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Abstract The generation of gravitational waves from a
post-Newtonian source endowed with a quantum spin, mod-
eled by the Weyssenhoff fluid, is investigated in the context
of Einstein–Cartan theory at the first post-Newtonian level
by resorting to the Blanchet–Damour formalism. After hav-
ing worked out the basic principles of the hydrodynamics
in Einstein–Cartan framework, we study the Weyssenhoff
fluid within the post-Newtonian approximation scheme. The
complexity of the underlying dynamical equations suggests
to employ a discrete description via the point-particle limit,
a procedure which permits the analysis of inspiralling spin-
ning compact binaries. We then provide a first application of
our results by considering binary neutron star systems.

1 Introduction

Nowadays, gravitational-wave (GW) astronomy represents a
fundamental mean to investigate gravity at extreme regimes
and offers valuable insights into the physics of compact
objects [1,2], as the best GW candidates are represented by
black holes (BHs) and neutron stars (NSs) [3]. GWs man-
ifest as perturbations of the spacetime and their theoreti-
cal description lays solid roots in general relativity (GR).
The GW theory is intimately intertwined with the two-body
problem. A variety of analytical and numerical techniques
has been developed to foretell approximately the dynam-
ics and the corresponding waveforms of compact-object
binary systems during their inspiral, plunge, merger, and
ringdown stages [4,5]. The motion and the radiation of
post-Newtonian (i.e., slowly moving, weakly stressed, and
weakly self-gravitating) isolated sources during their early
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inspiralling stage can be tackled via the Blanchet–Damour
scheme. This framework is built on the pioneering works
by Bonnor and collaborators [6–9] and Thorne [10], and
exploits two approximation strategies: the multipolar-post-
Minkowskian (MPM) and the post-Newtonian (PN) methods
[11,12]. Other two fundamental GW generation formalisms
are the Will-Wiseman-Pati approach, which extends the pat-
tern first developed by Epstein and Wagoner [13], and the
gravitational self-force (GSF) model. The former reckons
with the direct integration of the relaxed Einstein equations
(DIRE) and differs from the aforementioned MPM-PN pro-
gram in the definition of the source multipole moments [14–
17]. GSF is based on BH perturbation theory and explores
the dynamics and the radiative phenomena of extreme-
mass-ratio inspirals [18–21]. The effective-one-body (EOB)
framework provides a highly-accurate description of the
motion and the gravitational amplitude of coalescing bina-
ries in their late evolution phases [22–27]. A valid support,
especially for the demanding task of solving the Einstein
field equations in the most extreme regimes, is provided
by numerical relativity (NR). Indeed, NR simulations are
firmly harnessed to predict waveforms through the merger
and the ringdown, and validate the approaches used to study
binary systems [28–32]. Furthermore, NR is largely exploited
together with several phenomenological patterns (Phenom)
to perform the fitting and the parameter estimation of the GW
data [33–37].

The state of the art on the conservative dynamics con-
sists in the complete set of the equations of motion of point-
particle nonspinning binaries at the fourth post-Newtonian
(4PN) order, where the underlying calculations have been
undertaken within three different patterns: the Arnowitt-
Deser-Misner (ADM) Hamiltonian formulation of GR [38,
39], the Fokker-action approach in harmonic coordinates [40,
41], and the effective-field-theory model [42,43]; recently,
the 5PN and 6PN levels have been worked out modulo a
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small number of unknowns [44–47]. In addition, this field
is currently investigated via new methodologies making use
of tools stemming from effective field theory and modern
scattering amplitude programs [48–50]. Regarding the GW
emission aspects, the 3PN-accurate waveform has been deter-
mined [51] and a great deal of efforts is being made in the
literature to extend our present knowledge regarding GW
templates of inspiralling compact binaries up to 4PN level
[52–54]. In the case of spinning binary systems, both the
radiative aspects and equations of motion have been worked
out with high PN accuracy [55–65].

The huge amount of complementary observational data,
triggered by the fast advance of the technological progress,
is increasing our capacity to acquire more and more accu-
rate information on gravitational sources and gravity itself.
These scientific achievements have motivated us to explore
the interplay between quantum and GR effects in GW phe-
nomena via the Einstein–Cartan (EC) theory. Indeed, in a
previous paper [66] we have solved, in the context of EC
model, the GW generation problem at 1PN level by exploit-
ing the Blanchet–Damour formalism, which permits relat-
ing the outgoing radiative gravitational field to the struc-
ture and the motion of a spinning PN isolated source. The
final solution is encoded by the 1PN-accurate relations for
the radiative moments, which are given in the form of
well-defined (compact-support) integral expressions over the
stress-energy distribution of the matter field. This result can
be obtained after a detailed analysis regarding the gauge con-
dition, the coordinates covering the interior and the exterior
zone of the source, and the structure of the torsion tensor,
which is supposed to admit a vanishing trace. Furthermore,
the invariance of the Riemann tensor in the context of the
linearized EC framework must be invoked in order to match
the internal and the external fields and write the final expres-
sions of the radiative moments involving the new spin contri-
butions. Hereafter, “spin” is intended as the quantum (micro-
scopic) angular momentum of elementary particles [78].

In this paper, we apply the abovementioned Blanchet–
Damour scheme to a GW source described by the Weyssen-
hoff model of an ideal fluid with spin [67,68]. This choice is
motivated by the fact that it configures as a natural extension
of the GR perfect fluid and permits to simplify the demanding
calculations framed in EC theory. The hydrodynamical pic-
ture of the Weyssenhoff treatment can be obtained by consid-
ering first a perfect fluid, and then by assigning to each “fluid
element”, which contains a set of microscopic spin configu-
rations, a value of the spin density tensor via an average pro-
cedure [69,70]. The Weyssenhoff fluid has been considered
both in cosmological models and astrophysical problems. In
the first case, it has been proved that spin interactions in
the early stages of the universe could bring about significant
results, such as the avoidance of the big-bang singularity, as
well as the reproduction of cosmic inflation and dark energy

mechanisms [69–72]. In astrophysical settings, the spin may
avert the spacetime singularity caused by the gravitational
collapse of a star [73–77].

In our analysis, the dynamics of the Weyssenhoff fluid is
investigated through the PN method, which permits obtain-
ing a hierarchy of PN mathematical problems to be solved
perturbatively order by order starting from the 0PN level.
However, this approach still leads to a set of partial and
integro-differential dynamical equations, which in general
can be tackled through NR. Therefore, in order to obtain
analytical results, we resort to the point-particle procedure,
which is a valid pattern widely exploited in the literature [17].
In this way, the bodies can be treated as point-like objects and
their dynamics is described in terms of ordinary differential
equations. This prepares the ground for the analysis of inspi-
ralling spinning compact binaries, which can represent the
high-energy astrophysical testbed of our model.

The article is organized as follows: in Sect. 2, we briefly
recall the fundamental results of Ref. [66]; in Sect. 3, after
having set out the main concepts of the hydrodynamics in
EC theory, we deal with the Weyssenhoff model; then, we
pass from the continuous description to the discrete picture
of the fluid by exploiting the point-particle limit, which is
worked out in Sect. 4; in Sect. 5, we apply our theoretical
apparatus to NS binaries, and provide a first estimate of EC
corrections by studying the ensuing gravitational flux and
waveform; eventually, in Sect. 6, we give a summary of the
paper and draw the conclusions.

Notations. We use metric signature (−,+,+,+). Greek
indices take values 0, 1, 2, 3, while the Latin ones 1, 2, 3. The
flat metric is indicated by ηαβ = ηαβ = diag(−1, 1, 1, 1).
The determinant of the metric gμν is denoted by g. εkli is the
completely antisymmetric Levi-Civita symbol, whose value
is 1 if kli is an even permutation of 123. Four-vectors are
written as aμ = (a0, a) and we employ the following nota-
tions: a · b ≡ δlkalbk , |a| ≡ a = (a · a)1/2, and (a × b)i ≡
εilkalbk . Round (respectively, square) brackets around a pair
of indices stands for the usual symmetrization (respectively,
antisymmetrization) procedure, i.e., A(i j) = 1

2 (Ai j + A ji )

(respectively, A[i j] = 1
2 (Ai j − A ji )).

2 First post-Newtonian generation of gravitational
waves in Einstein–Cartan theory

We briefly recall the essential information on EC theory and
set up the mathematical tools in Sect. 2.1. After that, we intro-
duce the mathematical framework related to the GW genera-
tion problem in EC theory at 1PN level (see Sect. 2.2). Then,
we outline the procedure, based on the Blanchet–Damour
approach, which permits obtaining the approximate solution
(see Sect. 2.3). Finally, the general expressions of the asymp-
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totic gravitational waveform and the radiated power are dis-
played (see Sect. 2.4).

2.1 Einstein–Cartan theory

The EC theory is an extension of GR where both the spin
and the mass of matter play a dynamical role. This model
is defined on a spacetime M , endowed with a symmetric
metric tensor gαβ and the most general metric-compatible
affine connection

Γ λ
μν = Γ̂ λ

μν − K λ
μν, (1)

where Γ̂ λ
μν denotes theChristoffel symbols and K λ

μν = Sλ
νμ−

Sλ
μν − Sλ

μν the contortion tensor, with Sλ
μν ≡ Γ λ[μν] dubbed

the Cartan torsion tensor. Hereafter, a hat symbol refers to
quantities framed in GR.

Given the matter Lagrangian density, it is possible to
introduce the metric energy-momentum tensor T αβ , the spin
angular momentum tensor τ

βα
γ , and the spin energy poten-

tial μ
βα
γ [66,78]. In particular, the tensors μ

βα
γ and τ

βα
γ are

related in the following way:

μαβγ = −ταβγ + τβγα − τγαβ. (2)

Another fundamental object is the total energy-momentum
tensor of matter Tαβ , defined as [78,79]

T
αβ = T αβ − ∇*γ

(
μαβγ

)
, (3)

where ∇* is the modified covariant derivative operator, whose
action on a generic tensor field of type (1, 1) is

∇*αA
μ

ν = (∇α + 2Sαβ
β
)
Aμ

ν. (4)

The EC field equations are (χ ≡ 16πG/c4) [78]

Ĝαβ = χ

2
Θαβ, (5a)

Θαβ ≡ T αβ + χ

2
Sαβ, (5b)

Sαβ ≡ −4ταγ [δτβδ
γ ] − 2ταγ δτβ

γ δ + τγ δατγ δ
β

+ 1

2
gαβ

(
4τγ

μ [δ τμδ
γ ] + τμγ δτμγ δ

)
, (5c)

where the combined energy-momentum tensor Θαβ satisfies

∇̂βΘαβ = 0. (6)

The matter source’s dynamical equations can be obtained via
the generalized conservation laws of energy-momentum and
angular momentum, which read as, respectively,1 [78,79]

1 It is possible to show that Eqs. (6) and (7) are not independent (see
Ref. [78] for further details).

∇*νTμ
ν = 2Tλ

νSμν
λ − τνρ

σ Rμσ
νρ, (7a)

∇*λτμν
λ = T[μν], (7b)

the Riemann tensor being given by

Rμ
νρσ = ∂ρΓ μ

σν − ∂σ Γ μ
ρν + Γ μ

ραΓ α
σν − Γ μ

σαΓ α
ρν

= R̂μ
νρσ + ∇̂σ K

μ
ρν − ∇̂ρK

μ
σν

+ Kμ
ραK

α
σν − Kμ

σαK
α
ρν. (8)

2.2 The mathematical problem

The GW generation in EC theory is described by the follow-
ing well-posed mathematical problem [66]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�hμν = χ T̃μν, (9a)

∂λh
αλ = 0, (9b)

lim|x|→+∞ hαβ(t, x) = 0, for t ≤ −T , (9c)

∂th
αβ(t, x) = 0, for t ≤ −T , (9d)

where hαβ ≡ √−ggαβ − ηαβ , � ≡ ηαβ∂α∂β , and

T̃αβ ≡ (−g) Θαβ + 1

χ
Λαβ, (10)

is the effective stress-energy pseudotensor encompassing
both the matter fields, described by Θαβ , and the effective
gravitational source term Λαβ = Λαβ(h), which includes all
the nonlinearities of EC field equations. The harmonic gauge
(9b) can be imposed provided we further require [66]

Sαμ
μ = 0. (11)

The gravitational source is supposed to be confined to the
region Ω , defined by

Ω =
{
x ∈ R

3 : |x| ≤ d̄
}

, (12)

with d̄ the typical size of the source. This condition ensures,
on the one hand, that T αβ , τβα

γ , and Θαβ are smooth functions
in R

4 having a spatially compact support in Ω , and, on the
other, that the torsion tensor vanishes outside Ω .

