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Abstract We study neutral massless scalar field perturba-
tions around an extreme dilaton black hole in 2 + 1 dimen-
sions: the wave equations of the massless scalar field is shown
to be exactly solvable in terms of Whittaker functions. Thus,
the quasinormal modes are computed exactly and shown to
be purely imaginary: we show the existence of stable and
unstable modes. Interestingly, the quasinormal modes do not
depend on the black holes parameters and the fundamental
mode is always unstable and depends only on the param-
eters of the test field. Also, we determine the quasinormal
frequencies via the improved asymptotic iteration method
which shows a good agreement with the analytical results.
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1 Introduction

Extreme black holes have special geometry since their inner
horizon and outer horizon coincide. Also, surface gravity
of such black holes is zero, leading to zero temperature.
Furthermore, semi classically it has been shown that some
extreme black holes have zero entropy (even though the
area is non-zero) [1]. Extreme black holes are important
objects due to many reasons. They are considered impor-
tant in supergravity theories, string theory and M theory.
For example, extreme Reissner–Nordström black hole can be
embedded in N = 2 supergravity theory [2]. Some supersym-
metric black holes (such as the extreme Reissner–Nordström
black hole) do have extra symmetry that non-extreme black
holes don’t have: they admit Killing spinor fields leading
to the extreme black hole to be invariant under supersym-
metric transformations. Extreme black holes take a special
place in counting micro states related to entropy in black
holes: large class of extremal supersymmetric black holes
in string theory have been studied in the counting of mir-
crostates [3,4].

The Quasinormal Modes (QNMs) and Quasinormal Fre-
quencies (QNFs) in black hole backgrounds has been studied
for many years starting from the pioneering work by Regge
and Wheeler [5–10]. Furthermore, recent detection of grav-
itational waves [11,12] have stimulated further the study of
such vibrations since QNM emerge as the final stage of large
coalescing objects.

While there are many works on QNM’s of non-extreme
black holes, there are only few works on extreme black holes
on the topic. The extreme rotating BTZ black hole was stud-
ied in [13] and was shown the absence of QNM frequen-
cies for scalar and spinor fields. In 4 dimensions, neutral
scalar field perturbations around the Reissner–Nordström
black hole was studied in [14]. Charged massless perturba-
tions around an extremal Reissner–Nordström black hole and
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to neutral massless perturbations around an extremal Kerr
black hole was studied in Ref. [15], and it was shown that
the QNMs spectrum presents a decay rate. Also, there are
studies about QNMs at the near extremal limit, where in gen-
eral it was shown that in this limit the near extremal modes
are dominant, and for uncharged scalar fields these modes
become purely imaginary, see [16–28].

The three-dimensional models of gravity have been
of great interest due to their simplicity over the four-
dimensional and higher-dimensional models, and since some
of their properties are shared by their higher-dimensional
analogs. The black hole considered in this paper is a solution
to the Einstein–Maxwell-dilaton gravity in 2 + 1 dimensions.
The corresponding action is given as follows,

S =
∫

d3x
√−g

[
R − 4(�φ)2 − e−4φFμνF

μν + 2e4φ�
]
. (1)

Here, R is the scalar curvature, � is treated as the cos-
mological constant, φ is the dilaton field and Fμν is the
Maxwell’s field strength. The action in Eq. (1) is confor-
mally related to the low-energy string action in 2 + 1 dimen-
sions. The dilaton field plays the role of the extra fields,
which naturally arises, for instance, in the compactifica-
tions from higher-dimensional models or from string the-
ory. These theories also have black hole solutions which
play an important role in revealing various aspects about
the geometry of spacetime and the quantization of grav-
ity, and also the physics related to string theory [29–
31].

In this paper, we will study the extreme dilaton black holes
in 2 + 1 dimensions for the above theory. In particular we will
study the propagation of neutral massless scalar fields around
the black hole. Some works related to QNM’s for dilaton
black holes are given in [32–49]. For the spacetime under
study the QNM spectrum is characterized by purely imag-
inary modes and we will show that the fundamental mode
depends only on the properties of the test field. Also, we dis-
cuss about the stability of the propagation of neutral mass-
less scalar fields in this extremal background. In addition, we
apply the improved Asymptotic Iteration Method (AIM) to
evaluate the QNFs numerically and we discuss about their
accuracy.

This work is organized as follows. In Sect. 2 we give a
brief review of three-dimensional extreme dilaton black hole.
Then, in Sect. 3 we study neutral massless scalar perturba-
tions and we present an exact solution to the wave equation
in Sect. 4, and to the QNMs in Sect. 5. Then, in Sect. 6 we
study the spectrum numerically by using the improved AIM
method. Finally, we conclude in Sect. 7.

