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Abstract The holographic graviton soft-wall model, intro-
duced to describe the spectrum of scalar and tensor glueballs,
is improved to incorporate the realization of chiral-symmetry
as in QCD. Such a goal is achieved by including the longitu-
dinal dynamics of QCD into the scheme. Using the relation
between AdS/QCD and light-front dynamics, we construct
the appropriate wave function for the pion which is used to
calculate several pion observables. The comparison of our
results with phenomenology is remarkably successful.

1 Introduction

In the last few years, hadronic models, inspired by the holo-
graphic conjecture [1,2], have been vastly used and devel-
oped in order to investigate non-perturbative features of
glueballs and mesons, thus trying to grasp fundamental fea-
tures of QCD [3,4]. Recently we have used the so called
AdS/QCD models to study the meson and glueball spec-
trum spectrum [5–8]. The holographic principle relies in a
correspondence between a five dimensional classical theory
with an AdS metric and a supersymmetric conformal quan-
tum field theory with NC → ∞. This theory, different from
QCD, is taken as a starting point to construct a 5 dimen-
sional holographic dual of it. This is the so called bottom-up
approach [9–13]. The relation of this approach established
with QCD is at the level of the leading order in the number
of colors expansion.

In our previous investigation, we could successfully
describe the pseudo-scalar spectrum, identified with the η

system, without any free parameter [8] within the GSW
model. However, we found that the conventional model was
not able to distinguish between the spectrum of the η and

a e-mail: matteo.rinaldi@pg.infn.it (corresponding author)

the π [8]. One of the differences between the η and the π

is the isospin, however since the GSW does not take into
account Coulomb corrections, the pions behave very much
like the η from the point of view of quantum numbers and
therefore the spectrum would be the same, but certainly not in
nature. In order to characterize the pion we proposed at that
time a modification of the dilaton in analogy with previous
investigations [13–15]. Such a procedure was able to describe
correctly the pion spectrum, however we found out that the
wave function derivable from the mode function was not pre-
cise enough to explain many of the data that follow. Other
authors have also studied chiral symmetry breaking within
holographic models in the Hard Wall approach in an aim to
match the high and the low energy behavior or QCD [11,16–
18].

In here we will proceed in a way which follows closer
QCD by matching our AdS/QCD model with Light Front
holography. The pion is the Goldstone boson of SU(2) ×
SU(2) chiral symmetry and this fact is instrumental in giving
the lightest pion its low mass. We should therefore implement
the spontaneous broken realization of chiral symmetry in the
GSW holographic model to reproduce the low mass of the
ground state of the pion. To do so we will modify the dilaton
of the GSW model to get a zero mass pion. To implement
chiral symmetry breaking we will include the QCD longitu-
dinal dynamics [19–23]. In this way we will obtain a pion at
the physical mass. We also obtain the corresponding mode
function.

In order to establish to what extent the mechanism is
phenomenologically successful, we calculate several pion
observables comparing the outcomes with data. To this aim,
a correspondence between the mode function and a light
cone wave functions is introduced [24–26]. The comparison
between our calculations and the phenomenological results
is quite reasonable despite the low number of parameters.
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The contents of this presentation go as follows. In Sect.
2 we describe the η equation of motion (EoM) of the GSW
model and its solution. We proceed in Sect. 3 to show the
description of the Goldstone pion in the GSW model. In
Sect. 4 we establish the relation between the pion mode func-
tion and the pion light cone wave function (wf). In order to
effectively describe the chiral symmetry breaking, the lon-
gitudinal dynamics is introduced in Sect. 5. Having com-
pleted the description of the pion model, in Sect. 6 we calcu-
late various pion observables: the spectrum, the form factor,
the mean square radius, the effective form factor, the mean
transverse distance between two partons, the decay constant,
the distribution amplitude, the photon transition form factor
and the parton distribution function (PDF). Results are com-
pared with the phenomenology. We end by some concluding
remarks.

2 The pseudo-scalar wave equation within the GSW
model

In this section, details on the application of the GSW model
to the study of the pseudo-scalar meson spectrum are pre-
sented. Our approach is based on the usual Soft Wall (SW)
AdS/QCD model [12,26] modified by a deformation of the
AdS5 space. These type of changes have been proposed in
several analyses to improve the prediction power of the holo-
graphic models within the bottom-up framework [27–31]. In
particular, the GSW model has been specifically introduced
to describe the scalar and tensor glueball spectrum [5]. Pre-
viously it was shown that the conventional field approach
was hardly capable to describe the glueball spectra [28,32].
Therefore, in Ref. [5] the glueball masses have been calcu-
lated from the mode function of gravitons propagating on a
deformed AdS5 space. The wrap metric of the model effec-
tively encodes complex dilatonic effects. In particular the
metric used was

ds2 = R2

z2 eαk2z2
(dz2 + ημνdx

μdxν)

= eαk2z2
gMNdx

MdxN = ḡMNdx
MdxN . (1)

Recently, in Refs. [6–8] the GSW has been applied to describe
also the spectrum of various mesons and high spin glueballs.
The parameters entering the GSW model are α = 0.55±0.04
and the energy scale k = 0.37/

√
α GeV. Within these values

the model is able to reproduce quite accurately the meson and
glueball spectra, except for the pion which requires proper
modifications to include the chiral symmetry breaking mech-
anism [8]. In this case however, the pion spectrum comes out
close to the experimental data although the calculation pre-
dicts the existence of up to now not found additional states.

Let us proceed now to build up the model for the pion,
which is closer to the phenomenology than that of Ref. [8].
We start from the pseudo-scalar action,

S =
∫

d5x e−ϕ0(z)√−g

×
[
gMN ∂M�(x)∂N�(x) − 4eαk2z2

�(x)2
]
, (2)

where ϕ0(z) = k2z2 and we have explicitly used the five
dimensional pseudo-scalar mass M5R2 = −4 [33]. The EoM
for the pseudo-scalar system can be recast in a Schrödinger
type equation by scaling the field,

�(x, z) = ei P·x eϕ0(z)/2χ(z)z3/2, (3)

where P2 = M2, M being the mass of the pseudo-scalar
meson. The final equation has the form

−d2χ(z)

dz2 + V (z)χ(z) = M2χ(z). (4)

where the potential is

V (z) = k4z2 + 2k2 + 15

4z2 − 4

z2 e
αk2z2

. (5)

However, since the potential Eq. (5) is not binding, an
additional dilaton ϕn(z) has been added to the action Eq. (2)
so that the exponential exp[αk2z2] in Eq. (5) can be truncated
so that the final potential binds. Details on this procedure have
been described in detail in Ref. [8]. The Schrödinger equation
is now obtained by imposing the following re-scale:

�(x, z) = ei P·x e(ϕ0(z)+ϕn(z))/2 χ(z)z3/2, (6)

then, the truncated phenomenological potential becomes:

V (z) = k4z2(1 − 2α2) + 2k2(1 − 2α) − 1

4z2 (7)

The regular solution to the above differential equation, for
the nth mode is,

χn(z) = Nnz
1
2 e−

√
1−2α2

2 k2z2

1F1

(
−n, 1,

√
1 − 2α2k2z2

)
,

(8)

where Nn is a normalization constant and the pseudo-scalar
mass comes out,

M(n)2 =
[
(2 − 4α) + 2

√
1 − 2α2(1 + 2n)

]
k2. (9)
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It is immediate that, M(0) �= 0, a consequence of the
fact that the model does not incorporate chiral symmetry. We
identify this state with the dual of η meson. The spectrum,
shown in Ref. [8] is in good agreement with data.

