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Abstract We study the dynamics of test particles around a
magnetized Ernst black hole considering its magnetic field in
the environment surrounding the black hole. We show how
its magnetic field can influence the dynamics of particles and
epicyclic motion around the black hole. Based on the anal-
ysis, we find that the radius of the innermost stable circular
orbit (ISCO) for both neutral and charged test particles and
epicyclic frequencies are strongly affected by the influence
of the magnetic field. We also show that the ISCO radius
of charged particles decreases rapidly. It turns out that the
gravitational and Lorentz forces of the magnetic field are
combined, thus strongly shrinking the values of the ISCO of
charged test particles. Finally, we obtain the generic form for
the epicyclic frequencies and select three microquasars with
known astrophysical quasiperiodic oscillation (QPO) data to
constrain the magnetic field. We show that the magnetic field
is of the order of magnitude B ∼ 10−7 Gauss, taking into
account the motion of neutral particles in circular orbit about
the black hole.

1 Introduction

In general relativity (GR), the gravitational collapse of mas-
sive stars at the final stage of their evolution can be regarded
as the fundamental mechanism for the formation of astro-
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physical black holes. Therefore, they have been very attrac-
tive and intriguing objects due to their remarkable gravi-
tational, thermodynamic and astronomical properties. The
electromagnetic field remains an interesting aspect of astro-
physical black holes. In GR, the gravitational collapse of
massive objects can be decayed with t−1 [1,2], thus sug-
gesting that the black hole has no magnetic field of its own.
However, external factors come into play for the presence
of a magnetic field, namely the accretion discs surrounding
rotating black holes [3] or neutron stars [1,4,5]. With this
in view, it is believed that black holes are surrounded by a
magnetic field in an astrophysical context. However, such
a magnetic field can be referred to as a test field, namely
B � Bmax, which does not modify spacetime geometry
(see e.g. [6–12] addressing the property of the test field ana-
lytically and numerically for given background spacetime).
So far, the magnetic field has been measured to be of order
∼ 108 Gauss around stellar-mass black holes and ∼ 104

Gauss around supermassive black holes (see e.g. [13]). It
was also estimated at the horizon (see e.g. [14,15]). Subse-
quently it was found that the magnetic field can be between
200 and 8.3×104 Gauss at 1 Schwarzschild radius [16] and
about B ∼ 33.1 ± 0.9 Gauss in the corona as a consequence
of observational analysis of the binary black hole system
V 404 Cygni [17]. It was recently estimated to be of order
B ∼ (1−30) Gauss as a result of the analysis of imaged
polarized emission around the supermassive black hole in
M87 under the Event Horizon Telescope (EHT) Collabora-
tion [18,19]. However, those estimated values still remain
candidates for the magnetic field around the astrophysical
black holes.
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It is well known that even small a magnetic field B can
strongly affect the dynamics of a charged particle as a conse-
quence of the large Lorentz force [see e.g. 20–31]. Thus, the
magnetic field could be increasingly important to consider
as a background field to test the background geometry in the
black hole vicinity. With this motivation, there is a family
of solutions that suggests the involvement of the interaction
between gravity and the axially symmetric magnetic field
induced by external sources [32]. Another interesting solu-
tion that includes the additional gravity that stems the from
magnetic field describes a static and spherically symmetric
black hole with Melvin’s magnetic universe [33]. These kinds
of solutions are so-called magnetized black holes. In this con-
text the magnetized Reissner–Nordström black hole solution
[34] and rotating and charged magnetized black hole solu-
tions with some complicated asymptotic behaviours [35–37]
have been considered as possible extensions of magnetized
black holes. After that a new approach for the magnetized
black hole solution was proposed by taking into account the
global charge (see e.g. [38,39]). Following [33,34], there
have been several investigations devoted to the study of the
properties of the magnetized black hole [40–43].

