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Abstract We study the scattering of monochromatic pla-
nar scalar waves in a geometry that interpolates between the
Schwarzschild solution, regular black holes and traversable
wormhole spacetimes. We employ the partial waves approach
to compute the differential scattering cross section of the
regular black hole, as well as of the wormhole solutions.
We compare our full numerical results with the classical
geodesic scattering and the glory approximation, obtaining
excellent agreement in the appropriate regime of validity of
such approximations. We obtain that the differential scatter-
ing cross section for the regular black hole case is similar
to the Schwarzschild result. Notwithstanding, the results for
wormholes can be very distinctive from the black hole ones.
In particular, we show that the differential scattering cross
section for wormholes considerably decreases at large scat-
tering angles for resonant frequencies.

1 Introduction

The era of precise measurements in strong gravitational
field regime has begun. The gravitational wave measure-
ments performed by the LIGO/VIRGO collaboration pro-
vided undoubtful evidence for the existence of black holes
in nature, detected in the form of a coalescing binary system
[1]. Furthermore, the EHT collaboration imaged the shadow
of a black hole at the center of the Messier 87 galaxy (M87)
[2]. More recent results about the polarization of light emit-
ted next to the center of M87 indicate that the central black
hole is surrounded by a strong magnetic field [3].

Black holes arise naturally as solutions of the Einstein
field equations. The first black hole solution obtained within
Einstein’s theory was the Schwarzschild solution, which rep-
resents a static and spherically symmetric black hole in vac-
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uum. The generalization to the rotating black hole case was
obtained by Roy Patrick Kerr in 1963, and it is nowadays
known as the Kerr solution [4]. Black holes coupled to linear
(Reissner–Nordstrom black hole [5,6]) and non-linear elec-
tromagnetic fields (e. g. the Bardeen black hole [7]) have also
been proposed in the literature. In particular, the latter were
proposed to circumvent the singularity problem, and became
known as regular black hole solutions.

It is possible to consider a wormhole structure associ-
ated to the Schwarzschild solution, known as Einstein-Rosen
bridge [8]. This bridge is represented by a throat that connects
two asymptotically flat regions of the maximal analytical
extension of the Schwarzschild solution. The Schwarzschild
wormhole is not traversable [9]. Traversable wormholes were
originally discussed in Ref. [10]. Although wormholes are
seen as exotic solutions, recently it was shown that they can
be sourced by reasonable matter [11,12].

Simpson and Visser proposed a geometry that interpolates
between the Schwarzschild black hole and wormhole space-
times, admitting a regular “black bounce” in the middle of the
interpolation branch [13]. The wormhole branch of interpola-
tion represents traversable wormholes in the sense discussed
in Ref. [10]. This Simpson-Visser spacetime possesses sev-
eral interesting properties, which have been recently investi-
gated (cf., e.g., Refs. [14–21]).

Scattering processes were important to many ground-
breaking discoveries in Physics. The discovery of the atomic
nucleus itself was achieved through the analysis of the so-
called Rutherford scattering, i.e. the scattering of charged
particles by the Coulomb force. In General Relativity, scat-
tering processes are also important, for instance, in the anal-
ysis of gravitational wave scattering by compact objects. The
scattering of waves by static and stationary black holes has
been studied in several papers and books [22–27,27–32].
However, few investigations dealing with wave scattering by
wormhole geometries were presented so far (cf., e.g., Ref.
[33]).
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We provide the scattering analysis of scalar waves in
wormhole and regular black hole geometries represented by
the Simpson–Visser metric, and compare both cases. The
analysis of the absorption process for this geometry was pre-
sented in Ref. [15], where it has been shown that wormholes
and black holes can exhibit quite distinctive absorption spec-
tra. The Simpson–Visser spacetime is represented by the fol-
lowing line element:

ds2 = − f (r) dt2 + f (r)−1 dr2 +
(
r2 + a2

)
dΩ2, (1)

where

f (r) ≡
(

1 − 2 M√
r2 + a2

)
, (2)

and dΩ2 is the line element of a unit sphere. The line element
(1) may describe the standard Schwarzschild solution (a =
0), regular black holes (0 < a < 2 M) or wormhole solutions
(a ≥ 2M). (See Ref. [13] for further details.) The black hole
event horizon is located at

rh =
√

(2 M)2 − a2, (3)

reducing to the well known Schwarzschild result for a = 0.
We study the scattering of planar scalar waves in black

holes, as well as wormhole spacetimes, by varying the param-
eter a present in the Simpson-Visser line element (1).