3 The pion in the GSW model

In QCD if the quark masses are zero, chiral symmetry is spon-
taneously broken and the pion is the corresponding Goldstone
boson. Therefore if we want an AdS/QCD model which rep-
resents this QCD behaviour we have to obtain an EoM for
a massless pion. In this holographic framework the dilaton
must describe much the essence of the confinement mecha-
nism together with the chiral symmetry breaking. Therefore,
our formalism, connecting the pseudo-scalar spectrum to that
of the η, requires a modification of the dilaton to generate the
exact chiral limit. From a phenomenological point of view,
it is necessary to get a massless pion and an energy scale
bigger then that of the η, as signaled by pion mass hierarchy.
For this purpose, we propose a straightforward modification
of the additional dilaton ϕn(z) used for the η [8]. It will be
sufficient to introduce two additional constants in the cut off
potential. Therefore, for the pion within the GSW model we
propose the following action:

S =
∫

d5x e−ϕ0(z)−ϕn(z)
√−g

[
gMN ∂M�(x)∂N�(x)

− 4eαk2z2
�(x)2

]
. (10)

If the additional dilaton satisfies the following differential
equation (see Ref. [8] for details):

− ϕ
′′
n(z)

2
+ ϕ

′
n(z)

(
3

2z
+ k2z

)
+ ϕ

′
n(z)

2

4

− 4

z2

[
eαk2z2 − 1 − (α + ξπ )k2z2

− 1

2
(α2 + γπ)k4z4

]
= 0, (11)

where the parameters ξπ and γπ have been included at
variance of the η case [8]. The relative potential in the
Schrödinger representation will be:

Vπ (z) = 15

4z2 + 2k2 + k4z2

− 4

z2

[
1 + (α + ξπ )k2z2 + 1

2
(α2 + γπ)k4z4

]

= Vη(z) − 4k2ξπ − 2γπk
4z2 . (12)

For this potential the mass equation becomes

M2
π (n) = [

2 − 4(α + ξπ ) + 2
√

1 − 2(α2 + γπ)(1 + 2n)
]
k2.

(13)

If one imposes Mπ (0) = 0 then:

ξπ = 1 − 2α +√
1 − 2α2 − 2γπ

2
. (14)

This relation ensures that the lightest pion is a Goldstone
boson. The mass spectrum then becomes

M2
π (n) = 4

√
1 − 2(α2 + γπ) k2n. (15)

Thus, the parameter γπ modifies the η slope of the spectrum
to reproduce the pion excitations. This freedom relaxes the
energy scale from the GSW scale

√
αk. The nth solution to

the relative Schrödinger equation is:

χn(z) = Nnz
1
2 exp

(
−
√

(1 − 2(α2 − γπ)

2
k2z2

)

×1 F1

(
−n, 1,

√
(1 − 2(α2 + γπ)k2z2

)
. (16)

where the difference with respect to Eq. (8) is characterized
by the presence of γπ .

A caveat is in place. The experimental status for the pion
excitations is not well established and therefore possible
intermediate states between π , π ′ and π ′′ could be observed
in the future as discussed in Ref. [8]. However, if one tries
to describe the present experimental spectrum as described
in Refs. [34,35], different energy scales for the scalar, the
η and the pion spectra are necessary. The modification pro-
posed here preserves entirely the GSW description of the
pseudo-scalar structure but incorporates a new scale and a
massless pion ground state. In the future other different pos-
sibilities will be investigated. In the present study we mainly
focus on this strategy which preserves as much as possible the
GSW structure of the model. In the next sections phenomeno-
logical predictions and comparisons with observable will be
provided.

4 Pseudo-scalar light front wave function

In order to test the proposed approach, let us take advantage
of the correspondence between the AdS/QCD approach and
the Light-Front formalism that characterizes the non per-
turbative structure of hadrons [24,36]. Such a strategy is
fundamental to use the AdS/QCD model to evaluate other
observables and learn new information on the inner structure

123



626 Page 4 of 18 Eur. Phys. J. C (2022) 82 :626

of the hadrons. Here we recall how to translate the mode
function derived from the AdS EoM, e.g. from Eq. (16) for
the pion, in terms of the corresponding light-front (LF) wave
function [25,37,38]. This procedure is extremely convenient
for calculating observables to test the proposed models. In
particular, we follow the formalism presented in Ref. [26]
where such a procedure has been applied to the hard-wall
(HW) and SW models in order to describe the pion and the
bulk-to-boundary propagator (the dual to the electromagnetic
conserved current).

4.1 The light front formalism

Let us first recall the main essence of the LF Fock repre-
sentation of hadronic systems. As shown in Ref. [24] the
QCD quantization at fixed LF time τ = t + x3/c allows
to describe the hadron spectrum from a Lorentz-invariant
hamiltonian: ĤLFQCD = P−P+ − P2⊥, where the hadron
four momentum, described with LF coordinates, has been
introduced: Pμ = (P+, P−,P⊥) and P± = P0 ± P3. The
plus and transverse components are kinematical operators.
P− = id/dτ is responsible for the LF time evolution of the
system. The mass equation can be then introduced as

ĤLFQCD|ψh〉 = M2
h |ψh〉, (17)

where |ψh〉 represents the hadron state. Remarkably, the LF
quantization, if the A+ = 0 gauge is considered, leads to
a suppression of all intermediate gluon degrees of freedom
justifying a Fock expansion of the hadron state in terms of
free partons. Therefore:

|ψh(P
+,P⊥, Sz)〉 =

∑
n,λi

n∏
i=1

∫
dxid2k⊥i

2
√
xi (2π)3 (16π)3δ

×
⎛
⎝1 −

n∑
j=1

x j

⎞
⎠ δ(2)

⎛
⎝ n∑

j=1

k⊥i

⎞
⎠

= ψn/h(xi ,k⊥i , λi )|xi P+, xiP⊥
+ k⊥i , λi 〉n; (18)

where here k⊥i is the intrinsic transverse momentum of the i
parton, λi is the helicity, n the number of Fock states taken in
the sum, e.g. for mesonsn ≥ 2.ψn/h is the frame independent
LF wf which incorporates the probability that the hadronic
system can be described by n constituents. |k+

i ,K⊥i , λi 〉n
represents the Fock state of n free partons, which is an eigen-
state of the free LF Hamiltonian. The normalization condition
reads,

〈ψh(P
+,P⊥, Sz)|ψh(P

′+,P′⊥, S′
z)〉

= 2P+(2π)3δSz S′
z
δ(P+ − P ′+)δ(2)(P⊥ − P′⊥), (19)

and leads to,

∞∑
n=2

n∏
i=1

∫
dxik⊥i

2(2π)3 (16π3)δ

⎛
⎝1 −

n∑
j=1

x j

⎞
⎠ δ(2)

×
⎛
⎝ n∑

j=1

k⊥i

⎞
⎠ |ψn/h(xi ,k⊥i )|2 = 1. (20)

Since in the present analysis we shall not investigate polariza-
tion effects, i.e. we will evaluate unpolarized distributions,
we omit here the helicity dependence. Moreover, the AdS
mode functions are obtained in terms of the coordinates of
a 5-dimensional space, therefore it is useful to rewrite the
above condition in terms of ψ̃n/h(xi ,b⊥i ), i.e. the Fourier
Transform (FT) of ψn/h(xi ,k⊥i ), which results in

ψn/h(x j ,k⊥ j ) = (4π)(n−1)/2

×
n−1∏
i=1

d2b⊥i exp

(
i
n−1∑
u=1

b⊥i · k⊥i

)
ψ̃n/h(xi ,b⊥i ), (21)

where b⊥i is the conjugate variable to k⊥i and represents the
frame independent intrinsic coordinate. The normalization
for the LF wf in coordinate space reads,

