

grr

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠

γ θ =
√
gθθ

(
0 σ 2

σ 2 0

)
= 1

r

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎠ ,

γ φ =
√
gφφ

(
0 σ 3

σ 3 0

)
= 1

r sin θ

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ (4)

where I is a unit matrix, and σ 1, σ 2, σ 3 are Pauli matrices.
Obviously, the constructed gamma matrices in Eq. (4) satisfy
the following relations

γ μγ ν + γ νγ μ = {γ μ, γ ν} = 2gμν I . (5)

In Eq. (1), the following relationship exists

Dμ = ∂μ + i

h̄
q Aμ + i

2
Γ αβ

μ Παβ,

Παβ = i

4

[
γ α, γ β

] (6)

where, Γ αβ
μ is the spin connection, i

2Γ
αβ
μ Παβ is the rotational

contact term, which can be ignored in semi-classical theory,
and Παβ is the Lorentz spinor generator. In Eq. (1), there is
the following relationship between γ μ or γ ν and γ 5

γ 5γ μ + γ μγ 5 = 0. (7)

According to Eqs. (4) and (7), the expression of γ 5 is con-
structed as following

γ 5 = r2 sin θ(γ vγ r − γ rγ v)γ θγ φ. (8)

According to semi-classical theory, for fermion with spin 1/2,
the wave function in Eq. (1) can be expressed as

Ψ =
(

ξ

η

)
exp

(
i

h̄
S

)
, (9)

where S is the action of Dirac particles. Substituting Eq. (9)
into Eq. (1), we get

iγ μ
(
∂μS + q Aμ

) [
1 − a

m2 γ μγ ν
(
∂μS + q Aμ

)
(∂νS

+q Aν)] Ψ +
{
bγ 5 − cuμuν

× (
∂μS + q Aμ

)
(∂νS + q Aν) − m

}
Ψ = 0 . (10)

For this black hole, the four-dimensional electromagnetic
potential vector Aμ = (Av, 0, 0, 0), and

Av = A0 = Q

r
. (11)
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Multiply both sides of Eq. (10) by

iγ ν (∂νS + q Aν)
[
1 − a

m2 γ νγ μ (∂νS + q Aν)
(
∂μS

+q Aμ

)]
and ignore small amount b

m and use Eq. (7) to obtain

gμν(∂μS + q Aμ)(∂νS + q Aν)(1 + 2a)

+2cmuμuν(∂μS + q Aμ)(∂νS + q Aν) + m2 = 0 ,

(12)

which is the dynamical equation for a Dirac particle with
spin 1/2, mass m and charge q, and which is derived from
Eq. (1) by taking into account the prerequisites of Lorentz
breaking. Eq. (12) and Eq. (1) are two equivalent equations.
We only need to find the particle’s action S from Eq. (12),
then according to the semi-classical theory and the WKB
approximation theory, we can work out the new and cor-
rected quantum tunneling rate and other important physical
quantities that describe the black hole.

3 Correction to the characteristics of fermion’s
tunneling radiation from Vaidya–Bonner de Sitter
black hole

In order to solve Eq. (12), the correct aether-like field vectors
uμ must be constructed according to Eqs. (2), (3) and (4). As
is known to all, in the flat space-time of the canonical coor-
dinate system, the aether-like field vectors uμ are constant
vectors and satisfy the condition of uμuμ = const , but in
the curved space-time of the black hole, uμ are not constant
vectors, but nevertheless, we still request

uμuμ = const , (13)

only according to which and Eqs. (2) and (3), the constructed
uμ or uν are correct. Based on Eqs. (2), (3) and (13), the
aether-like field vectors can be constructed as

uv = u0 = cv√−g00
= cv√

1 − 2M
r + Q2

r − χ2r2

ur = u1 = cr
√−g00√
g01

= cr

√
1 − 2M

r
+ Q2

r
− χ2r2 .

uθ = u2 = cθ√
g22

= cθ

r

uφ = u3 = cφ√
g33

= cφ

r sin θ
(14)

