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Abstract Machine learning has become a popular instru-
ment for the search of undiscovered particles and mecha-
nisms at particle collider experiments. It enables the inves-
tigation of large datasets and is therefore suitable to operate
directly on minimally-processed data coming from the detec-
tor instead of reconstructed objects. Here, we study patterns
of raw pixel hits recorded by the Belle II pixel detector, that
is operational since 2019 and presently features 4 M pix-
els and trigger rates up to 5 kHz. In particular, we focus
on unsupervised techniques that operate without the need
for a theoretical model. These model-agnostic approaches
allow for an unbiased exploration of data while filtering out
anomalous detector signatures that could hint at new physics
scenarios. We present the identification of hypothetical mag-
netic monopoles against Belle II beam background using self-
organizing kohonen maps and autoencoders. These two unsu-
pervised algorithms are compared to a Multilayer Perceptron
and a superior signal efficiency of the Autoencoder is found
at high background-rejection levels. Our results strengthen
the case for using unsupervised machine learning techniques
to complement traditional search strategies at particle collid-
ers and pave the way to potential online applications of the
algorithms in the near future.

1 Introduction

Machine learning has proven to be a valuable tool in recon-
struction and analysis tasks for high-energy physics (HEP)
[1]. In particular, the classification of signal and background
using machine learning algorithms has sparked significant
interest in recent times. The majority of these algorithms are
trained in a supervised manner, and therefore rely on a prior
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definition of signal provided by a theoretical framework and
simulations. However, detector signatures corresponding to
elusive beyond the standard model physics (BSM) processes
might be missed owing to a narrow signal definition or a
mis-modelling of either signal or background.

Unsupervised and semi-supervised methods aim at the
identification of signal features while minimizing predic-
tions about signal or background. A data-driven approach
is adopted allowing for a model-agnostic analysis that has
the advantage of being independent from theoretical assump-
tions and therefore not confined to specific signal hypothe-
ses and background modelling. In this document, we present
two unsupervised machine learning methods with the objec-
tive to identify anomalous detector patterns that are potential
indicators for unaccounted physics scenarios. The anomaly
detection is performed such that it can be considered as a
sophisticated filter mechanism that defines a potential signal
region for further statistical analysis. In this paper, we focus
on the filter itself.

The inner region of the Belle II detector is considered to
demonstrate this filtering approach. The input data consists
of pixel hits coming from the Belle II pixel detector presently
featuring one layer of DEPFET (Depleted P-channel FET)
[2] silicon sensors. The unsupervised data-driven machine
learning algorithms are trained on beam-background data
recorded by the pixel detector when a single beam was cir-
culating in the collider. Simulated pixel hits by hypothetical
long-lived magnetic monopoles serve as anomalous events
to evaluate the performance of the presented algorithms. The
unsupervised techniques are compared to a neural network,
that is trained in a supervised manner.

The paper is structured as follows: in Sect. 2, the Belle II
experiment and the pixel detector are introduced. Subse-
quently, the dataset and data preprocessing are described in
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Fig. 1 Example clusters of single-beam background particles from the inner region of the PXD (pixel dimensions: 50µm × 55µm ). The seed
pixel is located at the centre of the 9×9 pixel matrix. The colour scale represents the single-pixel charge in ADC values

Fig. 2 Example clusters of simulated magnetic monopoles from the inner region of the PXD (pixel dimensions: 50µm × 55µm). The seed pixel
is located at the centre of the 9×9 pixel matrix. The colour scale represents the single-pixel charge in ADC values

Sect. 3. The different machine learning algorithms are intro-
duced in Sect. 4 and their performance is presented in Sect. 5.

2 The Belle II experiment

The Belle II experiment, located at the SuperKEKB acceler-
ator, has started operation in spring 2019. SuperKEKB pro-
vides electron-positron collisions with a nominal centre-of-
mass energy of 10.58 GeV and a design instant luminosity of
> 5 × 1035 cm−2 s−1 [3].

The Belle II detector is composed of several sub-detectors,
that are arranged cylindrically around the interaction point
[4]. This document only treats the inner-most detector: an
all-silicon pixel detector that is part of the Belle II tracking
system, as detailed below. The silicon vertex detector (SVD)
based on double-sided silicon strip sensors and the central
drift chamber (CDC), a cylindrical wire chamber, are the
other two detectors making up the Belle II tracking system.