∞∑
n=2

n∏
i=1

∫
dxid

2b⊥i |ψ̃n/h(xi ,b⊥i )|2 = 1. (22)

4.2 The pion LF wave function

The procedure to relate the mode functions and the LF wf can
obtained by comparing the Drell–Yan–West form factor [39]
with the AdS one, see Ref. [26]. The AdS ff can be written
from the overlap of the normalizable modes of the outgoing
and incoming hadrons, �out (z) and �in(z) with the mode
dual to the external electromagnetic source J (Q2, z),

F(Q2) =
∫

dz

z3 e−ϕ0(z)−ϕn(z)�out (z)J (Q2, z)�in(z),

(23)

where J (Q2, z) is the bulk-to-boundary propagator. As it
will be also discussed in the form factor section of this study,
the Green’s function of a vector field equation, which has
M2

5 = 0, is the same for the GSW model as for the SW one
[26] as shown in Refs. [8,29]. Moreover, for large momenta
the SW result coincides with that obtained within the HW
model, and therefore we can apply the relation obtained in
Ref. [26]. This last statement is because for large momenta
the two form factors coincide since the dilaton dependence
dies out.
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To establish the connection between the two form factors,
the mode-function, solution of the Schrödinger equation, is
normalized as follows:
∫

dz χ(z)2 = 1. (24)

Moreover from Eq. (23) one gets the normalization of the
mode function:

∫
dz

e−ϕ0(z)−ϕn(z)

z3 �(z)2 = 1. (25)

The “density” distribution for the pion can be obtained from
the mode functions and is related to the FT of the pion form
factor [26],

ρ̃(x, z) = e−ϕ0(z)−ϕn(z)

2π

x

1 − x

|�(z)|2
z4 = x

1 − x

|χ(z)|2
2π z

= |ψ̃LF (x, �b⊥)|2
(1 − x)2 , (26)

where in the intermediate step use has been made of Eq. (6)
for z dependence. Furthermore, x represents the longitudinal
momentum fraction carried by a parton in the pion and b⊥
represents the transverse distance between the quark and the
anti-quark. Finally, the relation between the pion LF wf and
the mode function becomes:

ψ̃LF (x,b⊥) ≡ ψ̃2/π (x,b⊥) =
√
x(1 − x)

2π z
χ(z), (27)

where z = √
x(1 − x)|b⊥| [26]. This equation allows us

to obtain the LF wf from the solution of our mode equa-
tion, namely the Schrödinger equation associated to potential
Vπ (z) which appears in Eq. (12).

5 The longitudinal dynamics

A promising procedure to incorporate the chiral symmetry
breaking in those models that have zero mass ground state
pions, like that developed in Sect. 3, is to include longitudinal
dynamics [19–23]. To this aim we incorporate in our scheme
the procedure developed in Ref. [22] and also applied to the
SW model of Ref. [26]. In the LF AdS/QCD framework,
the QCD hamiltonian for the pion is effectively described by
equations such as Eqs. (7) and (12), which depend only on
the transverse coordinates z = √

x(1 − x)b⊥,

− d2

dz2 + V⊥(z)φ(z) = M2⊥φ(z). (28)

Now we specify the perpendicular index, since the solution
to the above equation represents the underlying transverse

dynamics of the meson. However, the full description of pion
structure and its spectroscopy requires an effective way to
include the chiral symmetry breaking mechanism. To this
aim we include longitudinal degrees of freedom in the GSW
model, by following the line of thought of Ref. [22]. Such a
goal can be reached by assuming that the full potential is a
combination of two potentials, a transverse and a longitudi-
nal, Vef f = V⊥ + V||, and therefore the spectrum is given by
two contributions to the mass M2

π = M2⊥ + M2|| , determined
by the equation,

[
− d2

dz2 + m2
q

x
+ m2

q̄

1 − x
+ Vef f

]
�̄(z, x) = M2�̄(x, z).

(29)

The transverse quantities can be evaluated from holographic
models, and the longitudinal wf, and its corresponding spec-
trum component, can be obtained from the Schrödinger equa-
tion,

[
m2

q

x
+ m2

q̄

1 − x
+ V||(x)

]
�(x) = M2|| �(x), (30)

where he �(x) is the longitudinal wf. In this approach the
overall wf is given by

�̄(x,b⊥) = ψ̃LF (x,b⊥) �(x). (31)

From now on, ψ̃2/h(x,b⊥) in Eq. (21) will be used for the
transverse part of the above expression in order to evaluate
the observables. In order to obtain a suitable �(x) several
longitudinal potentials have been proposed [20,22,40]. In
this analysis we use

V||(x) = −σ 2∂x
[
x(1 − x)∂x

]
, (32)

due to its remarkable predicting power. Here σ characterizes
the strength of confinement [22]. From this potential, a solu-
tion to Eq. (30) and consequently to Eq. (29), can be found.
The global mass spectrum is given by,

M2 = M2⊥π + σ(mq + mq̄)(2l + 1)

+ (mq + mq̄)
2 + σ 2l(l + 1), (33)

and the longitudinal wf by,

�(x) = N2x
β/2(1 − x)α/2P(α,β)

l (2x − 1) , (34)

where M2⊥π = M2
π in Eq. (15), α = 2mq/σ and β =

2mq̄/σ [22].
In the present framework, leading order in the NC expan-

sion, the quarks are essentially constituent quarks and there-
fore their masses does not have to correspond to the current
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Table 1 We show the experimental result for the π masses given by the
PDG particle listings [34,35] together with the results of our calcula-
tions with the GSWL1 and GSWL2 parametrizations. The error source

in the GSWL scenarios is associated to α = 0.55 ± 0.04. The empty
cells stand for the absent intermediate states. Masses are in MeV

π0 π(1300) π(1800)

PDG 134.9768 ± 0.0005 1300 ± 100 1819 ± 10

SW [26] 0 1080 1527 1870

Ref. [8] 135 943 ± 111 1231 ± 133 1463 ± 151 1663 ± 168 1842 ± 183

GSWL1 140 1199 ± 41 1800 ± 6

GSWL2 140 1019 ± 27 1793 ± 16

Ref. [22] 140 1520 2120

quark masses [22,26]. For the moment being, we assume
all the light quarks to have the same mass and therefore
mq = mq̄ for any pion. Moreover l is a quantum number

related to the longitudinal direction [22] and P(α,β)
l (x) is a

Jacobi polynomial.
Fitting the pion spectrum one finds that ground state is

obtained for n = l = 0, the first excitation results from
the superposition of the (n = 0, l = 2) and n = 1, l = 0
states, while the second excitation is a superposition of the
(n = 0, l = 4), (n = 2, l = 0) and (n = 1, l = 2) states [22]
. From this fit a relation between σ and mq arises. If one
requires that the pion ground state mass is ∼ 0.14 GeV, then
from Eq. (33),

σ = 0.0196 − 4m2
q

2mq
. (35)

An important achievement of this approach is that the rela-
tive parton distribution function (PDF) has the correct power
behavior xα(1 − x)β , see for example the recent Ref. [41].
We will test this behavior in the next section by using the
parameters that reproduce other pion observables.

Although for the moment being the longitudinal dynamics
is implemented to build up a realistic model for the structure
of the pion, this approach leads to remarkable description of
meson spectroscopy [22]. In the present analysis, we mainly
focus on the pion spectrum and structure.