The remainder of this paper is organized as follows: Sect. 2
is dedicated to the classical scattering cross section, obtained
by analyzing the geodesics in the Simpson–Visser spacetime.
In Sect. 3 we outline the partial waves approach for the scat-
tering of scalar waves. In Sect. 4 we present a selection of our
numerical results for the black hole and wormhole cases. Our
final remarks are presented in Sect. 5. We adopt units such
that G = c = � = 1 and metric signature (−,+,+,+).

2 Classical scattering

2.1 Geodesic scattering

We study the classical scattering cross section in the
Simpson–Visser spacetime, investigating null geodesics
propagating in this geometry. Some properties of particle
motion in the Simpson–Visser geometry were studied, for
instance, in Refs. [15–19]. The Lagrangian for null geodesic
motion is given by

Lgeo = 1

2
gμν ẋ

μ ẋν = 0, (4)

where the overdots represent differentiation with respect to
the affine parameter along the geodesics. We may restrict our
analysis to the equatorial plane θ = π/2, since the spacetime

is spherically symmetric. Moreover, we note the existence of
the following conserved quantities:

E =
(

1 − 2 M√
r2 + a2

)
ṫ, (5)

L =
(
r2 + a2

)
ϕ̇, (6)

which are the energy and angular momentum measured by
an asymptotic observer, respectively. Using Eqs. (4)–(6), we
may write the equation of motion for massless particles as

ṙ2 + Veff = E2, (7)

Veff =
(

1 − 2M√
r2 + a2

)
L2

(
r2 + a2

) , (8)

where Veff is the effective potential for null geodesics. The
radius of the closed circular photon orbits (rc) and the corre-
sponding impact parameter (bc) are given by [15]:

rc =

⎧⎪⎨
⎪⎩

√
9M2 − a2, if 0 ≤ a < 2M,

±√
9M2 − a2, if 2M ≤ a ≤ 3M,

0, if a > 3M,

(9)

and

bc =
⎧⎨
⎩

3
√

3M, if 0 ≤ a ≤ 3M,

a
3
2

(a−2M)
1
2
, if a > 3M,

(10)

respectively. Using a chain rule, we may write Eq. (7) with
derivatives with respect to the ϕ coordinate. Moreover, we
define the variable

u ≡ 1√
r2 + a2

, (11)

and we find that the equation for the orbit of massless particles
in the Simpson–Visser spacetime can be written as:
(
du

dϕ

)2

=
(

1 − a2u2
) [

1

b2 − u2 (1 − 2Mu)

]
≡ U (u),

(12)

where b = L/E denotes the impact parameter of the pho-
ton. Equation (12) reduces to the well known Schwarzschild
result for a = 0.

The scattering angle is given by

χ(b) = 2
∫ u0

0

du√
U (u)

− π, (13)

where u0 is related to the turning point of the photon with
impact parameter b. The turning point is obtained by solving:

U (u0) = 0. (14)
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The classical scattering cross section is given by [34]

dσcl

dΩ
= 1

sin χ

∑
b(χ)

∣∣∣∣
db(χ)

dχ

∣∣∣∣ , (15)

where the impact parameter b(χ) in terms of the scatter-
ing angle can be obtained by inverting Eq. (13). The sum in
Eq. (15) stands for the fact that geodesics passing close to
the critical orbit can go around the black hole many times
before being scattered to infinity, therefore, the sum takes
into account χ, 2π − χ, 2π + χ and so on. We can obtain
an analytical expression for the scattering cross section for
small scattering angles χ . Expanding the term inside the inte-
gral of Eq. (13) in powers of M and a, up to second order,
and integrating the result, we find that

χ(b) ≈ 4M

b
+ (15π − 16)M2

4b2 + a2π

4b2 , (16)

which agrees with the expression found in Ref. [16] up to
first order in M and second order in a. Solving Eq. (16) for
b(χ) and substituting into Eq. (13), we obtain

dσcl

dΩ
≈ 16 M2

χ4 + (15π − 16)M2

4χ3 + a2π

4χ3 , (17)

for small values of χ . The expression (17) is valid for the
black hole and wormhole cases. We note that the contri-
bution from the Simpson–Visser parameter appears only
in quadratic order on the classical scattering cross section.
Thus we expect a similar scattering cross section to the
Schwarzschild case for small values of the parameter a.

