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Abstract We study the sin 2φh azimuthal asymmetry of
charged and neutral pion productions off the longitudinally
polarized nucleon targets in semi-inclusive deeply inelas-
tic scattering (SIDIS) process within the transverse momen-
tum dependent (TMD) factorization. The asymmetry is con-
tributed by the convolution of the TMD distribution h⊥

1L
and the Collins fragmentation function H⊥

1 . We adopt the
Wandzura–Wilczek-type (WW-type) approximation for h⊥

1L
and two different parametrizations on the nonperturbative
Sudakov form factor for h⊥

1L and H⊥
1 . We estimate the sin 2φh

asymmetry at HERMES and CLAS and compare them with
the corresponding experimental data. We also provide the
prediction at kinematical configuration of CLAS12. It is
shown that our theoretical calculation can describe the HER-
MES and CLAS data, except the asymmetry of the π− pro-
duction off proton target at HERMES and CLAS. We also
find that different choices of the nonperturbative part of TMD
evolution lead qualitatively similar results.

1 Introduction

Investigating the internal structure of the nucleon is still a
frontier of hadronic physics. Of particular interests are the
transverse momentum dependent distributions (TMDs) since
it encode three-dimensional information of the nucleon in the
momentum space structures [1–14], which is much richer
than that of the collinear parton distribution functions. At
leading twist, there are eight TMDs appearing in the decom-
position of the quark-quark correlator of the nucleon [15–17].
Each of these TMDs, depending on the longitudinal momen-
tum fraction x and the transverse momentum pT , represents
a special spin and partonic structure of the nucleon. The
essential tools to explore TMDs are the spin and azimuthal
asymmetries in various polarized or unpolarized processes
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involving at least two hadrons, such as SIDIS [18–29] and
Drell–Yan [30–33] processes.

Among the leading-twist TMDs, the distribution
h⊥

1L(x, p2
T ) [34] is of particular interest. It describes the prob-

ability of finding a transversely polarized quark but inside a
longitudinally polarized nucleon. Therefore, it is also called
as the worm-gear distribution or longi-transversity. Since h⊥

1L
is chiral odd, it has to be coupled to another chiral-odd func-
tion to manifest its effects in semi-inclusive processes. In
SIDIS, this can be achieved via a sin 2φπ azimuthal asymme-
try [34,35] when h⊥

1L is combined with the chiral-odd Collins
function H⊥

1 [36]. The early works on the sin 2φπ asymme-
try in the longitudinally polarized SIDIS process have been
performed in Refs. [37–44], showing that the asymmetry is
around several percents.

In this paper, we perform a detailed phenomenological
analysis of the sin 2φh azimuthal asymmetry of the charged
and neutral pion productions off the longitudinally polarized
nucleon target in SIDIS within TMD factorization [45–49].
We estimate the sin 2φh asymmetries and compare them with
the corresponding experimental data at HERMES (deuteron
and proton target) [37,38,50–52] and CLAS (proton target)
[39,53]. We also provide the prediction at kinematical config-
uration of CLAS12 (proton target) [54]. We apply the TMD
factorization to estimate the spin-dependent cross section in
l + N→ → l + π + X as well as the unpolarized cross sec-
tion. The asymmetry can be expressed as the ratio of the two
cross sections. In the last two decades, TMD factorization has
become a powerful tool for studying the three-dimensional
structure of the nucleon and has been widely applied in vari-
ous high energy processes [45,47–49,55–67]. The TMD fac-
torization theorem allows the differential cross section in
the small transverse momentum region PT /z � Q (PT is
the transverse momentum of the detected particle and Q is
the virtuality of the photon) to be expressed as a convolu-
tion of two contributions: one corresponds to the hard scat-
tering factors at short distance; the other accounts for the
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coherent long-distance interactions, and is described in terms
of the well-defined TMDs. In our case, the sin 2φh asymmetry
is contributed by the convolution of longitudinal transversity
PDF h⊥

1L , Collins FF H⊥
1 and the hard scattering factors. The

TMD formalism also encodes the evolution information of
TMDs, of which the energy evolution (or the scale depen-
dence) are governed by the so-called Collins–Soper equa-
tion [45,46,49,68]. The solution of the equation is usually
expressed as an exponential form of the Sudakov-like form
factor [46,49,57,69] which indicates the change of TMDs
from a initial scale to another scale. The Sudakov-like form
factor can be separated to two parts. One is the perturbative
part, which can be calculated perturbatively and is the same
for different TMDs; the other is the nonperturbative part,
which can not be calculated directly and is usually obtained
by phenomenological extraction from experimental data. In
the literature, several nonperturbative parts of the Sudakov
form factor for the TMDs have been extracted from exper-
imental data [46,49,57,60,62,64,70–80]. In this work, we
will consider the TMD evolution effect of TMDs with two
parameterizations on the nonperturbative part [62,64] to esti-
mate the asymmetry for comparison.

The remaining content of the paper is organized as fol-
lows. In Sect. 2, we investigate the evolution effect for the
TMDs. Particularly, we discuss the parametrization of the
nonperturbative Sudakov form factors associated with the
studied TMDs in details. In Sect. 3, we present the formal-
ism of the sin 2φh asymmetry in lN→ → lπX within the
TMD factorization. In Sect. 4, we numerically estimate the
asymmetry Asin 2φh

U L in the lN→ → lπX process at the kine-
matical region of HERMES, CLAS, CLAS12 with two dif-
ferent choices on the nonperturbative part associated with
TMD evolution effect. Finally, We summarize the paper in
Sect. 5.

2 The evolution of TMDs

In this section, we review the evolution formalism of the
unpolarized TMD f1, the distribution h⊥

1L of the nucleon
as well as the unpolarized fragmentation function D1,
the Collins function H⊥

1 of the pion, within the TMD
factorization.