2 Extreme dilaton black hole

Field equations for the action in Eq. (1) are,

Rμν = 2�gμνe
4φ + e−4φ(2FμρF

ρ
ν − gμνFλσ F

λσ )

+4(�μφ)(�νφ) (2)

�μ(e−4φFμν) = 0 (3)

4(�μ �μ φ) + 2e−4φF2 + 4e4φ� = 0 (4)

In [50], Chan and Mann derived static changed solutions to
the above action in Eq. (1) as,

ds2 = − f (r)dt2 + 4r2dr2

f (r)
+ r2dθ2,

f (r) =
(
−2Mr + 8�r2 + 8Q2

)
; φ = 1

4
ln

(
r

β

)
;

Frt = Q

r2 . (5)

As was discussed in [50], the above solutions represents a
black hole for M ≥ 8Q

√
� and � > 0. For M > 8Q

√
�,

the space-time has two horizons given by the zeros of gtt ;

r+ = M + √
M2 − 64Q2�

8�
;

r− = M − √
M2 − 64Q2�

8�
. (6)

The given black hole is also a solution to low energy string
action by a conformal transformation,

gString = e4φgEinstein . (7)

In this paper, we will focus on the extreme changed black
hole where M = 8Q

√
�. Then the function f (r) becomes,

f (r) = 8�(r − rh)
2, (8)

and the black hole has only one horizon given by,

rh = M

8�
. (9)

There is a time-like singularity at r = 0. As explained in [50],
the black hole space-time in neither de-Sitter (� < 0) nor
anti-de-Sitter (� > 0). The Hawking temperature TH = 0.

3 Neutral scalar perturbation of the extreme dilaton
black hole

In this section, we will develop the equations for a neutral
scalar field in the background of the extreme charged dilaton
black hole. The equation is similar to what was presented for
the non-extreme black hole in [54].
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The equation for a massless neutral scalar field in curved
space-time can be written as,

�μ �μ 
 = 0. (10)

Using the following ansatz,


 = eimθe−iωt ξ(r)√
r

(11)

Eq. (10) simplifies into the equation

(
d2

dr2∗
+ ω2 − V (r)

)
ξ(r∗) = 0. (12)

Here, V (r) is given by,

V (r) = f (r)

2r3/2

d

dr

(
f (r)

4r3/2

)
+ m2 f (r)

r2 . (13)

When expanded, V (r) is given as,

V (r) = 8m2� + 4�2 − 2m2M

r
+

(−3M2

8
+ m2M2

8�

)
1

r2

+ M3

16�r3 − 3M4

1024�2r4 . (14)

Also, r∗ is the tortoise coordinate computed as,

dr∗ = 2rdr

f (r)
⇒ r∗ = 1

4�

(
ln(r − rh) − rh

r − rh

)
. (15)

Note that when r → rh , r∗ → −∞ and for r → ∞,
r∗ → ∞. In Fig. 1, the potential V (r) is plotted as a function
of r∗. Now, a discussion about the behavior of the potential is
in order. Notice that the potential behaves like a step function
with it approaching a constant value. In fact the constant value
is V0 = 8m2� + 4�2. When a potential behaves as a step
function, the quasinormal modes are pure imaginary. This
was discussed in length in [51]. Another example where pure
imaginary quasinormal modes arise with such a step function
is the five dimensional dilaton black hole [52]. Hence just by
observing the from of the potential, one can predict that the
quasinormal modes for the extreme black hole will be pure
imaginary. In the next section, we will solve the equations
exactly and prove that is indeed the case.

4 Exact solutions to the scalar wave equation

In order to find exact solutions to the wave equation for the
massless scalar, we will revisit the Eq. (10) in Sect. 3 with
the ansatz,


 = e−iωt eimθ R(r) (16)

6 4 2 2 4
r

20

20

40
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80

100
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Fig. 1 The behavior of the potential V (r) plotted against r∗. Here,
M = 10,m = 2 and � = 2

Eq. (10) leads to the radial equation,

d

dr

(
f (r)

2

dR(r)

dr

)
+ 2r2

(
ω2

f (r)
− m2

r2

)
R(r) = 0. (17)

In order to solve the wave equation exactly, we will redefine
r coordinate of the Eq. (5) with a new variable x given by,

x =
(

rh
r − rh

)
. (18)