We deal with PN sources in EC theory, for which the
spatial domain R

3 can be decomposed as R
3 = De ∪ Di ,

where the set Di is the near zone and covers entirely the
source, whileDe encompasses the external weak-field region
of the source and is called exterior zone. For a PN source these
two domains intersect in the overlapping regionDo. Finally,
the spatial region where a detector apparatus is located is
known as wave zone.
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2.3 Resolution method

The (approximate) solution of problem (9) can be worked
out as follows [66,81]. First of all, two preliminary steps
need to be carried out in the overlapping region Do: (1)
calculating the multipole (re)expansion of the 1PN series
of the inner metric, which can be expressed in terms of the
sourcemultipolemoments IL and JL2; (2) evaluating the 1PN
(re)expansion of the MPM external metric, which depends
on the canonical multipole moments ML and SL . Eventu-
ally, IL , JL and ML , SL are related to the radiative moments
UL , VL (representing the physical observables in the wave
zone) by exploiting the matching procedure. At 1PN order,
the relation between IL , JL and UL , VL is given by (with
l ≥ 2) [66]

UL(u) = (l)
I L(u) + O(c−3), (13a)

VL(u) = (l)
J L(u) + O(c−2), (13b)

the superscript (l) denoting the l-th time derivative with
respect to the variable u, and
IL(u) =

∫
d3 y y〈L〉σ( y, u)

+ 1

2(2l + 3)

1

c2

d2

du2

∫
d3 y y〈L〉 y2σ( y, u)

− 4(2l + 1)

(l + 1)(2l + 3)

1

c2

d

du

∫
d3 y y〈i L〉σi ( y, u)

+ O(c−4), (l ≥ 0), (14a)

JL(u) =
∫

d3 y εab〈il qyL−1〉aσb( y, u)

+ O(c−2), (l ≥ 1), (14b)

where

σ ≡ Θ00 + Θkk

c2 , σi ≡ Θ0i

c
, (15)

and y〈L〉 = qyL stands for the symmetric-trace-free (STF)
projection of yL .

2.4 Asymptotic gravitational waveform and radiated power

Given a set Xμ = (cT, X) of radiative coordinates, the exter-
nal metric can be put in the so-called radiative form, where its
coefficients admit an asymptotic expansion in powers ofR−1

at future null infinity (i.e.,R ≡ |X| → ∞ withU ≡ T−R/c
andN ≡ X/Rfixed) [12,80–83]. The asymptotic waveform

2 We have used the multi-index notation, where L denotes the multi-
index i1i2 . . . il , hence IL = Ii1i2...il [11].

H TT
i j (X) describing the outgoing radiation is defined as the

transverse-traceless (TT) projection of the leading R−1 term
of such an expansion. At 1PN order, it reads as

H TT
i j (Xμ) = 2G

c4RPi jkl(N )

{
Ukl(U)

+ 1

c

[
1

3
NaUkla(U) + 4

3
εab(kVl)a(U)Nb

]

+ 1

c2

[
1

12
NabUklab(U)

+1

2
εab(kVl)ac(U)Nbc

]
+ O(c−3)

}
, (16)

where

Pi jkl(N ) ≡ PikP jl − 1

2
Pi jPkl ,

Pi j (N ) ≡ δi j − NiN j , (17)

Pi jkl(N ) being the TT projection operator onto the plane
orthogonal to N .

Starting from the results contained in Refs. [17,83,84],
we have proved that the standard GR formula of the total
radiated power F (also called, in the astrophysics literature,
total gravitational luminosity or flux of the source) is valid
also in EC theory. Therefore, at 1PN order, the total energy
radiated per unit time, expressed as a function of the retarded
time U , reads as

F(U) = G

c5

{
1

5

(1)

U i j (U)
(1)

U i j (U)

+ 1

c2

[
1

189

(1)

U i jk(U)
(1)

U i jk(U)

+ 16

45

(1)

V i j (U)
(1)

V i j (U)

]
+ O(c−4)

}
. (18)

3 The semiclassical spin fluid and its post-Newtonian
approximation

Having set out the main aspects of the Blanchet–Damour
approach in EC theory, we consider, as a first approach to the
description of spin effects inside matter, the class of semi-
classical spin fluid models. Before getting to the heart of the
discussion, in Sect. 3.1 we first present the main principles
of the hydrodynamics in EC theory by making use of the
hypothesis (11). In Sect. 3.2, we consider the Weyssenhoff
fluid, which represents one of the most common frameworks
studied in the literature. Finally, in Sect. 3.3, we investigate
the Weyssenhoff fluid dynamics within the PN approxima-
tion scheme.
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3.1 Hydrodynamics in Einstein–Cartan theory under the
hypothesis Sαβ

β = 0

In this section, we introduce the basic concepts underlying
the hydrodynamics in EC theory.

The analysis of a fluid in EC framework turns out to be
more complex than in the GR case, but the assumption (11)
entails a great simplification. Indeed, the modified covariant
derivative (4) becomes

∇*λ (·) = ∇λ (·) = ∇̂λ (·) − K ·
λ· (·) , (19)

and the EC covariant divergence of a generic vector Aμ

assumes the same form as in GR, namely

∇μA
μ = ∇̂μA

μ − Kμλ
μAλ = ∇̂μA

μ. (20)

The spacetime position of each fluid element is labelled
in a system of coordinates by xμ = (ct, x). The description
of the kinematic properties of the fluid can be performed
in terms of two fundamental quantities: the timelike four-
velocity uμ = dxμ

dλ
(where λ denotes the proper time of an

observer comoving with the fluid) and the four-acceleration
aμ = uν∇νuμ.

It is useful to introduce the projection operator on the
spatial hypersurface orthogonal to the timelike four-velocity
uμ

Pμν = uμuν

c2 + gμν, (21)

and the EC substantial derivative of the vector ξμ along uμ

[67]

ξ̇ μ ≡ uν∇νξ
μ. (22)

The latter is the natural extension of the concept used in GR
and in classical continuous mechanics, which allows to define
the EC time derivative for densities [67]

Dξμ ≡ ∇ν

(
uνξμ

) = ξ̇ μ + ξμ∇̂νu
ν . (23)

The above derivative operator is applied to objects which
are densities (e.g., the spin density tensor, which will be
introduced in Sect. 3.2) and has a precise physical meaning.
Indeed, its definition relies on the fact that the densities must
be not only transported along the fluid worldlines, but it must
be also taken into account how the volumes transform during
the dynamical evolution3 (see Ref. [67], for more details).

3 By defining the expansion tensor ϑαβ ≡ Pμ
α Pν

β∇(νuμ), it is easy to
prove that the expansion scalar ϑ ≡ ϑα

α assumes the same form as in
GR [85], i.e., ϑ = 2∇̂αuα . This quantity describes how the fluid volume
changes during the motion.

The metric stress-energy tensor modeling the relativistic
perfect fluid which includes also spin contributions, can be
generally written as

T αβ = T αβ
perf + Φαβ,

T αβ
perf = e

uμuν

c2 + Pμν P, (24)

where Φαβ is a symmetric tensor containing torsion terms
and whose explicit form depends on the chosen spin model,
P denotes the isotropic fluid pressure, and

e = ρc2 + ε, (25)

the total energy density, which, in turn, depends on the rest-
mass density ρ and the internal energy density ε. We note
that e can be functionally split in the sum of ρc2 and ε due
to the perfect fluid hypothesis.

Upon introducing the rest-mass density current

Jμ = ρuμ, (26)

we can write the conservation equation for the rest mass as
(cf. Eq. (20))

∇̂μ J
μ = 0, ⇔ Dρ = 0. (27)

Furthermore, Eq. (19) permits simplifying the expressions of
the canonical stress-energy tensor (3) and of the combined
stress-energy tensor (5b), which read as, respectively,

T
αβ = T αβ

perf + Φαβ − ∇λ(μ
αβλ), (28a)

Θαβ = T αβ
perf + Φαβ + χ

2
Sαβ. (28b)

Therefore, from Eq. (7a), we have

∇ν

(
Tμν

perf + Φμν − ∇λμ
μνλ
)

= 2T λν
perf S

μ
νλ

+ 2ΦλνS
μνλ − 2∇γ (μλν

γ )Sμνλ − τνρσ R
μσνρ. (29)

The dynamics of the perfect fluid can be examined via
Eqs. (27) and (29), supplemented by Eq. (7b). In this way,
we obtain a system of highly-non-linear differential equa-
tions, dubbed cardinal equations of the hydrodynamics in
EC theory, which can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∇̂μ J
μ = 0, (30a)

∇νT
μν

perf + ∇νΦ
μν − ∇ν∇λ(μ

μνλ)

−2T λν
perf S

μ
νλ − 2ΦλνS

μνλ

+2∇γ (μλν
γ )Sμνλ + τνρσ R

μσνρ = 0, (30b)

∇λτ
λ

μν − T[μν] = 0. (30c)
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Equation (30b) can be evaluated in the directions orthogo-
nal (by means of the projection operator (21)) and parallel to
the fluid four-velocity. The former components give theEuler
equation in EC theory, while the latter the energy-balance
law. Furthermore, Eq. (30c) leads to the rotational equations
of the fluid motion.

The system (30) comprises, in general, 11 independent
equations and at most 26 unknowns, which are represented
by: the 3 components of the fluid four-velocity (the fourth one
is constrained by the normalization condition uμuμ = −c2),
the rest-mass density ρ, the internal energy density ε, the
pressure P , and (at most) the 20 independent components of
the spin angular momentum tensor τ

μν
λ . Indeed, the inde-

pendent components of the torsion tensor S μν
λ have been

lowered to 20 by virtue of the hypothesis (11) [66] and hence
also τ

μν
λ has (at most) 20 independent components. This

is in agreement with the physical content of the EC theory,
where the torsion tensor is the geometrical counterpart of the
spin of matter, encoded by the tensor τ

μν
λ . In the worst case,

S μν
λ can be determined once the 20 components of τ

μν
λ are

known, but, as we will see in the next section, this number
can be drastically reduced by assigning a suitable functional
form for τ

μν
λ .

