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Abstract We compare the construction of 2D integrable
models through two gauge field theories. The first one is the
4D Chern–Simons (4D-CS) theory proposed by Costello and
Yamazaki. The second one is the 2D generalization of the
Hitchin integrable systems constructed by means of affine
Higgs bundles (AHB). We illustrate the latter approach by
considering 1 + 1 field versions of integrable systems includ-
ing the Calogero–Moser field theory, the Landau–Lifshitz
model and the field theory generalization of the elliptic
Gaudin model.
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1 Introduction

In the 1990s, we attempted to construct two-dimensional
(2D) classical integrable field theories starting with a 2D
Wess–Zumino–Witten (WZW) action [1,2]. The correspond-
ing equations of motion coincide with the Zakharov–Shabat
equations. These equations are the hallmark of 2D integrable
systems. But that approach had one essential drawback—the
Lax operator did not depend on the spectral parameter. This
parameter is a necessary ingredient for constructing the infi-
nite number of commuting integrals of motion. A class of
integrable theories derived from the WZW models was con-
sidered in papers by Fehér et al. (see the review [3]). Also, the
interrelations between gauge theories and integrable systems
were considered in the mid-1990s in [4,5]. Later, Nekrasov
and Shatashvili derived quantum integrable systems from
four-dimensional gauge theories [6,7].

The problem with the spectral parameter was overcome in
the works of Costello and Yamazaki [8] by considering the
so-called four-dimensional Chern–Simons theory (4D-CS).

Here we compare 4D-CS construction with the construc-
tion of 2D integrable systems based on the affine Higgs bun-
dles (AHB) model proposed in [9]. The AHB model is the
2D analogue of the Hitchin systems [10]. To compare the
AHB theory with the 4D-CS approach, we rewrite the AHB
theory in the form of a special 4D-CS model. This allows us
to establish a correspondence between the field content from
both constructions.

The first formal difference between these two approaches
is that AHB theory is free, and the nontrivial integrable mod-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10553-0&domain=pdf
http://orcid.org/0000-0003-2260-1491
mailto:alevin2@hse.ru
mailto:olshanet@itep.ru
mailto:zotov@mi-ras.ru


635 Page 2 of 14 Eur. Phys. J. C (2022) 82 :635

els appear as a result of the symplectic reduction. The latter
procedure is similar to what happens in the finite-dimensional
case for the Hitchin systems. Symplectic reduction is defined
by two types of constraints. The first one is given by the
moment map constraints (the Gauss law analogue in the
Yang–Mills theory). The second one is the gauge-fixing con-
ditions. After imposing these constraints, we obtain the sym-
plectic phase spaces of 2D integrable systems. Using the
AHB, we constructed in [9] the 2D field generalization of the
elliptic (spin) Calogero–Moser (CM) model. It was proved
by A. Shabat (unpublished) and in [11] that this model is
gauge-equivalent to the Landau–Lifshitz (LL) equation [12].
The gauge transformation is obtained from the so-called sym-
plectic Hecke correspondence. Another example of 2D gen-
eralization of the Hitchin systems is the 2D elliptic Gaudin
model. In particular, the principal chiral model is reproduced
in this way.1

Another construction similar to the AHB approach is the
algebra-geometric derivation of the Zakharov–Shabat equa-
tion proposed by Krichever [14,15]. Using the Kadomtsev–
Petviashvili (KP) hierarchy, he constructed a 2D version
of the Calogero–Moser model. This approach can also be
extended to the field version of the Ruijsenaars–Schneider
models [16].

In contrast to AHB construction, the 4D-CS theory is not
free. The equations of motion have the form of the moment
map constraint equations, which are similar to the moment
map constraints in the AHB theory. It only remains to impose
some gauge fixation to obtain 2D integrable systems. To com-
pare these constructions, we rewrite the equations of motion
and the moment map constraints in the AHB models in CS
form.

In the standard approach to the 2D integrable in [8,9]
the 3D space has the form R × CP1 or S1 × CP1, or with
an elliptic curve instead of CP1. More generally, these 3D
spaces can be replaced by an arbitrary Seifert surface [17].
The Seifert surface is a U (1) bundle over the Riemann curve
�g of genus g. Seifert surfaces have two topological charac-
teristics (n, g), where n is the degree of the line bundle cor-
responding to the U (1) bundle. Although the moduli space
of the Higgs bundles over the Seifert surfaces depends on n,
the invariant Hamiltonians do not depend on it. The reason
is that there exists singular gauge transformation �(k) of the
Lax operator L(n) such that �(k) : L(n) → L(n + k).

The AHB construction allows one to define 2D analogues
of the additional structures in the Hitchin systems. The first
structure is the affine analogue of the symplectic Hecke corre-
spondence [9,11]. Another structure that appears in the AHB
model is the affine version of the Nahm equations describing

1 In a recent paper [13], the authors proposed an approach to the affine
Gaudin models based on the three-dimensional (3D) BF theory that is
very close to the AHB construction.

the surface defects. Both of these structures will be consid-
ered in a forthcoming publication [18].

This paper is organized as follows. In the next section we
briefly explain 4D-CS construction of 2D integrable models
based on the articles [8,19]. In Sect. 3 the AHB construction
is given following notations from [9,20]. Some examples are
given in Sect. 4. Finally, we establish the correspondence
between the two construction in Sect. 5.

2 4D Chern–Simons model and integrable systems

Let us describe the field content of the 4D Chern–Simons
model. Consider a Riemann curve C and the spacetime M =
R

2 ×C with the local coordinates (x, t), (z.z̄).2 On R
2 ∼ C

introduce the complex coordinates w = x + t , w̄ = x − t .
Let G be a complex simple Lie group. Consider a principal
G bundle P over M and equip it with the connections

d + A = (∂w + Aw) ⊗ dw + (∂w̄ + Aw̄) ⊗ dw̄ + (∂̄ + Ā) ⊗ dz̄

= Atdt + Axdx + Az̄dz̄. (2.1)

Let ω be a 1-form on C (ω = ϕ(z)dz). It is a section of the
canonical class KC on C . The 4D-CS action is defined as

S4D = 1

2π h̄

∫
M
ω ∧ CS(A), (2.2)

where CS(A) is the standard CS action

CS(A) := tr
(
A ∧ d A + 2

3
A ∧ A ∧ A

)

and A is the above-defined connection (2.1).
Beyond the points where the form ω vanishes, the equa-

tions of motion corresponding to (2.2) take the form:

1. [DAw , DAw̄
] = 0,

2. [DAw , DAz̄ ] = 0,
3. [DAw̄

, DAz̄ ] = 0.
(2.3)

These equations are invariant under the gauge transforma-
tions

A → A f = f (d + A) f −1, (2.4)

f ∈ G = C∞(M → G). (2.5)

Let f be the gauge transformation fixing the gauge as
A f
z̄ = A0

z̄ . We identify A f
w = L(w, w̄, z) with the Lax

operator, and A f
w̄ = M(w, w̄, z) with the evolution operator

M . Then the first equation in (2.3) turns into the Zakharov–
Shabat type equation for some 2D integrable system:

∂w̄L − ∂wM + [M, L] = 0. (2.6)

2 Here we follow notations from [8].
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In most of the paper [8] it is assumed that there is a gauge
choice

Az̄ = 0, (2.7)

or, put differently, that the moduli space of holomorphic bun-
dles over C is empty. This is indeed true if C is a rational
curve, but almost never true in the general case. For exam-
ple, if C is an elliptic curve, this is possible for topologically
nontrivial bundles.

