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Abstract There is a strong discrepancy between the value
of the Hubble parameter HP

0 obtained from large scale obser-
vations such as the Planck mission, and the small scale value
HR

0 , obtained from low redshift supernovae (SNe). The value
of the absolute magnitude MHom used as prior in analyzing
observational data is obtained from low-redshift SNe, assum-
ing a homogeneous Universe, but the distance of the anchors
used to calibrate the SNe to obtain M would be affected
by a local inhomogeneity, making it inconsistent to test the
Copernican principle using MHom , since M estimation itself
is affected by local inhomogeneities. We perform an anal-
ysis of the luminosity distance of low redshift SNe, using
different values of M , {MP , MR}, corresponding to differ-
ent values of H0, {HP

0 , HR
0 }, obtained from the model inde-

pendent consistency relation between H0 and M which can
be derived from the definition of the distance modulus. We
find that the value of M can strongly affect the evidence of
a local inhomogeneity. We analyze data from the Pantheon
catalog, finding no significant statistical evidence of a local
inhomogeneity using the parameters {MR, HR

0 }, confirming
previous studies, while with {MP , HP

0 } we find evidence of a
small local void, which causes an overestimation of MR with
respect to MP . An inhomogeneous model with the parame-
ters {MP , HP

0 } fits the data better than a homogeneous model
with {MR, HR

0 }, resolving the apparent H0 tension. Using
{MP , HP

0 }, we obtain evidence of a local inhomogeneity
with a density contrast −0.140 ± 0.042, extending up to a
redshift of zv = 0.056 ± 0.0002, in good agreement with
recent results of galaxy catalogs analysis (Wong et al. in The
local hole: a galaxy under-density covering 90 mpc, 2021).

1 Introduction

There is a discrepancy between the large scale estima-
tions based on the cosmic microwave background (CMB)

a e-mail: antonio.enea.romano@cern.ch (corresponding author)

radiation [1,2], and the value obtained analyzing low red-
shift SNe [3]. The SNe analysis is based on the assump-
tion that the Universe is well described by a spatially
homogeneous solution of the Einstein’s equations, but only
an unbiased analysis can actually confirm the validity of
this assumption. In the past inhomogeneities were stud-
ied before the discovery of dark energy [4], and then as a
possible alternative to dark energy [5–10], but large void
models without dark energy were shown to be incom-
patible with multiple observations [11]. The study of the
effects of inhomogeneities in presence of dark energy was
then performed [12,13], showing how they could lead
to a correction of the apparent value of the cosmolog-
ical constant, or affect [14,15] the Hubble diagram. In
this work we fit data without any homogeneity assump-
tion.

Our analysis is confirming the existence of a local under-
density surrounding us in different directions [1,16,17]. The
probability of formation of such an inhomogeneity is low
in the �CDM framework, but modified gravity [18] could
alleviate this problem.

Many different approaches to the explanation of the H0

tension have been proposed [19–21]. We do not propose any
modification of the standard cosmological model, but per-
form an unbiased analysis of SNe luminosity distance data,
including the effects of local inhomogeneities. If inhomo-
geneities were absent we should obtain a confirmation in our
analysis.

Number count observations allow to measure directly the
baryonic matter density but there are some difficulties in
deducing the total density field from number counts, due
for example to selection effects. For this reason another pos-
sible alternative approach is to reconstruct the total matter
density distribution from its effects on the luminosity dis-
tance of standard candles [17], and standard sirens [22]. The
Doppler effect is the main low redshift effect of inhomo-
geneities on the luminosity distance of the sources of elec-
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tromagnetic waves, such as standard candles, [14,23], due
to the peculiar velocity of the sources and the observer, and
a similarly also for the luminosity distance of GW sources
[24].

It has been shown that [14] in the low redshift perturbative
regime the monopole of the effects on the luminosity distance
is proportional to the volume average of the density contrast.
For an under-density this corresponds to a peculiar velocity
field pointing towards the outer denser region, implying a
local increase of the Hubble parameter, which could account
for the apparent difference between its large and small scale
estimation [14].