In the new coordinate system, x = 0 corresponds to r → ∞
and x = ∞ corresponds r = rh . With the new coordinate,
Eq. (17) becomes,

d2R

dx2 +
(

A

x2 + B

x
+ C

)
R = 0 (19)

where,

A = ω2

16�2 − m2

2�
,

B = ω2

8�2 ,

C = ω2

16�2 . (20)

The Eq. (19) resembles the Whittaker differential equation
given by [53],

d2R

dz2 +
(

1
4 − μ2

z2 + κ

z
− 1

4

)
R = 0. (21)

We will redefine the parameters κ and μ with α and β as,

κ = α; μ = β − 1

2
. (22)

We will replace all equations with α and β right after Eq. (27).
The reason to introduce the new parameters is to follow the
same notation followed with the computation done for the
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non-extreme black hole by the same author in [54]. The solu-
tions to the Whittaker equation in Eq. (18) are given by,

Mκ,μ(z) = e− z
2 z

1
2 +μM

[
1

2
+ μ − κ, 1 + 2μ, z

]
,

and

Mκ,−μ(z) = e− z
2 z

1
2 −μM

[
1

2
− μ − κ, 1 − 2μ, z

]
. (23)

The function M[a, b, z] is called the Kummer Function and
is the solution to the Kummer differential equation given by
[53],

z
d2F

dz2 + (b − z)
dF

dz
− aF = 0. (24)

Now, to transform the Eq. (19) to the Whittaker form, we will
reparametrize the coordinate x as

y = i2
√
Cx = iω

2�
x . (25)

Then the Eq. (19) takes the form,

d2R

dy2 +
(

1
4 − μ2

y2 + κ

y
− 1

4

)
R = 0, (26)

with

κ = iω

4�
; μ = i

2

√
ω2 − 8m2�

4�2 − 1. (27)

Note that we will take “+” sign without loss of generality.
Finally, by substituting the values of κ and μ in terms of
α and β, the general solution to the wave equation can be
written as

R(y) = C1e
− y

2 yβF[β − α, 2β, y]
+C2e

− y
2 y1−βF[1 − β − α, 2(1 − β), y]. (28)

Hence the general solution to the waves equation is,


(y, t, θ) = eimθe−iωt R(y). (29)

5 Quasinormal modes of the extreme dilaton black holes

Since the main objective of the paper is to find QNMs of the
extreme black hole, one needs to impose specific boundary
conditions to the general solution obtained in Sect. 4. The
solutions are analyzed closer to the horizon and at infinity to
obtain exact results for QNMs.

To compute QNMs of a black hole, two boundary condi-
tions are imposed. One is to impose the wave to be purely

ingoing at he horizon. The other is the boundary condition
for large r values. For asymptotically flat space-times, the
asymptotic boundary condition is for the field to be purely
out going. For non-asymptotically-flat space-times, there are
two possibilities: on is for the field to vanish and the other is
for the flux to vanish. We choose the field to vanish similar
to what was done in [54].

5.1 Solution at asymptotic region

First we will study what the solution is when r → ∞. Since
for large r , y → 0, the Kummer function M[a, b, y] → 1.
By substituting y → 0 to the exact solution obtained for
R(y), one obtain,

R(r → ∞, r → 0) ≈ C1y
β + C2y

1−β. (30)

Since,

y = iωrh
2�(r − rh)

(31)

for large r ,

y → iω̂

2�

(rh
r

)
(32)

the Eq. (30) can be written in terms of r as,

R(r → ∞) ≈ C1

(
iω̂

2�

)β (rh
r

)β + C2

(
iω̂

2�

)1−β (rh
r

)1−β

.

(33)

Now one need to determine which part of the solution in
Eq. (33) corresponds to the “ingoing” and “outgoing” respec-
tively. For that we will first find the tortoise coordinate r∗ in
terms of r at large r . Note that for large r , f (r) → 8�r2.
Hence the equation relating the tortoise coordinate r∗ and r
in Eq. (15) simplifies to,

dr∗ = dr

4�r
. (34)

The above can be integrated to obtain,

r∗ ≈ 1

4�
ln

(
r

rh

)
. (35)

Hence,

r ≈ rhe
4�r∗ . (36)
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Substituting r from Eq. (36) and β from Eq. (22) into the
Eq. (33), R(r → ∞) is rewritten as,

R(r → ∞) → C1

(
iω̂

2�

)β

e
−iωr∗

√
1− 4�2

ω2 ( 2m2
�

+1)−2�r∗

+C2

(
iω̂

2�

)1−β

e
iωr∗

√
1− 4�2

ω2 ( 2m2
�

+1)−2�r∗
. (37)