Usually, the TMD evolution is performed in coordinate
b-space, as in this case the cross section can be expressed
as a product of TMDs in b-space [46,49]. In the TMD fac-
torization based on different schemes (such as the CS-81
[45], JMY [47,48] and Collins-11 schemes [49]), the TMDs
F̃(x, b;μ, ζF ) and D̃(z, b;μ, ζD)) depend on two energy
scales [45,46,49,57,59,74]. One is the renormalization scale
μ, the other is the energy scale ζF (or ζD) serving as a cutoff
to regularize the light-cone singularity in the operator defini-
tion of the TMDs. As is well known, the Collins–Soper (CS)

equation [45] (in this paper b = |b⊥| and the tilde terms
represent the ones in b space) determines the ζF (or ζD)
dependence of the TMD PDFs (or FFs):

∂ lnF̃(x, b;μ, ζF )

∂
√

ζF
= ∂ lnD̃(z, b;μ, ζD)

∂
√

ζD
= K̃ (b;μ), (1)

with K̃ being the CS evolution kernel which can be computed
perturbatively for small values of b(up to order αs):

K̃ (b;μ) = −αsCF

π

[
ln(μ2b2) − ln 4 + 2γE

]
+ O(α2

s ),

(2)

and γE ≈ 0.577 is the Euler’s constant [45].
On the other hand, the μ dependence of the TMDs is

derived from the renormalization group equation

d K̃

d lnμ
= −γK (αs(μ)), (3)

d lnF̃(x, b;μ, ζF )

d lnμ
= γF (αs(μ); ζ 2

F

μ2 ), (4)

d lnD̃(z, b;μ, ζD)

d lnμ
= γD(αs(μ); ζ 2

D

μ2 ), (5)

where γK , γF and γD are the anomalous dimensions of K̃ ,
F̃ and D̃, respectively,

γK = 2
αsCF

π
+ O(α2

s ), (6)

γD = γF = αs
CF

π

(
3

2
− ln

(
ζF

μ2

))
+ O(α2

s ). (7)

Solving Eqs. (1) and (3-5), one can obtain the general
solution for the energy dependence of F̃ (or D̃) [45–49,68,
78]:

F̃(x, b; Q) = F × e−S(Q,b) × F̃(x, b;μi ), (8)

D̃(z, b; Q) = D × e−S(Q,b) × D̃(z, b;μi ). (9)

Here, F and D are the factors related to the hard scatter-
ing, S(Q, b) is the Sudakov form factor. Hereafter, we set
μ = √

ζF = √
ζD = Q, and express F̃(x, b;μ = Q, ζF =

Q2) (or D̃(z, b;μ = Q, ζD = Q2)) as F̃(x, b; Q) (or
D̃(z, b; Q)) for simplicity. Eq. (8) (or Eq. (9)) demonstrates
that the distribution F̃ (or D̃) at an arbitrary scale Q can
be determined by the same distribution at an initial scale
μi through the evolution encoded by the exponential form
exp(−S(Q, b)).
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Specifically, the exponential exp(−S(Q, b)) for F̃ has the
following explicit form (similar form holds for D̃)

exp(−S(Q, b)) = exp

{
ln

Q

μ
K̃ (b∗;μ) +

∫ μ

μi

dμ̄

μ̄

×
[
γF (g(μ̄); 1) − ln

(
Q

μ̄

)
γK (g(μ̄))

]}

× exp

{
g j/P (x, b) + gK (b) ln

Q

Q0

}
.

(10)

The exponential in the first line of Eq. (10) comes from the
solutions of Eqs. (1), (3) and (4) in the perturbative region
(the small b region b � 1/�). It contains K̃ (b∗;μ), the CS
evolution kernel in the small b region; and the anomalous
dimension γF , γK . However, in the nonperturbative region
(large b region), the evolution kernel K̃ (b;μ) is not calcula-
ble. In order to obtain the information in the large b region,
the exponential in the second line of Eq. (10) is introduced.
The function g j/P (x, b) parameterizes the non-perturbative
large-b behavior which is intrinsic to the proton target, while
the universal function gK parameterizes the non-perturbative
large-b behavior of the evolution kernel K̃ (b;μ).

To allow a smooth transition of b from perturbative region
to nonperturbative region as well as to avoid hitting on the
Landau pole, one can set a parameter bmax to be the boundary
between the two regions. The typical value of bmax is chosen
around 1 GeV−1 to guarantee that b∗ is always in the per-
turbative region. A b-dependent function b∗(b) may be also
introduced to have the property b∗ ≈ b at small b value and
b∗ ≈ bmax at large b value. There are several different choices
on the expression of b∗(b) in the literature [46,64,81]. A fre-
quently used one is the Collins–Soper–Sterman (CSS) pre-
scription [46]:

b∗ = b/
√

1 + b2/b2
max , bmax < 1/�QCD. (11)

Combining the perturbative part and the nonperturbative
part, one has the complete result for the Sudakov form factor
appearing in Eqs. (8) and (9):

S(Q, b) = SP(Q, b∗) + SNP(Q, b), (12)

with the boundary of the two parts set by the bmax. The per-
turbative part SP(Q, b∗) has been studied [59,62,74,75,77]
in details and has the following form:

SP(Q, b∗) =
∫ Q2

μ2
b

dμ̄2

μ̄2

[
A(αs(μ̄))ln

Q2

μ̄2 + B(αs(μ̄))

]
,

(13)

which is the same for different kinds of PDFs and FFs,
namely, SP is spin-independent. The coefficients A and B
in Eq. (13) can be expanded as the series of αs/π :

A =
∞∑
n=1

A(n)
(αs

π

)n
, (14)

B =
∞∑
n=1

B(n)
(αs

π

)n
. (15)

In this work, we will take A(n) up to A(2) and B(n) up to B(1)

in the accuracy of next-to-leading-logarithmic (NLL) order
[46,57,59,72,75,82]:

A(1) = CF , (16)

A(2) = CF

2

[
CA

(
67

18
− π2

6

)
− 10

9
TRn f

]
, (17)

B(1) = −3

2
CF , (18)

with CF = 4/3, CA = 3 and TR = 1/2.
The non-perturbative part SNP in Eq. (12) can not be calcu-

lated perturbatively, it is usually parameterized and extracted
from experimental data. There are several extractions for
SNP by different groups literature [46,49,57,60,62,64,70–
80], we will discuss two of them in details to investigate the
impact of the different evolution formalisms on the asymme-
try.