6 Pion observables

Having described the model and found its mode function,
and having established a connection between the AdS/QCD
formalism and the Light Cone one, we proceed now to cal-
culate various observables and to compare with the corre-
sponding data. We recall that the only remaining free param-
eters are γπ and mq . Indeed, σ is determined from mq , see
Eq. (35). In particular, γπ is responsible for the energy scale
difference between the pion and the η meson and has been
added to the GSW model to be able to describe the pion from

the pseudo-scalar EoM. The main motivation of the present
investigation is to show that with only these two additional
parameters the model is able to describe a large amount of
data and phenomenological results. In fact, as it will be clear
in the next section, the observables we evaluate depend only
on the two parameters in a highly non linear manner. In order
to highlight the prediction power of the model, we propose
two different, but close, parametrizations. In both cases, the
essential features of the observables we analyse are quali-
tatively well described. In particular let us denote GSWL1
the set: mq = 45 MeV and γπ = −0.6 and GSWL2 the set:
mq = 52 MeV and γπ = −0.17. As one can see, the value of
mq is similar to that of Ref. [22]. Let us remark that since our
model formally relies in the leading NC physics, we expect
that the quark masses are constituent quark masses. In the fol-
lowing we call the GSW model, including the longitudinal
dynamics, the GSWL model.

6.1 The pion spectrum

As discussed in the previous sections, thanks to some modifi-
cations of of dilaton function in the GSW model it is possible
to recover chiral symmetry to describe the pion ground state.
Moreover, the longitudinal dynamics will be added to real-
ize the explicit breaking of chiral symmetry. In Table 1 the
results of the calculations of the pion spectrum are shown in
comparison with the PDG data [34,35]. We also compare the
same quantity with predictions of other approaches, e.g. in
Ref. [8], where the chiral symmetry breaking has been effec-
tively described by a complicated dilaton profile function. In
the present analysis, once the longitudinal dynamics is con-
sidered, the pion excitations have been obtained by including
the contribution from the states with longitudinal quantum
number l > 0. In fact, as discussed in Ref. [22], the π(1300)

can be described as a superposition of the |n = 1, l = 0〉
and |n = 0, l = 2〉 excited states, and the π(1800) as a
superposition of the |n = 2, l = 0〉, |n = 1, l = 2〉 and
|n = 0, l = 2〉 excited states. If intermediate unobserved
states are not allowed, the GSWL1 parametrization of the
model leads to a very good description of the data. Also the
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Fig. 1 The pion ff Eq. (40). Full lines for the GSWL2 model and dashed lines for the GSWL1 model. Data from Refs. [47–53]. Left panel for
Q2Fπ (Q2). Right panel for |Fπ (Q2)|2. Bands stand for the error in α

GSWL2 one predicts a pion spectrum very close to the exper-
imental scenario. Only the π ′ is underestimated. Neverthe-
less, as discussed in Ref. [8], from the present experimental
scenario one cannot exclude the presence of hidden states.
However, in any case holographic models could reproduce
well the spectrum by predicting the existence of new states.

6.2 The pion form factor

As previously discussed the pion form factor is an essential
quantity to investigate the pion inner structure. Moreover,
its study allows to build up a correspondence between the
mode function of the pseudo-scalar meson and its LF wf in
coordinate space [26,37]. The pion form factor (ff) in the
GSW can be defined as a generalization of the ff in the SW
obtained by assuming minimal coupling for the photon [26,
42,43] and it leads to

ig5

∫
d5x

√
ge−ϕ0(z)−ϕn(z)Al�∗

P ′(x)
↔
∂ l�P (x), (36)

where the �P represents the mode function representing
a field propagating with momentum Pμ, P2 = M2 and
conventionally �P (x) ∼ exp[i P · x]�(z). Moreover, Al

represents the mode of an electromagnetic probe propagat-
ing in this space with the Minkowskian virtuality vector
qμ so that Q2 = −q2 > 0 and is given by Al(z) =
εl exp[−i Q · x]J (Q2, z), where J (Q2, z) is the bulk-to-
boundary propagator [13,44]. The solution for J in the SW
model is [26,45]:

J (Q2, z) = �

(
1 + Q2

4k2

)
U

(
Q2

4k2 , 0, k2z2
)

, (37)

where U (a, b, c) is the confluent hypergeometric function.
In addition, the function can be obtained from the 5th dimen-

sional lagrangian of a vector field strength [45],

SV = −1

2

∫
d5x

√−ḡe−βV k2z2
ḡMP ḡNQFMN FPQ

= −1

2

∫
d5x

√−gek
2z2(−βV +α/2)gMPgNQFMN FPQ

= 1

2

∫
d5x

√−ge−k2z2
gMPgNQFMN FPQ . (38)

The last line is obtained since βV = 1 + α/2 [8,29]. There-
fore, the photon mode obtained for the SW model is the same
as that of the GSW model. We recall that such a result is due
to the fact that the conformal mass for the vector field is
M2

5 = 0 and therefore no dependence on the GSW warped
metric appears. Thus, the pion form factor within the the
GSW model has the form

Fπ (Q2) =
∫

dz
e−ϕ0(z)−ϕn(z)

z3 �(z)2 J (Q2, z), (39)

where J (Q2, z) is the bulk-to-boundary propagator whose
solution in the SW model is given by Eq. (37). The ff can
also be described in terms of the LF wf [39,46]:

Fπ (Q2)

=
∫

dx
dk⊥1

16π3 ψ2/π (x,k⊥1)ψ
∗
2/π (x,k⊥1 + (1 − x)q⊥),

(40)

where the photon 4 momentum qμ = (q+, q−,q⊥) is chosen
to have q+ = 0 and q2 = −Q2 = −q2⊥.

In Fig. 1 the pion ff evaluated within the GSWL1 and
GSWL2 parametrizations is shown. In the left panel the quan-
tity Q2Fπ (Q2) is displayed. As one can see the GSWL2
model is able to reproduce quite well the ff in a wide range
of Q2. On the contrary, the GSWL1 parametrization matches
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Table 2 Values of the pion mean radius obtained within different holographic models. Experimental data are from Ref. [54]. In the last column
we report the recent analysis of Ref. [55]

Ref. [26] Ref. [56] Ref. [57] GSWL1 GSWL2 Experiment [54] Work of Ref. [55]

√〈r2〉 [fm] 0.524 0.673-0.684 0.644 0.67 ± 0.03 0.70 ± 0.05 0.67 ±0.01 0.640 ± 0.007

the data in the low Q2 region. In order to better appreciate the
comparison between the two, in the right panel of the figure,
we show the quantity |Fπ (Q2)|2 for Q2 ≤ 0.2 GeV2. In this
case, both models are able to describe the data. We remark
that the error band is due to the theoretical uncertainty in the
parameter α = 0.55±0.04 describing the scalar meson spec-
trum within the GSW model [7]. Let us stress that the main
difference between the GSWL1 and GSWL2 characteriza-
tions are due to the distinct values of γπ which determine the
energy scale of the pion spectrum. Fitting simultaneously the
pion spectrum including the excitations and the ff is difficult
for most models. However, the GSW model is able to do so
with the two parametrizations in the low Q2 square region.

In the future the GSW model could be improved by consid-
ering other deformations of the metric and/or modifications
of the bulk-to-boundary propagator in order to achieve better
fits. For example, in Ref. [30] the authors proposed a dilaton
profile function for the bulk-to-boundary propagator that is
proportional to the photon virtuality.

6.3 The pion mean radius

A crucial quantity encoding the non perturtbative structure of
the pion is the charge radius. This quantity can be extracted
from the ff or directly from the LF wave function. In general
one defines the mean square radius by,

〈r2〉π = −6
dFπ (Q2)

dQ2

∣∣∣
Q2=0

. (41)

As one can see in Table 2, both GSWL models are able to
reproduce, within the uncertainty on α, the data and the most
recent extractions of the mean pion radius [54,55]. The two
parametrization are almost equivalent for this observable.