Obviously, Eq. (14) completely satisfy Eq. (13). In Eq. (14),
cv , cr , cθ and cφ are real constants. Substituting Eqs. (3) and
(14) into Eq. (12), we can obtain

(1 + 2a)
[
g11(∂r S)2 + 2g10(∂r S)(∂vS + q A0)

]

+2cm

[
c2
v

g00
(∂vS + q A0)

2 + g00c2
r

g01
(∂r S)2

]

+2cm

[
2
cvcr
g01

(∂vS + q A0)(∂r S)

]
+ s0 + m2 = 0 , (15)

where s0 is the constant related to θ and φ that appears in the
process of separating variables.

To solve Eq. (15), the general tortoise coordinate transfor-
mation must be done, i.e.

r∗ = r + 1

2κ
ln

r − rH (v)

rH (v0)
.

v∗ = v − v0

(16)

From this transformation we can get

∂

∂r
= 1 + 2κ(r − rH )

2κ(r − rH )

∂

∂r∗
,

∂

∂v
= ∂

∂v∗
− ṙH

2κ(r − rH )

∂

∂r∗
,

(17)

in which, ṙH = drH (v)
dv

. Since this black hole is spherically
symmetric, the variables of the particle’s action S can be
separated as

S = R(v∗, r∗) + Y (θ, φ) . (18)

Let

∂R

∂v∗
= ∂S

∂v∗
= −ω , (19)

where ω is the energy of the particle. Now substitute Eqs.
(16), (17), (18) and (19) into Eq. (15), and at r → rH , v → v0

to simplify the obtained equation preliminarily, we get

[
(1 + 2a)(g11 − 2g10ṙH )

] 1

2κ(r − rH )

(
∂R

∂r∗

)2

+ 2cm

(
c2
v

g00
ṙ2
H + g00c2

r

g01
− 2

cvcr√
g01

)
1

2κ(r − rH )

(
∂R

∂r∗

)2

+ 2(1 + 2a)g10(−ω + q A0)
∂R

∂r∗

− 4cm

(
c2
v

g00
ṙH − cvcr√

g01

)
(−ω + q A0)

∂R

∂r∗
= 0 .

(20)

Now consider the zero hypersurface equation of the black
hole, i.e.

gμν ∂F

∂xμ

∂F

∂xν
= 0 . (21)
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Substituting Eq. (3) into Eq. (21), the equation of the horizon
of the Vaidya–Bonner de Sitter black hole is obtained

1 − 2M

r
+ Q2

r2 − χ2r2 − 2ṙ = 0 . (22)

At the event horizon, Eq. (22) can be expressed as

r2
H − 2MrH + Q2 − χ2r4

H − 2ṙHr
2
H = 0 . (23)

For the cosmic horizon, we have

r2
c − 2Mrc + Q2 − χ2r4

c − 2ṙcr
2
c = 0 . (24)

To solve Eq. (20), the horizons of the black hole must be
considered. Only in this way can we study the characteristics
of fermion tunneling radiation at the horizons of the black
hole and its related physical significance. Therefore, continue
considering the case of r → rH , v → v0, and simplifying
the form of the Eq. (20), we can get

lim
r→rH
v→v0

A

B

(
∂R

∂r∗

)2

− 2(ω − ω0)
∂R

∂r∗
= 0 , (25)

where

ω0 = q
Q

rH
, (26)

lim
r→rH
v→v0

A

B

= lim
r→rH
v→v0

(1 + 2a)(g11 − 2g10ṙH )

2κ(r − rH )
[
(1 + 2a)g10 − 2cm c2

v

g00
ṙH + 2cm cvcr√

g01

]

+ lim
r→rH
v→v0

2cm
(
g00c2

r
g01

− 2 cvcr√
g01ṙH

+ c2
v

g00
ṙ2
H

)

2κ(r − rH )
[
(1 + 2a)g10 − 2cm c2

v

g00
ṙH + 2cm cvcr√

g01

] .