One of the parameterizations applied in this study is the
Echevarria–Idilbi–Kang–Vitev (EIKV parametrization) non-
perturbative Sudakov SNP for the unpolarized TMD PDFs (or
TMD FFs), which has the following form [62]:

Spdf
NP (b, Q) = b2

(
gpdf

1 + g2

2
ln

Q

Q0

)
, (19)

Sff
NP(b, Q) = b2

(
gff

1 + g2

2
ln

Q

Q0

)
. (20)

Here, g2 includes the information on the large b behavior of
the evolution kernel K̃ (gK (b) = g2b2). This function is uni-
versal for different types of TMDs and does not depend on the
particular process, which is an important prediction of QCD
factorization theorems involving TMDs [49,57,62,63]. g1

contains information on the intrinsic nonperturbative trans-
verse motion of bound partons. It could depend on the type
of TMDs, and can be interpreted as the intrinsic transverse
momentum width for the relevant TMDs at the initial scale
Q0 [57,76,82–84]. Furthermore, gpdf

1 and gff
1 are parameter-

ized as:

gpdf
1 = 〈k2

T 〉Q0

4
, (21)

gff
1 = 〈p2

T 〉Q0

4z2 , (22)

where 〈k2
T 〉Q0 and 〈p2

T 〉Q0 are the averaged intrinsic trans-
verse momenta squared for TMD PDFs and FFs at the initial
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scale Q0, respectively. In Ref. [62] the authors tuned the cur-
rent extracted ranges of three parameters 〈k2

T 〉Q0 , 〈p2
T 〉Q0 and

g2 with Q0 = √
2.4 GeV in Refs. [85–87] and further found

that the following fixed values of parameters can reasonably
describe the SIDIS data together with the Drell–Yan lepton
pair and W/Z boson production data:

〈k2
T 〉Q0 = 0.38 GeV2, 〈p2

T 〉Q0 = 0.19 GeV2,

g2 = 0.16 GeV2, bmax = 1.5 GeV−1. (23)

Besides the Sudakov form factor in Eqs. (8) and (9),
another important element in Eqs. (8) and (9) is the TMDs
at a fixed scale μ. In the small b region, F̃(x, b;μ) and
D̃(x, b;μ) at a fixed scale μ can be expressed as the
convolution of the perturbatively calculable coefficients C
and the corresponding collinear counterparts Fi/H (ξ, μ) (or
DH/j (ξ, μ)),

F̃(x, b;μ) =
∑
i

∫ 1

x

dξ

ξ
Cq←i (x/ξ, b;μ)Fi/H (ξ, μ),

(24)

D̃(z, b;μ) =
∑
j

∫ 1

z

dξ

ξ
C j←q(z/ξ, b;μ)DH/j (ξ, μ),

(25)

Here, μ is a dynamic scale related to b∗ by μ = c/b∗ ,
with c = 2e−γE and γE ≈ 0.577 being the Euler’s con-
stant [45], Cq←i (x/ξ, b;μ) = ∑∞

n=0 C
(n)
q←i (αs/π)n and

C j←q(z/ξ, b;μ) = ∑∞
n=0 C

(n)
j←q(αs/π)n are the perturba-

tively calculable coefficient function.
After solving the evolution equations and incorporating

the Sudakov form factor, the scale-dependent TMDs in b
space can be rewritten as

F̃q/H (x, b; Q) = e− 1
2 SP(Q,b∗)−S

Fq/H
NP (Q,b)Fq/H (x, μ), (26)

D̃H/q(z, b; Q) = e− 1
2 SP(Q,b∗)−S

DH/q
NP (Q,b)DH/q(z, μ). (27)

The factor of 1
2 in front of SP comes from the fact that SP

is equally distributed to the initial-state quark and the final-
state quark [88]. The hard coefficients C , F and D for f1,
D1 and H⊥

1 have been calculated up to next-to-leading order
(NLO), and those for the h⊥

1L are also known up to NLO [89].
However, only the first term of the h⊥

1L result in Eq. (57)
of Ref. [89], namely the h̃(x) term, is dominant. It is not
necessary to consider the T̃ (σ )

F contribution in this paper as
it is beyond the WW-approximation and a very extensive
project. For consistency, in this work we adopt the LO results
for the hard coefficients C , F and D for f1, h⊥

1L , D1 and H⊥
1 ,

i.e. C (0)
q←i = δiqδ(1 − x), C (0)

j←q = δq jδ(1 − z), F = 1 and
D = 1.