If it is the case, then equations 2 and 3 from (2.3) mean that
Aw and Aw̄ are holomorphic on C and in this way they are
constants. Therefore, we are left with the Zakharov–Shabat
equation, where the operators L and M are independent of
the spectral parameter z.

In order to come to meaningful cases with L and M
depending on the spectral parameter, one should consider
higher-genus curves. One more possibility is to consider
additional degrees of freedom by introducing surface defects
in the 4D-CS model. The surface defects come from the poles
and zeros of the meromorphic 1-formω in (2.2). The zeros of
ω mean that the Lax operator has poles at these points, and
the corresponding coefficients (residues) define additional
degrees of freedom in the theory. These defects are called
the disorder defects.

The poles of ω lead to restrictions of the gauge fields at
these poles and also add degrees of freedom. These defects
are called the order defects. Below we consider these defects
in terms of AHB theory in greater detail.

3 Affine Higgs bundle

3.1 Three-dimensional space

Consider a principalU (1)-bundle W over Riemann curve �:

W
π→ �, (W = U (1) → �). (3.1)

The total space of the bundle is called the Seifert surface. Let
(z, z̄, θ)be local coordinates onW and	(m,n,k)(W ) the space
of corresponding (m, n, k)-forms. Redefine the 1-forms as

d ˜̄z = dz̄, dθ̃ = dθ − nμ̄(z, z̄)dz̄. (3.2)

Here,n is the degree of theU1-bundle and μ̄(z, z̄) ∈ 	(0,−1,1)

is the Beltrami differential. Consider 	(1,0)(�)-form dz on
� and let π∗(dz) ∈ 	(1,0,0)(W ).

Define two vector fields on W , which annihilate the form
π∗dz:

1. ∂θ , 2. ∂μ̄z̄ .

The first field ∂θ acts along the S1 fibers and thereby anni-
hilates the form π∗dz. For the second field ∂

μ̄
z̄ , this condition

means that

∂
μ̄
z̄ = ∂z̄ + nμ̄(z, z̄)∂θ . (3.3)

Let

θ̃ = θ − n
∫ z̄

μ̄(z, z̄) (3.4)

be a local coordinate in the bundle W . Then for a smooth
function f ,

∂
μ̄
z̄ f (θ̃) = 0. (3.5)

Consider a line bundle L over �g , which is a complex-
ification of the U (1)-bundle. Let Dz ⊂ �g be a small disc
with the center z = 0 and D′

z ⊂ Dz The degree n of the
bundle is defined by a holomorphic nonvanishing transition
function f (z) on Dz\D′

z . The degree can be changed by the
multiplication f (z) → f (z)w(z) as follows.

θ → θ − k · arg(w). (3.6)

This procedure is called themodification of theU (1)-bundle.
If the bundle W is trivial, then one can take n = 0. In the

examples below we assume n = 0.
Let G be a complex Lie group and P a principal G-bundle

over W . We first define the affine Higgs bundle (AHB) over
W as a pair of connections

(DĀ,μ̄ = ∂
μ̄
z̄ + Az̄, ∂θ + Aθ ). (3.7)

The first component ∂μ̄z̄ +Az̄ defines the complex structure on
the sections ofP in the (z̄, θ) direction. The precise definition
of the AHB is given below (3.17). The second component is
the Higgs connection. It is an affine analogue of the Higgs
field introduced by Hitchin [21].

3.2 Affine holomorphic bundles

The affine Higgs bundles are the cotangent bundles to the
affine holomorphic bundles, which we will define.

In the previous subsection we introduced the connection
acting on the sections 
(P) (3.7):

DĀ,μ̄ = (∂z̄ + μ̄(z, z̄)∂ + Ā(z, z̄, x)) ⊗ dz̄.

Consider, in addition, a line bundle L over � with the
connection (∂z̄ + k̄z̄)⊗dz̄. The anti-holomorphic connection
on P ⊕ L is the pair of operators

∇ Ā,μ̄,k̄ =
(

DĀ,μ̄
(∂z̄ + k̄(z, z̄)) ⊗ dz̄

)
. (3.8)

Let G(W ) be a smooth map of W to G

G(W ) = C∞(W → G),

G(W ) =
⎧⎨
⎩
∑
j

f j (z, z̄)e
jθ , | f j ∈ C∞(� → G)

⎫⎬
⎭ .
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It can be considered as a map of the spectral curve � to
the loop group

G(W ) = C∞(� → L(G)). (3.9)

The structure group of the bundle P ⊕ L (the gauge group)
is defined by replacing L(G) with its central and cocentral
extensions (A.7):

Ǧ := C∞(� → Ľ(G)).

More precisely,

Ǧ = (G(W ), {exp(ε3(z, z̄)}) � {exp(ε2(z, z̄)∂θ }, (3.10)

ε2(z, z̄)∂θ ∈ C∞(� → C), ε3(z, z̄) ∈ C∞(� → C).

Consider its infinitesimal action on ∇ Ā,μ̄,k̄ . As a vector

space the Lie algebra Lie(ĜG) has three components:

Lie(Ĝ) = M1 ⊕ M2 ⊕ M3, (3.11)

M1 = C∞(M → g) = {ε1(z, z̄, θ)},
M2 = C∞(� → C) = {ε2(z, z̄)∂θ },
M3 = C∞(� → C)) = {ε3(z, z̄)}).

Their action on ∇ Ā takes the form:

1. δε1 Ā = −(∂z̄ + μ̄∂)ε1

+[ε1, Ā], δε1μ̄ = 0, δε1 k̄ = 〈 Ā∂ε1〉,
2. δε2 Ā = ε2∂θ Ā, δε2 μ̄ = −∂z̄ε2, δε2 k̄ = 0,
3. δε3 Ā = 0, δε3μ̄ = 0, δε3 k̄ = −∂z̄ε3.

(3.12)

The moduli of holomorphic structures on P(M) ⊕ L is the
quotient space

BunG,M = ∇ Ā,μ̄,k̄/Ǧ = ∇L̄,μ̄,k̄, (3.13)

where we fix the gauge as Ā → Ā f = L̄ , i.e.,

L̄ = Ā f = f ∂z̄ f
−1 + f Ā f −1. (3.14)

One can fix the action of the abelian subgroups {exp(ε3)},
{exp(ε3(z, z̄)∂)} on μ̄ and k̄ (3.12) in a similar way. We pre-
serve the notations for the gauge-transformed variables μ̄ and
k̄.