It is clear that the system (30) is in general not closed,
since there is no balance between the number of independent
equations and unknowns. However, this not a drawback of
the model, which, on the contrary, can reveal a rich dynam-
ical structure. In order to supply the missing equations and
correctly characterize the structure of the fluid under inves-
tigation, constitutive equations must be added to the system
(30), e.g., P = P (ρ, ε), P = P(ε), ρ = ρ(ε).

A fundamental and general aspect of our approach relies
on the possibility of describing the spin effects inside the fluid
by exploiting all kinds of (relativistic) spin models. Indeed,
the heart of this pattern consists in providing the functional
form of Φαβ and ταβγ , which is equivalent to assign T αβ

and μαβγ . In general, these two unknowns play a crucial
physical and geometrical role in the EC gravity framework.
Indeed, we can distinguish the following two classes: (1)
spin-geometry, represented by either ταβγ or μαβγ (skew-
symmetric quantities), which rule the torsion field Sμν

λ; (2)
mass-geometry, described by either Φαβ or T αβ (symmetric
quantities), which shape the metric tensor gμν .

3.2 The Weyssenhoff fluid

This section is devoted to the description of the Weyssenhoff
fluid. In Sect. 3.2.1, we retrace the historical ideas behind
Weyssenhoff approach, since they are useful for its full com-
prehension. In Sect. 3.2.2, we present the model and the
related dynamical equations. We will see that it can be read-
ily analyzed within our general framework put forth in Sect.

3.1. A short digression on the first thermodynamic law is
contained in Sect. 3.2.3.

3.2.1 Historical introduction to the fluid with spin

The study of matter in its microphysical aspects can be tack-
led following different strategies framed either in quantum
models or from the standpoint of classical vision. Due to
the arguments developed in this paper, it is more suitable to
follow the latter approach, where the structure of physical
systems is derived starting from relativistic theories.

We consider what in the early literature was dubbed free
spin-particle, namely a material particle endowed with spin
and on which no force, apart from the gravitational pull,
acts [67,86,87]. We pursue the route paved by the “Krakow
school” in the years 1937–1947, characterized by the pro-
lific scientific activity of several Polish physicists, like M.
Mathisson, J. Lubański, J. Weyssenhoff, and A. Raabe. In
1927, Einstein and Gromer derived the dynamical equations
of a free particle from the equations of the gravitational field
as the singularities in this field [88]. In 1937, inspired by these
ideas, Mathisson and Lubański deduced the equations of
motion of a free spin-particle through a variational principle
in the case of a linearized gravitational field [86,87,89,90].
This new dynamics exhibits two peculiarities: (1) in the clas-
sical limit, it does not reduce to the Newton laws of motion,
since it keeps an additional term depending on the internal
angular momentum or spin of the particle; (2) the presence of
spin generates dynamical equations of the third order. How-
ever, Mathisson did not immediately realize that his results
were equivalent to those previously published in 1926 by
the Russian physicist Frenkel [91]. Indeed, the latter author,
after a discussion with Pauli, who showed him a letter by
Thomas on the famous “precession factor 1/2” [92], became
interested in deriving the equations of motion for a spinning
electron, which coincide exactly with those of a free spin-
particle only if the terms depending on the electromagnetic
field vanish. In 1947, after the Second World War, Weyssen-
hoff and Raabe proposed a third different method to obtain
the equations of a free spin-particle. These authors showed
that their results agree with those derived by Frenkel and
Mathisson [67]. However, their approach is more rigorous,
since it is constructed by exploiting fundamental concepts
from continuous mechanics and GR. In addition, the final
equations are presented in a much simpler form thanks to
the introduction of the linear energy-momentum four-vector
[67].

The last approach is the most used in the literature to
derive the equations of the incoherent spinning fluid. For this
reason, it is also called Weyssenhoff(-Raabe) fluid. Having
defined sαβ as the spin density per unit rest-volume, we split
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it into two three-dimensional vectors

s = (s23, s31, s12), (31a)

q = (s10, s20, s30). (31b)

The fundamental hypothesis behind the Weyssenhoff fluid
is that the vector q vanishes in the rest system of the fluid,
which translates in having the covariant relation [67,91]

sαβuβ = 0, (32)

since the fluid velocity uα = (u0, u) has vanishing spa-
tial components when evaluated in the fluid rest frame. This
hypothesis, also known in the literature as Frenkel condition
since it was first employed by Frenkel, arises from the fol-
lowing practical needs: (1) simplifying and closing the set of
differential equations underlying the dynamics by matching
the numbers of unknowns and equations; (2) letting s be the
vector which encodes the real physical degrees of freedom,
since q can be gauged away by an appropriate choice of a
coordinate system.

Equation (32) can be written in three-dimensional form as

q = 1

c
u × s, (33)

from which it follows

q · u = 0. (34)

The vectors s and q have the same transformation prop-
erties of the magnetic and the electric fields, respectively.
Therefore, the Frenkel condition physically tells us that sαβ

is “purely magnetic”, meaning that its electric component
vanishes in the rest-frame coordinate system.

3.2.2 The model

We consider the Weyssenhoff semiclassical model of a neu-
tral spinning perfect fluid in the framework of EC theory
[68,69,78,93–96].

Following the general approach devised in Sect. 3.1, a spe-
cific fluid can be characterized by assigning the spin angular
momentum tensor ταβ

γ and the symmetric tensor Φαβ . The
former, is given by [69]

ταβ
γ = sαβu

γ , (35)

sαβ = s[αβ] being the spin density tensor, which is con-
strained, due to the hypothesis (11), to satisfy

ταβ
β = sαβ uβ = 0, (36)

i.e., the Frenkel condition (cf. Eq. (32)). This assumption
permits several considerable simplifications. First of all, the
torsion and contortion tensors can be written as

Sλ
μν = χ

2

(
τλ
μν

)
, (37a)

K α
μν = χ

2

(−τα
μν + τα

νμ − τα
μν

)
, (37b)

respectively; furthermore, the EC time derivative of sμν does
not involve contortion terms and reads as (cf. Eq. (23))

Dsμν = ∇̂λ

(
sμνu

λ
) ; (38)

finally, we can write the useful identity

uμ
(
Dsμν

) = −aμsμν, (39)

where the acceleration aμ is the same as in GR, i.e.,

aμ = uλ∇̂λu
μ = u̇μ. (40)

The tensor Φαβ of the Weyssenhoff fluid is given by [69]

Φαβ = 2

(
uμuγ

c2 − δγ
μ

)
∇̂γ

[
sμ(αuβ)

]

− χ
(
s2uαuβ + c2sα

λ s
βλ
)

, (41)

where s2 ≡ sαβsαβ is the spin density scalar, satisfying the
condition Ds2 = 0. Therefore, from Eq. (41), jointly with
Eqs. (5c), (24), and (35), we have

T αβ = e
uαuβ

c2 + Pαβ P + 2

(
uμuγ

c2 − δγ
μ

)
∇̂γ

[
sμ(αuβ)

]

− χ
(
s2uαuβ + c2sα

λ s
βλ
)

, (42)

Sαβ = 2c2sα
λ s

βλ + s2uαuβ − 1

2
s2c2gαβ, (43)

and hence the explicit expressions of the canonical and the
combined energy-momentum tensors are, respectively, (cf.
Eq. (28))

T
αβ = (euα − 2aσ s

σα
) uβ

c2 + Pαβ P, (44a)

Θαβ =
( e

c2 − χ

2
s2
)
uαuβ + Pαβ P − χc2

4
s2gαβ

+ 2

(
uμuγ

c2 − δγ
μ

)
∇̂γ

[
sμ(αuβ)

]
. (44b)

The general form of the four-momentum density is

pα = (−pμu
μ)

uα

c2 + �α, (45)
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where �α is a spacelike vector orthogonal touα . An inspection
of Eq. (44a) suggests �α = −2aσ sσα/c2 and hence

pα = 1

c2

(
euα − 2aσ s

σα
)
, (46)

upon exploiting the relation e = −pαuα [69].
By substituting Eq. (46) in Eq. (44a), we recover the

usual form of the canonical energy-momentum tensor for
the Weyssenhoff fluid [78], i.e.,

T
αβ = pαuβ + Pαβ P. (47)

The internal structure of the fluid is described in terms of
the rest-mass density ρ and the internal energy density ε. The
total energy density e can be written as (cf. Eq. (25))

e ≡ e(ρ, s, sμν) = ρc2 + ε(ρ, s, sμν), (48)

where s denotes the specific entropy (i.e., the entropy per
unit mass). The functional dependence of ε partially resem-
bles that of classical physics, apart from the presence of
sμν , which embodies the new contribution due to quantum
mechanical effects and is specific of the EC theory.

We suppose that the fluid is adiabatic and that the rest
mass of the system is conserved. The first hypothesis can be
written as [85,97]

ṡ = 0, (49)

whereas the second one is represented by Eq. (30a).
The translational equations pertaining to the fluid dynam-

ics can be obtained from Eq. (30b), along with Eqs. (2), (35),
(37), and (41). As pointed out before, the projection along
the fluid four-velocity uμ gives the energy-balance law (or
energy-conservation equation), which upon exploiting Eq.
(30a) reads as

ε̇ + (ε + P) ∇̂νu
ν = 0, (50)

whereas the projection onto the hypersurface orthogonal to
uμ gives the Euler equation, which after some algebra can
be written as

Pν
μ∂ν P + 1

c2 (P + e) aμ − 2

c2 ∇̂ν

(
uνaρsρμ

)

+ χaλsλρs
ρ
μ = −sνρu

σ Rνρ
μσ .

(51)

We note that, for sμν = 0, Eq. (51) reduces to the Euler
equation of GR [17,85].

Bearing in mind Eqs (30c), (35), (37), and (44a), we find
that the rotational fluid motion is ruled by

Dsμν = aσ

c2

(
uμsσν − uνsσμ

)
, (52)

where we have exploited Eq. (46). Since the tensor sμν has in
general six independent components, the Frenkel condition
(36) is crucial to correctly account for the three true dynami-
cal degrees of freedom associated with the spin of a particle.
For this reason, Eq. (52) gives rise to three independent equa-
tions.

As discussed in Sect. 3.1, the system of the cardinal hydro-
dynamic equations can be closed once the needed constitutive
equations are provided. Therefore, the full set of differential
equations governing the Weyssenhoff fluid dynamics is (see
Eqs. (27) and (49)–(52))

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dρ = 0, (53a)

Pν
μ∂νP + 1

c2 (P + e) aμ − 2

c2 ∇̂ν

(
uνaρsρμ

)

+χaλsλρs
ρ

μ + sνρu
σ R νρ

μσ = 0, (53b)

Dsμν − aσ

c2

(
uμsσν − uνsσμ

) = 0, (53c)

ε̇ + (ε + P) ∇̂νu
ν = 0, (53d)

ṡ = 0, (53e)

P = P(ρ, ε). (53f)

The above system contains ten independent equations and
exactly ten unknowns, i.e., the three components of the fluid
velocity uμ, the rest-mass density ρ, the internal energy den-
sity ε, the specific entropy s, the isotropic pressure P , and
the three independent components of sμν . It is also worth
noting that it explicitly includes an equation describing the
behaviour of s (cf. Eq. (53e)). This is due to the fact that,
unlike GR [17,85], in EC theory Eqs. (53a) and (53d) do not
imply that the fluid evolves adiabatically (see Sect. 3.2.3).

In conclusion, the closed self-consistent system of gravity-
matter equations is represented by EC field equations (5)
supplemented by the set (53).