2.1 The Belle II pixel detector

The Belle II pixel detector (PXD) consists of pixelated
DEPFET sensors, that are arranged in two layers at radii
of 14 mm and 22 mm from the beam pipe [5,6]. Presently,
only the first layer is installed. The PXD features nearly 4
million pixels with pixel sizes between 50µm × 55µm and
50µm × 85µm and a thickness down to 75µm.

The data rate coming from the PXD is foreseen to
reach about 20 GB/s, which necessitates an online reduction
scheme [7]. The FPGA-based data-reduction system online
selection node (ONSEN) is able to reduce the data rate by

a factor of 30 by using reconstructed tracks provided by the
online event reconstruction, which are extrapolated to the
PXD layers. A region-of-interest (ROI) is defined around the
intercept of these tracks with the detector layers and only
pixel hits within ROIs are considered [8]. However, this fil-
tering mechanism relies on reconstructable particle tracks,
as PXD hits outside a ROI are discarded by the ONSEN. In
particular, particles with a low transverse momentum or high
energy loss can escape tracking. As a consequence, no ROI
is generated and the PXD data associated with these particles
is lost.

To guarantee a high signal efficiency of particles with non-
reconstructable tracks, a new veto system based on machine
learning is proposed. A proof-of-principal for a veto sys-
tem dedicated to the identification of slow pions has already
been presented in the past [9]. In this document, the cluster
rescue veto system is extended to exotic or anomalous parti-
cle signatures that do not generate a reconstructable particle
track. To assess the efficiency of the cluster rescue mech-
anism, we simulate the creation of long-lived hypothetical
magnetic monopoles in the particle collision. As a conse-
quence of their high energy loss, magnetic monopoles are
stopped in the inner layers of the Belle II detector [10]. The
lack of hits in the outer sub-detectors inhibits the reconstruc-
tion of tracks, which also leads to the deletion of PXD data
associated with a monopole by the ONSEN, once the ROI
selection is switched on. The aim of the proposed veto sys-
tem is to identify the relevant PXD data based on anomalous
event signatures and tagging it to prevent deletion. We con-
sider unsupervised machine learning algorithms to generate
the veto, that could potentially run online during data-taking
on FPGA-based systems.
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Moreover, the tracking algorithms are currently relying on
information from the CDC to form a track. However, with the
rescued PXD data, a novel tracking approach using only the
silicon-based PXD and SVD detectors could be envisioned.

3 Data generation

PXD background data was recorded in dedicated beam-
background runs taken in 2020. For these runs, only a single
particle beam circulated in the Belle II detector. Background
generation mechanisms such as the interaction of the cir-
culating beam with residue particles in the beam pipe are
responsible for the background hits detected in these runs.
The PXD hits generated by background are characterised by
a small charge signal in each pixel, as shown by the exam-
ple clusters displayed in Fig. 1. The hits are nevertheless
detected by the PXD due to the high signal-to-noise ratio
of the DEPFET pixel sensors. The v-coordinate is along the
beam direction and the u-coordinate perpendicular to it. In
view of future online applications of the investigated algo-
rithms, the raw PXD hit information is used without applying
an offline calibration.

Dedicated background samples are regularly produced
in Belle II for background monitoring and as background-
overlay files for simulations. It is thus possible to obtain
updated background samples in the future, which allows
for an adaptation of the classification algorithm to changing
beam conditions.

The signal events are simulated using the official Belle II
software framework basf2 [11]. The creation of monopole-
antimonopole pairs from electron-positron collisions is con-
sidered. The magnetic charge of the monopole is set to 68.5 e
in accordance with the Dirac theory [12,13] and the mass to
3 GeV. A full detector simulation with basf2 is performed,
including the interaction of particles with the PXD layers.
The simulated PXD hits associated with magnetic monopoles
are shown in Fig. 2.

The PXD information used as input for the machine learn-
ing algorithms is extracted as follows: For each simulated
event and for the background events, the charge values of a
9×9 pixel matrix are considered around the PXD hit with
the highest charge value (seed pixel). The matrix size is suf-
ficiently large to capture the entire cluster for the majority of
events and small enough to guarantee a fast convergence of
the investigated algorithms. In addition, the global position
of the seed pixel within the PXD is extracted. In total, 84
features are considered, which are normalized to the range
[0, 1] to avoid dominance of a single parameter.