3.2.1 Affine Higgs bundles

Introduce the Higgs field �(z, z̄, θ). Let K be a canonical
class of �. Then the Higgs field is �(z, z̄, θ) ∈ C∞(� →
(L(g) ⊗ dθ) ⊗ K.

Let ν(z, z̄), r(z, z̄) ∈ 	(1,0)(�). Define

∇�,ν,r =
(

D�,ν

r(z, z̄)

)
⊗ K, (3.15)

D�,ν = (ν(z, z̄)∂θ + �(z, z̄, x))dθ. (3.16)

Table 1 Dimensions of fields

z z̄ θ

Ā 0 1 0

Aθ 0 0 1

μ̄ 0 1 −1

k̄ 0 1 0

� 1 0 1

ν 1 0 0

r 1 0 1

The affine Higgs bundle is the pair

Haff(G) = (∇ Ā,μ̄,k̄, ∇�,ν,r ) ∼ T ∗∇ Ā,μ̄,k̄

= { Ā, μ̄, k̄, �, ν, r}. (3.17)

The connection form Aθ in (3.7) is related to the Higgs field
� as

Aθ = �

ν
. (3.18)

The fields of the Higgs bundles have the following dimen-
sions (Table 1):

The cotangent bundle structure of the AHB comes from
the pairing (A.10) Haff(G) = T ∗∇ Ā,μ̄,k̄ .

Define the symplectic form 	 on Haff(G)

	 = 1

π

∫
�

|d2z|
(
〈δ�, δ Ā〉 + δrδμ̄ + δνδk̄

)
, (3.19)

where

〈δ�, δ Ā〉 = 1

2π

∫
S1
(δ�, δ Ā).

The form is invariant under the action of the gauge group
Ĝ (3.10). Along with (3.12), the corresponding Hamiltonian
vector fields are as follows:

1. δε1� = ν∂θ ε1 + [�, ε1], δε1ν = 0, δε1r = 〈�, ∂ε1〉,
2. δε2� = ε2∂θ�, δε2ν = 0, δε2r = 0,
3. δε3� = 0, δε3ν = 0, δε3r = 0.

(3.20)

The action of Ĝ is generated by the moment maps m j :
H(G) → Lie∗(Ĝ), where

Lie∗(ĜG) = M∗
1 ⊕ (M∗

2 ∼ M3) ⊕ (M∗
3 ∼ M2). (3.21)

More explicitly,

m1 = (∂z̄ + μ̄∂θ ))� − ν∂θ Ā + [ Ā,�] ∈ M∗
1 ,

(m1 = [DĀ,μ̄,k̄, D�,ν,r ]),
m2 =

∫
S1

〈∂θ�, Ā〉 − ∂z̄r ∈ M∗
2 ,

m3 = ∂z̄ν ∈ M∗
3 .
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Let Caff( Ā, μ̄, k̄|�, ν, r) be the set of solutions of the
moment equations m j = 0, ( j = 1, 2, 3)

⎧⎪⎪⎨
⎪⎪⎩

(∂z̄ + μ̄∂θ )� − ν∂θ Ā + [ Ā,�] = 0,
([DĀ,μ̄,k̄, D�,ν,r ] = 0),
m2 = ∫

S1〈∂θ�, Ā〉 − ∂z̄r = 0,
m3 = ∂z̄ν = 0.

(3.22)

The quotient of Caff under the action of the gauge group Ǧ
(3.10) is the moduli space of the affine Higgs bundles:

Maff(G) = Haff(G)//Ǧ ∼ Caff/Ǧ. (3.23)

We can first fix the gauge and then solve the moment map
equations. In this respect, Maff(G) is defined as the set of
solutions of equations

(∂z̄ + μ̄∂θ )L − ν∂θ L̄ + [L̄, L] = 0, (3.24)

∂z̄r =
∫
S1

〈∂θ L , L̄〉, ∂z̄ν = 0.

3.2.2 Parabolic structures. The order defects

To introduce the parabolic structure, we attach the coadjoint
orbits Oa = O(p(0)a , c(0)a ) of the loop group L(G) (A.14) to
the marked points za ∈ �, a = 1, . . . , n. This means that
we add the order defects in the theory. The disorder defects
correspond to the reduction of the gauge group Ǧ (3.10) to
the subgroup Ǧ(×a Fla) ⊂ Ǧ, which preserves the affine
flags Fla at the marked points. It was proved in [22] that
these constructions are equivalent. Here we follow the order
defects description.

The affine parabolic Higgs bundle has the following field
content:

Haff, par(G) = ( Ā, μ̄, k̄, �, ν, r, ∪n
a=1Oa). (3.25)

The coadjoint orbits (A.14) are equipped with the Kirillov–
Kostant symplectic form (A.15). Thereby, the symplectic
form on the reduced parabolic Higgs bundle Haff par(G) is
equal to

	 −
n∑

a=1

ωa(p
(0)
a , c(0)a ), (3.26)

where 	 is the form (3.19) and ωa are the Kirillov–Kostant
forms (A.15). Due to the presence of new terms in the form,
the moment map constraints (3.22) are upgraded as

m1 =
n∑

a=1

S(p(0)a , c(0)a )δ(z − za, z̄ − z̄a),

m3 =
n∑

a=1

c(0)a δ(z − za, z̄ − z̄a),

so that

∂z̄� − ν∂θ Az̄ + [ Ā,�]

=
n∑

a=1

S(p(0)a , c(0)a )δ(z − za, z̄ − z̄a), (3.27)

∂z̄ν =
n∑

a=1

c(0)a δ(z − za, z̄ − z̄a). (3.28)

This means that ν is not a constant in (3.27) but a meromor-
phic (1, 0)-form on � with the first-order poles at z = za :

ν|z→za ∼ c0
a

z − za
. (3.29)

In other words, ν = const implies that we deal only with
orbits without central extension, i.e.,

Sa = gp(0)a g−1. (3.30)

Since
∑n

a=1 c
(0)
a = 0, in the case of a single marked point

(likewise for the LL equation), the orbit has the form (3.30),
and ν = ν0 is a constant.