With all the ingredients above, we can obtain the unpolar-
ized TMD of the nucleon f̃ q/p

1 (or the unpolarized fragmen-

tation of the pion D̃π/q
1 ) in b space

f̃ q/p
1 (x, b; Q) = e− 1

2 SP(Q,b∗)−S pd f
NP (Q,b) f q/p

1 (x, μ), (28)

D̃π/q
1 (z, b; Q) = e− 1

2 SP(Q,b∗)−S f f
NP(Q,b)Dπ/q

1 (z, μ). (29)

By performing the Fourier transformation, we can obtain
the TMDs in the transverse momentum space

f q/N
1 (x, pT ; Q)

=
∫ ∞

0

dbb

2π
J0(| pT |b)e− 1

2 SP (Q,b∗)−Spdf
NP (Q,b) f q/p

1 (x, μ),

(30)

Dπ/q
1 (z, K⊥; Q)

=
∫ ∞

0

dbb

2π
J0(|K⊥|b/z)e− 1

2 SP (Q,b∗)−Sff
NP(Q,b)

× Dπ/q
1 (z, μ). (31)

According to Eqs. (24) and (25), in the small b region, we
can also express the longitudinal transversity PDF of nucleon
target h̃⊥

1L and the Collins FF of pion production H̃⊥
1 at a fixed

energy scale μ in terms of the perturbatively calculable coef-
ficients and the corresponding collinear correlation function
[63,90]:

h̃⊥(β)q/N
1L (x, b;μ) = ibβMNh

⊥(1)
1L (x, μ), (32)

H̃⊥(α)π/q
1 (z, b;μ) = − ibα

2z
Ĥ (3)(z, z, μ), (33)

where the superscript (1) denotes the first transverse moment
of the function:

h⊥(1)
1L (x) =

∫
d2 p2

T
p2
T

2M2 h
⊥
1L(x, ) (34)

The hard coefficients in Eqs. (36) and (37) are calculated up
to LO, and Ĥ (3)(z, z, μ) is defined in Ref. [63], which differs
by a factor of (−1/z) from Ref. [90]. Furthermore, the longi-
transversity of the nucleon target and the Collins FF of the
pion in the b-space are defined as

h̃⊥β,q/N
1L (x, b;μ)

=
∫

d2 pT e
−i pT ·b pβ

T

MN
h⊥q/N

1L (x, p2
T ;μ),

H̃⊥α,π/q
1 (z, b;μ)

=
∫

d2K⊥e−iK⊥·b/z Kα⊥
Mπ

H⊥π/q
1 (z, K 2⊥;μ). (35)
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As for the nonperturbative part of the Sudakov form factor
associated with the longi-transversity and the Collins func-
tion, the information still remains unknown. In a practical
calculation, we assume that they are respectively the same
as Spdf

NP and Sff
NP. Therefore, we can obtain the the longi-

transversity and the Collins function in b-space as

h̃⊥(β)q/N
1L (x, b; Q)

= ibβMNe
− 1

2 SP (Q,b∗)−Spdf
NP (Q,b)h̃⊥(1)

1L (x, μ), (36)

H̃⊥(α)π/q
1 (z, b; Q)

= − ibα

2z
e− 1

2 SP(Q,b∗)−S f f
NP(Q,b) Ĥ (3)(z, z, μ). (37)

After performing the Fourier transformation, one can
obtain the TMDs in the transverse momentum space

pβ
⊥

MN
h̃⊥q/N (β)

1L (x, pT ; Q)

= MN

∫ ∞

0

dbb2

2π
J1(| pT |b)e− 1

2 SP (Q,b∗)−Spdf
NP (Q,b)

× h̃⊥(1)
1L (x, μ), (38)

K α⊥
Mπ

H̃⊥π/q(α)
1 (z, K⊥; Q)

= −1

z

∫ ∞

0

dbb2

4π
J1(|K⊥|b/z)e− 1

2 SP (Q,b∗)−Sff
NP(Q,b)

× Ĥ (3)(z, z, μ). (39)

Besides the EIKV parametrization on non-perturbative
factor SNP mentioned above, another parametrization applied
in this study is the Bacchetta, Delcarro, Pisano, Radici and
Signori (BDPRS) parameterization SNP for the unpolarized
TMDs, which has the following form [64]:

f̃ a1 (x, b; Q)

= f a1 (x;μ2)e−S(μ,Q)e
1
2 gK (b)ln(Q2/Q2

0) f̃ a1NP(x, b), (40)

D̃a→h
1 (z, b; Q)

= Da→h
1 (z;μ2)e−S(μ,Q)e

1
2 gK (b)ln(Q2/Q2

0) D̃a→h
1NP (z, b),

(41)

where gK = −g2b2/2, following the choice in Refs.
[72,73,79]. f̃ a1NP(x, b2) and D̃a→h

1NP (z, b2) are the intrinsic
nonperturbative part of the PDFs and FFs respectively, which
are parameterized as

f̃ a1NP(x, b2) = 1

2π
e−g1

b2
4

(
1 − λg2

1

1 + λg1

b2

4

)
, (42)

D̃a→h
1NP (z, b2) =

g3e
−g3

b2

4z2 +
(

λF
z2

)
g2

4

(
1 − g4

b2

4z2

)
e
−g4

b2

4z2

2π z2
(
g3 +

(
λF
z2

)
g2

4

) ,

(43)

with

g1(x) = N1
(1 − x)αxσ

(1 − x̂)α x̂σ
, (44)

g3,4(z) = N3,4
(zβ + δ)(1 − z)γ

(ẑβ + δ)(1 − ẑ)γ
. (45)

Here, x̂ = 0.1 and ẑ = 0.5 are fixed, and α, σ, β, γ, δ,
N1 ≡ g1(x̂), N3,4 ≡ g3,4(ẑ) are free parameters fitted to
the available data from SIDIS, Drell–Yan, and W/Z boson
production processes. Besides the b∗(b) prescription in the
original CSS approach [46], there are also several different
choices on the form of b∗(b) [64,81]. In Ref. [64], a new b∗
prescription different from Eq. (11) was proposed as

b∗ = bmax

(
1 − e−b4/b4

max

1 − e−b4/b4
min

)1/4

(46)

Again, bmax is the boundary of the nonperturbative and
perturbative b space region with fixed value of bmax =
2e−γE GeV−1 ≈ 1.123 GeV−1. Furthermore, the authors
in Ref. [64] also chose to saturate b∗ at the minimum value
bmin ∝ 2e−γE /Q.