3.2.3 The first thermodynamic law

In the study of the hydrodynamics, it is important to inves-
tigate the implications of the energy-conservation equation
(53d) at thermodynamic level [69,85]. However, we note that
this analysis does not provide additional constraining equa-
tions to the system (53), but it allows to better understand
how the fluid behaves in EC theory.

The first thermodynamic law for a spinning fluid can be
written as [69,93,96,98]

dΠ = P

ρ2 dρ + θds + 1

2

ωμν

ρ
dsμν, (54)

where

Π ≡ Π(ρ, s, sμν) ≡ ε

ρ
, (55)
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is the specific internal energy, and

(
∂Π

∂ρ

)

s,sμν

≡ P

ρ2 , (56a)

(
∂Π

∂s

)

ρ,sμν

≡ θ, (56b)

(
∂Π

∂sμν

)

ρ,s

≡ 1

2

ωμν

ρ
, (56c)

θ being the temperature and ωμν the thermodynamic variable
conjugated to sμν coinciding with the microscopic angular
velocity of the fluid.

Starting from the continuity Eq. (53a) and the energy-
balance law (53d), we obtain

Π̇ − P

ρ2 ρ̇ = 0, (57)

which, once compared with Eq. (54), gives

θ ṡ + 1

2

ωμν

ρ
ṡμν = 0. (58)

Bearing in mind Eq. (53e), it follows that

ωμν ṡμν = 0. (59)

At this point, some remarks are in order. First of all, as pointed
out before, it is known that in GR a perfect fluid evolves
adiabatically [17,85]. This result can be proved by following
the same procedure as the one we have adopted in this section,
i.e., by exploiting the fluid continuity equation jointly with
the energy-balance law. On the contrary, in EC theory the
same calculations do not imply the adiabatic-flow hypothesis
as long as the spin contribution in Eq. (58) does not vanish.
This shows that in EC hydrodynamics the adiabatic condition
must be explicitly imposed via Eq. (53e), which in fact has
been employed to obtain the final relation (59).

3.3 Post-Newtonian analysis of the Weyssenhoff fluid
dynamics

In this section, we perform the PN investigation of the
Weyssenhoff fluid dynamics, which is useful both for the
calculations carried out in Sect. 4 and, in general, for several
other applications. In Sect. 3.3.1, we outline the PN compu-
tational scheme. In Sect. 3.3.2, we present the PN expansion
of some basic quantities which are then exploited to compute
the 0PN and 1PN orders of Eq. (53) in Sects. 3.3.3 and 3.3.4,
respectively.

3.3.1 The computational program

The EC hydrodynamics, although equipped with the sim-
plifying constraint Sαβ

β = 0, gives rise to a set of cou-
pled nonlinear differential equations (cf. Eq. (30)). Also in
the more specific case, where we consider the Weyssenhoff
fluid endowed with the Frenkel condition (36), the nonlinear
nature and the differential structure still endure (cf. Eq. (53)),
and we are, in general, not able to solve the mathematical
problem exactly. An analytical solution may be determined
by imposing symmetry requirements, like time independence
and spatial isotropy (as it occurs, for example, in GR for the
Schwarzschild metric). However, this approach reveals to be
very limited in its range of applications, where time variabil-
ity and spatial anisotropies occur frequently.

Since the EC gravity framework is geometrically more
tangled than GR theory, our goal is therefore not to search
for further exact solutions, but rather to take advantage of a
comprehensive and solid approximation method, which goes
beyond the symmetries and the particular functional form of
the starting problem. The mathematical formulation of the
GW generation problem naturally suggests us to resort to the
perturbation theory (see Refs. [99–101], for further details
and examples). This approach permits to determine a solu-
tion under the form of a power series of a small parameter
ε (represented, in our case, by ε = 1/c), where expressions
of higher powers of ε become smaller as the order increases.
The approximate perturbed solution is obtained by truncat-
ing such a series at a certain established order, suggested
either by the observational sensitivity of the phenomenon
under investigation or, from a theoretical point of view, by
the computational complexity (i.e., gradually increasing the
PN order calculations).

The strategy to build up the solution via the PN formal-
ism relies on expanding all the involved quantities, and then
extracting the coefficients of the expansions which are use-
ful to construct the differential equations at each PN level. In
this way, we obtain a series ofPN problems, where the lowest
order permits obtaining the classical equations with eventual
spin corrections, and the higher terms provide the successive
perturbative corrections. The method is therefore iteratively
based on first determining (either analytically or numerically)
the solution of the 0PN problem, and then proceeding order
by order to solve (either analytically or numerically) the suc-
cessive PN problems. Indeed, to compute the N th PN order,
we need to use the parameters determined in the previous
iterations. Finally, gathering all these quantities together we
can provide an approximate solution to the original problem
up to the desired PN level.

It is important to remark that we apply this computational
program in the derivation of the 0PN and 1PN orders of
Eq. (53) without solving them. As we will see, the obtained
results will be useful in Sect. 4.
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3.3.2 Preliminary: expansions of basic quantities

Given the harmonic coordinates xμ = (ct, x) (cf. Eq. (9b)),
the 1PN series of the metric tensor, expressed in terms of the
retarded potentials V and Vi , reads as [66]

g00 = −e−2V/c2 + O(c−6), (60a)

g0i = − 4

c3 Vi + O(c−5), (60b)

gi j = δi j

(
1 + 2

c2 V

)
+ O(c−4), (60c)

where (cf. Eq. (15))

V (t, x) = G
∫

d3 y
|x − y|σ (t − |x − y|/c, y) , (61a)

Vi (t, x) = G
∫

d3 y
|x − y|σi (t − |x − y|/c. y) . (61b)

The expansion of Eq. (61) for small retardation effects gives

V = U + 1

2c2 ∂2
t X + O

(
c−3
)

, (62a)

Vi = Ui + O
(
c−2
)

, (62b)

the potentials U , Ui , and the superpotential X being given
by

U (t, x) = G
∫

d3 y
|x − y|σ (t, y) , (63a)

Ui (t, x) = G
∫

d3 y
|x − y|σi (t, y) , (63b)

X (t, x) = G
∫

d3 y |x − y| σ (t, y) , (63c)

respectively. It should be noted that the term of order c−3 in
Eq. (62a) is a function of time only.

Stating from Eq. (60), one easily obtains the PN structure
of the Christoffel symbols (see Ref. [99], for details.)

The spin angular momentum tensor τμν
λ admits, in general,

the following PN series [66]:

τ i00 = (0)τ i00 + (2)τ i00 + O
(
c−2
)

,

τ
i j
0 = (1)τ

i j
0 + (3)τ

i j
0 + O

(
c−3
)

,

τ
j0
i = (1)τ

j0
i + (3)τ

j0
i + O

(
c−3
)

,

τ
jk
i = (2)τ

jk
i + (4)τ

jk
i + O

(
c−4
)

, (64)

where (n)τ
μν
λ ∼ M̄

d̄2

v̄n

cn−2 (v̄ and M̄ being some typical inter-

nal velocity and mass of the source, respectively). Therefore,
the tensor (5c) has the PN structure

S00 = (0)S00 + (1)S00 + (2)S00 + O
(
c−2
)

,

S0i = (0.5)S0i + (1.5)S0i + (2.5)S0i + O
(
c−3
)

,

S i j = (0)S i j + (1)S i j + (2)S i j + O
(
c−2
)

, (65)

with (n)Sμν ∼ M̄2

d̄4

v̄2n

c2n−4 .

Starting from Eq. (64) along with the PN expression of
the Christoffel symbols, it is possible to derive the PN form
of the torsion and contortion tensors (37), the connection
coefficients (1), and the Riemann tensor (8). The components
of the the Riemann tensor needed at 1PN level are reported
in Appendix A.

Bearing in mind the definition of the spin angular momen-
tum of a test particle in EC theory (see Eq. (40) of Ref. [66]),
for the spin density tensor we find

s0i = (0)s0i + (2)s0i + O(c−3),

si j = (1)si j + (3)si j + O(c−4),
(66)

where (n)sμν indicates a factor going like
M̄ v̄n

d̄2cn−1
. If we write

the fluid four-velocity equivalently as

uμ = γ (c, v) , (67)

(with γ ≡ u0

c and v ≡ dx
dt ) its PN expansion can be eas-

ily constructed by means of Eq. (60) and the normalization
condition. Therefore, the Frenkel condition (36) leads to

(0)si0
(

(1)ui + (3)ui
)

+ (2)si0
(1)ui + O(c−3) = 0, (68a)

(0)s j0
(

(0)u0 + (2)u0
)

+ (2)s j0
(0)u0

+ (1)s ji
(1)ui + O(c−2) = 0, (68b)

where (n)uμ denotes a term of order
v̄n

cn−1 . We note that

Eq. (68a) results from a linear combination of Eq. (68b)

with coefficients v j/c (recalling that (n)u j = (n−1)u0

c v j with
n = 1, 3). This implies that the latter gives rise to three inde-
pendent relations which can be used to gauge away the com-
ponents s0i of the spin density tensor at different PN orders
in the equations of motion (cf. Sect. 3.2.1 and the discussion
below Eq. (52)). Indeed, from Eq. (68b) we obtain to leading
order and to next-to-leading order, respectively,

(0)s0i = O(c−1), (69a)
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(0)s0i

[
1 + 1

c2

(
V + v2

2

)]
+ (2)s0i = (1)sik

vk

c
+ O(c−3),

(69b)

or, equivalently,

(0)s0i = 0, (70a)

(2)s0i =
(1)sikvk

c
. (70b)

From the above equations it is clear that no components s0i

are present at leading order, whereas they can be written in
terms of (1)sik at next-to-leading order. Furthermore, we see
that Eq. (68a) simply states that the three-vectors s0i and ui

are perpendicular, but gives no information about the form
of s0i . On the contrary, Eq. (68b) allows to write explicitly,
at each PN level, an expression for s0i which turns out to be
both orthogonal to ui and vanishing in the fluid rest frame.

For our forthcoming calculations, it is useful to express
Eq. (53a) in an equivalent form. Indeed, bearing in mind
Eq. (67), and upon introducing the rescaled mass density
ρ� ≡ γ

√−gρ [17], Eq. (53a) yields the (exact) equation

∂tρ
� + ∂ j

(
ρ�v j

)
= 0, (71)

the relation between ρ� and the proper rest-mass density ρ

being

ρ� = ρ

[
1 + 1

c2

(
1

2
v2 + 3V

)
+ O(c−4)

]
. (72)

The PN expansion of the first thermodynamic law (54)
reads as (cf. Eq. (55))

ρ� dε

dt
= (ε + P)

dρ�

dt
+ (ρ�

)2
θ

ds

dt
+ 1

2
ρ�ωαβ

dsαβ

dt

+ O
(
c−2
)

, (73)

where

d

dt
f (t, x) = ∂t f + vk∂k f, (74)

and we have exploited Eq. (72), the relations ω0i = O
(
c−1
)

and ωi j = O
(
c0
)

(see Refs. [69,109] for details), and we
have supposed that both θ and s are O(c0) quantities.