Next, we pass to the symplectic quotient (the moduli
space). Let us fix a gauge as in (3.14) and

L = ν f −1∂θ f + f −1� f, ( f ∈ Ĝ), (3.31)

L/ν = f −1∂θ f + f −1Aθ f. (3.32)

The moment map constraint equation (3.27) with m1 = 0 is
modified as

∂z̄ L − ν∂θ L̄ + [L̄, L] =
n∑

a=1

δ(z − za)Sa,

(
[DL̄,μ̄, DL ,ν] =

n∑
a=1

δ(z − za)Sa

)
. (3.33)

Solutions of this equation along with (3.28) define the
moduli space of the affine parabolic bundles as the symplectic
quotient space

Haff, par(G)//G ∼ Maff, par(G). (3.34)

It is a phase space of 2D integrable systems. The symplectic
form (3.26) on Maff, par(G) turns into (see (3.26))

	par =
∫
�

(〈δL|δ L̄〉 + δνδk̄ + δrδμ̄
) −

n∑
α=1

ωα. (3.35)

3.3 Equations of motion

Let W = S1 × � be a trivial bundle. The measure on W is
�(z, z̄)dθ , where�(z, z̄) ∈ 	(1,1)(�) is a (1, 1)-form on�.
The gauge-invariant integrals are generated by the traces of
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the monodromies of the Higgs field Aθ . We take the Hamil-
tonian in the form:

H(�, ν) =
∫
�

�(z, z̄)

(
tr exp

∮
S1

Aθ (z, z̄, θ)

)

=
∫
�

�(z, z̄)

(
tr exp

1

ν(z, z̄)

∮
S1
�(z, z̄, θ)

)
.

(3.36)

Consider equations of motion on the “upstairs” space
Haff(G) (3.25). They are derived by means of the symplec-
tic form (3.26) and the Hamiltonians (3.36). In this way we
obtain the following free system:

�̇ = 0, (3.37)

˙̄A(z, z̄) = δH
δ�(z, z̄, θ)

= �(z, z̄)

ν(z, z̄)
exp

1

ν(z, z̄)

∮
S1
�(z, z̄, θ)dθ, (3.38)

ν̇ = 0, ˙̄μ = 0, ṙ = 0, (3.39)

˙̄k(z, z̄) = δH
δν(z, z̄)

= −�(z, z̄)

ν2(z, z̄)

∮
S1
�(z, z̄, θ))dθ exp

∫
S1

�(z, z̄, θ)

ν(z, z̄)
dθ.

(3.40)

Recall that after the symplectic reduction we obtain the
fields L̄ (3.14) and L (3.31). For simplicity, we keep the
same notation for the coadjoint orbit variables Sα , so they
are transformed as in (A.17). This yields

H(L , ν) =
∫
�

ω(z, z̄)

(
tr exp

1

ν(z, z̄)

∮
S1

dθL(z, z̄, θ)

)
.

(3.41)

Let W be a nontrivial bundle (n �= 0). It follows from
(3.5) that L̄ depends on θ̃ (3.4). The moment equation (3.33)
takes the form

(∂z̄ + nμ̄∂θ )L − ν∂θ L̄ + [L̄, L] =
n∑

a=1

δ(z − za)Sa,

(
[DL̄,μ̄, DL ,ν] =

n∑
a=1

δ(z − za)Sa

)
.

Its solution L has the same form as for n = 0, but the
angle parameter θ is replaced with θ̃ .

The corresponding monodromy matrix is conjugated to
the original monodromy matrix

exp
1

ν(z, z̄)

∮
S1

dθL(z, z̄, θ̃ )

= �(n)

(
exp

1

ν(z, z̄)

∮
S1

dθL(z, z̄, θ)

)
�(n)−1,

where the gauge transformation assumes the form

�(n) = exp
∫ δ

0
dθL(z, z̄, θ), δ = n

∫ z̄

μ̄.

In this way, as we claimed in the Introduction, the invari-
ants of the monodromy matrix and, in particular, the Hamil-
tonian are independent of n.

It follows from the moment map equation (3.33) that for
the parabolic bundles, the Lax operator L has first-order poles
at the marked points za . Let wa = z − za . The generating
function of the Hamiltonians (3.41) has the expansion:

H(L , ν) =
∑
a∈I

+∞∑
j=−1

Ha
j w

j
a . (3.42)

Consider the set of times Ta, j = {ta, j } corresponding to
the Hamiltonians Ha

j . The one-dimensional spaces Ta, j are
isomorphic to R. Let ∂a, j = {Ha

j , } be the Poisson vector

field on the moduli space Maff, par(G) (3.34). Assume that
the gauge transformation f comes from the gauge fixation
(3.14). Define the connection form Ma, j = ∂a, j f f −1. From
(3.31) we have � = −ν∂ f f −1 + f L f −1. Plugging it into
(3.37) we obtain the Zakharov–Shabat equation

∂a, j L − ν∂θMa, j + [Ma, j , L] = 0,([DMa, j , DL ] = 0
)
, (3.43)

where DMa, j = ∂a, j + Ma, j . Notice that the variables on the
moduli space L , L̄, Sa do not depend on k̄. In this way the
dynamics of k̄ (3.40) is inessential. The operators Ma, j can
be restored partly from Eq. (3.38):

∂̄Ma, j − ∂a, j L̄ + [Ma, j , L̄] = δHa
j

δL
,

(
[DL̄ , DMa, j ] = δHa

j

δL

)
, (3.44)

where

δHa
j (L)

δL
= f

δHa
j (�)

δ�
f −1. (3.45)

Equations (3.43) and (3.44) along with the moment con-
straint equation (3.33) yield the system:

1. [DMa, j , DL ,ν] = 0,

2. [DL̄ , DMa, j ] = δHa
j

δL ,

3. [DL̄ , DL ,ν] = ∑n
a=1 δ(z − za)Sa .

(3.46)

Let V be a module of the Lie algebra g.
Consider the associated bundle E = P ×G V , where P

is the principal G-bundle over W . Equivalently, we can con-
sider the associated vector L(G)-bundle over �. Let � be a
section of E . Consider the linear system
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1. (ν∂ + L)� = 0,
2. (∂z̄ + L̄)� = 0,
3. (∂a, j + Ma, j )� = 0.

(3.47)

Then Eq. (1.3.46) is the consistency condition for equations
1 and 3, and Eq. (3.3.46) is the consistency conditions for
equations 1 and 2.

3.4 Conservation laws

The matrix equation (1.3.47) allows one to write down the
conservation laws. The eigenvalues of the monodromy matrix
of solutions � are gauge-invariant. Represent solutions of
(1.3.47) as the P-exponent

�(θ, z) = R(θ, z)P exp

(
ı

ν(z)

∫ θ

0
L(θ ′, z)dθ ′

)

(x = −teıθ ), (3.48)

where R is periodic in θ . The monodromy of �(θ, z) is

exp

(
1

ν(z)

∫ 2π

0
L(θ, z)dθ

)
.

Consider the monodromy in a neighborhood of a pole
za ∈ � of L/ν with a local coordinate wa = z − za . If

1

ν(wa)
L(θ, wa)=

(
L

ν

)a

−1
w−1
a +

(
L

ν

)a

0
+
(
L

ν

)a

1
wa+· · · .

The Hamiltonians

Ha
j ∼ trV exp

(
ı
∫ 2π

0

(
L

ν

)a

j
dθ

)
. (3.49)

are all in involution. Thus, we have an infinite set of Poisson-
commuting integrals of motion.