4 Machine learning techniques

We propose a sophisticated filter based on unsupervised
machine learning algorithms to identify anomalous signa-
tures in the PXD. The filter operates on a matrix-by-matrix
basis and labels each 9×9 matrix as anomalous or normal
based on an anomaly score. While the scope of the anomaly
score depends on the selected algorithm, we adopt the defini-
tion that low values represent normal and high values anoma-
lous events.

4.1 Performance metrics

For all algorithms, the receiver operating characteristics
(ROC) is obtained by scanning the signal efficiency εS and
recording the background rejection εB . The area-under-curve
(AUC) is commonly used as a figure of merit for the per-
formance of classifiers [14]. For anomaly detection, a high
background rejection is particularly desirable. Therefore, the
signal efficiency at three different operation points featuring
a high background-rejection level are studied as well, i.e.
the signal efficiencies εS(εB = 10−2), εS(εB = 10−3) and
εS(εB = 10−4) are extracted.

The uncertainty is extracted by repeating the training and
evaluation five times with random shuffling of input vectors
i.e. a vector in the training set in the first iteration can be
assigned to the evaluation set in the second one. In each iter-
ation, the performance metrics are determined. Their mean
represents the nominal value and the quadratic sum of devi-
ations the uncertainty.

4.2 Multilayer perceptron (MLP)

First, a supervised multilayer perceptron (MLP) is consid-
ered, to which the unsupervised learning approaches are com-
pared.

The supervised training is performed using 350k back-
ground and signal events each. After each training epoch, a
dedicated testing set is presented to the MLP containing addi-
tional 150 k events for both classes. The training is stopped
automatically once the reduction of the predicted error (loss)
from the testing set is only marginal. An evaluation set com-
prising 500 k events for each class is considered to assess the
performance of the algorithm.

4.3 Self-organizing maps (SOM)

A self-organizing map (SOM) is an unsupervised machine
learning technique enabling the transformation of a high-
dimensional dataset to a low-dimensional discrete grid, while
keeping the topological structure [15,16]. After training, vec-
tors that are close in the high-dimensional input space are
represented by adjacent grid points in the low-dimensional

123



587 Page 4 of 10 Eur. Phys. J. C (2022) 82 :587

Table 1 Hyperparameters for the multilayer perceptron

Parameter Value

Activation function Rectified linear unit (ReLu)

Loss function Cross entropy

Optimizer Stochastic gradient descent (SGD)

Learning rate 1e−4

Momentum 0.9

Trainable parameters 15 k

Table 2 Hyperparameters for the self-organizing maps

Parameter Value

Nodes 100

Neighbourhood function Gaussian

Gaussian width 16

Learning rate 0.03

Trainable parameters 8 k

space. The same training, testing and evaluation sets as for
the MLP are used.

4.4 Autoencoders (AE)

An autoencoder (AE) is a feed-forward multilayer neural net-
work that aims to reproduce the input vector without using
an identity mapping. It consists of two parts: an encoder
and decoder. While the encoder compresses the input to a
lower-dimensional vector, the decoder reconstructs the orig-
inal input from the reduced representation. The latent space in
the centre of the AE is an information bottleneck that enforces
the selection of relevant patterns from the input data.

During training, only background events are presented to
the AE and their reconstruction error is minimized, making
the AE specialized in the reproduction of background events.
In the evaluation phase, the AE is able to recognize back-
ground events by a low reconstruction error. Signal events
appear anomalous to the AE and are characterized by a high
error, that can therefore serve as an anomaly/classification
score [17].

5 Results

In the following, the hyperparameters of the three algorithms
are presented and the identification performance of hypothet-
ical magnetic monopoles against beam background is stud-
ied. The evaluation for other example signals is presented in
Appendix E.

Table 3 Hyperparameters for the autoencoder

Parameter Value

Activation function Rectified linear unit (ReLu)

Loss function Mean squared error

Optimizer Adaptive moment estimation

Learning rate 1e−4

Trainable parameters 13 k
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Fig. 4 SOM classification distribution for signal and background

5.1 Hyperparameters

The hyperparameters of the three algorithms are listed in
Tables 1, 2 and 3, and the architectures of the MLP and the
AE is shown in Appendix A. All algorithms are optimised
by performing a grid search of possible hyperparameters and
selecting the ones yielding the highest signal efficiency at
low background levels of 10−4.