Recent experiments and modern observations play a deci-
sive role in testing the extreme geometric and remarkable
gravitational properties of black holes in GR. However, along
these lines one can also use astrophysical processes occurring
in the environment surrounding astrophysical black holes,
for example X-ray data produced by astrophysical compact
objects [44–46] and the quasiperiodic oscillations (QPOs)
with the X-ray power observed in microquasars related to
the low-mass X-ray binary systems (e.g. a neutron star or
a black hole binary system). The galactic microquasars are
considered as a source of QPOs with the ratio 3/2 [47]. It
is worth noting that QPOs characterized by either low fre-
quency (LF) or high frequency (HF) are observed in the X-ray
power spectra. The various kinds of HF QPO models were
discussed in Refs. [48–51] addressing the epicyclic motion
of hot spots and oscillatory models of accretion discs. It is
believed that the these frequencies characterize the epicyclic
motion with corresponding frequencies. The HF QPOs that
will usually exist in binary systems relate to the twin peak
HF QPOs that provide information on the matter moving
around the compact objects. However, there exists no rea-
sonable model that can explain the appearance of such HF
QPOs [52]. For that reason, the epicyclic motion of charged
particles around a black hole surrounded by a magnetic field
has been proposed to explain such phenomena [53–55]. Also,
twin peak HF QPOs that usually arise in pairs (i.e. upper νU
and lower νL frequencies) have been observed in galactic
microquasars. For these objects, HF QPOs can be observed
at the fixed νU/νL = 3/2 ratio [51,56]. The observed upper
frequencies, νU , are very close to the orbital frequencies of
test particles at the stable circular orbit located at the inner

edge of the accretion disc around black holes. Thus, epicyclic
motion of test particles with orbital, radial and latitudinal
frequencies can be a useful tool in modelling and explain-
ing the observed νU/νL = 3/2 HF QPOs in the low-mass
X-ray binary systems. Following LF and HF QPOs that arise
in various parts of the accretion disc, there have been several
investigations/models addressing the QPOs [see e.g. 57–68].

In the present paper we study the dynamics of test particles
and epicyclic motion around the magnetized Ernst black hole.
We further aim to constrain the magnetic field with the help of
QPOs observed in three microquasars, namely GRO J1655-
40, XTE J1550-564 and GRS 1915+105.

The paper is organized as follows: In Sect. 2 we briefly
describe the black hole metric. We consider the particle
dynamics in the environment surrounding the magnetized
Ernst black hole in Sect. 3. In Sect. 4 we focus on epicyclic
motion with the QPOs in the black hole vicinity, and we dis-
cuss constraints on the magnetic parameter of the magnetized
Ernst black hole spacetime in Sect. 5. We present concluding
remarks on the obtained results in Sect. 6.

Throughout the manuscript we use a system of units in
which G = c = 1.

2 Magnetized Ernst black hole and its electromagnetic
field

Here we briefly review the spacetime metric describing a
magnetized Ernst black hole. It is given by

ds2 = �2
(

−F(r)dt2 + dr2

F(r)
+ r2dθ2

)
+ r2 sin2 θ

�2 dφ2,

(1)

where

F(r) =1 − 2M

r
, (2)

�(r, θ) =1 + B2r2 sin2 θ, (3)

with the magnetic field parameter B. Due to the presence of
a strong magnetic field, the metric is not asymptotically flat,
and it is also not spherically symmetric. It is worth noting
that the event horizon is given by rh = 2M , similar to what
one obtains for the Schwarzschild black hole. The electro-
magnetic field around the magnetized Ernst black hole has
the form

Aμdxμ = Br2 sin2 θ

2�
dφ. (4)

Since the magnetic field is assumed to be aligned axially,
it breaks down the spherical symmetry of the spacetime as
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Fig. 1 Plot showing the configuration of magnetic field lines in the vicinity of a magnetized Ernst black hole. The grey-shaded area shows the
black hole horizon. Note that left/right panels respectively refer to B = 0.1/0.5. (Note here that we consider B → BM as a dimensionless quantity,
having set G = c = 1)

well. The underlying geometry of the spacetime is now axis-
symmetric, as rotations along the φ direction leave the met-
ric and the electromagnetic field invariant. The orthonormal
components of the magnetic field measured by zero-angular-
momentum observers (ZAMO) with four-velocity compo-
nents are given by the following expressions

Br̂ = − B

�

(
1 − B2r2 sin2 θ

�

)
cos θ, (5)

B θ̂ = BF(r)1/2

�

(
1 − B2r2 sin2 θ

�

)
sin θ. (6)

The magnetic field (5) and (6) depends on the parameter
responsible for the external magnetic field, and under the
condition that M/r → 0 and � → 1, we recover the solu-
tions for the flat spacetime

Br̂ = −B cos θ, B θ̂ = B sin θ, (7)

which coincides with the homogeneous magnetic field in
the Newtonian spacetime, as expected. The configuration of
magnetic field lines in the vicinity of the magnetized black
hole is depicted in Fig. 1.