Let us “diagonalize” generic element L → h−1ν∂h +
h−1Lh = S, where S is an element of the Cartan subalgebra
h ⊂ g. Then the solutions of the equation (1.3.47) can be
represented in the form

�(θ, z) = R(θ, z) exp

(
ı

ν

∫ θ

0
S(θ ′, z)dθ ′

)
. (3.50)

Let

1

ν(wa)
S(θ, wa) =

(S(θ)
ν

)a

−1
w−1
a +

(S(θ)
ν

)a

0

+
(S(θ)

ν

)a

1
wa + · · · .

Substitute (3.50) into (1.3.47). It follows from (3.41),
(3.42) and (3.50) that the diagonal matrix elements of Sm

j
are the densities of the conservation laws

Ha
j ∼ trV exp

{
ı
∫
S1

(S(θ)
ν

)a

j
dθ

}
. (3.51)

There is a recurrence procedure to define the matrices Sa
j .

Details can be found in [9,23].

3.5 The action

Consider the 4D action on the space

Ma, j = Ta, j × W (3.52)

corresponding to the Hamiltonian system defined above3:

S AHB = 1

2π h̄

∑
a, j

(∫
Ma, j

(�, DĀ) −
n∑

a=1

SWZW (Sa)δ(za, z̄a)

−Ha
j (�)Dta, j

)
.

Here, Ha
j are the Hamiltonians (3.36) and SWZW is the

Wess–Zumino–Witten action

SWZW = 1

2

∫
S1

dθ(S, Dgg−1)

+ c0

2

(∫
S1

dθ(Dgg−1, ∂gg−1) + D−1(∂gg−1, (Dgg−1)2))

)
.

To come to the action on the moduli space of the affine
Higgs bundles Haff, par(G) (3.25), we need to impose the
moment map constraints (3.27) and fix the gauge. To do this,
one should introduce in the action the terms containing the
ghost and the anti-ghost fields. Instead, we first fix the gauge
and rewrite the action in terms of the fields L and L̄ . The
action takes the form

S AHB = 1

2π h̄

∑
j,a

( ∫
Ma

j

(L , DL̄)

−
n∑

a=1

SWZW (Sa)δ(za, z̄a) −
∑
a, j

Ha
j Dta, j

)
,

and then we impose the moment constraints (3.33).

4 Examples

In all examples, we consider the trivial S1 bundles and put
μ̄ = 0.

4.1 Hamiltonians in the sl2 case

Consider the one marked point case. Then, c(0) = 0. Due to
(3.28), ∂z̄ν = 0 and, therefore, ν(z, z̄) = const = ν0.

Let us perform the gauge transformation

f −1L f + ν0 f
−1∂θ f = L ′, (4.1)

3 We omit the term νDk̄ since, as we argued above, it is inessential.
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with f defined as follows:

f =
(√

L12 0

− L11√
L12

− ν0
∂θ

√
L12

L12

1√
L12

.

)
. (4.2)

Then the Lax matrix L is transformed into

L ′ =
(

0 1
T 0

)
, (4.3)

where

T = L21L12 + L2
11 + ν0

L11∂θ L12

L12
− ν0∂θ L11

−1

2
ν2

0
∂2
θ L12

L12
+ 3

4
ν2

0
(∂θ L12)

2

L2
12

. (4.4)

The linear problem
{
(ν0∂θ + L ′)ψ = 0,
(∂ j + M ′

j )ψ = 0,
(4.5)

where ψ is the Bloch wave function ψ = exp{−i
∮
χ}, leads

to the Riccati equation:

iν0∂θχ − χ2 + T = 0. (4.6)

The decomposition of χ(z) provides densities of the conser-
vation laws (see [24]):

χ =
∞∑

k=−1

zkχk, (4.7)

Hk ∼
∮

dθχk−1. (4.8)

The values ofχk can be found from (4.6) using the expression
(4.4) for T (z) = ∑∞

k=−2 z
kTk in a neighborhood of zero. For

k = −2, −1 and 0 we have:
⎧⎨
⎩
χ−1 = √

T−2 = √
h,

2
√
hχ0 = T−1 + iν0∂θχ−1 = T−1,

2
√
hχ1 = T0 + iν0∂θχ − χ2

0 .

(4.9)

4.2 Landau–Lifshitz equation (LL)

In this case, G = SL(2,C). Let � = �τ = C/(Z + τZ)

be the elliptic curve with one marked point z = 0. Then the
orbit has the form O = {S = gp(0)g−1}, and c(0) = 0 (3.30),
i.e., S is a traceless 2 × 2 matrix.

Impose the following quasiperiodic properties (boundary
conditions) on the fields. Here we use the basis of the Pauli
matrices σa (a = 0, . . . , 3):

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
,

σ2 =
(

0 −ı
ı 0

)
, σ3 =

(
1 0
0 −1

)
.

Table 2 Quasiperiodicities of LL fields

z → z + 1 z → z + τ

1 Ā Adσ3 Ā(z, z̄, θ) Adσ1 Ā(z, z̄, θ)

2 � Adσ3�(z, z̄, θ) Adσ1�(z, z̄, θ)

3 ε Adσ3ε(z, z̄, θ) Adσ1ε(z, z̄, θ)

By the gauge transformations f (z, z̄, θ), the field Ā can
be made z-independent. Due to the boundary conditions in
Table 2, L̄ = 0, so that

f (z, z̄, θ)(∂z̄ + Ā(z, z̄, θ)) f −1(z, z̄, θ) = 0.

Then the Lax operator of the LL equation is defined as

f (z, z̄, θ)(ν0∂θ + �(z, z̄, θ)) f −1(z, z̄, θ)

= ν0∂θ + LLL(z, z̄, θ).

It satisfies the moment map equation

∂z̄ L
LL(z, z̄, θ) = S(θ)δ(z, z̄)

and has the quasiperiodicities as the Higgs field � in Table 2.
To write it down we use the Kronecker elliptic function

related to the curve �τ :

φ(u, z) = ϑ(u + z)ϑ ′(0)
ϑ(u)ϑ(z)

, (4.10)

where ϑ(z) is the theta-function

ϑ(z|τ) = q
1
8
∑
n∈Z

(−1)neπ i(n(n+1)τ+2nz),

q = exp 2π ıτ. (4.11)

The Kronecker function has the following quasiperiodicities:

φ(u, z + 1) = φ(u, z),

φ(u, z + τ) = e−2π ıuφ(u, z), (4.12)

and has the first-order pole at z = 0

φ(u, z) = 1

z
+ ϑ ′(u)

ϑ(u)
+ O(z). (4.13)

It is related to the Weierstrass function ℘ as follows:

φ(u, z)φ(−u, z) = ℘(z) − ℘(u). (4.14)

Let

ϕ1(z) = φ

(
1

2
, z

)
, ϕ2(z) = exp(π ı z)φ

(
1 + τ

2
, z

)
,

ϕ3(z) = exp(π ı z)φ
(τ

2
, z
)
.