3.3.3 Equations of motion: 0PN expansion

The results contained in Sect. 3.3.2 allow us to study the
hydrodynamic equations (53) within the PN formalism. In
our investigation, the rest-mass conservation Eq. (53a) will
be replaced by its equivalent expression (71) and will not

be expanded. Furthermore, by means of Eq. (67), Eq. (53e)
assumes the exact form

ds

dt
= 0, (75)

and the constitutive Eq. (53f) will be simply written in terms
of ρ� (cf. Eq. (72)). Therefore, by computing the 0PN expan-
sion of the remaining equations of the system (53) and by
exploiting the Frenkel condition (70a), we end up, after a
lengthy calculation, with the following system pertaining to
the dynamics of a Weyssenhoff fluid with 0PN accuracy:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ
� + ∂ j (v

jρ�) = 0, (76a)

ρ�

(
dvi

dt
− ∂iU

)
+ ∂i P = O

(
c−2
)

, (76b)

d

dt

(
(1)si j

)
+ (1)si j∂kv

k = O
(
c−2
)

, (76c)

dε

dt
+ (ε + P) ∂kv

k = O
(
c−2
)

, (76d)

ds

dt
= 0, (76e)

P = P(ρ�, ε). (76f)

Equation (76b) originates from the 0PN expansion of Eq.
(53b) and represents the Euler equation of the Newtonian
theory. Equation (76c) is the leading-order piece of Eq. (53c).
At this level, only the derivativeDsi j gives a contribution and
we end up with a homogeneous continuity equation for (1)si j .
Finally, Eq. (76d) is the 0PN-accurate energy-conservation
Eq. (53d).

3.3.4 Equations of motion: 1PN expansion

In this section, we present the 1PN expressions of Eqs. (53b)–
(53d).

The 1PN Euler equation (53b) reads as

ρ�

(
dvi

dt
− ∂iU

)
+ ∂i P + vi

c2

dP

dt
− 1

2c2 ρ�∂i∂
2
t X

+ 1

c2

(
dvi

dt
− ∂iU

)[
P + ε − ρ�

(
v2

2
+ 3U

)]

+ ρ�

c2

{(
v2

2
+ 3U

)
dvi

dt
+ 2vi

dU

dt
− 4

dUi

dt

+ d

dt

[
vi
(
U + v2

2

)]
− 2v2∂iU + 4vl∂iUl

}

− 2

c2

{
d

dt

[
(1)ski

(
dvk

dt
− ∂kU

)]

+
(

dvk

dt
− ∂kU

)
(1)ski∂lv

l
}

+ 2

c2
(1)s jk

[
− vk∂i∂ jU
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+ vl
(
δi[k∂ j]∂l + δl[ j∂k]∂i

)
U + χ c4

2
∂[k (1)si | j]

+ 2∂i∂[ jUk] + δi[k∂ j]∂tU
]

= O
(
c−4
)

, (77)

whereas at 1PN order the spin Eq. (53c) becomes allowdis-
playbreaks

d

dt

(
(1)si j

)
+ (1)si j∂kv

k

+ d

dt

[
(1)si j
c2

(
v2

2
+U

)
+ (3)si j

]

+
[

(1)si j
c2

(
v2

2
+U

)
+ (3)si j

]

∂kv
k

+ 1

c2

dvk

dt

[
v j (1)ski − vi (1)sk j

]

+ 2

c2

[
(1)ski

(
∂kU j − ∂ jUk + vk∂ jU − v j

2
∂kU

)

− (1)sk j

(
∂kUi − ∂iUk + vk∂iU − vi

2
∂kU

)]

+ 1

c2

(
vi (1)sl j∂lU − v j (1)sli∂lU

)
= O

(
c−4
)

. (78)

In deriving Eqs. (77) and (78), we have exploited Eqs. (62)
and (70).

The energy-balance law (53d) yields, at 1PN order,

dε

dt
+ (ε + P) ∂ jv

j + 1

c2

(
v2

2
+U

)
dε

dt

+ (ε + P)

c2

[
d

dt

(
v2

2
+ 3U

)
+
(

v2

2
+U

)
∂kv

k
]

= O
(
c−4
)

, (79)

where we have exploited Eq. (62a).
Therefore, the Weyssenhoff fluid is described, at 1PN

order, by the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ
� + ∂ j (v

jρ�) = 0, (80a)

Equation (77), (80b)

Equation (78), (80c)

Equation (79), (80d)
ds

dt
= 0, (80e)

P = P
(
ρ�, ε

)
. (80f)

4 The point-particle limit of the Weyssenhoff fluid

The final outcome of the PN treatment contained in Sect. 3 is
represented by Eqs. (76) and (80), which completely deter-
mine the behaviour of the Weyssenhoff fluid at 0PN and 1PN
level, respectively. In general, these two sets comprise both
partial and integro-differential equations, whose resolution,
either analytically or via numerical means, turns out to be
highly challenging. This makes, as a consequence, the eval-
uation of the radiative moments parametrizing the asymp-
totic waveform and the radiated power (cf. Sect. 2.4) rather
demanding.

A widely used approach in the literature which offers a
way around this issue consists in employing the so-called
point-particle procedure, where the fluid configuration is
supposed to be described by a collection of separated point-
like components, usually refereed to as “bodies”. Within
this pattern, the equations underlying the fluid dynamics
become less complex as they are turned into ordinary differ-
ential equations. For these reasons, in Sect. 4.1, we introduce
the point-particle procedure and work out the 1PN-accurate
expressions of the radiative moments. As we will see, the
results of Sect. 3 will be crucial, since they allow us to go
from the fine-grained description to the coarse-grained pic-
ture of the Weyssenhoff fluid. Finally, in Sect. 4.2, we deal
with the special case of binary systems, which are known to
be the main candidates of GW events in high-energy astro-
physics.

4.1 The point-particle procedure

The evaluation of the 1PN-accurate total power of emis-
sion (18) requires the knowledge of the 1PN radiative mass
quadrupole moment Ui j as well as the 0PN mass octupole
Ui jk and current quadrupole Vi j ; on the other hand, the 1PN
asymptotic waveform (16) can be worked out once the 0PN
mass 24-poleUi jkl and current octupole Vi jk are also known.
Having solved the 1PN GW generation problem [66], we
know that these are related to the source multipole moments
via Eqs. (13) and (14). Therefore, in order to compute the
point-particle limit of the required radiative moments, we
first need to determine their fine-grained expression, i.e., the
form assumed in the case of a continuous distribution of mat-
ter represented by the Weyssenhoff fluid, see Sect. 4.1.1.
Then, after some premises outlined in Sects. 4.1.2 and 4.1.3,
the point-particle limit is performed in Sect. 4.1.4.

4.1.1 The fine-grained form of the radiative moments

In this section, we calculate the fine-grained expression of the
radiative moments occurring in the total power of emission
and the wave amplitude for the specific case of the Weyssen-
hoff fluid. This entails, first of all, the computation of the PN
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expansion of metric stress-energy tensor (42) and the tensor
(43). With the help of the results of Sect. 3.3.2, the former
yields

(0)T 00 = ρc2, (81a)

(2)T 00 = ε + ρ(2U + v2) − 2∂i

(
(1)sikv

k
)

, (81b)

(1)T 0i = c
[
ρvi − ∂k

(
(1)ski

)]
, (81c)

(2)T i j = ρviv j + δi j P − 2∂k

(
(1)sk(iv

j)
)

, (81d)

whereas the latter

(0)S00 = (0.5)S0i = (0)S i j = 0, (82)

where we have exploited Eqs. (62a) and (70), and (n)Tμν

stands for the contributions in Tμν of order
M̄ v̄n

d̄3cn−2
.

By means of Eqs. (72), (81), and (82), we have

σ = ρ�� + ρv − 4

c2 ∂k

(
sklv

l
)

+ O
(
c−4
)

, (83a)

σi = ρ�vi − ∂kski + O
(
c−2
)

, (83b)

σi i = ρ�

(
v2 + 3P

ρ�

)
− 2∂k

(
sklv

l
)

+ O
(
c−2
)

, (83c)

where σ and σi have been defined in Eq. (15), while σi j ≡
Θ i j [66], and, inspired by Ref. [102],

ρ�� ≡ ρ�

[
1 + 1

c2

(
v2

2
+ Π − U

2

)]
, (84)

ρv ≡ 1

c2 ρ�

(
v2 − U

2
+ 3P

ρ�

)
, (85)

with (see Eq. (63a))

U (t, x) = G
∫

d3x′

|x − x′|ρ
�
(
t, x′)+ O

(
c−2
)

. (86)

It should be noticed that the spin contributions in Eq. (83)
appear both explicitly, via the terms involving si j , and implic-
itly, through, e.g., the specific internal energy Π (see Eq.
(55)).

For our forthcoming analysis, it is useful to define a new
set of STF mass-type radiative moments I rad

L and current-
type radiative moments J rad

L according to

UL ≡ (l)
I rad
L , VL ≡ (l)

J rad
L . (87)

Bearing in mind the above equations jointly with Eqs. (13),
(14), and (83), the 1PN fine-grained form of I rad

i j , and the

leading-order expressions of I rad
i jk , I rad

i jkl , J rad
i j , and J rad

i jk are
given by, respectively,

I rad
i j (t) =

∫
d3x
[
x 〈i j〉 (ρ�� + ρv

)

+ 4

c2

(
sil x

j + s jl x
i − 2

3
δi j skl x

k
)

vl
]

+ 1

14c2

d2

dt2

∫
d3x x 〈i j〉x2ρ�

− 20

21c2

d

dt

∫
d3x
[
x 〈i jk〉vkρ�

+ 7

5

(
sil x

j + s jl x
i
)
xl
]

+ O(c−3), (88)

I rad
i jk (t) =

∫
d3x x 〈i jk〉ρ� + O(c−2), (89)

I rad
i jkl(t) =

∫
d3x x 〈i jkl〉ρ� + O(c−2), (90)

J rad
i j (t) =

∫
d3x εkl〈i x j〉kρ�vl

× 1

2

∫
d3x

[(
2εkl(i s j)l

)
xk +

(
2εkl(i x j)

)
skl
]

+ O(c−2), (91)

J rad
i jk (t) =

∫
d3x
[
ρ�x 〈i x jεk〉lpxlv p + 2snpδ

〈i
n x

jεk〉lpxl

+ slpx
〈i x jεk〉lp

]
+ O(c−2), (92)

where we have employed the Gauss theorem to discard the
integrals containing a total divergence (recall that, in our
model, both the spin angular momentum tensor (35) and the
metric energy-momentum tensor (42) have compact support)
and, in Eq. (91), the identity

εkl〈iqx j〉k = εkl〈i x j〉k = εkl(i x j)k . (93)

4.1.2 The ADM mass and the center of mass

In Ref. [66], we have demonstrated that the mass monopole
moment I , which can be read off Eq. (14a) with l = 0, gives
rise to a generalized notion of ADM mass (or total mass-
energy) of the fluid system and can be written as

I (t) ≡ MADM (t) =
∫

d3x
[
σ + 1

c2

(
1

2
σU − σi i

)]

+ O(c−4), (94)

and, in addition, satisfies

d

dt
MADM = 0. (95)
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In the case of the Weyssenhoff fluid, we find, with the help
of Eq. (83),

MADM =
∫

d3x ρ�� + O(c−4), (96)

where we have exploited Gauss theorem to discard total
derivatives occurring in σ and σi i (cf. Eqs. (83a) and (83c)).
For this reason, Eq. (96) resembles formally the GR expres-
sion [17]. The ADM mass (96) assumes the equivalent form

MADM ≡ mmat + E

c2 , (97)

where

E = T + Ep + Eint + O(c−2), (98)

and

mmat ≡
∫

d3x ρ�, (99a)

T ≡ 1

2

∫
d3x ρ�v2, (99b)

Ep ≡ −1

2

∫
d3x ρ�U, (99c)

Eint ≡
∫

d3x ρ�Π, (99d)

denote the total material mass, the translational kinetic
energy, the total gravitational potential energy, and the total
internal energy of the fluid system, respectively. It should
be noted that the contribution of the spin kinetic energy is
included in Eq. (99d). Furthermore, Eqs. (71), (76b), and

dΠ

dt
= P

ρ�2

dρ�

dt
+ O(c−2), (100)

which can be obtained through Eqs. (57) and (72), assure
the constancy of the ADM mass (97), in agreement with Eq.
(95).