Let us note that the magnetized Ernst metric is not spher-
ically symmetric, but is actually axi-symmetric because it
remains invariant under φ = φ + c, which is also consis-
tent with the orientation of the electromagnetic field. The
fact that the spherical symmetry is broken leads to interest-
ing phenomenological aspects such as a possibility to mimic
the rotation to some extent. We note that one can check the

topology of the Ernst solution at the horizon using the Gauss–
Bonnet theorem. At a fixed moment in time t , the metric
reduces to

ds2 = �2
(

dr2

F(r)
+ r2dθ2

)
+ r2 sin θ2

�2 dφ2, (8)

and using the Gaussian curvature with respect to g(2) on M,
the Gauss–Bonnet theorem states that∫∫

M
KdA = 2πχ(M). (9)

Note that d A is the surface line element of the two-
dimensional surface and χ(M) is the Euler characteristic
number. It is sometimes convenient to express the above the-
orem in terms of the Ricci scalar, in particular for the two-
dimensional surface at r = rh , and then using the Ricci scalar
given by

R = 2

r2�2 , (10)

with
√
g(2) = r2 sin θ , evaluated at r = rh , yielding the

following from

1

4π

∫∫
M

R
√

−g(2) dθdφ = χ(M). (11)

In general, the solution of the above integral is complicated
due to θ dependence. For small B we can expand in series
and find in leading order terms χ = 2−8B2r2

h/3. This shows
that the Euler characteristic number is smaller than 2 hence,
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in general, the topology of Ernst spacetime differs from a
perfect sphere.

3 Charged particle dynamics around magnetized Ernst
black hole

Now we focus on charged particle motion around the mag-
netized Ernst black hole. We assume that the test particle
is endowed with the rest mass m and electric charge q. In
general, the Hamilton–Jacobi equation of the system is then
expressed as

H = gμν

(
∂S

∂xμ
− q Aμ

) (
∂S

∂xν
− q Aν

)
, (12)

where S is the action, xμ is the spacetime coordinates, and Aμ

denotes the vector potential components of the electromag-
netic field. Note that the spacetime (1) and the vector poten-
tial components (4) are independent of coordinates (t, φ),
thus leading to two conserved quantities, namely specific
energy E and angular momentum L . From the properties of
the Hamiltonian, it is considered to be a constant H = k/2
with relation to k/m2 = −1 for a massive particle, with m
being the mass of the particle. For photons, one has to set
k = 0. Following the Hamilton–Jacobi equation, the action
S can be written as follows:

S = −1

2
kλ − Et + Lφ + Sr + Sθ , (13)

where Sr and Sθ are the radial and angular functions of r and
θ . Note that λ = τ/m represents the affine parameter with
proper time τ . Inserting Eq. (13) into (12), the Hamilton
equations reads

k = − F(r)−1

�2 E2 + F(r)

�2

(
∂Sr
∂r

)2

+ 1

�2r2

(
∂Sθ

∂θ

)2

+�2
(
L − q Aϕ

)2

r2 sin2 θ
. (14)

The Hamiltonian can be separated into dynamical and poten-
tial parts, i.e. H = Hdyn + Hpot with

Hdyn = 1

2

[
1

grr

(
∂Sr
∂r

)2

+ 1

gθθ

(
∂Sθ

∂θ

)2
]

, (15)

Hpot = 1

2

[
E2

gtt
+

(L − q
m Aϕ

)2

gφφ

+ 1

]
. (16)

Here we note that we further use the potential part of the
Hamiltonian, Hpot, to define the epicyclic frequencies.