3 The formalism of sin 2φh asymmetry of pion
production in SIDIS

In this section we will set up the necessary framework for
physical observables in SIDIS process within TMD factor-
ization by considering the evolution effects of TMDs. The
process under study is:

l(�) + N→(P) → l(�′) + π(Pπ ) + X, (47)

the lepton beam with momentum � scatters off a longitudi-
nally polarized nucleon target N with momentum P . In the
final state, the scattered lepton momentum �′ is measured
together with an unpolarized final state hadron h (in this
work h is the π meson). We define the space-like momen-
tum transfer q = �− �′ and introduce the relevant kinematic
invariants

x = Q2

2P · q , y = P · q
P · �

= Q2

xBs
, z = P · Pπ

P · q ,

Q2 = −q2, s = (P + �)2. (48)

Here, s is the total center of mass energy squared, x is the
Bjorken variable, y is the inelasticity and z is the momentum
fraction of the final state hadron.
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Fig. 1 The kinematical configuration for the SIDIS process. The initial
and scattered leptonic momenta define the lepton plane (x − z plane),
while the detected hadron momentum together with the z axis identify
the hadron production plane, the longitudinal spin of the nucleon is
along the −z axis

To leading order in 1/Q the SIDIS cross-section (for a
longitudinally polarized nucleon target) is given by [17]

d5σ

dxdydzdφhd P2
πT

= 2πα2

xB yQ2 ×
{(

1 − y + 1

2
y2

)
FUU

+(1 − y)SL sin 2φh F
sin 2φh
U L ]

}
. (49)

The corresponding reference frame of the process is given in
Fig. 1. In this frame, the virtual photon momentum q defines
the z-axis, the hadron plane is determined by the z-axis and
the momentum direction of the final-state hadron, and the
lepton plane is determined by the momentum direction of
� and �′. Hence φh is the azimuthal angle of the final-state
hadron with respect to the lepton plane; PπT is the compo-
nent of Pπ transverse with respect to q with PπT = −zqT
[91]. TMD factorization has been shown to be valid for SIDIS
process only with P2

πT /z2 � Q2 [49]. FUU and F sin 2φh
U L are

the spin-averaged and spin-dependent structure functions.
The expression for the sin 2φh azimuthal asymmetry is

given by

Asin 2φh
U L (x, y, z, PπT ) =

1
xyQ2 (1 − y)F sin 2φh

U L

1
xyQ2

(
1 − y + 1

2 y
2
)
FUU

. (50)

According to TMD factorization, the structure functions FUU

and F sin 2φπ

UL are given in terms of an integral which convo-
lutes transverse parton momentum in the distribution and the
fragmentation function [34,35]

FUU (x, z, Q; P2
πT )

= x
∑
q

e2
q

∫
d2 pT d

2kT δ2( pT − kT + qT )

× f q/N
1 (x, p2

T ; Q)Dπ/q
1 (z, k2

T ; Q), (51)

F sin 2φh
U L (x, z, Q; PπT )

= x
∑
q

e2
q

∫
d2 pT d

2kT δ2( pT − kT + qT )

×
[
−2(ĥ · kT )(ĥ · pT ) − kT · pT

MNMπ

]

× h⊥q/N
1L (x, p2

T ; Q)H⊥π/q
1 (z, k2

T ; Q), (52)

where the unit vector ĥ is defined as ĥ = PπT /PπT , and the
transverse momentum kT is related to the transverse momen-
tum of the produced hadron with respect to the quark through
K⊥ = −zkT .

For simplicity, we perform the TMD evolution effect in the
b space which express the cross section with simple products
of b-dependent TMDs in contrast to the complicated con-
volutions in the transverse momentum space. Performing a
transformation for the delta function, we obtain the following
explicit form of the spin-averaged structure function FUU

FUU (x, z, Q; PπT )

= x
1

z2

∑
q

e2
q

∫
d2b

(2π)2 e
i PπT ·b/z f̃ q/N

1 (x, b; Q)

× D̃π/q
1 (z, b; Q)

= x
1

z2

∑
q

e2
q

∫
dbb

2π
J0(|PπT ||b|/z) f̃ q/N

1 (x, b; Q)

× D̃π/q
1 (z, b; Q)

= x
1

z2

∑
q

e2
q

∫
dbb

2π
J0(|PπT ||b|/z) f q/N

1 (x, μ)

× Dπ/q
1 (z, μ)e−(SP(Q,b∗)+S pd f

NP (Q,b)+S f f
NP(Q,b)). (53)

Similarly, the spin-dependent structure function F sin(2φh)
UL

can be written as

F sin 2φh
U L (x, z, Q; PπT )

= x
1

z3

∑
q

e2
q

∫
d2 pT d

2K⊥
∫

d2b

(2π)2

× e−i( pT +K⊥/z−PπT /z)·b

× [2(ĥ · K⊥)(ĥ · pT ) − K⊥ · pT ]

× h⊥q/N
1L (x, p2

T ; Q)H⊥π/q
1 (z, K 2⊥; Q)

MNMπ

= x
1

z3

∑
q

e2
q

∫
d2b

(2π)2 e
i PπT ·b/z(2ĥα ĥβ − gαβ)h̃⊥β,q/N

1L

× (x, b; Q)H̃⊥α,π/q
1 (z, b; Q)

= −x
1

z4

∑
q

e2
q

∫
dbb3

4π
J2(|PπT ||b|/z)

× MNh
⊥(1),q/N
1L (x;μ)Ĥ (3),π/q(z, z;μ)

× e−(SP (Q,b∗)+Spdf
NP (Q,b)+S f f

NP(Q,b)). (54)
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Therefore, we obtain the evolved form of the structure func-
tions FUU (x, z, Q; PπT ) and F sin 2φh

U L (x, z, Q; PπT ).