The case l = 1 of Eq. (14a) yields the definition of the
dipole moment, which for the Weyssenhoff fluid becomes

Ii (t) =
∫

d3x xiρ�� + 2

c2

∫
d3x silvl + O(c−4), (101)

where we have exploited the Gauss theorem.
The position of the center of mass of the fluid system,

which is defined as Ri ≡ Ii/MADM [17,80], reads as

Ri = 1

MADM

[∫
d3x xiρ�� + 2

c2

∫
d3x silvl

]
+ O(c−4),

(102)

and satisfies the relation

MADM
dRi

dt
= P i + O(c−4), (103)

P i being the conservedADM three-momentum of the system
(see Ref. [66] for further details).

It should be noted that an explicit spin correction term
occurs in Eq. (102). This is similar to the contribution appear-
ing in the analysis of spinning bodies within GR [17,103].
However, we recall the basic difference between EC model
and Einstein theory, as in the former the spin refers to the
intrinsic quantum angular momentum of elementary parti-
cles, while in the latter the spin is related to a macroscopic
rotation [78].

4.1.3 The coarse-grained description

We are now ready to apply the results of the previous sections
to the framework where the fine-grained description of the
Weyssenhoff fluid is replaced by the coarse-grained picture
involving separated fluid elements, which are characterized
by a small number of variables [17,102]. Therefore, we con-
sider a setup where the fluid distribution breaks up into a col-
lection of N weakly self-gravitating, slowly moving, widely
separated, and isolated spinning components surrounded by
vacuum regions of space. Each component, referred to as
body, is assigned a label A = 1, 2, . . . , N , and, in our
hypotheses, the ratio α ≡ λ/δ � 1 (λ and δ being the typi-
cal size of A and the typical separation between the bodies,
respectively). The coordinate fluid density can be expressed
as ρ� = ∑

A ρ�
A, where the sum extends over each body,

and ρ�
A vanishes everywhere except within the volume occu-

pied by the body A. Furthermore, the (conserved) material
mass of A is mmat

A = ∫
A d3x ρ�, the domain of integration

being a time-independent portion of the three-dimensional
space which extends slightly beyond the volume occupied
by the body A and does not include nor intersect another
body within the system (recall that ρ� = ρ�

A within such a
domain).

Similarly, the spin density tensor si j is zero in the vacuum
exterior of the bodies, whereas si j = s Ai j inside the volume
of the body A. The spin vector sA of A is defined by

ε jki s
i
A(t) =

∫

A
d3x s Ajk, (104)

and, owing to Eq. (76c), is conserved modulo O
(
c−2
)

cor-
rections, i.e.,

d

dt
siA = O

(
c−2
)

. (105)
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Driven by Eqs. (102) and (96), the center of mass worldline
r iA (t) of the body A is defined as

r iA (t) = 1

mA

∫

A
d3x xiρ�

A

[

1 + 1

c2

(
w2

A

2
+ ΠA − uA

2

)]

+ 2

mAc2

∫

A
d3x s Ail w

l
A + O(c−4), (106)

where

mA =
∫

A
d3x ρ�

A

[

1 + 1

c2

(
w2

A

2
+ ΠA − uA

2

)]

+ O(c−4), (107)

is the total mass-energy of the body, which, along the same
lines as for MADM, can be shown to be conserved. In Eqs.
(106) and (107), ΠA denotes the specific internal energy of
A; furthermore, uA is the internal (self-gravity) potential,
which is readily obtained from the Newtonian potential (86);
finally, upon introducing the vector yiA ≡ xi − r iA (t), mea-
suring the position of a fluid element relative to the center
of mass r iA (t), wi

A is given by wi
A ≡ d

dt y
i
A = vi − viA (t),

and represents the velocity of this fluid element relative to
the body velocity viA (t) ≡ d

dt r
i
A (t). The above definitions

permit renormalizing the internal selfgravity of A into the
mass mA.

4.1.4 The point-particle limit of the radiative moment

At this stage, we have all the ingredients needed to perform
the point-particle limit of the radiative moments (88)–(92).
For this reason we employ the same techniques as in Ref.
[102].

In EC theory, the following crucial identities hold:

∫

A
d3 yAy

i
Aρ�

A

[

1 + 1

c2

(
w2

A

2
+ ΠA − uA

2

)]

+ 2

c2

∫

A
d3 yAs

A
il w

l
A = O

(
c−4
)

, (108a)
∫

A
d3 yAy

i
Aρ�

A = O
(
c−2
)

, (108b)
∫

A
d3 yAwi

Aρ�
A = O

(
c−2
)

, (108c)

1

2

d2

dt2

∫

A
d3 yA y

2
Aρ�

A

=
∫

A
d3 yAρ�

A

(
w2

A − uA

2
+ 3PA

ρ�
A

)
+ O

(
c−2
)

, (108d)

where PA is the pressure within body A and all functions
are supposed to depend on t and the position yA + r A(t).
Equation (108a) is a consequence of Eqs. (106) and (107);

Eq. (108b) stems from Eq. (108a) and, in turn, Eq. (108c) can
be obtained by evaluating the time derivative of Eq. (108b);
finally, Eq. (108d) derives from the virial theorem, which
reads as (cf. Eq. (83))

1

2

d2

dt2

∫
d3x x2σ =

∫
d3x

(
σ j j − 1

2
σU

)
+ O

(
c−2
)

.

(109)

By supposing that all bodies are spherically symmetric and
in static equilibrium, we find that the point-particle counter-
part of the radiative mass quadrupole moment (88) reads as

I rad
i j =

∑

A

mA

⎧
⎨

⎩
r 〈i
A r

j〉
A

⎡

⎣1 + 1

c2

⎛

⎝3

2
v2
A

−
∑

B �=A

GmB

|r A − rB |

⎞

⎠

⎤

⎦+ 1

14c2

d2

dt2

(
r2
Ar

〈i
A r

j〉
A

)

− 20

21c2

d

dt

(
vkAr

〈i
A r

j
Ar

k〉
A

)
⎫
⎬

⎭

+
∑

A

{
4

c2

[
(vA × sA)i r j

A + (vA × sA) j r iA

− 2

3
δi j (vA × sA) · r A

]
− 4

3c2

d

dt

[
(r A × sA)i r j

A

+ (r A × sA) j r iA

]}
+ O

(
c−3
)

; (110)

moreover, for the the mass octupole and current quadrupole,
the point-particle procedure yields, respectively,

I rad
i jk =

∑

A

mAr
〈i
A r

j
Ar

k〉
A + O

(
c−2
)

, (111)

J rad
i j =

∑

A

mAεkl〈i r j〉
A rkAvlA

+ 1

2

∑

A

[
3
(
siAr

j
A + s jAr

i
A

)
− 2δi j sA · r A

]
+ O

(
c−2
)

;

(112)

the mass 24-pole and the current octupole give, respectively,

I rad
i jkl =

∑

A

mAr
〈i
A r

j
Ar

k
Ar

l〉
A + O

(
c−2
)

, (113)

J rad
i jk =

∑

A

[
mAr

〈i
A r

j
Aεk〉lpr lAv

p
A + 2

(
rnAs

q
A δ〈i

n r
j
Aδk〉q

− r A · sA δ〈i
n r

j
Aδk〉n + sqA r

〈i
A r

j
Aδk〉q

)]
+ O

(
c−2
)

.

(114)
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Equations (110)–(112) are required for the computation
of the instantaneous luminosity (18), whereas the whole set
of radiative moments (110)–(114) appears in the asymptotic
waveform (16) (cf. Eq. (87)). It is clear that EC theory brings
in explicit corrections due to the spin sA of the body A in
I rad
i j , J rad

i j , and J rad
i jk .

We recall that, in deriving Eqs. (110)–(114), we have
neglected terms O

(
α2
)
.

4.2 Binary systems

In this section, we set out the features of the special case
of binary systems, i.e., a collection of N = 2 weakly self-
gravitating, slowly moving, and widely separated spinning
fluid bodies having masses m1, m2 (with m1 ≥ m2), posi-
tion vectors r1, r2, velocities v1, v2, and spin vectors s1,
s2. Let M ≡ m1 + m2, μ ≡ m1m2

M , and ν ≡ μ
M denote the

total mass, the reduced mass, and the symmetric mass ratio
of the system, respectively. As in the Newtonian framework
[17,104], the study of the dynamics is simplified once the
origin of the coordinate frame is attached to the barycenter
Ri of the system and the position of each body is determined
in terms of their separation vector. Accordingly, we introduce
the instantaneous relative position vector R and the instan-
taneous relative velocity vector V 4 of the two objects

R(t) ≡ r1(t) − r2(t), (115a)

V (t) ≡ d

dt
R(t) = v1(t) − v2(t). (115b)

Moreover, starting from Eq. (102), we find that, within the
coarse-grained description of the fluid and resorting to the
same techniques as in the last sections, the position of the
barycenter of a binary system is defined by (we discard, like
before, O

(
α2
)

corrections)

MADMRi = m1

[
1 + 1

2c2

(
v2

1 − Gm2

R

)]
r i1

+ 2

c2 (v1 × s1)
i

+ m2

[
1 + 1

2c2

(
v2

2 − Gm1

R

)]
r i2

+ 2

c2 (v2 × s2)
i + O

(
c−4
)

. (116)

By employing a post-Galilean transformation (i.e., a particu-
lar subclass of general PN transformations [17]), it is always
possible to define the center of mass frame of the system by

4 The relative velocity vector has the same notation as the retarded
potential V (cf. Eq. (61a)); however, the latter will not be considered in
the following sections, and hence no confusion arises in using the same
symbol for both quantities.

setting Ri = 0 and P i = 0. Therefore, by means of Eq.
(116), we find that in a mass-centered coordinate system the
motion of the bodies is related to their relative motion by the
following relations:

r1(t) =
[

μ

m1
+ μ(m1 − m2)

2M2c2

(
V 2 − GM

R

)]
R(t)

+ 2ν

c2

[
s1(t)

m1
− s2(t)

m2

]
× V (t) + O

(
c−4
)

, (117a)

r2(t) =
[
− μ

m2
+ μ(m1 − m2)

2M2c2

(
V 2 − GM

R

)]
R(t)

+ 2ν

c2

[
s1(t)

m1
− s2(t)

m2

]
× V (t) + O

(
c−4
)

. (117b)

If we replace Eq. (117) in Eqs. (110)–(114), we find that
the general form of the radiative moments for binaries of
spinning objects reads as

I rad
i j = μR〈i j〉

[
1 + 3

2c2 (1 − 3ν)V 2 − (1 − 2ν)

c2

GM

R

]

− μ(1 − 3ν)

21c2

[
20

d

dt
(Vk R〈i jk〉) − 3

2

d2

dt2 (R2R〈i j〉)
]

+ 8μ2

c2

{
(V × s1)

〈i R j〉

m2
1

+ (V × s2)
〈i R j〉

m2
2

−1

3

d

dt

[
(R × s1)

(i R j)

m2
1

+ (R × s2)
(i R j)

m2
2

]}

+ O
(
c−3
)

, (118)

I rad
i jk = −μ

√
1 − 4νR〈i jk〉 + O

(
c−2
)

, (119)

J rad
i j = −μ

√
1 − 4νεkl〈i R j〉kVl

+ 3μ

(
s〈i

1 R j〉

m1
− s〈i

2 R j〉

m2

)

+ O
(
c−2
)

, (120)

I rad
i jkl = μ(1 − 3ν)R〈i jkl〉 + O

(
c−2
)

, (121)

J rad
i jk = μ(1 − 3ν)R〈i jεk〉lp RlVp

+
2∑

A=1

2μ2

m2
A

(
RnsqA δ〈i

n R jδk〉q − R · sA δ〈i
n R jδk〉n

+ sqA R〈i R jδk〉q
)

+ O
(
c−2
)

. (122)

The above equations completely determine the 1PN gen-
eration of GWs from binary systems in EC theory.