We adopt an unbiased approach, based on not assum-
ing homogeneity, and use the data to determine if the local
Universe is homogeneous or not. Most of the effects of
local inhomogeneities could be removed by applying a red-
shift correction (RC), but the RC cannot remove all their
effects if the depth of the galaxy catalog used for com-
puting the RC is less than the size of the inhomogeneities
[14].

2 Fitting of observational data

In this papers we present the results of analyzing data from
the Pantheon catalog [25] in the CMB frame. We have also
analyzed data in the heliocentric reference frame, finding
negligible differences.

This data is often analyzed under the assumption that
all the effects of inhomogeneities have been removed by
applying RC, but as explained in [14], the 2M++ cata-
log [26] used to estimate the peculiar velocity to obtain
the RC, is not deep enough to eliminate the effects of
an inhomogeneity extending beyond its depth z = 0.067.
The edge of the inhomogeneity we obtain in our analysis
is in fact around the depth of 2M++. The effects of the
homogeneity extend beyond the edge, as shown in in Fig.
1.

The observed quantity for SNe is the apparent magni-
tude m, while the luminosity distance DL is a derived quan-
tity, and is model dependent, in the sense that it depends
implicitly on M , which is one of the parameters of the
model.

From the definition of distance modulus μ = m − M we
have

DL(z) = 10
μ
5 +1 = 10

m−M
5 +1 , (1)

showing that an assumption for M has to be made in order to
get Dobs

L from mobs . These are the main advantages of using
m:

• It is not necessary to obtain DL from m and compute the
propagated errors

• For different values of {H0, M} the data set of m is the
same, so the results can be plotted all together, while
for DL a different dataset of each different M has to be
obtained from m.

Using m makes clear the distinction between observed data
and parameters of the model, while when fitting DL the
parameter M is affecting both the model and the data
Dobs

L , making the analysis less transparent. While theo-
retical predictions are made in terms of DL(z), obser-
vational data analysis in models with varying {H0, M}
should be more conveniently be performed in terms of
m.

The theoretical model for the apparent magnitude mth

is obtained from the theoretical luminosity distance Dth
L

mth = 5 log Dth
L − 5 + M , (2)

and the monopole effects of a local inhomogeneity are com-
puted using the formula [14]

Dth
L (z) = Dth

L (z)

[
1 + 1

3
f δth(z)

]
, (3)

where δ(z) is the volume averaged density contrast, f is

the growth factor, and Dth
L (z) is the luminosity distance

of the background �CDM model. In [14] (see Fig. 2
and Sect. 6 therein) it was shown that the above equa-
tions are in very good agreement with exact numerical cal-
culations for the type of inhomogeneities studied in this
paper.

The different parameters are shown explicitly in these
equations

DL(�i , H0, Ii ) = DL(�i , H0)

[
1 + 1

3
f δ(Ii )

]
, (4)

m(�i , H0, M, Ii ) = 5 log DL(�i , H0, Ii ) − 5 + M , (5)

where Ii are the parameters modeling the inhomogeneity.
A homogeneous model corresponds to Ii = 0. Since no
assumption about the homogeneity of the local Universe is
made, if the Universe were homogeneous our analysis should
confirm it.

As shown in [14,17], a local inhomogeneity should only
affect the luminosity distance locally, because far from the
inhomogeneity the volume averaged density contrast of a
finite size homogeneity is negligible, unless some higher
order effect becomes dominant.
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3 The model of the local inhomogeneity

We model the spherically symmetric local inhomogeneity
with a density profile of the type

δth(χ) = δv[1 − θ(χ − χv)] , (6)

where δv is the density contrast inside the inhomogeneity, χv

is the comoving distance of the edge of the inhomogeneity,
and θ(x) is the Heaviside function. The volume averaged
density contrast corresponding to the above profile is

δth(z) =
{

δv z < zv

δv

[
zv(1+zv)
z(1+z)

]3
z > zv

}
, (7)

where zv is the inhomogeneity edge redshift. Details of the
derivation of this formula are given in appendix C. The above
formulae are in agreement with the general result obtained
in [14], confirmed by numerical calculations for this kind
of inhomogeneities, that the effects of low redshift inhomo-
geneities are suppressed at high redshift by the volume in the
denominator of the volume average.