(27)

Substituting the expressions of g00 and g01 in Eq. (2) and
the expression of g11 in Eq. (3) into Eq. (27), and using Eq.
(23), we get

lim
r→rH
v→v0

A

B

= lim
r→rH
v→v0

(1 + 2a)(1 − 2Mr−1 + Q2r−2 − χ2r2)

2κ(r − rH )(1 + 2a + cmc2
v + 2cmcvcr )

− lim
r→rH
v→v0

cm(c2
v + 4c2

r + 4cvcr )ṙH
2κ(r − rH )(1 + 2a + cmc2

v + 2cmcvcr )
.

(28)

Ignoring small quantities of the second order (c2
v + 4c2

r +
4cvcr ) in Eq. (28), then when r → rH , v → v0 both the
numerator and the denominator of Eq. (28) approach 0, let

lim
r→rH
v→v0

(1 + 2a)(1 − 2Mr−1 + Q2r−2 − χ2r2)

2κ(r − rH )(1 + 2a + cmc2
v + 2cmcvcr )

= 1 . (29)

Using L ’Hopital’s rule, then we get

κ =
(
M

r2
H

− Q2

r3
H

− χ2rH

)
(1 − m̃ + m̃2 − · · · ) , (30)

where

m̃ = c(c2
v + 2cvcr )

1 + 2a
m . (31)

It can be seen from Eqs. (30) and (31) that the surface grav-
ity κ is related to c, a, cv , and cr , and that the introduced
aether-like field vectors and the correction terms of gamma
matrices considering Lorentz breaking are equivalent to the
change of the mass of the particle, which also demonstrates
the correlation of mass and space-time. Substituting Eq. (29)
into Eq. (25), we get

∂R±
∂r∗

= (ω − ω0) ± (ω − ω0) . (32)

According to Eq. (17), it can be obtained that

∂R±
∂r

= 1 + 2κ(r − rH )

2κ(r − rH )

∂R±
∂r∗

= 1 + 2κ(r − rH )

2κ(r − rH )
[(ω − ω0) ± (ω − ω0)] , (33)

using residue theorem, which can be solved that

R± = iπ

2κ
[(ω − ω0) ± (ω − ω0)] . (34)

According to the quantum tunneling radiation theory and
the semi-classical theory, the tunneling rate of fermion with
spin 1/2 at the event horizon of the Vaidya–Bonner de Sitter
black hole can be expressed as

Γ ∼ exp[−2Im(S+ − S−)] = exp[−2Im(R+ − R−)] ,

= exp

[
−2π

κ
(ω − ω0)

]
= exp

(
−ω − ω0

TH

)
,

(35)

where

TH = κ

2π

= 1

2π

(
M

r2
H

− Q2

r3
H

− χ2rH

)
(1 − m̃ + m̃2 − · · · ) ,

= T0(1 − m̃ + m̃2 − · · · )
(36)
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where

T0 = 1

2π

(
M

r2
H

− Q2

r3
H

− χ2rH

)
. (37)

Here T0 is the Hawking temperature at the event horizon of
the black hole before correction, while TH is the Hawking
temperature at the event horizon of the black hole after cor-
rection, which is obtained by considering Lorentz breaking
and aether-like field vectors introduced. It can be seen that
Lorentz-breaking Dirac field affects the Hawking tempera-
ture, the surface gravity and the tunneling rate of the Dirac
particle at the black hole event horizon. Equations (30), (35)
and (36) are new and corrected expressions.

This black hole also has a cosmic horizon rc. Using the
same research method above, we can get the surface gravity

κc =
(
M

r2
c

− Q2

r3
c

− χ2rc

)
(1 − m̃ + m̃2 − · · · ) , (38)

the tunneling rate of the spin 1/2 fermion at the cosmic hori-
zon of this black hole,

Γc ∼ exp

(
−ω − ωc

0

Tc

)
, (39)

where Tc is the Hawking temperature at the cosmic event
horizon of the black hole,

Tc = T c
0 (1 − m̃ + m̃2 − · · · ) , (40)

where

T c
0 = 1

2π

(
M

r2
c

− Q2

r3
c

− χ2rc

)
. (41)

ωc
0 in Eq. (39) is

ωc
0 = qQ

rc
. (42)

It can be seen that the coefficient a corresponding to gamma
matrices γ μ and the coefficient c corresponding to the aether-
like field vectors term both have influences on the tunneling
rate and Hawking temperature at the event and cosmic hori-
zons of the black hole, so, which is an important topic that
must be paid attention to in the current research on the ther-
modynamic evolution of black holes.