For further analysis we shall restrict motion for the
charged test particle to the equatorial plane (i.e. θ = π/2).
Following Eq. (14), we obtain the radial equation of motion

for charged particles in the following form

ṙ2 =
(
E − E−(r)

)(
E − E+(r)

)
, (17)

where E+(r) and E−(r) are the two roots of the equation
ṙ = 0. As seen from Eq. (17), we have either E > E+(r)
or E < E−(r), since ṙ2 ≥ 0. However, we shall restrict
ourselves to the case E+(r) which is physically acceptable,
and consequently we select E+(r) as an effective potential,
i.e. Veff(r) = E+(r). Thus we have

Veff(r) =
(

1 − 2M

r

)1/2
[
�2 + �4

r2

(
L − q B r2

2m�

)2
]1/2

.

(18)

Here, we denote parameters E = E/m and L = L/(Mm).
From Eq. (18), the effective potential can easily recover the
one as in the Schwarzschild spacetime in case we eliminate
all parameters except black hole mass M . As can be seen from
Eq. (18), the vector potential is involved in the expression of
the effective potential because the charged particle depends
upon the magnetic field component.

Let us then analyse the effective potential in order to under-
stand more deeply the radial motion of test particles moving
around the black hole. In Fig. 2, we show the radial depen-
dence of Veff radial motion of neutral/charged particles. In
Fig. 2, the left panel demonstrates the impact of the magnetic
field parameter B on the profile of the effective potential for
the neutral particle, while the middle and right panels demon-
strate the impact of parameter q/m for the charged particle.
As can be seen from the left panel of Fig. 2, the shape of
the effective potential shifts upward as a consequence of an
increase in the value of the magnetic field parameter B, thus
strengthening the gravitational potential. Similarly, for neg-
ative values of the charged particle parameter q/m, the right
panel illustrates the same behaviour as that for the left panel.
However, the shape of the effective potential shifts downward
with increasing positive values of q/m, thereby giving rise
to a decrease in the strength of the gravitational potential, as
seen in Fig. 2. Also note that as a consequence of the posi-
tive charged particle, stable circular orbits shift to the left to
smaller r .

We also analyse the particle trajectories of test particles
moving around the magnetized Ernst black hole. Here, we
demonstrate the trajectory of particles at the equatorial plane.
In Fig. 3, all plots show various behaviour of the particle tra-
jectory around the magnetized Ernst black hole. It is increas-
ingly important to understand more deeply the behaviour of
possible orbits and trajectories of particles around the black
hole. With this in view, we consider the terminating orbits
(left panel), the bound orbits and the escape orbits for par-
ticles. As can be seen in Fig. 3, the middle panel shows the
bound orbits that appear in the balance between the centrifu-
gal force and the gravitational force that stem from the param-
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Fig. 2 Radial dependence of the effective potential for the radial
motion of test particles around the magnetized Ernst black hole. Left
panel: Veff is plotted for various combinations of B for the neutral par-

ticle case, i.e. q/m = 0. Middle/right panels: Veff is plotted for various
combinations of charged particle parameters q/m for the fixed magnetic
field parameter B = 0.1

Fig. 3 Trajectories of the particle at the equatorial plane around the
magnetized Ernst black hole for magnetic field parameter B = 0 (solid
curve) and B = 0.04 (dashed curve) for various combinations of angu-

lar momentum L = 3 (left panel), L = 4 (middle panel) and L = 6
(right panel) for all possible orbits. Note that the particle starts from
r0/M = 10 towards the black hole

eters B and M , whereas in the right panel no bound orbits
appear, as the particle can escape from the pull of the black
hole when the centrifugal force dominates over the gravita-
tional one as a consequence of the absence of the magnetic
field parameter B = 0. Thus, in this case the overall force
becomes repulsive. It becomes however attractive once the
magnetic field parameter is involved, and thus the particle
orbits become more unstable, allowing the particles to fall
into the black hole, as seen in Fig. 3.