5 First application to binary neutron star systems

The theoretical pattern developed in the previous sections
will be now applied to the study of binary NSs. A full analy-
sis requires the knowledge of the 1PN dynamics in EC the-
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ory, which, at the moment, is not at our disposal. Despite
that, we can provide a first estimation by following a hybrid
approach. We exploit the EC definition of center of mass and
the general expression of the EC radiative moments obtained
in Sect. 4.2, along with the conservation equation of the spin
vector (cf. Eqs. (76c) and (105)); furthermore, we consider
thequasi-elliptic 1PN-accurateGRmotionof a binary system
determined by Damour and Deruelle [104] (see Sect. 5.1).

We note that, in the full EC framework, only the time
derivatives of the radiative mass quadrupole moment I rad

i j

will contain new O(c−2) spin-dependent terms, whereas the
other moments will remain unaffected. Indeed, as pointed out
before, the EC 0PN-accurate translational motion coincides
with the Newtonian Euler equation owing to the Frenkel con-
dition (cf. Eq. (76b)).

In this hybrid setup, we obtain the explicit expressions of
the flux and the gravitational waveform (see Sect. 5.2). We
conclude the section with a numerical estimate concerning
the EC corrections by examining binary NS systems (see
Sect. 5.3).

Any effect of GW back-reaction on the source dynam-
ics will be neglected. This hypothesis, which is valid to a
good approximation in some astrophysical GW sources (see
e.g. Refs. [105,106]), permits to derive a first model for the
description of GW phenomena in EC theory. Hereafter, we
no longer mention O

(
c−n
)

terms.

5.1 The Damour–Deruelle solution

We consider, within the hybrid approach set forth above, a
binary system consisting of two PN widely separated spin-
ning bodies having masses m1, m2 and spin vectors s1, s2.
As pointed out before, we assume that their dynamics is
governed by the Damour–Deruelle solution, which we now
briefly outline.

The problem of solving the motion of the binary system
can be reduced to the simpler equivalent task of determining
the relative motion in the PN center of mass frame (which
can be defined by means of the results of Sect. 4.2). For this
reason, given a harmonic coordinate system, we define, in
the same way as before, the instantaneous relative position
vector R and the instantaneous relative velocity vector V (cf.
Eq. (115)).

The total energy E and the total angular momentum J
of the system (which are conserved in the Damour–Deruelle
dynamics) read as, respectively,

E = 1

2
V 2 − GM

R
+ 1

c2

{
3

8
V 4(1 − 3ν)

+ GM

2R

[

(3 + ν)V 2 + ν

(
R · V
R

)2

+ GM

R

]}
, (123)

J = R × V
{

1 + 1

c2

[
(1 − 3ν)

2
V 2 + (3 + ν)

GM

R

]}
.

(124)

The motion takes place in the plane orthogonal to J , which
is henceforth supposed to be directed along the z-axis. We
can thus introduce polar coordinates (R, ϕ) and write the
equation of the PN relative orbit as

R(ϕ) =
(
aR − Gμ

2c2

)
1 − e2

ϕ

1 + eϕ cos
(

ϕ−ϕin
K

) + Gμ

2c2 , (125)

where ϕin is the initial angle and the following orbital param-
eters have been introduced:

aR = −GM

2E

[
1 − 1

2
(ν − 7)

E

c2

]
, (126a)

eR =

⎧
⎪⎨

⎪⎩
1 + 2E

G2M2

[
1 + 5

2 (ν − 3) E
c2

]

[
J 2 + (ν − 6)G

2M2

c2

]−1

⎫
⎪⎬

⎪⎭

1/2

, (126b)

eϕ = eR

(
1 + Gμ

2aRc2

)
, (126c)

K = J

(J 2 − 6G2M2/c2)1/2 . (126d)

5.2 The flux and the gravitational waveform

It follows from the definition (87) that the instantaneous lumi-
nosity (18) attains the equivalent form (restoring, for a while,
the O(c−n) terms)

F(t) = G

c5

{
1

5

(3)

I rad
i j

(3)

I rad
i j + 1

c2

[
1

189

(4)

I rad
i jk

(4)

I rad
i jk

+ 16

45

(3)

J rad
i j

(3)

J rad
i j

]
+ O(c−4)

}
, (127)

whereas the asymptotic amplitude (16) becomes

H TT
i j (xμ) = 2G

c4|x|Pi jkl(n)

{
(2)

I rad
kl (u)

+ 1

c

[
1

3
na

(3)

I rad
kla(u) + 4

3
nbεab(k

(2)

J rad
l)a (u)

]

+ 1

c2

[
1

12
nanb

(4)

I rad
klab(u)

+1

2
nbncεab(k

(3)

J rad
l)ac(u)

]
+ O(c−3)

}
, (128)

where u ≡ t − |x|/c, n ≡ x/|x|, and the radiative moments
have been derived in Eqs. (118)–(122). We also note that in
Eqs. (127) and (128) we have exploited the fact that, at this
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order, there is no difference between the harmonic and the
radiative coordinates [80,81].

At this stage, we can compute F and H TT
11 by exploiting

the Damour–Deruelle solution.
The instantaneous luminosity (127) can be written as

F(t) = FGR(t) + FEC(t), (129)

where the expression of the GR flux can be found in Ref.
[102], while the EC contribution can be obtained after a
lengthy calculation by exploiting the results of Sects. 4.2
and 5.1 . In the hypotheses that the motion occurs in the
xy-plane (i.e., Rz = Vz = 0) and the spins of the two
bodies are aligned with the total angular momentum J (i.e.,
sx1 = sx2 = sy1 = sy2 = 0), we find for the EC luminosity

FEC(t) = 8G3

15c7R8

{
8GμMR

(
m2

1sz2 + m2
2sz1

)

× (RxVy − RyVx ) + m3
1sz2

M

[
m2R

3
x

(
4V 2

x Vy

+58V 3
y

)
+ R2

x

(
3sz2

(
4V 2

x + V 2
y

)

−2m2RyVx

(
2V 2

x + 83V 2
y

))

+ 2Rx RyVy

(
m2Ry

(
83V 2

x + 2V 2
y

)
+ 9sz2Vx

)

+ R2
y

(
3sz2

(
V 2
x + 4V 2

y

)
− 2m2RyVx

(
29V 2

x

+2V 2
y

))]
+ 3m3

2s
2
z1

M

[
R2
x

(
4V 2

x + V 2
y

)

+ 6Rx RyVxVy + R2
y

(
V 2
x + 4V 2

y

)]

+ μm1

[
R2
x

(
4V 2

x + V 2
y

)
+ 6Rx RyVxVy

+ R2
y

(
V 2
x + 4V 2

y

)] (−2m2RxVy(sz1 + sz2)

+2m2Rysz1Vx + 2m2Rysz2Vx − 6sz1sz2 + 3s2
z2

)

+ μm2sz1

[
V 2
x

(
3
(

4R2
x + R2

y

)
(sz1 − 2sz2)

−2m2RyVx

(
2R2

x + 29R2
y

))

+ V 2
y

(
3
(
R2
x + 4R2

y

)

×(sz1 − 2sz2) − 2m2RyVx

(
83R2

x + 2R2
y

))

+ 2RxVxVy

(
2m2R

2
x Vx + 83m2R

2
yVx

+9Ry(sz1 − 2sz2)
)

+ 2m2RxV
3
y

(
29R2

x + 2R2
y

)]}
. (130)

The general form of the gravitational waveform can be
obtained after a long calculation by considering the time
derivatives of the radiative moments appearing in Eq. (128).
In this section, we give the component H TT

11 of the asymp-
totic amplitude in the hypotheses that the GW propagates
along the direction n = (0, 0, 1) and, like before, the spins
of the two bodies are aligned and orthogonal to the xy-plane
of motion. The resulting expression can be written as the sum
of the GR and the EC contributions, i.e., (in order to ease the
notation, henceforth we write H11 ≡ H TT

11 )

H11(t) = H GR
11 (t) + H EC

11 (t), (131)

where

H GR
11 (t) = Gμ

3dsoR6c6

{
29G2M2

(
R4
x − R4

y

)
+ 3R6

×
(
V 2
x − V 2

y

)[

2c2 + V 2

(
μ2

m2
1

+ μ2

m2
2

− ν

)]

− 3GMR

[
2c2
(
R4
x − R4

y

)
+
(

μ2

m2
2

+ μ2

m2
1

)

×
(

2Rx RyVxVy

(
R2
y − R2

x

)

+ 3R2
x R

2
y

(
V 2
y − V 2

x

)
+ R4

x

(
2V 2

y − 3V 2
x

)

+ R4
y

(
3V 2

y − 2V 2
x

))
+ ν
(

2Rx RyVxVy

×
(
R2
x − R2

y

)
− 17R2

x R
2
y

(
V 2
x − V 2

y

)

+ R4
x

(
7V 2

y − 8V 2
x

)
+ R4

y

(
8V 2

y − 7V 2
x

))]}
,

(132)

H EC
11 (t) = − 8μG2

c6dsoR5

(
m2

m1
sz1 + m1

m2
sz2

)[
R2
x

(
2RxVy

−RyVx
)+ R2

y

(
2RyVx − RxVy

)
]
, (133)

dso being the (constant) distance to the astrophysical source.

5.3 Numerical estimates

In this section, we deal with binary NS systems and provide
some numerical estimates of the contributions introduced by
EC model in the flux and the waveform. In Sect. 5.3.1, we set
the parameters which are necessary to perform the numeri-
cal computations. These are then discussed in Sect. 5.3.2.
Hereafter, a dot signifies a differentiation with respect to the
t variable.
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5.3.1 Parameter setting

The set of initial conditions characterizing our numerical
investigation is represented by (Rin, ϕin, Ṙin, ϕ̇in). The initial
radius Rin is expressed in terms of Rg, with Rg ≡ GM/c2;
for the initial angle and radial velocity, we assume ϕin = 0
and Ṙin = 0, respectively; ϕ̇in is a fraction of the Keplerian
velocity, i.e.,

ϕ̇in = β

√
GM

R3
in

, 0 < β ≤ 1, (134)

where for β = 1 the Newtonian eccentricity e0 vanishes
(leading to circular orbits), whereas in the limiting case
β → 0 we have e0 → 1. Therefore, given these premises,
the initial conditions are specified once we assign M , Rin,
and β.