For the fermion with spin 1/2 in the space-time of Vaidya–
Banner de Sitter black hole, we can add the coupling term of
Lorentz symmetry violating into the action of Dirac particle,
based on which to study the characteristics of the Dirac par-
ticle’s radiation from this black hole, while for fermions with
spin 3/2 and so on, we can study them in the same way, and

correct the physical quantities such as the tunneling radiation
rate and Hawking temperature etc., starting from the Rarita–
Schwinger equation.

4 Correction to the characteristics of boson’s tunneling
radiation from Vaidya–Bonner de Sitter black hole

For the bosons, we can rewrite the action of the scalar field
in this black hole space-time, still considering the coupling
term of Lorentz breaking. The action of the boson with mass
m is [33,34]

L =
∫

d4x
√−g

1

2

[
(∂μΦ)2 + λ

(
uμ∂μΦ

)2 + m2Φ2
]

,

(43)

where λ is the coefficient of the correction term, and is a
small constant. uμ are aether-like field vectors, just as shown
in Eq. (14). Here, it still must be required to satisfy Eq. (13).

The dynamical equation of bosons is determined by the
following equation

δL = 0 , (44)

and noticing that

Bμ

;μ = Bμ
,μ + Γ μ

αμB
α = 1√−g

∂

∂xμ

(√−gBμ
)

, (45)

Γ μ
αμ = 1

2
gμνgμν,α = ∂

∂xα

(
ln

√−g
)

, (46)

�Φ = 1√−g

∂

∂xμ

(√−ggμν ∂Φ

∂xν

)
, (47)

therefore, the dynamical equation of the boson with mass m
in the space-time of this black hole is

1√−g

∂

∂xμ

[√−g
(
gμν + λuμuν

) ∂

∂xν

]
Φ + m2Φ = 0 .

(48)

This equation is actually the modified Klein–Gordon equa-
tion that takes the Lorentz breaking into account. By the same
theoretical method, for the boson with mass m and charge e,
the dynamical equation in the space-time of the black hole is

1√−g

(
∂

∂xμ
− ieAμ

) [√−g
(
gμν + λuμuν

)

×
(

∂

∂xν
− ieAν

)]
Φ + m2Φ = 0 .

(49)

Here Φ is the boson’s wave function, Aμ is the electromag-
netic potential vectors. The relation between Φ and particle’s
action S′ is expressed as
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Φ = Φ0 exp

(
i

h̄
S′
)

. (50)

Substituting Eq. (50) into Eq. (49), the dynamical equation
of the boson with charge e and mass m is obtained

(
gμν + λuμuν

) ( ∂S′

∂xμ
− eAμ

)(
∂S′

∂xν
− eAν

)
− m2 = 0 .

(51)

Substituting Eqs. (3), (11) and (14) into Eq. (51) and sepa-
rating variables, the dynamical equation of the boson with
mass m and charge e in the Vaidya–Banner de Sitter curved
space-time is simplified as

g11
(

∂S′

∂r

)2

+ 2g01
(

∂S′

∂r

)(
∂S′

∂v
− eA0

)

+λ
c2
v

g00

(
∂S′

∂v
− eA0

)2

+ λ
c2
r g00

g01

(
∂S′

∂v

)2

+2λ
cvcr√
g01

(
∂S′

∂r

)(
∂S′

∂v
− eA0

)
+ η0 − m2 = 0 , (52)

where η0 is the constant introduced in the process of separat-
ing variables. Next we solve the Eq. (52) applying the general
tortoise coordinate transformation just like we did above, we
can get the boson’s surface gravity