6.4 The pion effective form factor

The pion effective form factor (eff) has been considered lately
as a test for models [58]. Such a quantity has been introduced
for the first time in the context of double parton scattering
(DPS) processes in proton-proton collisions and double par-
ton distribution functions (dPDFs) [59]. An overview about
the study of DPS processes can be found in the seminal book
Ref. [60]. In DPS two partons of an hadron interact with
two partons of the other colliding hadron. For a long time,
in order to estimate the DPS cross-section without any phe-

nomenological information on dPDFs, a factorization ansatz
of these quantities have been assumed for these quantity.
Thanks to this strategy the DPS cross-section could be esti-
mated from the the product of the two single parton scat-
tering (SPS) cross-sections scaled by an almost theoretical
unknown quantity called effective cross-section [61]:

σ A+B
DPS ∝ σ A

SPSσ
B
SPS

σe f f
, (42)

where σ A+B
DPS is the DPS cross-section for the production

of two final states A and B respectively, and σ
A(B)
SPS is the

SPS cross-section for the production of the final state A(B).
Within this scheme, the effective cross-section, σe f f , can be
evaluated as follows:

σe f f = 1∫
dk⊥
(2π)2 F2π (k2⊥)2

, (43)

where F2π (k⊥) is the eff and k⊥ is the conjugate variable to
the transverse distance between two partons in the hadron.
The eff can be obtained as the first moment of the dPDF [62],
analogously to the form factor that can be obtained from the
moments of the generalized parton distribution function [63].
In terms of the LF wf of the pion, the eff is defined as follows,

F2π (k⊥)

=
∫ 1

0
dx

∫
d2k⊥1

16π3 ψ∗
2/h(x,k⊥1)ψ2/h(x,k⊥1 + k⊥)

=
∫ 1

0
dx

∫
d2b⊥ |ψ̃LF (x,b⊥)|2eik⊥·b⊥ . (44)

In Ref. [62], the connection between the eff and the geo-
metrical properties of the parent hadron have been estab-
lished. In fact, the eff of the pion can be related to the mean
transverse distance between two partons:

〈b2⊥〉 � −4
dF2π (k⊥)

dk2⊥

∣∣∣∣
k⊥=0

, (45)

where k⊥ is the conjugate variable to b⊥ and represents the
momentum unbalance between the first and the second par-
ton in the initial and final states in DPS processes. One of the
first calculations of the pion dPDF is that of Ref. [64] where
the SW model of Ref. [26] has been used. Thereafter a first
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Fig. 2 The square of the eff Eq. (44). Full lines represent lattice data [65] and the band stands for the error in the mean distance entering the lattice
pasteurization, see Eq. (46). Left panel the same observable for the GSWL2. Right panel the same for the GSWL1

evaluation of two-current correlations in the pion within lat-
tice QCD [65] was carried out. Other studies of the pion eff
and σe f f have been discussed in Refs. [58,66–68].

Let us mention in particular the study of Ref. [58], where
the pion effs evaluated with different holographic models
have been compared with lattice QCD predictions in the
allowed regions of k2⊥. Indeed, lattice calculations were per-
formed in the pion rest frame [65] and the eff has been
parametrized as follows:

F2π (k⊥) = 1[
1 + 〈b2〉k

2⊥
6n

]n . (46)

A good fit to lattice data was obtained for n = 1.173 and the
extraction of the mean distance between two partons in the

pion is
√〈b2〉 =

√
3/2〈b2⊥〉 = 1.046 ± 0.049 fm [65]. This

important result has been used to test holographic models of
the pion [58]. As stressed in Ref. [58], lattice outcomes have
been obtained in the pion rest frame. However, the com-
parison with holographic LF calculations is allowed in the
Infinite Momentum Frame (IMF) which can be emulated by
the kinematic condition: k2⊥ << m2

π ∼ 0.32 GeV2.
In Ref. [58] it has been thoroughly discussed the difficul-

ties in describing the ff and the eff with the same parameters
in a given model. Such a result led to the conclusion that
more sophisticated models are necessary to reproduce the ff
and the eff. In the present analysis, the GSWL1 and GSWL2
parametrization were used to evaluate Eqs. (44, 45). In Fig.
2 the square of the pion eff is displayed showing the com-
parison between lattice data and our model calculations. Let
us stress that since the DPS cross-section, even in the sim-
plified description of Eq. (42) depends on the square of the
eff, in Fig. 2 we report such a quantity, instead of the eff, in
order to highlight the relevant differences that could affect
the evaluation of experimental observables, such as σe f f . As

one can see, in this case the GSWL1 model is able to repro-
duce the lattice data with impressive accuracy. On the other
hand the GSWL2, although it provides a reasonable agree-
ment, it underestimates slightly this quantity. We show in
Fig. 3, extracted from Ref. [58], the results of other model
calculations. It can be noted, that despite the limited success
of the SW model in describing the pion ff, such a model
is capable of describing the eff lattice data. Such feature is
shared with the GSWL1 parametrization, where the ff is not
overall well reproduced but the eff is close to lattice data.
On the contrary the GSWL2 model, which describes well
the experimental data of the ff, underestimates the eff lat-
tice data. Finally, in Table 3 we compare the mean distance
between two partons in the pion evaluated in different mod-
els with the lattice predictions. In this case, the pion GSWL1
parametrization, without any dedicated parameter, is the only
model that reproduces the lattice data within error. Also the
GSWL2 predicts a value for this quantity close to the data.

Fig. 3 Same of Fig. 2 from Ref. [58]. Full line the lattice calculation.
Dot-dashed line calculation for the model of Ref. [57]. Dotted line for
the model of Ref. [26] and dashed line for that of Ref. [56]
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Table 3 Values of the mean partonic distance in the pion, Eq. (45), obtained in lattice QCD [65] and in models based on the AdS/QCD approach
[26,56,57]

Model of Ref. [26] Model of Ref. [56] Model of Ref. [57] Lattice [65] GSWL1 GSWL2

√〈b2〉 [fm] 0.968 1.207 0.767 1.046 ±0.049 1.13 ± 0.06 1.24 ± 0.08

The calculation of the eff confirms again the difficulty in
reproducing the mean pion charge radius and the mean dis-
tance between two partons in the pion with the same param-
eters, . However, at variance with the SW model which leads
to a good value for this distance but fails in evaluating

√〈r2〉,
the GSWL1 is able to reproduce simultaneously

√〈r2〉 and√〈b2〉. Coherently with the eff analysis, the GSWL2 is not
able to reproduce the mean distance with an error very close
to that of the SW calculation. However, the GSWL2 model
calculation of the pion charge radius matches the data.

In closing this section the analysis of the data so far
of all the holographic models allows us to conclude that
the GSWL1 and GSWL2 parametrizations are capable of
describing reasonably well the one-body and two-body ffs
simultaneously. From this point of view the graviton soft-wall
model including the longitudinal dynamics is very promising
in describing the DPS pion physics.