4 Numerical calculation

In this section, using the framework set up above, we present
the numerical calculation of the sin 2φh azimuthal asymme-
try for π production in the process lN→ → lπX off the
longitudinally polarized nucleon. We estimate the asymme-
try at the kinematical configurations of HERMES, CLAS and
CLAS12, and compare it with the recent experimental mea-
surements [37–39,52–54,92–95]. For this purpose we need
to know the collinear functions appearing in Eqs. (53) and
(54) as the inputs of the evolution. For the unpolarized PDF
f1(x, μ) of the nucleon, we apply the NLO set of the CT10
parametrization (central PDF set) [96]. For the unpolarized
FF D1(z, μ) of the pion, we apply the NLO set of the de Flo-
rian, Sassot, Stratmann (DSS) FF [97]. For the twist-3 Collins
FF H (3)(z, z, μ) of the pion, we adopt the parametrization
given in Ref. [63].

Since h⊥
1L has not been extracted from experimental data,

we obtain h⊥(1)
1L (x, μ) by employing the WW-type approx-

imation [98,99]. This approximation originates from the
assumption [98] that the quark-quark-gluon correlation (or
the pure twist-3 part) and the current-quark mass term in the
decomposition of the operator definition of certain distribu-
tions can be ignored. It is found that the WW-approximation
works well in interpreting the data of the twist-3 structure
function g2(x) (or the distribution gT (x)) in DIS [51,100–
106]. It was also supported by lattice QCD calculation
[107,108] and theoretical study from the instanton model
[109,110]. In the WW-type approximation one can obtain
the hL(x) as follows [99]

hL(x) = 2x
∫ 1

x

dy

y2 h1(y) + h̃L(x)WW−t ype

≈ 2x
∫ 1

x

dy

y2 h
a
1(y), (55)

which contain twist-2 part h1(y) and pure twist-3 part h̃L(x)
coming from the quark-quark-gluon correlation, and the later
one may is neglected, within the WW-approximation. At the
same time, we should also note that the WW-approximation
has limitations in some cases. As pointed in Ref. [111], the
pure twist-3 terms will break the WW-relation for the struc-
ture function g2 (or gT (x)) as large as 15%-40% the size of
g2. This means that in the case of h⊥

1L the higher-twist con-
tribution may be also non-negligible and bring uncertainties
to the results of the sin 2φh asymmetry.

In addition, one also obtain the following relation in a
similar way

xhL(x, p2
T )

WW−t ype≈ − p2
T

M2 h
⊥
1L(x, p2

T ). (56)

Thus, h⊥(1)
1L (x) is connected to the transversity distribution

via the relation [106]

h⊥(1)
1L (x)

WW−t ype≈ −x2
∫ 1

x

dy

y2 h1(y). (57)

In this work, we use the extractions of h1(y) from Ref. [63].
As for the energy evolution for h⊥(1)

1L , it has been studied
extensively in Ref. [112] and has a rather complicated form.
Namely, the evolution kernel contains the homogeneous part
and the inhomogeneous part. For the former one, it corre-
sponds to the diagonal part of the operator for the distribu-
tion, while the latter one involves the nondiagonal part. As
there is no any theoretical calculation and phenomenological
extraction on the nondiagonal part of the operator for h⊥(1)

1L ,
in this work following the choice in Refs. [63,66] to keep
the diagonal part in the phenomenological calculations for
the TMD evolutions. This is of course an approximation to
the real situation and will bring further uncertainty coming
from the nondiagonal part to the result of the asymmetry. In
the literature only the nondiagonal part for the Qui-Sterman
function Tq,F has been studied [113] by using a model, which
shows that nondiagonal terms in the evolution equation for
Tq,F (x, x) play a significant role in modifying the evolution
of these correlation functions in the small x region. We expect
similar pattern may hold for the evolution of h⊥(1)

1L . For the
question how large the uncertainty from the nondiagonal part
should be, we will leave it as a future study.

Thus in this work we follow the similar option to consider
the homogeneous terms of the h⊥(1)

1L evolution kernel:

Ph
qq = CF

[
2x

(1 − x)+
+ 2δ(1 − x)

]
− CA

2

2x

1 − x
. (58)

As for the evolution kernel of the twist-3 fragmentation func-
tion Ĥ (3), we adopt the form in Ref. [63]:

PH
qq = CF

[
2x

(1 − x)+
+ 3

2
δ(1 − x)

]
. (59)

The numerical solution of DGLAP equations is performed
by the QCDNUM evolution package [114]. The original code
of QCDNUM is modified by us so that the evolution ker-
nels of Ĥ⊥(3)

1 and h⊥(1)
1L are included. In Fig. 2, we plot the

h⊥(1)
1L (x, Q2) (multiplied by x) vs x for light quark flavors at

the initial scale Q2=2.4 GeV2 as well as the evolved scale
Q2 = 100 GeV2. The left panel and the right panel show
the results for the up quark and the down quark, respectively.
The plots show that the h⊥(1)

1L (x, Q2) for up quark is larger
than one for the down quark in size, and with the opposite
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Fig. 2 Left panel: h⊥(1)
1L (x, Q2)

(multiplied by x) of the proton
longitudinal transversity PDF
h⊥

1L for up quark at
Q2 = 2.41 GeV2 and
Q2 = 10 GeV2. Right panel:
similar to the left panel, but for
the down quark

sign for them. Also, the evolution effect from lower scale to
higher scale drives the peak of the distribution to the smaller
x region.