κ ′ = 1

1 + 1
2λc2

v ṙH + λcvcr

(
M

r2
H

− Q2

r3
H

− χ2rH

)
, (53)

the tunneling rate at the event horizon of the black hole

Γ ′ ∼ exp[−2Im(S′+ − S′−)] = exp[−2Im(R′+ − R′−)]

= exp

[
−2π

κ
′ (ω′ − ω′

0)

]
= exp

(
−ω′ − ω′

0

T
′
H

)
,

(54)

where

ω′ = −∂R′

∂v∗
= − ∂S′

∂v∗
, (55)

ω′
0 = e

Q

rH
, (56)

and the Hawking temperature

T ′
H = κ ′

2π

= 1

2π
(
1 + 1

2λc2
v ṙH + λcvcr

)
(
M

r2
H

− Q2

r3
H

− χ2rH

)
.

(57)

Obviously, considering the influence of Lorentz symmetry
breaking, the boson’s tunneling rate and Hawking temper-
ature at the event horizon of the black hole must be prop-
erly corrected, only that the Hawking temperature and other
physical parameters obtained can be correct. It should be
noted that the physical quantities such as the tunneling rate
of bosons and the Hawking temperature at the cosmic hori-
zon rc of the black hole should also be properly corrected.
Using the same method above, we can obtain the boson’s
tunneling rate and the Hawking temperature at the cosmic
horizon of the black hole. The results are simply to replace
the rH in Eqs. (54) and (57) with rc.

5 Conclusions and discussions

Lorentz symmetry breaking is an important subject worthy
of further study, searching for which is one of the most sensi-
tive ways of looking for new physics, either new interactions
or modifications of known ones [35]. In this paper, we stud-
ied and corrected the quantum tunneling radiation proper-
ties of fermion and boson at the horizons of Vaidya–Bonner
de Sitter black hole based on the Lorentz breaking theory.
First, we constructed the gamma matrices [Eqs. (4) and (7)]
and the aether-like field vectors [Eq. (14)] of the black hole,
which is the key point to study this topic in our method,
and then the new and modified form of Dirac equation was
obtained. By solving the modified Dirac equation, the sur-
face gravity [Eqs. (30) and (38)], the Hawking temperature
[Eqs. (36) and (40)] and the tunneling rate [Eqs. (35) and
(39)] of the fermion with spin 1/2 at the event horizon and
the cosmic horizon were obtained. For the fermion with spin
3/2 and so on, it can be studied in the same way only need
starting from the Rarita–Schwinger equation. For the boson,
we got the new form of the Klein–Gordon equation by the
constructed aether-like field vectors (Eq. (14)), by solving
which we obtained the tunneling radiation properties [Eqs.
(53), (54) and (57)] of the boson at the event horizon and the
cosmic horizon of the black hole. Eqs. (30), (36), (35) and
Eqs. (53), (54) and (57) are new and corrected expressions
of the tunneling radiation properties of this black hole. We
can see that the tunneling radiation properties of fermions are
different from those of bosons. Meanwhile, if the correction
terms in the expressions obtained above about the character-
istics of the tunneling radiation of the black hole are got rid
of, the results will be completely consistent with the origi-
nal results, which also proves that the obtained results of the
tunneling radiation characteristics of fermions and bosons in
curved space-time of the Vaidya–Bonner de Sitter black hole
are correct.