6.5 The pion decay constant

In this section results for the calculation of the pion decay
constant are presented and discussed. This quantity can be
defined from the parametrization of the Lorentz structure of
the following amplitude:

〈0|ψ̄γ + 1

2
(1 − γ5)ψ |π〉 = i

P+ fπ√
2

. (47)

Thanks to the LF wf representation of the pion state, leading
to the Fock expansion previously described, one can relate
the pion decay constant to its LF wf [26,69]:

fπ = 2
√
NC

∫ 1

0
dx

∫
dk⊥1

16π3 ψ2/h(x,k⊥1). (48)

In order to avoid confusion with other definitions, used in
e.g. Ref. [70], let us specify that within the present formal-
ism we consider the experimental data [34] (130±5)/

√
2 =

91.92 ± 3.54 MeV. Comparisons with data and other model
calculations [22,26,56] are displayed in Table 4. We stress
again that the quoted value in that references might be
rescaled by a factor 1/

√
2 when needed. As one can see,

holographic approaches are qualitatively able to describe the
decay constant. In order to highlight the discrepancy with the
data and model predictions, the quantity�π = | f holoπ − f expπ |
is shown in Table 4. As one can see the GSWL2 parametriza-

tion and the model of Ref. [56] is quite close to the data. In
this case, a bigger discrepancy is found for the GSWL1 case,
although the result is not too distant from the data.

6.6 The pion distribution amplitude

In this section we provide the calculation of the pion distri-
bution amplitude (DA) with the Light-Front formalism for
the GSWL models. There are many for DA and we choose
the one of Refs. [26,69]

φ(x; Q) =
∫ Q2

0

d2k⊥1

16π3 ψ2/π (x,k⊥1). (49)

We stress that, in analogy with the SW results, also in the
GSWL models the soft Q2 dependence, due to the wf depen-
dence on the transverse momentum, can be safely neglected
for Q2 > 1 GeV2. Thanks to this choice, the present evalu-
ation can be compared to the asymptotic expression for the
DA [69,71,72]:

φ
asy
pQCD = √

3 fπ x(1 − x). (50)

We also display the DA obtained within the SW model of
Ref. [26],

φ
asy
AdS(x) = 4 fπ

√
x(1 − x)/(

√
3π). (51)

One should notice that in the asymptotic regime, the scale
dependence of the model disappears. Therefore the DA eval-
uated with the SW model of Ref. [26] and discussed in Ref.
[73], is the same as that obtained with the GSW model not
including the longitudinal dynamics. On the other hand, the
GSWL prediction for the DA, in the mentioned region is

φ
asy
GSWL ∝ [

x(1 − x)
] 1

2 +mq
σ

, (52)

where for the GSWL1 parametrization the exponential is
0.852 while for the GSWL2 parametrization is 1.12. The
models which incorporate longitudinal dynamics produce an
x dependence of the DA in closer agreement with the pQCD
asymptotic behaviour than the SW model of Ref. [26]. Such
features can be observed in the left panel of Fig. 4.
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Fig. 4 The pion DA. Full lines represent the asymptotic pQCD pre-
diction whose expression is in Eq. (50). Dashed lines for the GSWL2
parametrization. Dot-Dashed line for GSWL1 and dotted lines for the

GSW and SW [73] models, see Eq. (51). Left panel: calculations of the
DA in the asymptotic limit without evolution. Right panel the same as
the left panel but including the ERBL evolution for Q2 = 1.5 GeV2

Table 4 Comparison of the pion decay constant between holographic models [26,56] and data [34]. The difference in modulus between the
experimental value and the model predictions is display in the last line

Data [34] GSWL1 GSWL2 Work of Ref. [22] SW [26] Work of Ref. [56]

fπ [MeV] 91.92 ± 3.54 126 ± 6 104 ± 7 129 81.2 95.5-97.6

�π [MeV] 34 ± 7 12 ± 8 37.1 ± 3.5 11 ± 4 3.1 ± 3.5 − 5.7 ± 3.5

6.6.1 Evolution of the DA

As discussed in Ref. [73], the Q2 dependence of the DA has
two sources: (i) the soft one, due to the integration of the wf
up to the scale Q2, see Eq. (49), and (ii) the hard one, due
to the ERBL evolution of the DA [69,74]. In fact, within the
SW and GSW models, in general one could write the DA,
including the soft Q2 dependence as follows:

φ(x; Q2) = φasy(x)φso f t (x, Q
2) = φasy(x)

×

⎡
⎢⎢⎣1 − exp

⎛
⎜⎜⎝− Q2

κ2

√
−2 + 1 − 2γ

α2 x(1 − x)

⎞
⎟⎟⎠

⎤
⎥⎥⎦ , (53)

where, in the case of the GSW model, κ2 = 0.372/
√

α

GeV2. From the above equation it is clear that from the
model calculation of φ one gets φasy by considering that
φasy(x) = φ(x, Q2 → ∞). In this case, this soft depen-
dence is almost negligible for Q >1 GeV. In order to prop-
erly take into account also the perturbative QCD effects, the
distribution φasy(x) = φasy(x, μ0) appearing in Eq. (53)
must be evolved by using the ERBL evolution of the DA.

We recall that due to ERBL evolution at a given final
momentum scale the DA reads,

φasy(x; Q) = x(1 − x)
∞∑

n=0,2,4...

an(Q)C3/2
n (2x − 1), (54)

where here Cα
n (x) are Gegenbauer polynomials and

an(Q) =
[

αs(μ
2
0)

αs(Q2)

]γn/β0

an(μ0). (55)

In the above expressions the following quantities appear

β0 = 11 − 2

3
n f (56)

αs(Q
2) = 4π

β0 ln(Q2/�2
QCD)

(57)

γn = 4

3

⎡
⎣3 + 2

(n + 1)(n + 2)
− 4

n+1∑
j=1

1

j

⎤
⎦ , (58)

an(μ0) = 4(2n + 3)

(n + 2)(n + 1)

×
∫ 1

0
dx φasy(x, μ0)C

3/2
n (1 − 2x), (59)

where n f = 3 and �QCD ∼ 0.225 GeV. Finally, once the
the soft and hard Q2 parts are separated, the total evolved
DA is given by
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Fig. 5 Comparison between the normalized DA, see Eq. (61) and the
data from Ref. [75]. The final scale is Q = 3.16 GeV. The full line
shows the pQCD prediction. The dashed line corresponds to the GSWL2
parametrization and the dot-dashed line is related to the GSWL1 one

φ(x; Q2) = φasy(x; Q2)φso f t (x; Q2). (60)

In analogy with Refs. [70,73], we fix the initial scale
of the model by comparing the evolution of parton distri-
bution functions with the corresponding data. In particular,
as will be properly discussed in a next subsection, we con-
sider 0.07 ≤ μ2

0 ≤ 0.11 GeV2. In the left panel of Fig. 4,
the asymptotic DA evaluated with the SW model [73] and
the GSWL models, is compared with the pQCD predictions.
Effects of ERBL evolution of the DA are shown in the right
panel of Fig. 4. Here we display the DA evolved to Q2 = 1.5
GeV2 from μ2

0 = 0.07 GeV2 for the GSWL1 and GSWL2
parametrizations. The evolution brings the DA towards the
pQCD asymptotic limit. This feature is due to the power of
the exponential which, in the GSWL models, is close to the
pQCD prediction already at the initial scale. In Fig. 5 we
compare the normalized DA with the data of Ref. [75]. As
one can see good agreement is obtained. Let us specify that
the DA appearing in Fig. 5 can be obtained from that satis-
fying Eq. (49) with a simple re-scaling so that:

∫
dx φ(x; Q2)norm = 1. (61)

An important test for the DA is represented by the
moments of the DA:

〈z p〉 =

∫ 1

0
dx z pφ(x, Q2)

∫ 1

0
dx φ(x, Q2)

(62)

where z = 2x − 1 for p ≥ 1 and z = x for p = −1. As one
can see in Table 5, the GSWL models produce results close to
the pQCD predictions, as expected from the power behaviour
of the DA, Eq. (52), as compared to that of Eq. (50). In all

cases, the results are close to the other phenomenological
models. Let us mention that numerically, results displayed in
Table 5, obtained within the GSWL models, are consistent
with the alternative expression of the DA moments [76] (see
Appendix A):