Let us then consider stable circular orbits around the mag-
netized Ernst black hole. For particles to be at circular orbits,
one needs to solve the following equations simultaneously

Veff(r) = E and V ′
eff(r) = 0, (19)

where ′ refers to a derivative with respect to r . For particles
to be at the circular orbits, one needs to have the following
angular momentum L

L± = �−2

2
(
r�F(r)′ − 2F(r) (� − 2r�′)

)
×

[
(q/m) Br3�

(
�F(r)′ + 3F(r)�′)

±
(
r3�2

(
F(r)2

(
−4

(
(q/m)2 B2r2 − 4

)
��′

+ r
(
(q/m)2 B2r2 − 32

)
�′2 + 4(q/m)2 B2r�2

)

+ 8F(r)�F(r)′
(
� − 3r�′) − 4r�2F(r)′2

) )1/2]
.

(20)

In Fig. 4 we show the radial dependence of theL (note that by
L we would mean positive L+) of test particle circular orbits
around the magnetized Ernst black hole for various combi-
nations of magnetic field and charged particle parameters.
We note that as a consequence of the presence of magnetic
field parameter B, the circular orbits shift towards the left to
smaller r , thus increasing the value of L for particles on cir-
cular orbits with small radii (see Fig. 4, left panel). However,
we show the dependence on ±q/m of the angular momen-
tum for charged particles in circular orbits (see Fig. 4, right
panel). Also, it is clear from Fig. 4 that both −q/m and B
have a similar effect, thereby reducing the radii of the circular
orbits.

We shall now determine the ISCO for test particles orbit-
ing the magnetized Ernst black hole. The radii of ISCO is
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Fig. 4 Plot showing the radial dependence of the angular momentum
as a function of r/M in the equatorial plane (i.e. θ = π/2). Left panel:
L is plotted for various combinations of magnetic field parameter B for

the neutral particle case, i.e. q/m = 0. Right panel: L is plotted for
various combinations of charged particle parameter q/m for the fixed
B = 0.025

Fig. 5 Plot showing the ISCO radius as a function of B in the case
with both neutral and charged particles

defined by the second derivative of Veff as follows:

V ′′
eff(r) = 0. (21)

From the last equation, we determine the ISCO radius using
Eq. (20). In Fig. 5, we show the dependence on magnetic
field parameter B of rI SCO for the test particles. As can be
seen from Fig. 5, the ISCO radius decreases as a consequence
of an increase in the value of B for all cases. However, one
can observe that rI SCO is slightly influenced by the presence
of oppositely charged particles, ±q/m, while keeping the
magnetic field parameter B fixed.

4 Epicyclic frequencies

We now consider the periodic motion of the test particle
which orbits at stable circular orbits. For that, all orbits that
the particle can move on should occur with r ≥ risco deter-
mined by the minimum of Veff(r). Given the small pertur-
bation r = r0 + δr and θ = π/2 + δθ , the particle starts
to oscillate around the circular orbit with r0 with so-called
radial and latitudinal frequencies that respectively refer to
the epicyclic motion. Thus, for the given small perturbation
δr and δθ , one can write the equations for a linear harmonic
oscillation as

δr̈ + ω̄2
r δr = 0, δθ̈ + ω̄2

θ δθ = 0, (22)

with the radial ω̄r and the latitudinal ω̄θ frequencies for
epicyclic oscillations. Note that the dot in the above equation
denotes the derivative with respect to the proper time. These
frequencies are measured by a local observer and defined by
the following equations [55,69]

ω̄2
r = 1

grr

∂2Hpot

∂r2 , (23)

ω̄2
θ = 1

gθθ

∂2Hpot

∂θ2 , (24)

ω̄φ = 1

gφφ

(
L − q

m
Aφ

)
. (25)

Before representing the above epicyclic frequencies ωr,θ ,
we now consider the periodic motion for both neutral and
charged particles. For that we write the normalization condi-
tion, uαuα = −1, for particles as

gtt (u
t )2 + grr (u

r )2 + gθθ (u
θ )2 + gφφ(uφ)2 = −1, (26)

For the periodic motion for the rest particle that orbits a black
hole with the fundamental frequencies, namely Keplerian and
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Larmor frequencies, one needs to focus on the stable circular
orbits for which uα = (ut , 0, 0, uφ). With this in view, we
have the following equations

ut = 1√−gtt − ω2gφφ

, (27)