For the SOM, the dimension of the low-dimensional grid
space is set to one to allow for a comparable performance
evaluation as for the other two machine learning techniques.
The low-dimensional representation will therefore span only
a single line, with the aim to have grid points responding to
background cluster on the one end and signal on the other
end.
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Fig. 5 AE classification distribution for signal and background
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Fig. 6 ROC curves for the three machine learning algorithms: a super-
vised MLP – Multilayer Perceptron, an unsupervised SOM – Self-
Organizing Map and an unsupervised AE – Autoencoder

5.2 Classification performance

The one-dimensional classification distribution is presented
in Figs. 3, 4 and 5 for the three algorithms.

For the MLP, signal/background is suppressed by approx-
imately three orders of magnitude for low/high classification
values. In case of the SOM, the trained one-dimensional grid
serves as classification axis and exhibits similar suppression
factors as the MLP. For the AE, a signficant overlap region is
visible at low classification scores, but a high signal purity is
achieved at high values. The reconstruction of example matri-
ces for both signal and background is shown Appendix B.

The ROC curves for the three algorithms are presented in
Fig. 6 and the performance results are listed in Table 4.

The AUC of the MLP reaches 99.69+0.01
−0.01%, which indi-

cates an excellent classification performance. The AUC
of the AE is about 1% lower and the one for the SOM
about 3% lower. At high background-rejection levels of

εS(εB = 10−4), the signal efficiency of the MLP deterio-
rates to 39.5+3.6

−2.3%. The efficiency for the AE still reaches

60.1+3.3
−2.7% showing that the AE outperforms the other two

algorithms if a high signal purity is demanded. The origin of
the different classification performance of the MLP and the
AE is investigated in Appendix D and the robustness of the
AE against changing signal and background sets is shown in
Appendix C.

6 Summary and outlook

The unsupervised identification of anomalous pixel-detector
data using Self-Organizing Maps and Autoencoders was pre-
sented. To exemplify the approach, hypothetical magnetic
monopoles at the Belle II pixel detector were simulated and
identified against beam-background data. The two unsu-
pervised algorithms have shown a similar performance as
a supervised multilayer perceptron. The Autoencoder out-
performs the multilayer perceptron, if high background-
rejection levels are required.

This study is an essential cornerstone for future online
applications of anomaly detection at the Belle II pixel detec-
tor in order to further improve its sensitivity to undiscov-
ered physics. Moreover, the identification of anomalous data
could be considered for experiment protection and data-
quality monitoring as well, since anomalies in the data could
hint at unsatisfactory beam stability or malfunctioning detec-
tor components.
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Table 4 Performance metrics of the investigated machine learning techniques for the evaluation set

Algorithm AUC [%] εS(10−1) [%] εS(10−2) [%] εS(10−3) [%] εS(10−4) [%]

MLP 99.69+0.01
−0.01 99.99+0.01

−0.01 96.9+0.4
−0.2 83.4+0.9

−1.2 39.5+3.6
−2.3

SOM 96.30+0.12
−0.24 89.3+0.3

−0.2 80.3+1.1
−1.4 49.9+4.2

−4.1 28.8+5.1
−6.2

AE 98.86+0.05
−0.02 98.2+0.1

−0.3 95.9+1.2
−0.4 87.4+1.4

−1.2 60.1+3.3
−2.7
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Appendix A: Neural network architecture

In Tables 5 and 6, the architectures for the MLP and the AE
are shown that were used to obtain the results presented in
this paper.

Table 5 Network architecture of the MLP

Layer Nodes Activation

Linear 84 ReLU

Linear 128 ReLU

Linear 32 ReLU

Linear 16 ReLU

Linear 1 ReLU

Table 6 Network architecture of the AE

Layer Nodes Activation

Linear 84 ReLU

Linear 64 ReLU

Linear 16 ReLU

Linear 8 ReLU

Linear 16 ReLU

Linear 64 ReLU

Linear 84 ReLU

Appendix B: AE reconstruction performance

Example clusters from beam background before and after
reconstruction are depicted in Fig. 7. The upper row shows
the original input matrices of background events. In the lower
row, the output of the AE is displayed with matrices in the
same column belonging to the same event. While the overall
shape is faithfully reproduced, the AE has a tendency to add
more pixel hits to the matrix especially directly adjacent to
the original pixel hits.

Example matrices of signal before and after reconstruction
are depicted in Fig. 8. The unfamiliar shape and in particular
the high ADC values pose a problem for the AE. While some
shape characteristics are still preserved, the AE distorts the
matrices in a way that they appear to be more background-
like, i.e. instead of the concentrated pixel hit distribution,
the distributions become long-stretched and the high ADC
values are transformed to low ones.