In Fig. 1, we show the classical scattering cross section
of the Simpson–Visser geometry, in the black hole as well
as in the wormhole ranges of interpolation. We obtained the
results shown in Fig. 1 numerically: We integrate numerically
Eq. (13) for several values of b, and compute an interpolation
function χ(b). Then we compute the inverse function b(χ)

and plug into Eq. (15). From Fig. 1, we note that the more
we increase the value of a/M , more the classical scatter-

ing cross section differs from the Schwarzschild black hole
result. More precisely, the classical scattering cross section
increases as we increase the value of a/M . As shown in
Fig. (1), the difference in the classical scattering cross sec-
tion is more evident for angles around χ = 150◦.

2.2 Glory scattering

The classical cross section captures interesting features con-
cerning the motion of massless particles in the Simpson–
Visser geometry. However, wave effects, for instance inter-
ference, can not be obtained within the classical regime. In
order to study semiclassical effects in the Simpson–Visser
spacetime, we can apply the glory approximation to the
black hole branch of interpolation [35]. The Simpson–Visser
geometry presents an unstable photon orbit, therefore mass-
less particles can be scattered in arbitrarily large angles. The
glory approximation is suitable for waves scattered at angles
χ ≈ π . Moreover, since it is a semiclassical approximation,
we use it to analyze the scattering of scalar waves in the high-
frequency regime (ω M � 1). The scattering of scalar waves
in the low-to-mid frequency regime is presented in Sect. 3
within the full numerical approach. The semiclassical glory
approximation for black holes is given by [35]:

dσ

dΩ
= 2πωb2

g

∣∣∣∣
db

dχ

∣∣∣∣
χ=π

J 2
2s(ωbg sin χ), (18)

where ω is the frequency of the wave, bg is the impact param-
eter for backscattered waves (χ ≈ π ), J2s is the Bessel func-
tion of the first kind and s is the spin of the wave. Here
we set s = 0, since we are dealing with scalar waves. In
Fig. 2, we plot the main quantities present in the glory for-
mula, as a function of the interpolation parameter a for the
black hole case. We note that the critical impact parameter bc
remains constant and equal to the value of the impact param-
eter of the Schwarzschild black hole (bc = 3

√
3M). This is

related to the shadow degeneracy results for the Simpson–

Fig. 1 The classical scattering cross section of massless particles by black holes (left panel) and wormholes (right panel) for different values of
a/M . For the black hole case, we also show the Schwarzschild result
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Fig. 2 The glory parameters for the Simpson–Visser black hole in
terms of the interpolation parameter a/M present in the line element (1).
We note that bg and b2

g |db/dχ |χ=π are monotonically increasing func-
tions of the interpolation parameter a, while rc decreases monotonically
with a. The critical impact parameter bc remains constant for the whole
range of the interpolation parameter of the black hole case

Visser spacetime, studied in Ref. [19]. The monotonically
increasing behavior of b2

g|db/dχ | in Fig. 2 reveals that the
intensity of the backscattered flux is enhanced as we increase
the value of a. The impact parameter for backscattered waves
(bg) slightly increases as we increase the interpolation param-
eter a. Hence we expect that the interference fringes become
slightly narrower for higher values of a.

In Sect. 4, we compare the results obtained with the glory
approximation and the full numerical method for the black
hole case, obtaining excellent agreement for χ ≈ π .

3 The partial waves approach

In this section we study the scattering of massless scalar
waves in the Simpson–Visser spacetime. The dynamics of
the massless scalar waves is described by the Klein-Gordon
equation:

∇μ∇μ
 = 1√|g|∂μ

(√|g| gμν∂ν

)

= 0. (19)

Since the Simpson–Visser spacetime is spherically symmet-
ric and we are considering monochromatic scalar waves, we
can decompose the field 
 as


 =
∑
l,m

φ(r)
(
r2 + a2

) 1
2

Ylm(θ, ϕ) e−iωt , (20)

where Ylm are the well known scalar spherical harmonics.
By substituting Eq. (20) in Eq. (19), we find that φ(r) obeys
a Schrödinger-like equation [15]:

(
d2

dx2 + ω2 − Veff

)
φ(x) = 0, (21)

where

Veff ≡ f (r)

[
f ′(r) r(
r2 + a2

) + a2 f (r)(
r2 + a2

)2 + l (l + 1)(
r2 + a2

)
]

,

(22)

and x is the tortoise coordinate:

dx ≡ f −1(r) dr. (23)