The Lax operator assumes the form

LLL(z, z̄, θ) =
3∑

α=1

Lα(z, θ)σα,

Lα(z, θ) = Sα(θ)ϕα(z). (4.15)
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The symplectic form 	 (3.26) is reduced to the symplectic
form on the orbit O(p(0), 0) (A.15):

	̃ = ω(p(0), 0) = −
∫
S1

D(S(p(0), 0)g−1Dg). (4.16)

The Hamiltonian HLL
2 (4.8) assumes the form

H2 = 1

2

∫
S1
dθ

∑
α

(
Sα(θ)℘αSα(θ)+

(
ν0

2p(0)
∂θ Sα(θ)

)2
)
,

where ℘α are the values of the Weierstrass functions at the
half-periods. It is the Hamiltonian of the Euler–Arnold top
on the group L(G) defined by the inverse inertia tensor

J =
∑
α

(
−
(

ν0

2p(0)
∂θ

)2

+ ℘α

)
: L∗(G) → L(G).

The corresponding equations of motion (see (A.16)) are
the LL equations:

∂t S = [S, J (S)] +
[
S,

(
ν0

2p(0)
∂θ

)2

S

]
. (4.17)

4.3 Calogero–Moser field theory (CM)

Again, consider the one-point case on the elliptic curve �τ

and the trivial ŜL(2,C) bundle over�τ . It has a moduli space
BunSL(2,C) ∼ C/Z+τZ. Letu = u(θ)be a coordinate on the
moduli space BunSL(2,C), and denote e(u) = exp 2π ıuσ3.
Assume that the fields have the following quasiperiodicities
(Table 3):
For stable bundles, the orbits of the gauge transformations

(3.14) Ā
f→ L̄ are parameterized by the z-independent diag-

onal matrices L̄ . Let us take them in the form

L̄ = 2π ı

τ − τ̄
diag(u,−u). (4.18)

As above, we have ν = ν0. The solution of the moment map
equation (3.33)

∂z̄ L − ν0∂θ L̄ + [L̄, L] = δ(z, z̄)S,

where L = f −1ν0∂ f + f −1� f is the Lax operator. We
should the factorized solutions of this equation by to the
action of the residual gauge group that preserves the gauge
fixing (4.18). It is the group constant diagonal matrices

Table 3 Quasiperiodicities of CM fields

z → z + 1 z → z + τ

1 Ā(z, z̄, θ) Ā(z, z̄, θ) Ade(−u) Ā(z, z̄, θ)

2 �(z, z̄, θ) �(z, z̄, θ) Ade(−u)�(z, z̄, θ)

3 ε(z, z̄, θ) ε(z, z̄, θ) Ade(−u)ε(z, z̄, θ)

Gres = H– the Cartan subgroup of SL(2,C). It acts on the
symplectic form (3.26)

1

π

∫
S1

(∫
�τ

(DL , DL̄) − D(S(p(0), 0)g−1Dg)

)

producing the moment map constraint

S3 − 2π ıuθ = 0, uθ = ∂θu.

In addition, the gauge fixing of the Gres action allows one
to choose S+ = S− = l(θ). Then

S =
(
uθ l
l −uθ

)
.

Then the solution of the moment equation assumes the
form

LCM =
(− 1

4π ı v − uθ E1(z) lφ(2u, z)
lφ(−2u, z) 1

4π ı v + uθ E1(z)

)
, (4.19)

where E1(z) = ∂zϑ(z)/ϑ(z) is the first Eisenstein function.
The Hamiltonian of the elliptic Calogero–Moser (ECM)

field theory is the integrable 2D continuation of the standard
two-particle ECM Hamiltonian (a motion of particle in the
Lamé potential)

H = − v2

16π2 − l2℘(2u), ({v, u} = 1), (4.20)

where ℘(2u) is the Weierstrass function. In the field case we
have the canonical Poisson bracket {v(θ), u(θ ′)} = δ(θ−θ ′).
From (4.8) and (4.9) one finds

HCM
0 =

∫
S1

dθ2
√
hχ1 =

∫
S1

dθ(T0 − 1

4h
T 2−1)

=
∫
S1

dθ

(
− v2

16π2 (1− u2
θ

h
)+(3u2

θ − h)℘ (2u)− u2
θθ

4l2

)
,

(4.21)

where h = u2
θ + l2. For v and u it is the Hamiltonian (4.20).

The equations of motion produced by HCM
0 are of the form:

⎧⎪⎨
⎪⎩
ut = − v

8π2 (1 − u2
θ

h ),

vt = 1
8π2h

∂θ (v
2uθ ) − 2(3u2

θ − h)℘′(2u)
+6∂θ (uθ℘ (2u)) + 1

2∂θ (
uθθθ l−lθuθθ

l3
).

(4.22)

There exists a transformation � of the Lax operators:

� ◦ (ν0∂θ + LCM ) = (ν0∂θ + LLL) ◦ �,

such that solutions of (4.22) become solutions of the LL equa-
tion (u, v) → (Sα, α = 1, 2, 3) [11]. It was called the sym-
plectic Hecke correspondence for integrable systems [9] and
can be described in terms of solutions of the extended Bogo-
molny equation [25,26]. In the 2D case, one should define
the affine version of the extended Bogomolny equation. We
will address this point in a separate publication.
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4.4 Gaudin field theory and principal chiral model

The Gaudin models in classical mechanics are described by
the Higgs fields (i.e., the Lax matrices) with a set of simple
poles at punctures on a base curve with local coordinate z.
For elliptic models the latter is the elliptic curve �τ with
punctures za . Then the Lax matrix is fixed by a chose of
coadjoint orbits

Sa = Res
z=za

L(z)

attached to punctures together with some boundary condi-
tions (or quasiperiodic behavior). See [27] for a review of
models related to SL-bundles and [28] for a generic complex
Lie groupG. Similarly, in the 1 + 1 field case, the Gaudin type
models are generalizations of the previously given examples
for a multi-pole Higgs field.
Principal chiral model The rational 2D field Gaudin model
corresponding to the Riemann sphere with two punctures is
the widely known principal chiral model. Indeed, consider
the Zakharov–Shabat equation4

∂t L(z) − ∂θM(z) = [L(z),M(z)], (4.23)

with

L(z) = S1

z − z1
+ S2

z − z2
,

M(z) = S1

z − z1
− S2

z − z2
. (4.24)

Then we have equations of motion
{
∂t S1 − ∂θ S1 = − 2

z1−z2
[S1, S2],

∂t S2 + ∂θ S2 = 2
z1−z2

[S1, S2], (4.25)

which are generated by the Poisson brackets

{Saα(x), Sbβ(y)} = 2
√−1δabεαβγ S

a
γ (x)δ(x − y) (4.26)

and the Hamiltonian

H =
∫
S1
dθ

(
P1 − P2 − 〈S1S2〉

z1 − z2

)
. (4.27)

Here,
∫
S1 dθ Pa is the shift operator in the loop algebra

ŝl(N ,C):{∫
S1
dθ ′ Pa(θ ′), Sb(θ)