Fig. 7 a Input and b reconstructed pixel matrices associated with background particles
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Fig. 8 a Input and b reconstructed pixel matrices associated with signal particles

Appendix C: Robustness

In the following, the robustness of the AE with respect to
different input datasets is discussed.

C.1: Size of pixel matrix

The nominal input features consist of a 9×9 pixel matrix as
well as the global hit coordinates of the seed pixel within the
PXD. To investigate the impact of the size of the pixel matrix,
larger matrices are extracted from the same data and simula-
tion sets. The training, testing and evaluation steps of the AE
are repeated and three ROC curves belonging to matrix sizes
of 9×9, 15×15 and 25×25 are computed, as illustrated
in Fig. 9. An improvement for larger matrix sizes at low
background-rejection levels is observable. As the improve-
ment is comparably small, the increase in computation time
is not justified for this study and therefore the 9×9 matrix is
kept.
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Fig. 9 ROC curves using different matrix sizes for the input data

C.2: Signal in training data

We consider the hypothetical scenario of having a back-
ground training set that is contaminated with signal events. In
this case, the AE is already exposed to signal during training
and will consequently adapt to it, potentially resulting in a
lower reconstruction error for signal and therefore a weaker
classification performance. To evaluate the impact of a con-
taminated data set, 0.01%/0.1%/1% of the training events are
replaced by signal and the analysis is repeated.

The resulting ROC curves are presented in Fig. 10. The
performance of the AE deteriorates for 1% signal in the data
but is not affected for the lower contamination values. It can
be concluded that a signal component in the training set has
to be sufficiently rare to guarantee the optimal performance
of the AE.
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Fig. 10 ROC curves for different signal levels in the training sample
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Fig. 11 ROC curve for different beam-background samples recorded
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C.3: Stability over time

As the luminosity of SuperKEKB is still increasing steadily,
changing beam conditions in different run periods are
expected. To investigate the stability of the AE over time,
beam background samples from different run periods were
tested and the resulting ROC curves are presented in Fig. 11.
The results for both run periods are similar, which confirms
that the different background conditions are negligible for the
identification of the magnetic monopole signal. If a stronger
change in background conditions occurs in the future, the
data-driven training of the AE would ensure a relatively fast
adaptation of the classifier.

C.4: Simulated beam background

Data from the PXD is subject to various systematic effects
that were not explicitly accounted for in this study such as
particularly noisy pixels or pixel-by-pixel variations result-
ing in a slightly different AUC value for the same energy
deposition. In online applications, correcting for these effects
is not easily feasible. It is therefore beneficial to examine
their impact on the classification performance. To this end,
dedicated beam-background simulations are performed. The
extraction of pixel matrices is conducted in the same man-
ner as for data and an AE is trained and evaluated on the
simulation.

The beam-background simulation is performed with
basf2. The framework uses the strategic accelerator design
(SAD) software [18] and Geant4 [18] for the generation
of beam-background particles and subsequently a Geant4-
based approach to propagate the particles through the detec-
tor. A detailed comparison of simulated beam background
and data for the inner tracking detectors can be found else-
where [19].

The resulting ROC curve using simulated background
is compared to the one from data in Fig. 12. Good agree-
ment between the two curves is achieved, which implies a
sufficiently good background modelling in simulation. In
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Fig. 12 ROC curves for simulated and real beam background. In both
cases, the same signal set is used

addition, remaining differences between data and simulation
related to noisy pixels or pixel-by-pixel variations do not
affect the results. Although noisy pixels have the potential
to disturb the training, the results from the previous section
imply that a disturbance of about 1% of the considered matri-
ces is necessary to affect the AE. While there are uncertain-
ties in the ADC values due to pixel-by-pixel variations, these
uncertainties are small compared to the large difference in
energy deposition between background and signal.

C.5: Standard model background

The performance of the AE is assessed against different stan-
dard model (SM) background sources, which are simulated
in basf2. The AE is trained on beam background and sub-
sequently applied to discriminate magnetic monopoles from
other SM background particles. The resulting classification
distributions and ROC curves are shown in Figs. 13 and 14,
respectively. For all particle species, the anti-particle was
included in the simulation set as well. In contrast to beam
background, the electrons, muons and protons are created at
the interaction point and thus enter the PXD under a steeper
angle with respect to the PXD surface. As a result, the clusters
are smaller and have less resemblance with the long-stretched
clusters of magnetic monopoles, which facilitates identifica-
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Fig. 13 AE classification distribution for signal and different SM (stan-
dard model) background
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Fig. 14 ROC curve for different SM (standard model) background

tion and results in an improved identification performance for
electrons and muons. The degraded performance for the pro-
tons is related to their higher energy deposition compared to
the lighter particles, which gives rise to high-charge clusters
resembling magnetic-monopole clusters.