The prime in Eq. (22) denotes differentiation with respect
to the radial coordinate r . We must impose boundary con-
ditions for Eq. (21). For the scattering/absorption problem
such boundary conditions can be defined in terms of the so-
called in modes [36]. For the black hole case, the in modes
are described by

φbh(r) ≈
{
SI + RωlS

∗
I , r → +∞ (x → +∞),

Tωl SI I , r → rh (x → −∞),
(24)

while for the wormhole case they are given by

φw(r) ≈
{
SI + S ∗

I Rωl , r → +∞ (x → +∞),

Tωl SI , r → −∞ (x → −∞),
(25)

where

SI = e−iωx
N∑
i=0

Ai∞
r i

, (26)

SI I = e−iωx
N∑
i=0

(r − rh)
i Ai

rh . (27)

In Eqs. (24) and (25), |Rωl |2 and |Tωl |2 are the scalar wave
reflection and transmission coefficients, respectively. Since
the flux is conserved, we have |Rωl |2 + |Tωl |2 = 1.

To investigate the scattering of scalar waves in the
Simpson–Visser spacetime, we use the standard time-
independent scattering theory in the context of General Rel-
ativity. The scattering amplitude is given by [26]

f (θ) = 1

2iω

∞∑
l=0

(2l + 1)
[
e2iδl (ω) − 1

]
Pl(cos θ), (28)

where Pl(cos θ) are the Legendre polynomials, and δl(ω) are
the phase shifts, which are related to Rωl according to

e2iδl (ω) ≡ (−1)l+1Rωl . (29)

The differential scattering cross section is the squared mod-
ulus of the scattering amplitude, namely [26]

dσsc

dΩ
= | f (θ)|2 . (30)

In order to compute the differential scattering cross sec-
tion through the partial waves method, we solve numerically
Eq. (21) subjected to the boundary condition (24) in the black
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hole case, or to the boundary condition (25) in the wormhole
case. From this numerical solution, we compute the reflection
coefficient, and hence we find the phase shift and the scatter-
ing amplitude from Eqs. (29) and (28), respectively. Due to
the poor convergence of the sum in the scattering amplitude
f (θ) for angles θ ≈ 0, we need to use the so-called reduced
series, outlined for the problem of high-energy scattering
of electrons by nuclei [37], and first applied in the context
of General Relativity in the computation of fermion scatter-
ing in the Schwarzschild spacetime [27]. Once the scattering
amplitude is known, the differential scattering cross section
is computed using Eq. (30). A selection of our numerical
results is presented in Sect. 4 for the black hole, as well as
for the wormhole cases.

4 Numerical results

4.1 Black hole results

In Fig. 3 we show the full numerical results for the scattering
of planar massless scalar waves by black holes for different
values of the interpolation parameter a and Mω = 0.5, 1.5
and 3.0. We also show the Schwarzschild results for compar-
ison. From Fig. 3 we note that the change of the parameter
a implies in a subtle change on the scattering cross section,
implying that it is hard to distinguish the scattering of scalar
waves by the regular Simpson–Visser black holes and by the
Schwarzschild black hole. A similar conclusion was obtained
in the classical scattering regime using backwards ray-tracing
in Ref. [19]. In Fig. 4 we present a comparison between
the classical scattering, the glory approximation and the full
numerical partial waves method for different values of a and
Mω = 3. We note that the numerical results oscillate around
the classical ones, as a consequence of the interference of
waves that orbit the black hole in opposite senses. Moreover,
the classical scattering and the full numerical results agree
very well in the small scattering angle regime. From Fig. 4 we
note that the numerical results and the glory approximation
are in very well agreement for χ ≈ π .

4.2 Wormhole results

In Fig. 5 we show the full numerical results for the planar
massless scalar waves differential scattering cross section
of wormholes with different values of the parameter a and
Mω = 0.5, 1.5 and 3.0. We note that the wormhole case,
like the black hole case, present a divergence in the forward
direction (χ ≈ 0◦) and also a glory in the backward direction
(χ ≈ 180◦). The differential scattering cross section can be
quite distinctive for different values of the parameter a, in
the wormhole branch of interpolation. This contrasts with
the black hole case, for which the scattering cross section

Fig. 3 The scalar differential scattering cross section of regular black
holes described by the Simpson–Visser metric with different choices of
Mω and a/M . We also show the Schwarzschild case for comparison
purposes

is very similar for 0 ≤ a < 2M . In Fig. 6, we show the
comparison between the classical scattering cross section and
the full numerical results. We notice that the numerical results
obtained with the partial waves approach oscillates around
the classical results, as expected.