E = − gtt√−gtt − ω2gφφ

, (28)

L = gφφω√−gtt − ω2gφφ

+ q

m
Aφ , (29)

where we have defined ω = dφ
dt . We then obtain the gen-

eral expression for the orbital frequency ω, referred to as
the Keplerian frequency, using the non-geodesic equation
for charged particles

gtt,r + ω2gφφ,r = −2q

m

(
At,r + ωAφ,r

)

×
(
−gtt − ω2gφφ

)1/2
. (30)

For the Keplerian frequency, ωk , the above equation is solved
to give

ω2
k =

[
ω2

0 − 2gtt

(
q Aφ,r

mgφφ,r

)2

± 2q Aφ,r

mgφφ,r

×
{

−ω2
0gtt − ω4

0gφφ +
(
q Aφ,r gtt
mgφφ,r

)2
}1/2 ]

×
[

1 + 4gφφ

(
q Aφ,r

mgφφ,r

)2
]−1

. (31)

This clearly shows that as a consequence of q = 0, the above
equation becomes simple and is given by ω2

0 = −gtt,r/gφφ,r ,
which refers to the Keplerian frequency for a neutral parti-
cle orbiting the magnetized black hole. Note that for q �= 0,
Eq. (31) turns out to be a very long and complicated expres-
sion for explicit display. We therefore further resort to numer-
ical evolution for ωk . However, in the case of neutral particle
q = 0, Eq. (31) has the form

ωk =
√√√√(

1 + B2r2
)4 (

M + 2B2r3 − 3MB2r2
)

r3
(
1 − B2r2

) . (32)

Using Eqs. (27–29) and (31), one can define epicyclic
frequencies ωr and ωθ as follows

ω̄2
r =

[
− g2

t t,r

gtt grr
+ gtt,rr

grr
− ω2

k

grr

(
g2
φφ,r

gφφ

− gφφ,rr

2

)

+ q

m

ωk

grr

(
Aφ,rr − 2Aφ,r

gφφ,r

gφφ

) (−gtt − ω2
k gφφ

)1/2

+
( q

m

)2 A2
φ,r

grr

(
ω2
k + gtt

gφφ

)](
1

gtt + ω2
k gφφ

)
(33)

ω̄2
θ =

[
− g2

t t,θ

gtt gθθ

+ gtt,θθ

gθθ

− ω2
k

gθθ

(
g2
φφ,θ

gφφ

− gφφ,θθ

2

)

Fig. 6 Plot showing the epicyclic frequencies as a function of r/M
in the case with a neutral particle. Radial, latitudinal and orbital fre-
quencies are plotted for various combinations of magnetic field param-
eter B. Note that solid lines refer to the epicyclic frequencies for the
Schwarzschild black hole

+ q

m

ωk

gθθ

(
Aφ,θθ − 2Aφ,θ

gφφ,θ

gφφ

) (−gtt − ω2
k gφφ

)1/2

+
( q

m

)2 A2
φ,θ

gθθ

(
ω2
k + gtt

gφφ

)](
1

gtt + ω2
k gφφ

)
. (34)

From the above equations, the epicyclic frequencies turn out
to be a complicated expression for explicit display. Thus we
carry out further numerical analysis to represent them explic-
itly.

Since the above-mentioned frequencies, ω̄i , respectively
refer to the locally measured frequencies, one needs to mea-
sure these frequencies at infinity for distant observers. Let us
then define ν as a frequency measured by a distant observer
located at infinity. It is worth noting that the frequencies mea-
sured by local and distant observers are related by the fol-
lowing transformation [55,69]

ω̄ → ω̄

−gttE , (35)

which stems from the redshift factor for the transformation
from the proper time τ to the time measured at infinity t . Thus,
frequencies ω̄ and νφ are related by the following relation to
G and c

ν = 1

2π

c3

GM

ω̄

(−gtt )E . (36)

The above frequency can then be measured by real observers
at infinity and can be directly used to analyse the observation
data.