}
= δab∂θ S

b(θ). (4.28)

The substitution S1 = 1
2 (l0 + l1) and S2 = 1

2 (l0 − l1) trans-
forms (4.25) into an equation of the principal chiral model:
{
∂t l1 − ∂θ l0 + 2

z1−z2
[l1, l0] = 0,

∂t l0 − ∂θ l1 = 0.
(4.29)

4 In this subsection we put ν0 = 1 for simplicity.

Also, by changing the coordinates (θ, t) to the “light-cone”
coordinates ξ = t+θ

2 , η = t−θ
2 , one gets

{
∂ηS1 = − 2

z1−z2
[S1, S2],

∂ξ S2 = 2
z1−z2

[S1, S2]. (4.30)

Elliptic 1+1 Gaudin model: first flows Let us proceed to
the elliptic case. The multi-pole extensions of the (spin)
Calogero–Moser field theory were studied in [9]. Here we
briefly review the results of [20] on the multi-pole generaliza-
tion of ŝl(2,C)-valued Lax matrix (4.15) with the quasiperi-
odic properties (4.10):

L(z) =
n∑

c=1

3∑
γ=1

σγ S
c
γ ϕγ (z − zc). (4.31)

Using (4.6)–(4.8) one gets the following “first flow” Hamil-
tonians:

Ha,1 =
∮
S1
dθ (Pa + Ha), (4.32)

Ha = −1

2

∑
c �=a

〈Sa ϕ̂ac(Sc)〉

= −
∑
c �=a

Sa1 S
c
1ϕ1(za − zc)

+Sa2 S
c
2ϕ2(za − zc) + Sa3 S

c
3ϕ3(za − zc). (4.33)

Here and below we use the following notations for the linear
operators:

℘̂ : Sα → Sα℘ (ωα), ϕ̂ab : Sα → Sαϕα(za − zb),

F̂ab : Sα → SαFα(za − zb), (4.34)

where Fα(z) = ϕα(z)(E1(z) + E1(ωα) − E1(z + ωα)).
The Hamiltonians (4.33) generate dynamics described by

the following equations:{
∂ta S

a − ∂θ Sa = −∑
c �=a[Sa, ϕ̂ac(Sc)],

∂ta S
b = [Sb, ϕ̂ba(Sa)]. (4.35)

These equations are equivalent to the Zakharov–Shabat equa-
tion (4.23) with L(z) (4.31) and

Ma(z) =
3∑

γ=1

σγ S
a
γ ϕγ (z − za). (4.36)

Elliptic version of the principal chiral model Consider the
case of two punctures (i.e. n = 2). Then L(z) = M1(z) +
M2(z). Let us choose M(z) = M1(z) − M2(z). The above
equations yield (with ∂t = ∂t1 − ∂t2 ){
∂t S1 − k∂θ S1 = −2[S1, ϕ̂12(S2)],
∂t S2 + k∂θ S2 = 2[S2, ϕ̂21(S1)]. (4.37)

or by analogy with (4.30):{
∂ηS1 = −2[S1, ϕ̂12(S2)],
∂ξ S2 = 2[S2, ϕ̂21(S1)]. (4.38)
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Elliptic 1+1 Gaudin model: second flows (coupled LL equa-
tions) The second flows are described by the following set of
Hamiltonians:

Ha,2 =
∫
S1
dθ

⎛
⎝1

4
〈Sa℘̂(Sa)〉 + 1

2

∑
c �=a

〈Sa F̂(Sc)〉

−1

4

〈⎛
⎝∑

c �=a

ϕ̂ac(S
c)

⎞
⎠

2〉
+ + 1

8λ2
a

⎛
⎝∑

c �=a

〈Sa ϕ̂ac(Sc)〉
⎞
⎠

2

− 1

4λ2
a

∑
c �=a

〈ϕ̂ac(Sc)∂θ SaSa〉 + 1

16λ2
a
〈(∂θ Sa)2〉

)
, (4.39)

where λa are the eigenvalues of Sa (i.e., spectrum of Sa

is diag(λa,−λa)), and it is assumed that ∂θλa = 0. The
equations of motion take the form
⎧⎨
⎩
∂t̃a S

a − ∂θη
a = [Sa, ℘̂(Sa)] + ∑

c �=a[ηa, ϕ̂ca(Sc)]
−ϕ̂ca([Sc, ϕ̂ca(Sa)]),

∂t̃a S
b = [ϕ̂ab(ηa), Sb] + ϕ̂ba([ϕ̂ba(Sb), Sa]),

(4.40)

where

ηa = − 1

4λ2
a
[Sa, ∂θ Sa] +

∑
c �=a

ϕ̂ac(S
c) + Ha

λ2
a
Sa . (4.41)

In the case of a single marked point (n = 1) we obtain the
LL equation in the form:

∂t S + 1

4λ2 [S, Sθθ ] = [S, ℘̂(S)], (4.42)

described by the Hamiltonian

H =
∮
S1
dθ

(
1

4
〈S℘̂(S)〉 + 1

16λ2 〈(∂θ S)2〉
)
. (4.43)

One can write its trigonometric and rational degenerations.
For example, in the straightforward rational limit (related
to XXX 6-vertex R-matrix), the above equations provide
the model of coupled Heisenberg magnets. The rational 11-
vertex deformation was described in [29]. Trigonometric 6-
vertex and 7-vertex models are described in the same way.

5 Correspondence between 4D-CS and AHB

Consider expansion (3.42) of the Hamiltonian H(L) (3.41):

H(L) =
∑
a

+∞∑
j=−1

Ha
j (L)w

j
a .

Let us pass to the following new field:

L̄ ′
a, j = L̄ − δHa

j (L)

δL
ta, j . (5.1)

Table 4 Correspondence between fields

4D CS AHB

M = R2 × � Ma, j (3.52)

(w, w̄) × (z, z̄) (ta, j , θ) × (z, z̄)

Ā = 0 L̄ ′
a, j (5.1)

Aw, Aw̄ Aθ , Ma, j

ω ν (3.16)

φa Sa ∈ Oa

Since L̄ satisfies 2.(3.46), then L̄ ′
a, j satisfies the equation

∂̄Ma, j − ∂a, j L̄
′
a, j + [Ma, j , L̄

′
a, j ] = 0,([DL̄ ′, DMa, j ] = 0

)
. (5.2)

To prove it we use the equation

∂a, j
δHa

j (L)

δL
+
[
Ma, j ,

δHa
j (L)

δL

]
= 0.