〈z2〉 = 6

a0(Q)

(
2

35
a2(Q) + 1

30
a0(Q)

)

〈z4〉 = 6

a0(Q)

(
4

231
a4(Q) + 4

105
a2(Q) + 1

70
a0(Q)

)

〈z6〉 = 6

a0(Q)

(
32

6435
a6(Q) + 20

1001
a4(Q) + 2

77
a2(Q)

+ 1

1260
a0(Q)

)
. (63)

6.7 Pion-photon transition form factor

In this section we discuss the calculation of the pion-photon
transition form factor. Such a quantity is relevant for pro-
cesses, e.g., γ ∗(q)γ → π0 and can be defined through the
matrix element of the following electromagnetic current [69]:

〈γ (P − q)|Jμ|π(P)〉 = ie2Fγπ (Q2)εμνρσ Pνερqσ , (64)

where P is the pion 4-momentum, q = −Q is the photon vir-
tuality and ερ is the polarization vector. At LO, the transition
ff can be evaluated from the DA convoluted with a specific
kernel [73,87,88]:

Q2Fγπ (Q2)

= 4√
3

∫ 1

0
dx TH (x, Q2)

∫ Q̄

0

dk⊥1

16π3 ψ2/π (x,k⊥1)

= 4√
3

∫ 1

0
dx TH (x, Q2)φ(x, Q̄) (65)

where here Q̄ = (1 − x)Q and at LO

T LO
H (x, Q2) = 1

1 − x
(66)

while at NLO

T NLO
H (x, Q2)

= T LO
H (x, Q2)

[
1 − α(Q2)

4π
C f

×
(

9 + 1 − x

x
log(1 − x) − log(1 − x)2

)]
, (67)

where further logarithms are neglected by setting the regular-
ization scale to be equal to Q [70,73]. In the asymptotic limit
one should approach the pQCD prediction: Q2Fγπ (Q2) →
2 fπ [73]. Deviation from the latter condition are expected
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Table 5 Comparison between the moments of the DA evaluated with the GSWL models and other approaches. The error in the GSWL1 and
GSWL2 models is due to the uncertainty of the initial scale 0.07 ≤ μ2

0 ≤ 0.1

〈z2〉 〈z4〉 〈z6〉 〈z−1〉
Asymptotic 0.200 0.086 0.048 3.000

Ref. [70] 0.217 0.097 0.055 3.170

Ref. [76] 0.24 ± 0.22 0.11 ± 0.09 0.07 ± 0.05

Ref. [73] 0.25 0.125 0.078 3.98

Ref. [56] 0.185 0.071 2.85

Ref. [56] 0.200 0.085 2.95

Lattice

Ref. [77] 0.28+0.01
−0.01

Ref. [78] 0.2361+0.0041
−0.0039

Ref. [79] 0.27 ± 0.04

Ref. [80] 0.2077 ± 0.0043

Ref. [81] 0.234 ± 0.006

Ref. [82] 0.244 ± 0.030

GSWL1 0.2033 ± 0.0007 0.0880 ± 0.0005 0.0493 ± 0.0004 3.0349 ± 0.0087

GSWL2 0.19770 ± 0.0005 0.0841 ± 0.0004 0.0465 ± 0.0002 2.9770 ± 0.0055

Fig. 6 The pion to photon transition form factor, Eq. (65) evaluated
within the GSWL2 (dashed) and GSWL1 (dot-dashed) parametriza-
tions. The dotted line stands for the SW prediction. Data are collected
from Refs. [83–86]. The initial scale is μ2

0 = 0.07 GeV2

from model calculations that differ from the well known DA
φ(x) ∼ x(1−x) in the asymptotic region. In Fig. 6 the transi-
tion ff, Eq. (65), is shown for both the GSWL reparametriza-
tions. To this aim the DA has been evolved by properly tak-
ing into account the soft and hard Q2 dependences. Such an
approach has been investigated in detail in Ref. [73]. The
above quantity has been obtained for μ2

0 = 0.07 GeV2. No
relevant differences are found for 0.07 ≤ μ2

0 ≤ 0.11 GeV2.
As one can see in Fig. 6 the data [83–86] are well repro-
duced. From a numerical point of view, in order to guarantee
the convergence of the integral Eq. (65), we need to impose
that for (1 − x)Q < μ0 then Q̄ = μ0 [70,73]. While the
SW model is not able to describe the data the GSWL models
do well.

6.8 Virtual photon transition form-factor

We present also the calculation of the transition ff for a pion
which decays in two virtual photons: π0 → γ ∗γ ∗. This
quantity now depends on the virtualities of the two photons
Q1, Q2 [69,89],

Fπγ ∗(Q2
1, Q

2
2) = 2√

3

∫ 1

0
dx T̄H (x, Q2

1, Q
2
2)φ(x,W ),

(68)

where T̄H (x, Q2
1, Q

2
2) is the hard-scattering amplitude for

the present process. At LO:

T̄ LO
H (x, Q2

1, Q
2
2) = 1

(1 − x)Q2
1 + xQ2

2

, (69)

while at NLO the kernel has been derived in Ref. [90] and we
show it in Appendix B. One should notice that the transition
ff with a real photon is obtained for Q1 = 0 or Q2 = 0. In
addition, at LO, for Q1 = Q2, the amplitude does not depend
on x , and therefore one gets Q2Fπγ ∗(Q2, Q2) → √

2/3 fπ .
In Fig. 7 the results with the GSWL parametrizations are
compared with NLO pQCD calculations. As one can see
the second parametrization GSWL2 provides the expected
results within the theoretical error in α. On the other hand
GSWL1 overestimates the pQCD result. Nevertheless, since
in the asymptotic regions, for Q1 = Q2, this ff is propor-
tional to the decay constant, in order to exclude from the cal-
culations the error related to this quantity, in Fig. 8 we plot
Fπγ ∗/ fπ . As one can see, for both the GSWL parametriza-
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Fig. 7 The pion virtual photon transition form factor evaluated at NLO
as a function of the parameter α. Lines stand for the GSWL calcula-
tions and markers for the pQCD predictions [70]. Long dashed blue
line and blue crossed points for (Q2

1 = Q2
2 = 6.48) GeV2. Middle

dashed orange line and orange circle points for (Q2
1 = Q2

2 = 16.85)

GeV2. Small dashed green line and green square points for (Q2
1 =

14.83; Q2
2 = 4.27) GeV2. Dotted red line and red star points for

(Q2
1 = 38.11; Q2

2 = 14.95) GeV2. Dot-Dashed purple line and purple
triangle points for (Q2

1 = Q2
2 = 45.63) GeV2. Left panel for GSWL1.

Right panel for GSWL2

Fig. 8 Same of fig. 7 but for Fπγ ∗/ fπ

tions, the model is able to reproduce the pQCD predictions
which are determined by both the NLO correction to the ker-
nel Eq. (69) and the ERBL evolution of the DA. The scaling
behavior Fπγ ∗(Q2

1, Q
2
2) ∼ 1/(Q2

1 + Q2
2) is verified.

6.9 The pion parton distribution function

In this last section we present the calculation of the parton
distribution function of the pion. These quantities can be
defined in terms of the LF wf,

f (x;μ2
0) =

∫
dk⊥1

16π3 |ψ2/π (x,k⊥)|2

= [(1 − x)x]2mq/σ

�

[
2 + 4mq

σ

]

�

[
1 + 2mq

σ

]2 . (70)

Several analyses have been performed within holographic
models, see e.g. Refs. [56,57,91,92]. Let us also mention
predictions from QFT based models such those of, e.g. Refs.
[93,94].