In Fig. 6 we show the epicyclic frequencies as a function
of r/M for a neutral particle moving around the magnetized
Ernst black hole for various combinations of magnetic field
parameter B. As can be seen from Fig. 6, the radial fre-
quency increases and its oscillation shifts left to larger ν as
a consequence of an increase in the value of the magnetic
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Fig. 7 Plots showing the epicyclic frequencies as a function of r/M in the case with a charged particle. Radial, latitudinal and orbital frequencies
are plotted for various combinations of charge parameter ±q/m while keeping the magnetic parameter B = 0.005 fixed

field parameter B. However, for the latitudinal frequency it
remains almost unchanged, while for the orbital frequency
the magnetic field parameter causes an increase in the fre-
quency value at larger distances as compared with the one
around the Schwarzschild black hole (see Fig. 6, solid lines).
Similarly, in Fig. 7 we present the radial dependence of the
epicyclic frequencies of charged particles around the magne-
tized Ernst black hole for fixed B. From Fig. 7, the impact of
parameter q/m gives rise to an increase in the value of all fre-
quencies. That is, the radial frequency increases significantly
while the latitudinal and orbital frequencies increase slightly
at larger distances when increasing the value of parameter
q/m. However, the opposite behaviour is the case for the
parameter −q/m, thus resulting in decreasing values for all
epicyclic frequencies as −q/m increases (see Fig. 7, right
panel). Note that the orbital frequency decreases slightly as
a consequence of the presence of parameter −q/m.

5 Constraints on the magnetic field

In this final section we are interested in putting observa-
tional constraints on the parameters of the four-dimensional
magnetized black hole using our theoretical results and the
experimental data for three microquasars. In particular, the
appearance of two peaks at 300 Hz and 450 Hz in the X-
ray power density spectra of galactic microquasars has stim-
ulated many theoretical works to explain the value of the
3/2-ratio [70]. Although there is no well-accepted explana-
tion yet, the occurrence of νU/νL = 3/2 with lower νL Hz
QPO and of the upper νU Hz QPO has been reported for
the microquasars GRO J1655-40, XTE J1550-564 and GRS
1915+105. Below we give the corresponding frequencies of
the three microquasars [70]

GRO J1655-40 : νU = 450 ± 3 Hz, νL = 300 ± 5 Hz,

(37)

XTE J1550-564 : νU = 276 ± 3 Hz, νL = 184 ± 5 Hz,

(38)

GRS 1915+105 : νU = 168 ± 3 Hz, νL = 113 ± 5 Hz,

(39)

One possible explanation of the twin values of the QPOs is
linked to the so-called phenomenon of resonance. The main
idea is that near the vicinity of the ISCO, the infalling parti-
cles can perform both radial and vertical oscillations, and the
two oscillations generally couple non-linearly, yielding the
observed quasiperiodic power spectra [71,72]. Note that the
frequency ratio νU/νL describes the resonance phenomena
for HF QPOs. Thus there exist specific models represent-
ing different types of resonance. In the present work, we
shall assume that the resonance observed in the three micro-
quasars (37), (38) and (39) is described by the parametric
resonance that is given by

νU = νr and νL = νθ . (40)

To constrain the model, we assume a three-parameter
model for the QPO frequency, and perform a Monte Carlo
simulation with a χ -square analysis

χ2(M, B, r) = (νr − ν1U)2

σ 2
1U

+ (νθ − ν1L)2

σ1L
.

To further simplify the problem, we set the charge of the
particle to zero. In what follows, we present our results for
the constraints on the black hole mass and magnetic field.

• Microquasar GRO J1655-40

Within 1σ we obtain for the black hole mass M/M� =
5.86+0.06

−0.08 and r/M = 6.03+0.05
−0.02. For the magnetic field we

obtain B ∼ 2.93 × 10−30 m−1. Since B in geometric units
has a dimension of inverse of length [L−1] for the particular
case, we find for the magnetic field B ∼ 3.61 × 10−7 Gauss.
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Fig. 8 Plot showing the magnetic field B and black hole mass between
68% and 95% CL

Fig. 9 Plot showing the parametric plot of magnetic field B and black
hole mass between 68% and 95% CL

The parametric plot between the magnetic field and the black
hole mass is presented in Fig. 8.