From the above one can conclude that the first term and
the second term represents the ingoing and outgoing waves
respectively. Since for QNMs, the ingoing amplitude has to
be zero, we chose C1 = 0. Hence the solution to the wave
equation becomes,

R(y) = C2e
− y

2 y1−βM[1 − β − α, 2(1 − β), y]. (38)

5.2 Solutions near the horizon

Now we can analyze the solution of the wave equation near
the horizon (r → rh , y → ∞). The Kummer function
M[a, c, y] has an expansion for large y as follows [53],

F[a, c, y] → ey ya−c �(c)

�(a)
+ e±iπa y−a �(c)

�(c − a)
. (39)

Note that the upper sign is taken if −π
2 < arg(y) < 3π

2 and
lower sign is chosen − 3π

2 < arg(y) < −π
2 . Since arg(y) =

π
2 the upper sign will be chosen. By substituting the above
expansion with the appropriate values for a and c in terms of
α and β, one obtain the function R(y) near the horizon as,

R(r → rh, y → ∞) → C2

(
ey/2y−α �(2 − 2β)

�(1 − β − α)

+e−y/2+iπ(1−β−α)yα �(2 − 2β)

�(1 − β + α)

)
. (40)

To determine which part of the above equation represents the
ingoing/outgoing, one has to introduce the tortoise coordinate
near the horizon. From Eq. (15), the tortoise coordinate near
the horizon can be approximated with,

r∗ ≈ 1

4�
ln(r − rh) → e−4�r∗ ≈ 1

(r − rh)
. (41)

By substituting y in terms of r∗ in Eq. (41), the radial function
R(r∗) approximates to,

R(r → rh, y → ∞) ≈ C2e
y
2

�(2 − 2β)

�(1 − β − α)

(
iω̂rh
2�

)−α

eiωr∗

+C2e
− y

2 +iπ(1−β−α) �(2 − 2β)

�(1 − β + α)

(
iω̂rh
2�

)α

e−iωr∗ . (42)

The first represents the outgoing waves and the second rep-
resents the ingoing wave at the horizon.

5.3 Quasinormal modes

Since the QNMs are defined with as purely ingoing waves at
the horizon, the outgoing terms has to be zero. SinceC2 
= 0,
the first term vanish only at the poles of the Gamma function,
�(1 −β −α). Note that the Gamma function �(x) has poles
at x = −n for n = 0, 1, 2 . . . . Hence to obtain QNMs, the
following relations has to hold.

1 − α − β = −n (43)

leading to,

β = (1 + n) − iω

4�
. (44)

By combining Eq. (43) and Eq. (44), one can solve for ω as,

ω = −2i

2n + 1

(
2�n(1 + n) − m2

)
. (45)

They are pure imaginary, do not depend on the black hole
parameters, and the decay rate increases when the cosmologi-
cal constant increases. Note that the fundamental mode n = 0
is unstable, and the decay rate depends only on the angular
number of the test field. Due to the minus sign in front, these
oscillations will be damped leading to stable perturbations
for 2�n(1 + n) > m2. However, for 2�n(1 + n) < m2, the
oscillations would lead to unstable modes.

In acoustic black holes, QNM’s for scalar field shows sim-
ilar properties [55]. There,

ω = − i

2

(n − 1)(n + 3)ã

n + 1
. (46)

For n = 0, ω is positive and will lead to exponentially grow-
ing mode similar to the extreme dilaton black hole discussed
above.

6 Numerical analysis

Some well known numerical methods to obtain QNM
frequencies are: the Mashhoon method, Chandrasekhar–
Detweiler method, WKB method, Frobenius method, contin-
ued fraction method, asymptotic iteration method (AIM) and
improved AIM, pseudospectral Chebyshev method, among
others. In this section, we apply the improved AIM [56]
method to compare with the analytical results. This is an
improved version of the method proposed in Refs. [57,58]
and it has been applied successfully in the context of QNMs
for different black holes geometries; see for instance [59–68].

The boundary conditions satisfied by the QNMs are given
by
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ξ ∼ e−iωr∗ as r∗ → −∞
ξ ∼ eiω̃r∗ as r∗ → ∞

where ω̃2 = ω2 − 4�2 − 8�m2. There are only ingoing
waves at the horizon and outgoing waves at infinity. This can
be transformed to

R ∼ r− 1
2 (r − rh)

− iω
4� e

iω
4�

rh
r−rh as r → rh

R ∼ r− 1
2 + i ω̃

4� as r → ∞.