A crucial point of our analysis regards the spins of the
NSs. These are modeled as follows

szi = nh̄
4π

3

(
6Gmi

c2

)3

, i = 1, 2, (135)

where, following Ref. [66], n = 1044 m−3 is estimated as
the inverse of the nucleon volume. Therefore, if the masses
m1 and m2 are known, then the spin components sz1 and sz2

can be immediately calculated.
In order to gain useful information about the binary sys-

tem’s dynamics, we determine the minimum, average, and
maximum values of the relative radius (i.e., Rmin, Rav, Rmax).
Furthermore, to perform some consistency checks, we define
a set of parameters, which must be less than 1 due to the
hypotheses underlying our model; first of all, the slow-motion
condition demands that we compute the maximum values
vmax

1 /c, vmax
2 /c attained by the ratios v1/c, v2/c, respectively

(the velocities v1 and v2 of the two bodies can be obtained
starting from Eq. (117)); to verify whether the two bodies
remain widely separated, we calculate

αi = 12Gmi/c2

Rmin
, i = 1, 2; (136)

finally, we monitor the strength of the gravitational field
through the factor

γ = GM

c2Rmin
. (137)

The values of the aforementioned variables, along with
other quantities characterizing the binary NS system to be
investigated in Sect. 5.3.2, are listed in Table 1.

Table 1 List of parameters of the binary NS system analyzed in Sect.
5.3.2

Parameters Units Values

m1 M� 1.60

m2 M� 1.17

M M� 2.77

sz1 h̄ 1.21 × 1057

sz2 h̄ 4.73 × 1056

dso Mpc 40.00

Rg m 4.11 × 103

Rin Rg 2.00 × 105

β 0.70

e0 0.51

Rmin Rg 0.65 × 105

Rav Rg 1.14 × 105

Rmax Rg 2.00 × 105

vmax
1 c 2.03 × 10−3

vmax
2 c 2.79 × 10−3

α1 1.07 × 10−4

α2 7.81 × 10−5

γ 1.54 × 10−5

5.3.2 Discussion of the results

We consider a gravitational system consisting of two NSs,
whose parameters can be found in Table 1.

The order of magnitude of the spin components sz1 and sz2

(in units of h̄), physically representing the number of neutrons
inside the NSs, is consistent with the values reported in the lit-
erature (which are of the order of 1057 neutrons) [107]; more-
over, the magnitude of the parameters vmax

1 , vmax
2 , α1, α2, γ

confirms that the slow-motion, wide-separation, and weak-
field hypotheses are fulfilled.

In order to estimate the EC contributions to the GR flux
and waveform, we define (cf. Eqs. (129)–(133))

EF (t) ≡
∣
∣∣∣
FEC(t)

FGR(t)

∣
∣∣∣ , (138a)

EH (t) ≡ |H GR
11 (t)| − |H EC

11 (t)|. (138b)

The above quantities, along with the function R(t) repre-
senting the relative distance of the NSs, are shown in Fig. 1.
From the plot of EF , we see that the spin effects become
more significant at the closest point of approach between the
objects, where the gravitational field becomes more intense.
This agrees with the spirit of EC theory, whose importance
is expected to increase in the strong-gravity regime. In our
example, the average contributions predicted by EC theory
are smaller than GR ones by a factor of 10−23. This difference
is consistent with the fact that the bodies are widely separated
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Fig. 1 Plots of the functions R(t), EF (t), and EH (t). Upper panel:
time evolution of the modulus of the relative radius (cf. Eq. (125)); the
horizontal red dashed line corresponds to its average value (see Table 1).
Middle panel: trend of EF (t) (see Eq. (138a)). Lower panel: behavior
of EH (t) (cf. Eq. (138b)); the horizontal red dashed line represents the
modulus of the mean EC contribution, which amounts to 9.31 × 10−53

during their dynamical evolution. The EC corrections can be
also figured out starting from the trend of EH . As shown
in Fig. 1, it goes from its minimum to its maximum values
when the NSs get closer. Moreover, this function vanishes as
soon asH11(t) = 0 (cf. Eqs. (131) and (138b)). These points
indicate when GR and EC effects become comparable and in
our example we have |H GR

11 | = |H EC
11 | ∼ 10−52. The same

information, expressed in terms of ϕ, can be inferred from
the zeroes of H11(ϕ), which occur at ϕ ≈ 1

4π, 3
4π, 7

4π, 11
4 π

(see Fig. 2; the functional form of H11(ϕ) can be promptly
deduced from Eqs. (131)–(133)).

6 Conclusions

This work configures as a natural continuation of the research
program started out in Ref. [66], where we have solved the
GW generation problem in EC model at 1PN level by resort-

Fig. 2 Gravitational waveform H11 as a function of the azimuthal
angle ϕ. The ϕ-intercepts occurr at ϕ = 0.31π, 0.81π, 1.34π, 1.79π

ing to the Blanchet–Damour formalism. This general treat-
ment finds an explicit application here, where the matter
source is described by the Weyssenhoff fluid.

The structure of the paper is sketched in Fig. 3. In Sect. 2,
we have summarized the key steps of the previous article.
In this framework, the spinning PN source is supposed to
be a generic hydrodynamical fluid system. For this reason,
in Sect. 3.1, we have introduced the fundamental pillars of
the EC hydrodynamics verifying the simplifying hypothesis
that the torsion tensor has a vanishing trace, i.e., Sαβ

β = 0.
Subsequently, we have modeled the spin effects inside matter
by employing the Weyssenhoff model of a semiclassical ideal
spinning fluid supplemented by the Frenkel condition (see
Sect. 3.2). The study of the Weyssenhoff fluid within the PN
approximation scheme, representing a fundamental tool of
the Blanchet–Damour formalism, is contained in Sect. 3.3.
Both at 0PN and at 1PN level, the dynamics is ruled by a
system of partial and integro-differential equations, whose
resolution is extremely demanding. A less involved pattern
can be obtained if we employ the point-particle procedure,
which allows to characterize the fluid dynamics in terms of
ordinary differential equations by going from a continuous
picture to a discrete description of the system (see Sect. 4).
We have then derived, within EC theory and for the particular
case of binary systems, the 1PN formula (116) of the center
of mass position and the general expressions (118)–(122) of
the radiative multipole moments. Starting from these results
and the conservation law (105) of the spin vector, we have
resorted to the Damour–Deruelle solution in GR (which has
been briefly discussed in Sect. 5.1) to set up a hybrid approach
for dealing with binaries of spinning PN NSs, where we have
provided some numerical estimates of the EC contributions
to the flux and the waveform (see Sects. 5.2 and 5.3).

This paper contains some new theoretical results, which
can be summarized as follows:
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Fig. 3 Flowchart of the paper. “Previous paper” refers to Ref. [66]

(1) development of a general pattern (subject to the hypothe-
sis Sαβ

β = 0) for the hydrodynamics in EC theory, where
the spin effects are modeled through the tensors Φαβ and
τμν

λ (cf. Eq. (30));
(2) PN investigation of the Weyssenhoff fluid, which predicts

at 0PN level that: (a) the translational motion matches
the Newtonian Euler equation (see Eq. (76b)); (b) the
rotational dynamics reduces to a homogeneous continu-
ity equation (see Eq. (76c)); (c) the expressions of the
luminosity and the gravitational waveform reproduce for-
mally the corresponding GR quadrupole formulas (cf.
Eqs. (127) and (128));

(3) derivation of the radiative multipole moments for the
Weyssenhoff fluid both in the fine-grained and the coarse-
grained (for an N -body and a binary system) descriptions,
see Eqs. (88)–(92), (110)–(114), and (118)–(122);

(4) computation, for the first time in the literature, of the
numerical value of the NS spin as conceived in the
Weyssenhoff semiclassical model (cf. Eq. (135));

(5) hybrid scheme for providing a first estimate of the EC
contributions to the GWs emitted by a binary NS system.

The calculation of the parameter n appearing in the spin
formula (135) has led to established results for the num-
ber of neutrons inside a NS. Moreover, our investigation has
revealed that EC contributions become more important when
the gravitational field strength grows (see Fig. 1). Therefore,
we could in principle extend our hybrid scheme to binary BH
systems and evaluate the corrections to the radiated power
and the asymptotic amplitude foretold by EC model. If we
suppose that, similarly to Eq. (135), the BH spin can be writ-
ten as

s = nh̄
4π

3

(
2Gm

c2

)3

, (139)

(m being the BH mass) then we obtain that the EC effects are,
for known astrophysical masses (i.e., 6M� � M � 1010M�,
with M the total mass of the system), between 23 and 13
orders of magnitude lower than GR ones. These differences
are justified by the fact that our approach is restricted to com-
pact binaries in their early inspiralling stage. Despite that, our
analysis permits to infer that EC corrections can fulfill a rel-
evant role in the later evolution phases. This topic might be
useful for testing quantum phenomena in the strong-gravity
regime, and it is worth examining it in a separate paper. Fur-
thermore, GW phenomena could lead to interesting impli-
cations in the context of generalized EC theories. In partic-
ular, Ref. [108] puts forth a model where the gravitational
Lagrangian has an additional quadratic-torsion term whose
coupling constant differs from the Newtonian gravitational
constant G. This new contribution changes the interaction
strength between torsion and matter fields and hence novel
results can be found also in the GW framework.

In the context of the GR pole-dipole approximation, the
lowest-order “classical spin” contributions to the mass-type
and current-type radiative moments emerge at 1.5PN and
0.5PN level, respectively [80,110]. Therefore, in EC theory
we recover formally the same expressions as in GR, see Eqs.
(118)–(122). This is a consequence of the Frenkel condition
(70) and the ensuing PN expansions of the tensors Tμν and
Sμν (see Eqs. (81) and (82)). If we define the Kerr angular
momentum asJ = Gm2

c a with a ∈ (0, 1), we can provide an
estimate of the effects introduced by EC theory on a single
body by evaluating the ratio s/J by means of Eqs. (135)
and (139). If we choose a = 0.5, in the NS case we have
s/J ∼ 10−11 for m ∈ [1.1, 2.2] M�, while for a BH s/J ∼
(10−12 − 10−2) with m ∈ [3, 1011] M�.

In conclusion, this paper prepares the ground for a sys-
tematic study of spinning PN binaries in EC theory. This
entails a comprehensive investigation of the 1PN dynamics
of binary systems in EC theory, which deserves consideration
in a separate paper.
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Appendix A: Post-Newtonian expansion of the Riemann
tensor

We report selected PN expansions of the Riemann tensor
components (see Eq. (8)). These are given by

(3)Rk
l0i = ∂i

(
χ

2
c (1)skl + 4

c3 ∂[l Vk]
)

+ 2

c3 δi[k∂l]∂t V, (A.1)

(2)Rk
li j = 2

c2

(
δk[ j∂i]∂l + δl[i∂ j]∂k

)
V, (A.2)

(2)Rk
00i = 1

c2 ∂i∂kV, (A.3)

(4)Rk
00i = −χ

[
∂i

(
(1)skpv

p
)

+ 1

2
∂t (

(1)ski )

]

+ 1

c4 δki [∂l V ∂l V + ∂t∂t V ]

− 1

c4 [4V ∂k∂i V + 3∂kV ∂i V

+2∂t (∂kVi + ∂i Vk)] , (A.4)
(3)Rk

0i j = χ c∂[ j (1)sk|i]

+ 2

c3

(
2∂k∂[i V j] + δk[ j∂i]∂t V

)
, (A.5)

where (n)Rμ
ναβ ∼

(
v̄

c

)n 1

d̄2
and we have used the Frenkel

condition (70). The above equations give contributions in Eq.
(77).
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