In Ref. [15] we have shown that the absorption spec-
trum of the wormhole case presents resonant frequencies
ωres, in which the absorption cross section exhibits sharp
peaks [33,38]. With this result in mind, we raise the follow-
ing question: What happens to the scattering cross section at
the resonant frequencies? In Fig. 7 we show the scalar dif-
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Fig. 4 Comparison between the scalar differential scattering cross sec-
tion of Simpson–Visser regular black holes obtained by the classical
scattering, the glory scattering approximation and the full numerical
analysis for Mω = 3 and different values of a/M

ferential scattering cross section of traversable wormholes
for some resonant frequencies ωres, computed in Ref. [15],
as well as for values of the frequency slightly larger (ω+)
and slightly smaller (ω−) than the resonant frequencies. We
note that the scalar differential scattering cross section sub-
stantially decreases at a resonant frequency, when compared
to slightly different frequencies. The decreasing of the dif-
ferential scattering cross section is more evident for large
scattering angles.

Fig. 5 The scalar differential scattering cross section of traversable
wormholes described by the Simpson–Visser metric with different val-
ues of the frequency and of the interpolation parameter

5 Final remarks

We have studied the scattering of scalar waves in the
Simpson–Visser geometry that interpolates between the
Schwarzschild black hole, regular black hole and traversable
wormhole solutions. The general form of this geometry
allows us to compare the scattering of black holes and worm-
holes by varying the interpolation parameter.
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Fig. 6 Comparison between the scalar differential scattering cross sec-
tion of traversable wormholes obtained with the full numerical analysis
and the classical result, for Mω = 3 and different values of a/M

We analyzed the classical scattering cross section, which
can be obtained by studying null geodesics in the Simpson–
Visser geometry. We found an analytical expression for the
classical scattering cross section in the limit of small scat-
tering angles. Our analytical expression shows that the con-
tribution from the interpolation parameter appears only in
quadratic order on the classical scattering cross section. Thus,
for small angles, the classical scattering cross section is pre-
dominantly given by the well-known Schwarzschild result.

We have applied the semiclassical glory scattering for-
mula to the black hole case. We obtained that the criti-
cal impact parameter of backscattered waves (bg) slightly

Fig. 7 The scalar differential scattering cross section of traversable
wormholes, described by the Simpson–Visser metric, for selected reso-
nant frequencies ωres (solid lines). We also show the differential scatter-
ing cross section for one frequency slightly larger (ω+) and one slightly
smaller (ω−) than the resonant one
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increases as we increase the interpolation parameter a. As a
consequence, the interference fringes get slightly narrower
as we increase a. We confirmed this behavior with the full
numerical approach, which agrees very well with the glory
approximation in the corresponding regime.

We applied the partial waves approach in order to com-
pute numerically the differential scattering cross section of
scalar waves in the Simpson–Visser geometry. We presented
a selection of our numerical results for the black hole case, as
well as for the wormhole case, and discussed the differences
between the two situations.

For the black hole case we found that the differential scat-
tering cross section, for fixed Mω and 0 ≤ a < 2M , is very
similar, although not equal, to the Schwarzschild results. The
major difference arises for high angles, whereas for small
angles the results are almost indistinguishable. The scatter-
ing cross section results for Simpson–Visser black holes rein-
force the conclusions obtained in Refs. [15,19], i. e. that the
Simpson–Visser black hole mimics the Schwarzschild solu-
tion in several aspects. We have shown that the full numerical
results for the scattering cross section oscillates around the
classical scattering cross section due to the interference of
waves that orbit the black hole in opposite senses.

For the wormhole case we found that the differential scat-
tering cross section presents a divergence in the forward
direction (χ = 0◦) and also a glory in the backward direc-
tion (χ = 180◦), similarly to the black hole case. The par-
tial waves numerical results oscillate around the classical
scattering cross section. Moreover the differential scattering
cross section for different values of a and fixed Mω can be
quite distinctive. Due to the presence of a potential well at
the wormhole throat, the absorption cross section presents
sharp peaks for some resonant frequencies ωres [15,33,38].
We investigated the behavior of the differential scattering
cross section for frequencies equal to the resonant ones. We
concluded that the differential scattering cross section is com-
paratively lower at the resonant frequencies. By comparing
with results for frequencies slightly different from the reso-
nant ones, we noticed that the relatively lower result is more
evident for large scattering angles, while for small scatter-
ing angles they are essentially the same, since the forward
divergence dominates in this regime.
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