Let us recall that, if only the LF wf determined by the
modes of the pseudo-scalar field, propagating in the modified
metric, are considered, the PDF will be constant, as discussed
for the SW model of Ref. [73]. Therefore, in this investiga-
tion, we take advantages of the longitudinal dynamics intro-
duced in order to describe the chiral symmetry breaking.
Such feature leads to a complex structure of the pion already
appreciated in the study of the ff. In this case the GSWL1
parametrization leads to the following PDF

f (x;μ2
0) = 3.63798[(1 − x)x]0.704348 (71)

while the GSWL2 parametrization to the following

f (x;μ2
0) = 8.7889[(1 − x)x]1.23133. (72)
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Fig. 9 The pion PDF evaluated at LO to the final scale μ2 = 27 GeV2. The band stands for the uncertainty related to initial scale 0.07 ≤ μ2
0 ≤ 0.15

GeV2. Data are from Ref. [96]. Left panel for the GSWL1 reparametrization. Right panel for the GSWL2 parametrization

Let us remark that the GSWL2 parametrization predicts that
f (x → 1) ∼ (1− x)1.23133, such an exponent is close to that
found in e.g. Refs. [92,93] and in phenomenological studies
such as in Ref. [95].

As already discussed, the initial scale is fixed by fitting the
data of Ref. [96] obtained at the final scale μ2 = 27 GeV2.
We consider here leading order (LO) pQCD evolution of the
pion PDF. In Fig. 9 one can see that both parametrizations are
almost able to describe the data in the valence region for small
initial scales, as expected for a LO calculation. However, in
order to describe the data, higher values of μ2

0 are needed. In
Fig. 9 we display the results for 0.07 ≤ μ2

0 ≤ 0.15 GeV2.
One should notice that the allowed range of initial scales here
considered are similar to those usually adopted by constituent
quark models, namely when only the constituent quarks carry
all the momentum of the parent hadron. Thus, to conclude,
we can safely state that the GSW model, including the lon-
gitudinal dynamics, is a very promising model to investigate
the pion structure functions.

7 Conclusion

The GSW model was born to describe the scalar and ten-
sor glueballs in AdS5 space. It is characterized by a warped
metric and the description of these glueballs as gravitons in
five dimensions [5–7]. The model has been improved and
extended to describe all mesons and glueballs [8]. In the lat-
ter study we appreciated that the ground state of the pion was
very peculiar and required a special dilaton in order to achieve
its low mass. This feature is associated with the realization
of chiral symmetry in QCD and certainly our previous pro-
cedure, describing this mechanism with a sophisticated dila-
ton, produced a pion spectrum which had many intermediate
states [8], which in some sense was contradicting the data,
although one must be aware that the data have a complicated

structure which could hide these intermediate states. More-
over, the wave function we could derive from its mode func-
tion is not able to provide many observables with precision.

In this work we have adopted a different approach closer
to the realization of chiral symmetry in QCD. For that pur-
pose we have introduced via dilatons the appropriate scales
to generate a massless pion. Thereafter we break explicitly
chiral symmetry by introducing massive quarks via longi-
tudinal dynamics, as proposed in Refs. [22,23]. With this
modification we successfully reproduced the spectrum with
the addition of a well known longitudinal potential with only
two additional parameters, a constituent quark mass mq and
a correction to the energy scale γπ to generate the adequate
mass gaps of the excitations.

Having this model for the pion we have proceeded to cal-
culate many pion observables with only these two param-
eters. We discussed two different characterizations which
have almost the same quark mass but quite different γπ . The
relation between the observables and the parametrizations
is highly non linear. The studied observables comprise low
energy as well as high energy properties. We have imple-
mented evolution, using the model calculations at a low
momentum scale, in order to be able to compare with pertur-
bative QCD results.

The main conclusion of our investigation is that, although
each parametrization does better in some observables than
the other, on the overall, both parametrizations lead to a good
qualitative description of all the observables.

Acknowledgements The work was supported in part by (i) Ministerio
de Ciencia e Innovación and Agencia Estatal de Investigación; of Spain
MCIN/AEI/10.13039/501100011033 (MICINN and UE Feder, Grant
No. FPA2016-77177-C2-1-P) and European Regional Development
Fund Grant No. PID2019-105439 GB-C21 (ii) the European Union
Horizon 2020 research and innovation programme under grant agree-
ment STRONG - 2020 - No 824093, and (iii) the European Research
Council under the European Union as Horizon 2020 research and inno-
vation program (Grant Agreement No. 804480).

123



626 Page 16 of 18 Eur. Phys. J. C (2022) 82 :626

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: In the present the-
oretical investigation we compare calculations with already published
data.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A

Here we explicitly show how to derive the relations between
th moments of the DA, see Eq. (62) and the coefficients of
the ERBL evolution expansion, see Eqs. (55–59). The result
of this procedure is described in Eq. (63). We remark that
since we are interested in moments at high energy scales, the
soft part of the DA can be neglected, see Eq. (50). In order
to fulfill this properties, already discussed in Ref. [76], we
consider that,

∫ 1

0
dx φ(x; Q2) =

∑
n

an(Q
2)

∫ 1

0
x(1 − x)C3/2

n (2x − 1)

=
∑
n

an(Q
2)

1

6
δn0 = a0(μ

2
0)

6

=
∫ 1

0
dx φasi (x;μ2

0) = fπ

2
√

3
. (73)

Then for 〈z2〉 we have:

∫ 1

0
dx (2x − 1)2φ(x; Q2)

=
∑
n

an(Q
2)

∫ 1

0
(2x − 1)2x(1 − x)C3/2

n (2x − 1)

=
∑
n

an(Q
2)

[
2

35
δn2 + 1

30
δn0

]

= 2

35
a2(Q

2) + 1

30
a0(Q

2). (74)

Recursively one would get:

∫ 1

0
dx (2x − 1)2lφ(x; Q2)

∫ 1

0
dx φ(x; Q2)

= 6
2l∑
n

an(Q2)

a0(Q2)

∫ 1

0
(2x − 1)2l x(1 − x)C3/2

n (2x − 1). (75)

Appendix B

In this section we show the the kernel of the transition form
factor for two virtual photon produced of momenta q2

1 =
−Q2

1 and q2
2 = −Q2

2, respectively. In particular we consider
the NLO calculation discussed in Ref. [90] and used in Refs.
[70,97]. To this aim let us define Q2 = Q2

1 + Q2
2, w =

Q2
1/Q

2 and z = (1 − x)w + x(1 − w)x . The kernel T̄ N LO
H

is obtained from:

t (x, w) =
[

w − x

2x − 1
−
(

z

2w − 1

)2
][

L1L3

x
+ L2L3

1 − x

− L2
1

2x
− L2

2

2(1 − x)

]

+ 1 − z

2(2w − 1)
(L1 − L2)(2L3 − L1 − L2)

+ 3

2
(L3 − 3) −

[
3

2

w − x

2w − 1
−
(

z

2w − 1

)2
]

×
[
L1

x
+ L2

1 − x

]
− 1

2

3 − 2z

2w − 1
(L1 − L2),

(76)

where:

L1 = log
( z

w

)
(77)

L2 = log

(
z

1 − w

)
(78)

L3 = log (z) . (79)

Then one can build

T (Q, w, x)

= 1

Q2 (1 − x)w + x(1 − w)

[
1 + CF

αs(Q2)

2π
t (x, w)

]

(80)

from which the NLO kernel is obtained via symmetrization:

T̄ N LO
H (x; Q2

1, Q
2
2) = T (Q, w, x) + T (Q, w, 1 − x)

2
. (81)
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We recall that also in this case other logarithms are
neglected by setting Q equal to the regularization scale.
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