The Asin 2φh
U L asymmetry pion production was measured at

HERMES off the proton target [37,52] and off the deuteron
target [38] in the kinematic range

1 GeV2 < Q2 < 15 GeV2, W > 2 GeV,

0.023 < x < 0.4, 0.2 < y < 0.85, 0.2 < z < 0.7, (60)

while it was also measured for pion production off the proton
target by CLAS [39,53] in the kinematic range

1 GeV2 < Q2 < 5.4 GeV2, W > 2 GeV,

0.12 < x < 0.48, y < 0.85, 0.4 < z < 0.7, (61)

with W 2 = (P + q)2 ≈ 1−x
x Q2 being the invariant mass of

the virtual photon-nucleon system.
In Figs. 3 and 4, we plot our numerical results of the

sin 2φh azimuthal asymmetry off the longitudinally polar-
ized proton and deuteron target in the SIDIS process at HER-
MES kinematics [37,38,50–52], based on the TMD factor-
ization formalism described in Eqs. (50), (53) and (54). The
solid squares show the experimental data measured by the

HERMES collaboration [37,38,50], with the error bars corre-
sponding to the statistical uncertainty. To make the TMD fac-
torization valid, the integration over the transverse momen-
tum PπT is performed in the region of PπT < 0.5 GeV. In
the calculations we apply the EIKV parametrization (dark
dashed line) and the BDPRS parametrization (red solid line)
for the nonperturbative part. The yellow, green and cyan
shaded areas around solid lines show the uncertainty bands
due to the uncertainties of the parameters in the BDPRS
parametrization, the transversity distribution h1(x) for calcu-
lating h⊥(1)

1L (x), and the twist-3 Collins FF H (3), respectively.
Since there are only two sources (the transversity distribu-
tion h1(x) for calculating h⊥(1)

1L (x) and the twist-3 Collins
FF H (3)) will contribute to the uncertainties for the dashed
lines, the uncertainties of the dashed lines should be smaller
than the uncertainties of the solid lines.

As shown in Figs. 3 and 4, in all the cases the sin 2φh

azimuthal asymmetries in the SIDIS process is around 2%
at most. The estimated sin 2φh azimuthal asymmetry for π+
is negative, while those for π− and π0 are positive. The
size of the asymmetry for π− is larger than that for π+ and
π0. In addition, our estimates also show that the size of the
asymmetries increase with increasing x . In the case of the
proton target, the results form the EIKV parametrization are
close to those from the BDPRS parametrization; while in the

Fig. 3 The Asin 2φh
U L asymmetry for the π+ (left) and π− (right) produc-

tions off the proton target as function of x at HERMES. The solid lines
correspond to the results from the BDPRS parametrization [64] on the
nonperturbative form factor, while the dashed lines correspond to the
results calculated from the EIKV parametrization [62] on the nonper-

turbative form factor. The yellow, green and cyan shaded areas around
solid lines show the uncertainty bands determined by the uncertainties
of the parameters in the BDPRS parametrization, the transversity dis-
tribution h1(x) for h⊥(1)

1L (x), and twist-3 Collins FF H (3) respectively.
The solid squares represent the HERMES data [37,50] for comparison
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Fig. 4 Similar to Fig. 3, but for π+ (left), π− (central) and π0 (right) productions off the deuteron target. Data from Refs. [38]

Fig. 5 Similar to Fig. 3, but for
Asin 2φh
U L as function of x and

PπT at CLAS kinematics. The
upper panels of show the x
dependent asymmetries for π+
(left panel) and π− (right panel)
production, respectively; and the
lower panels depict the x−
dependent (left panel) and
PπT− dependent (right panel)
asymmetries for π0 production.
The solid squares represent the
CLAS data [39,53] for
comparison. In each figure we
zoom in the plots to show the
tendency better

case of the deuteron target, there is quantitative difference
between the two parametrization, namely, the results from
the EIKV parametrization is two times larger than that from
the BDPRS parametrization. From the comparison with the
HERMES data, we find that our results are consistent with the
HERMES data [37,38,50–52] within the error band, except
the π− production off proton target. In the latter case the
computed asymmetry does not agree with the HERMES data,
particularly, our calculation and the data has the opposite
sign. The possible reason for this inconsistency may be due
to the large uncertainties which have not been included in
the present calculation. At the end of this section, we will
address the source of these uncertainties. A nonzero sin 2φh

azimuthal asymmetries for π± are estimated, indicating that

spin-orbit correlation of transversely polarized quarks in the
longitudinally polarized nucleon may be significant.

In Fig. 5, we plot our numerical results for the sin 2φh

azimuthal asymmetry off the proton target, but at the CLAS
kinematics [39,53]. The upper panels of Fig. 5 show the
x-dependent asymmetries of π+ (left) and π− (right) pro-
duction; and the lower panels depict the x-dependent (left)
and PπT -dependent (right) asymmetries of π0 production. In
each figure we zoom in the plots to show the tendency better.
Although the uncertainty at CLAS is relatively large, the data
indicate that the asymmetries of both π+ and π− at CLAS
tend to be negative. Thus our estimate miss the data of the
x-dependent asymmetry for π− production. A much smaller
sin 2φ azimuthal asymmetries for π0 production is predicted
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at CLAS as well as at HERMES off deuteron target, in agree-
ment with experimental data. This is because the favored and
unfavored Collins functions is summed for π0 production,
which means that they largely cancel for π0. Again, the yel-
low, green and cyan shaded areas around solid lines show the
uncertainty bands due to the uncertainties of the parameters
in the BDPRS parametrization, the transversity distribution
h1(x) for calculating h⊥(1)

1L (x), and the twist-3 Collins FF
H (3), respectively.