The latter follows from (3.37) and from (3.45).
Consider a family of 3D spaces with coordinates

Wa, j = {(z̄, Ta, j , θ ∈ S1)} ⊂ Ma, j (3.52) (5.3)

and the P-bundle over Wa, j with connections

DAa, j = (DAθ dθ, DMa, j dta, j , DL̄ ′
a, j
d z̄),

DAθ = ∂θ + Aθ , DMa, j = ∂a, j + Ma, j ,

DL̄ ′
a, j

= ∂̄ + ∂θ + L̄ ′
a, j . (5.4)

It follows from (3.32) that the system (3.46) assumes the
form:

1. ν[DMa, j , DAθ ] = 0,
2. [DL̄ ′

a, j
, DMa, j ] = 0,

3. ν[DL̄ ′
a, j
, DAθ ] = ∑n

a=1 δ(z − za)Sa .
(5.5)

The delta-functions in the right-hand side of (3.5.5) mean
that the connection form (i.e. L) has the first-order poles.
Equations (5.5) are the equations of motion for the 4D-CS
action on the 4D spaces Ma, j (3.52)

S4D = 1

2π h̄

∫
Ma, j

ν · CS(Aa, j ),

where Aa, j = (DMa, j , DL̄ ′
a, j
, DAθ ) and CS(Aa, j ) :=

tr
(
Aa, j∧dAa, j+ 2

3Aa, j∧Aa, j∧Aa, j

)
. Thereby, we rewrite

the equations (3.46) of the AHB theory in the Chern–Simons
form (2.2).

Comparing the system (5.5) with the system (2.3) in 4D-
CS theory, we obtain the following relations between the
fields in these two constructions (Table 4):

Thus, we established the equivalence of two constructions
at the classical level in the case when the surface defects
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correspond to the first-order poles, and the W bundles (3.1)
are trivial.
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6 Appendix

6.1 Affine Lie algebras [30]

Let g be a simple complex Lie algebra and L(g) = g⊗C(x),
x ∈ C

∗ be the loop algebra of Laurent polynomials. Let (, )
be an invariant form on g, and let res be the coefficient c−1

in the Laurent expansion of X = ∑
ckxk ∈ L(g). Define the

form on L(g)

〈X, Y 〉 =
∫
S1
(X,Y )dθ.

Consider its central extension L̂(g) = {(X (x), k)}, k ∈ C.
The commutator in L̂(g) assumes the form

[(X1, k1), (X2, k2)] = ([(X1, X2)]0, 〈X1, ∂X2〉),
(∂ = ı x∂x ),

where [(X1, X2)]0 is a commutator in g,
The cocentral extension Ľ(g) of L̂(g) is the algebra

Ľ(g) = {X = (X, k, μ) = (μ∂ + X, k),

X ∈ L(g), k ∈ C, μ ∈ C}. (A.1)

The commutator in Ľ assumes the form

[X1,X2] = [(X1, k1, μ1), (X2, k2, μ2)]
= (μ1∂X2−μ2∂X1+[X1, X2]0, 〈X1, ∂X2〉, 0).

(A.2)

There is invariant non-degenerate form on Ľ

(X1,X2) = 〈X1, X2〉 + k1μ2 + k2μ1. (A.3)

Let K be a generator of the central charge and h0 the Cartan
subalgebra of g. The Cartan subalgebra h of Ľ takes the form

h = h0 ⊕ C∂ ⊕ CK . (A.4)

Let L(G) be the loop group corresponding to the loop Lie
algebra L(g)

L(G) = G ⊗ C(t)) =
{∑

k

gkx
k, gk ∈ G

}
, (A.5)

The central extension L̂(G) = {g(x), ζ } is defined by the
2-cocycle C(g, g′) on L(G) providing the associativity of the
multiplication

(g, ζ ) × (g′, ζ ′) = (
gg′, ζ ζ ′C(g, g′)

)
, (A.6)

Consider the shift operators Tμ = exp(μ∂), μ ∈ C acting
on L(G). The semidirect product is the cocentral extension
of L̂(G)

Ľ(G) = L̂(G) � {Tμ}. (A.7)

The adjoint action of f ∈ L(G) is defined as

Ad fX = Ad f (X, k, μ) = ( f X f −1 − μ∂ f f −1,

k + 〈 f −1∂ f, X〉 − 1

2
μ〈( f −1∂ f )2〉, μ). (A.8)

The coalgebra

Ľ∗(g) = {Y = (Y, r, ν) ∼ (ν∂ + Y, r)} (A.9)

is defined by the pairing

(X ,Y) = 〈X,Y 〉 + kν + μr. (A.10)

Here, Y is a 1-form Ydθ on S1.
The coadjoint action of L(G) assumes the form

Ad∗
f Y = Ad∗

f (Y, r, ν) = ( f −1Y f + ν f −1∂ f,

r − 〈∂ f f −1,Y 〉 − 1

2
ν〈( f −1∂ f )2〉, ν). (A.11)

The corresponding Lie algebra L(g) ⊗ C[x, x−1]{ε} acts as

adεX = ([ε, X ]0 − μ∂ε, k + 〈∂ε, X〉, 0). (A.12)

ad∗
εY = ([Y, ε]0 + ν∂ε, r − 〈∂ε,Y 〉, 0). (A.13)

6.2 Coadjoint orbits

Coadjoint orbits are the result of coadjoint action (A.11) of
L(G) on a fixed element

Y(0) = (c(0)∂ + p(0), 0) = (p(0), 0, c(0))

of the Lie coalgebra L̂∗(g) (A.9).
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Consider the orbit of the loop group orbit passing through
Y(0)

Ad∗
gY(0) =

(
O(p(0), c(0)), −〈∂gg−1 p(0)〉

−1

2
c(0)〈(g−1∂g)2〉, c(0)

)
,

where

O(p(0), c(0))

= {S = g−1 p(0)g + c(0)g−1∂g, g ∈ L(G)}, (A.14)

The symplectic form on the orbit is the Kirillov–Kostant form

ωKK = −
∫
S1

(
p(0), Dgg−1Dgg−1

)

+c(0)

2

∫
S1

(
Dgg−1, ∂(Dgg−1)

)

=
∫
S1
(S(p(0), c(0)), g−1Dgg−1Dg). (A.15)

The corresponding Poisson brackets are

{Sα(x), Sβ(y)} = δ(x/y)cγαβ Sγ (x)

+c(0)καβ∂δ(x/y), (A.16)

where καβ is invariant form on g. The form ωKK is invariant
under transformations

g → g f, f ∈ L(G). (A.17)

The corresponding moment is S(p(0), c(0)). The action the
{exp(ε2(z, z̄)∂}) component takes the form (3.20)

δε2g = ε2∂g.

The central element {exp(ε3)} (3.10) does not act on Y(0).
We assume that p(0) is a semi-simple element in the Cartan

subalgebra hC ⊂ g. Its centralizer is the Cartan subgroup
HC. The invariants defining the orbit O(p(0), c(0)) are the
conjugacy classes of the monodromy operator corresponding
to the connection c(0)∂+S along a contour in C

∗. In fact, there
is a one-to-one correspondence between the set of L(G)-
orbits and the set of conjugacy classes in the group G. The
orbit is the coset space O(p(0), c(0)) ∼ L(G)/HC for c(0) �=
0, and O(p(0), 0) ∼ L(G)/L(HC), where HC is the Cartan
subgroup of G.
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