In order to write a solution with this behavior at the bound-
aries, we define

R(r) = r− 1
2 + i(ω̃+ω)

4� (r − rh)
− iω

4� e
iωrh

4�(r−rh ) χ(r). (47)

Inserting this expression in Eq. (17) and performing the
change of variable z = 1 − rh/r we arrive at the follow-
ing equation

χ ′′(z) = λ0(z)χ
′(z) + s0(z)χ, (48)

where the prime denotes derivative with respect to z and

λ0(z) = − 1

2(1 − z)z2�

(
−iω + 4�z + z2 (iω − 6�

+
√

−ω2 + 4�2 + 8�m2
))

s0(z) = − 1

8(1 − z)z2�2

(
ω2 − iω

√
−ω2 + 4�2 + 8�m2

−4�m2 + z(ω2 + 4iω�

−4�m2 − 8�2 + 4�
√

−ω2 + 4�2 + 8�m2

−iω
√

−ω2 + 4�2 + 8�m2)
)
. (49)

We solve numerically Eq. (48) using the improved AIM.
This method is implemented as follows, first it is necessary
to differentiate Eq. (48) n times with respect to z, what yields

χn+2 = λn(z)χ
′ + sn(z)χ, (50)

where

λn(z) = λ′
n−1(z) + sn−1(z) + λ0(z)λn−1(z)

sn(z) = s′
n−1(z) + s0(z)λn−1(z). (51)

Then, the functions λn and sn are Taylor expanded around
some point z0 (0 < z0 < 1) at which the improved AIM is
performed

λn(z0) =
∞∑
i=0

cin(z − z0)
i

sn(z0) =
∞∑
i=0

din(z − z0)
i ,

Table 1 QNFs for massless scalar fields with � = 1,m = 3 in the
background of tree-dimensional extreme dilaton black holes

n ωAI M ω

0 18.00000i 18i

1 3.33333i 10/3i

2 −1.20000i −6/5i

3 −4.28571i −30/7i

4 −6.88889i −62/9i

cin and din are the ith Taylor coefficients of λn(z0) and
sn(z0) respectively. Then, replacing these Taylor expansions
in Eq. (51) the following set of recursion relations for the
coefficients are obtained

cin = (i + 1)ci+1
n−1 + din−1 +

i∑
k=0

ck0c
i−k
n−1

din = (i + 1)di+1
n−1 +

i∑
k=0

dk0c
i−k
n−1.

Next, imposing a termination to the number of iterations one
arrives to the following quantization condition

d0
n c

0
n−1 − d0

n−1c
0
n = 0. (52)

We use a root-finding algorithm to determine numerically the
QNFs from (52). In Table 1 we show some values of QNFs, in
order to check the correctness and accuracy of the numerical
technique used. The numerical values where round to five
decimal places and they show a good and exact agreement
with the exact result via Eq. (45). As it was mentioned, these
oscillations will be damped leading to stable perturbations
for 2�n(1 + n) > m2. However, for 2�n(1 + n) < m2, the
oscillations would lead to unstable modes.

7 Conclusion

In this work we considered the propagation of massless scalar
fields in the background of three-dimensional extremal dila-
ton black holes. We obtained QNM frequencies analytically,
and we showed that the QNMs are overdamped or purely
imaginary leading to stable perturbations for 2�n(1 + n) >

m2. For 2�n(1 + n) < m2 the oscillations would lead to
unstable modes. The decay rate increases when the cosmo-
logical constant increases. For the fundamental mode n = 0,
the decay rate depends only on the angular number of the
test field: however in this case the modes are unstable. Also,
we used the improved AIM in order to determine the QNFs
numerically, and we showed that there is a good agreement
between the numerical and the analytical solutions.

There are number of works that are interesting to do in the
future related to this work presented here: Onozawa et al. [69]
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showed that QNM’s for the extreme Reissner–Nordström
black holes for the spin 1, 3/2, 2 are the same. It would be
interesting to see if that is the case for the extreme dilaton
black hole. In 2 + 1 dimensions it has been shown that the
perturbation equations for spin 0 and spin 1 are the same
[70]. The reason (as given in [70]) is that the scalar field
and Fμν are dual. Furthermore, in 2 + 1 dimensions there
are no propagating degrees of freedom for spin 2 (gravity)
field. Therefore, we can omit bosonic degrees of freedom.
However, it is vital that we add spin 1/2 field into the mix
to see if there are relations; hence it would be interesting to
compute QNM’s for spin 1/2 and spin 3/2 for the extreme
dilaton black hole.

It would also be interesting to analyze the superradiant
instability [71] of this extremal black hole for charged mas-
sive scalar field, as well as, the quasinormal modes: we leave
those for a future work, see [72].
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