Appendix D: Difference in classification performance

In Sect. 5, it was shown that the AE exhibits a lower AUC
compared to the MLP but a higher signal efficiency at low
background levels. The lower AUC is found to be related to
beam-background matrices with uncommon cluster shapes
that lead to a high anomaly score. Example matrices are
depicted in Fig. 15. In comparison to the majority of beam-
background matrices (cf. Fig. 1), broader clusters with a
higher number of pixel hits are characteristic for these matri-
ces. At low/intermediate background-rejection levels, they

are wrongly classified as signal by the AE, leading to the
lower AUC compared to the MLP.

At high background-rejection levels, we considered those
signal matrices with a high AE classification score, but a
comparably low MLP score, which are responsible for the
lower signal efficiency of the latter. Example matrices are
depicted in Fig. 16. As these clusters have little resemblance
with background clusters that the AE was trained on, the AE
assigns a high classification score marking them as signal.
For the MLP, the classification is hampered by the uncom-
mon signal features when compared to the majority of signal
matrices (cf. Fig. 2). As these features were rare in the train-
ing set as well, the MLP has not picked them up correctly
leading to a lower classification score compared to the AE
and thus a lower signal efficiency.

Appendix E: Different HIP signals

The results for the three algorithms are cross checked with
two other HIP candidates: Standard Model antideuterons and
hypothetical dyons, which carry both magnetic and electric
charge.

Antideuterons First, antideuterons with a momentum up
to 1 GeV are identified against the beam-background data.
Antideuterons are particularly interesting in cosmological
dark-matter searches [20]. Studying their properties at col-
lider experiments delivers information about the formation of
antideuterons, which is a crucial input for these searches. At
Belle II, low-momentum antideuterons have a limited range
in the detector and their identification is hampered by the

Fig. 15 Example beam-background matrices with a low MLP and a comparably high AE classification score

Fig. 16 Example magnetic-monopole matrices with a high AE and a comparably low MLP classficiation score
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Fig. 17 ROC curve for the classification of antideuterons (signal) and
beam background for three different algorithms. MLP multilayer per-
ceptreon, SOM self-organising map, AE autoencoder

Table 7 Performance metrics of the investigated machine learning
techniques for simulated antideuterons

Algorithm AUC [%] εS(10−4) [%]

MLP 97.18+0.06
−0.04 10.4+5.6

−4.1

SOM 91.22+0.22
−0.48 8.1+4.5

−4.3

AE 96.10+0.12
−0.24 32.1+2.3

−1.4
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Fig. 18 ROC curve for the classification of hypothetical dyons (signal)
and beam background for three different algorithms. MLP multilayer
perceptreon, SOM self-organising map, AE autoencoder

current PXD readout scheme, similar to other HIPs such as
the hypothetical magnetic monopoles.

While the architecture of the three machine learning algo-
rithms remains the same for the antideuteron studies, the
MLP and SOM require re-training due to the novel signal def-
inition. The results for antideuterons are depicted in Fig. 17
and the AUC as well as the signal efficiency at εS(10−4)

are listed in Table 7. Similar to the results for the magnetic
monopoles, the MLP exhibits the highest AUC, but the AE
has the best signal efficiency at high background-rejection
levels.

Table 8 Performance metrics of the investigated machine learning
techniques for simulated hypothetical dyons

Algorithm AUC [%] εS(10−4) [%]

MLP 99.06+0.03
−0.03 33.9+2.6

−2.3

SOM 96.75+0.09
−0.08 25.3+5.3

−4.9

AE 98.73+0.07
−0.05 62.1+1.3

−1.5

Dyons Dyons are hypothetical particles carrying both mag-
netic and electric charges that were first hypothesised by
Schwinger [21] and appear in several theories such as grand
unified theories [22] or string theory [23]. Here, we simulate
dyons with an electric charge of 10 e and a magnetic charge
of 68.5 e corresponding to the unit Dirac charge. Results are
depicted in Fig. 18 and the performance metrics are given in
Table 8. The overall trend is found to be compatible with the
other two HIP candidates as well.
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