Another important physical concept of black hole physics
is entropy SBH of the black hole. From the expressions above
about the tunneling rate of fermions and bosons and the
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Hawking temperature at the black hole horizons, we can
know that Lorentz symmetry breaking has a certain effect on
them, which will inevitably lead to the change of the black
hole entropy. Here �SBH is employed to express the change
of Bekenstein–Hawking entropy SBH , so the tunneling rate
can be expressed as Γ ∼ exp(�SBH ). Black hole entropy is
also a kind of subject worthy of study, which can help us to
understand the thermodynamic evolution of black holes and
related problems deeply.
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Appendix A: Derivation of Equation (1)

According to the Ref. [31] in this paper, in flat space-time,
higher-derivative extension of the spinor QED in 4D is

S̄ =
∫

d4x

Ψ

[
i /̄D

(
1 − α

/̄D
2

m2

)
+ /bγ̄ 5 + ξ

(
b · D̄)2 − m

]
Ψ ,

(A.1)

where α, /b, ξ are all the coefficients of the small correction
terms, Ψ = Ψ †γ̄ 0, /̄D = γ̄ μ D̄μ , and D̄μ = ∂μ − ieAμ,
which is an usual gauge covariant derivative. So, the usual
Lorentz-breaking extension of the QED is modified by the
higher derivatives. γ̄ 5 and γ̄ μ satisfy the following relation

γ̄ 5γ̄ μ + γ̄ μγ̄ 5 = 0

γ̄ μγ̄ ν + γ̄ μγ̄ ν = 2δμν I ,
(A.2)

where I is the identity matrix. Gamma matrices γ̄ μ and γ̄ 5

need to be determined according to the characteristics of the

space-time, the selection of coordinate system and the signa-
ture of the space-time line element. It should be noted that the
wave functions in Eq. (A.1) is related to the spin of Fermions.
For Fermions with spin 1/2, Eq. (A.1) is the modified action
of Dirac particles in flat space-time.

In curved space-time, considering the Lorentz breaking
effect, the expression of Fermions’ action is much more
complex than that in flat space-time. The real action should
be the integral of Lagrange density multiplied by four-
dimensional volume element. The four-dimensional volume
element in curved space-time is

√−gd4x , Lagrange den-
sity should include Carroll–Field–Jackiw (CFJ) term, chirl
term and aether-like term when considering Lorentz break-
ing, and noticing that in curved space-time Ψ = Ψ †γ 0, there-
fore according to the characteristics of Fermions’ action and
Lagrange density, the Fermions’ action in general curved
space-time should be correctly constructed as

S =
∫ √−gd4x

Ψ

[
iγ μDμ

(
1 − ah̄2 (γ μDμ)2

m2

)
+ b

h̄
γ 5

+ch̄
(
uμDμ

)2 − m

h̄

]
Ψ , (A.3)

where

Dμ = ∂μ + i

h̄
q Aμ + i

2
Γ αβ

μ Παβ

Παβ = i

4

[
γ α, γ β

]

Γ αβ
μ = Γ α

μνg
νβ

Γ α
μν = 1

2
gαλ(gμλ,ν + gνλ,μ − gμν,λ) ,

(A.4)

The term containing a, b or c is the correction term corre-
sponding to CFJ term, chirl term and aether-like term respec-
tively, and a, b and c are all very small real numbers. γ μ are
the gamma matrices in curved space-time, γ 5 is the gamma
matrix related to the characteristics of the space-time, uμ is
aether-like factor. γ μ, γ 5 and uμ are all need to be deter-
mined by the specific curved space-time. γ μ and γ 5 satisfy
the following expression,

γ 5γ μ + γ μγ 5 = 0

γ μγ ν + γ νγ μ = 2gμν I ,
(A.5)

According to the variational principle and Eq. (A.3), we
have

δS =
∫ √−gd4xδL . (A.6)
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where

L = Ψ

[
iγ μDμ

(
1 − ah̄2 (γ μDμ)2

m2

)
+ b

h̄
γ 5

+ch̄
(
uμDμ

)2 − m

h̄

]
Ψ .

(A.7)

According to Hamilton principle δS = 0, the dynamics equa-
tion of the system is determined by the following equation

δL = 0 . (A.8)

Therefore, according to Eqs. (A.7) and (A.8), we get

{
γ μDμ

[
1 + h̄2 a

m2 (γ μDμ)2
]}

Ψ

+
{
b

h̄
γ 5 + ch̄

(
uμDμ

)2 − m

h̄

}
Ψ = 0 ,

(A.9)

which is just the Eq. (1) in this paper.
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