• Microquasar XTE J1550-564:

Here we find within 1σ a black hole mass M/M� =
9.42+0.19

−0.35 along with the radii r/M = 6.08+0.15
−0.06. For the

magnetic field we obtain B ∼ 4.76 × 10−30 m−1, which
can be written as B ∼ 5.87 × 10−7 Gauss. The parametric
plot between the magnetic field and the black hole mass is
presented in Fig. 9.

• Microquasar GRS 1915+105

In this final case, we find within 1σ a black hole mass
M/M� = 14.10+0.68

−1.35 along with r/M = 6.45+0.43
−0.20. On

the other hand, for the magnetic field we obtain B ∼
7.79 × 10−30 m−1, or alternatively written in Gauss, B ∼
9.61 × 10−7 Gauss. The parametric plot for this case can be
found in Fig. 10.

Fig. 10 Plot showing the parametric plot of magnetic field B and black
hole mass between 68% and 95% CL

6 Conclusions

The recent astrophysical data suggest that accretion discs
play a key role in creating the QPOs around supermassive
black holes and are the primary source for obtaining informa-
tion about gravity and the nature of the geometry in the strong
field regime as well as the existing fields surrounding such
black holes [73]. The existing fields also play an important
role in altering a particle’s geodesics, thus strongly influenc-
ing observable properties (the shadow, the ISCO, the QPOs,
etc.). With this in view, the magnetic field is increasingly
important in the dynamics of charged particles in the very
close vicinity of black holes. Thus, it is worth studying the
effect of magnetic fields on the particles moving in the discs
around astrophysical black holes. In this paper we consider an
interesting solution describing a static and spherically sym-
metric black hole that includes the additional gravity due to
a non-linear coupling of the Schwarzschild black hole with
Melvin’s magnetic universe [33]. For these reasons the study
of the properties of such a solution is valuable.

In the present paper we have studied the dynamics of
charged particles around the magnetized black hole known
as the Ernst black hole. We have found that the radius of the
ISCO for both neutral and charged test particles is strongly
affected by the magnetic field, thus shrinking its values. The
ISCO radius rapidly decreases for the charged test parti-
cles. This happens because the magnetic field reflects the
combined effects of gravitational and Lorentz forces on the
charged particles. Also we have shown that the epicyclic fre-
quencies of particles moving around the black hole are sig-
nificantly increased as a consequence of the effect of the
magnetic field.

In the first part of this work, we presented the generic form
of the epicyclic frequencies and selected three microquasars
with known astrophysical QPO data to constrain the magnetic
field. In all three cases, we found that the magnetic field is of
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the order of magnitude B ∼ 10−7 Gauss. It is interesting to
note that here we have identified the upper frequency with νr
and the lower frequency with νθ to explain the QPOs. Gener-
ally, when the rotation is introduced, scientists in most cases
in this resonance model identify the upper frequency with
νθ and lower frequency with νr . This suggests that the Ernst
metric due to the magnetic field effect which has a backre-
action effect on the spacetime can mimic the rotation of the
black hole to some extent. This is explained from the fact
that when the backreaction effect is considered, the spherical
symmetry is broken and this leads to very interesting results
which can be important from a phenomenological point of
view. Finally, we note that a more realistic estimation of the
value of the magnetic parameter should include the particle
charge. In that case, one must specify the particle; for exam-
ple, it could be an electron, proton or ionized atom having
specific q/m. Introducing a quantity c4/(GMq/m), for elec-
trons we obtain a typical factor of 102, which may suggest
an increase in the magnetic field to the magnitude B ∼ 10−5

Gauss, which is consistent with the result found in [74,75].
Interestingly, it turns out that the magnetized Reissner–

Nordström black hole solution causes axially symmetric
spacetime that is regarded as an analogue of the rotating
Ernst spacetime as a consequence of the presence of mag-
netic field parameter B, thereby mimicking the black hole
rotation parameter a/M [42]. With this in mind, one could
therefore consider the possible extensions of recent analy-
sis to the case of axially symmetric magnetized black hole
spacetime to constrain its parameters, which we intend to
investigate next in a separate work.
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