Even though the Asin 2φh
U L asymmetries off longitudinally

polarised targets has been studied at HERMES (proton,
deuteron) [37,38,52], CLAS (proton) [39,53] kinematics
during the last two decades, there is still no consistent under-
standing of the contribution of each part to the total structure
function which may be due to the low statistics or limited
kinematic coverage of previous experiments. Therefore, we
also estimate the Asin 2φh

U L asymmetries on proton target for

pion production at the kinematical configuration of CLAS12
experiment [54]

1 GeV2 < Q2 < 7 GeV2, W > 2 GeV,

0.13 < x < 0.52, y < 0.75, 0.18 < z < 0.7. (62)

The estimated asymmetry of π+ (upper panel), π− (cen-
tral panel) and π0 (lower panel) productions vs x , PπT and
z are plotted in Fig. 6 respectively. From Fig. 6, we can con-
clude that the size of the sin 2φh azimuthal asymmetries at
CLAS12 is larger than that at CLAS. Thus, it has a greater
opportunity to measure the sin 2φh asymmetry at CLAS12.
Another observation is that the PπT -dependent asymmetries
from the EIKV parametrization and the BDPRS parametriza-
tion are somewhat different. These need to be further tested
by the future CLAS12 data on the proton target.

Fig. 6 The Asin 2φh
U L asymmetry as functions of x , PπT and z for π+ (upper panel), π− (centre panel) and π0 (lower panel) productions at CLAS12

kinematics
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Finally, we would like to comment on the uncertainty
from the theoretical aspects. First, one should be cautious
on the validation of the TMD factorization in the kinemati-
cal region of HERMES and CLAS where Q2 is not so large.
In our calculation we consider the region PT < 0.5 GeV.
This should be tested by more precise data in the future. Sec-
ondly, as the information on h⊥

1L is still limited, we have to
use the WW-approximation to obtain the result of h⊥

1L via the
basis function h1(x), thus the contribution beyond the WW-
approximation may also contribute and has not considered
in our calculation. Although the data and lattice calculation
shows that the WW-approximation works well for the struc-
ture function g2 (or gT (x)), recent study [111] shows that
the breaking of the WW-relation can be as large as 15%-
40% the size of g2. This means that in the case of h⊥

1L the
higher-twist contribution may be also non-negligible, and the
corresponding uncertainty can be 40% of the central value
of the asymmetry as a rough estimate. Thirdly, the homoge-
neous terms of the evolution kernel are applied for Ĥ (3) and
h⊥(1)

1L . The inhomogeneous terms of the evolution kernel are
very complicated, thus they are neglected in the calculation in
order to simplify the calculation. This is of course an approx-
imation to the real situation. Fourthly, in the calculation we
adopt the NLL result for the perturbative Sudakov form fac-
tor. Higher-order QCD corrections can contribute and affect
the accuracy of our calculation. If all the uncertainties from
the above were taken into account in the calculation prop-
erly, the uncertainty bands in Figs. 3, 4, 5, 6 should be much
substantial. Further studies are need to clarify these points.

5 Conclusion

In this work, we applied the TMD factorization formalism
to study the sin 2φh asymmetry in SIDIS process at the kine-
matical configuration of HERMES, CLAS and CLAS12.
The asymmetry provides access to the convolution of the
TMD distribution h⊥

1L , which describes transversely polar-
ized quarks in the longitudinally polarized nucleon, and
the Collins function of the pion. We took into account the
TMD evolution effects for these TMDs, and we adopted
two approaches for the TMD evolution for comparison. One
is the EIKV approach, the other is the BDPRS approach.
Their main difference is the treatment on the nonperturba-
tive part of evolution, while the perturbative part in the two
approaches are the same and was kept at NLL accuracy in
this work. As the nonperturbative part associated with h⊥

1L is
still unknown, we assumed that it has the same form as that
of the unpolarized distribution. The hard coefficients associ-
ated with the corresponding collinear functions in the TMD
evolution formalism are kept at the leading-order accuracy.
We also adopted the WW-type approximations for the longi-
tudinal transversity h⊥(1)

1L (x, μ) of the nucleon and applied

the parametrization for the twist-3 fragmentation function
H⊥(3)

1 (z, z, μ) to estimate the asymmetries.
The numerical calculations showed that our results gen-

erally agree with the data from HERMES and CLAS within
the uncertainty bands, except for x-dependent asymmetry of
π− production off the proton target, for which the sign of the
asymmetry is inconsistent. It is also found that the size of the
asymmetry off the deuteron target at HERMES is sensitive to
the choice of the parametrization for the nonperturbative part
of evolution. Similarly, the shape of PπT−dependent asym-
metries from the two parameterizations at CLAS12 are some-
what different. Future precision measurement on the asym-
metry may distinguish different parametrization on SN P . We
also discussed the uncertainties from the theoretical aspects.
For the WW-approximation for h⊥

1L , higher-twist part may
contribute to the uncertainty band as large as 40% of the cen-
tral value at most following the WW-breaking effect from
the analysis on the structure function g2. Also, the inhomoge-
neous terms in the evolution kernel of h⊥(1)

1L has not been con-
sidered in the calculation which may bring further uncertainty
to the result, particular in the small x region, where the effect
of these terms can be significant as suggested by the model
study on the evolution of Tq,F (x, x). Finally, in the calcula-
tion we adopted the NLL result for the perturbative Sudakov
form factor. Higher-order QCD corrections can contribute
and affect the accuracy of our calculation. Further studies are
needed on the sin 2φh asymmetry for a deeper understand-
ing of nucleon structure in three-dimensional space and the
validity of WW-type approximation.
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