We minimize with respect to the two parameters δv, zv the
following χ2(δv, zv)

χ2 =
∑
i, j

[mi − mth(zi )]C−1
i j [m j − mth(z j )] (8)

where C is the covariance matrix, mi and zi are the observed
values of the apparent magnitude and redshift, and the sum
is over all available observations.

When using the HR
0 and MR our analysis gives results

in agreement with previous studies such as [27], not finding
evidence of a local inhomogeneity, while when using HP

0 and
MP we obtain evidence of a local under-density remarkably
similar to that found analyzing galaxy catalogs [1]. The factor
(1 + z) at low redshift can be safely neglected as shown in
Fig. 1.

4 Fitting data assuming different values of H0 and M

The importance of the absolute magnitude in the analysis of
SNe data was previously noted in [28–31], and it plays an
important role in assessing the presence of an inhomogene-
ity. The approach adopted in this paper, consisting in using
different priors for {H0, M} based on the model independent
considerations given below, is only a first approximation.
A full Bayesian analysis would be required to confirm the
results, and we leave this to a future upcoming work.

From the definition of distance modulus and Eq. (1) we
can derive a general model independent relation between dif-

Fig. 1 Plots of the step density contrast δ (dashed) defined in Eq. (6),
its volume average δ (solid) in Eq. (7), and the approximation (dot-
ted) obtained by dropping the term (1 + zv)/(1 + z), for zv = 0.08
and δv = −0.4. The inhomogeneity effects are proportional to δ, and
extend beyond the edge of the void, but are suppressed beyond the edge,
implying that high redshift observations are not affected by the local
inhomogeneity

ferent values of {H0, M} estimated at low redshift

Ma = Mb + 5 log10

(
Ha

Hb

)
. (9)

Details of the derivation are given in Appendix A. For exam-
ple this relation can be used to obtain the implied Planck
value MP from HP

0 and {HR
0 , MR}, which are the values

obtained in [3]. This is the value of M which should be used
when testing models with different values of H0. Using MR

as a prior when testing inhomogeneity, as done for exam-
ple in [27,32,33], is inconsistent, i.e. no local prior based on
assuming homogeneity should be used when testing inhomo-
geneity.

Another useful relation derived in the appendix is the one
giving the correction to the absolute magnitude due to a local
inhomogeneity

�M = 5 log10

(
1 − 1

3
f δ(z)

)
, (10)

which shows how the absolute magnitude can be miss-
estimated due to the unaccounted effects of a local inho-
mogeneity. This type of relation for M was used in [17] and
more recently in [30]. Using the above relations and the val-
ues obtained in [3] as reference, we obtain MP from HP

0 ,
and fitmobs with different homogeneous and inhomogeneous
models assuming different values for {H0, M}

In our notation mHom(HR
0 ) and mInh(HP

0 ) denote respec-
tively a homogeneous model with {H0, M} = {HR

0 , MR}
and an inhomogeneous model with {H0, M} = {HP

0 , MP }.
We use the cosmological parameters �i from the best fit of
the Planck mission data [34]. The results of the fits are given
in Table 1, and in in Fig. 2.

The model mInh(HP
0 ) provides the best fit of the low red-

shift SNe data, while mInh(HR
0 ) is disfavored, in agreement
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Fig. 2 Fit of the Pantheon
dataset with z < zsup ≡ 0.15.
The relative error of m is
defined as �m/m =
(m − mHom(HR

0 ))/mHom(HR
0 ) .

The best fit is mInh(HP
0 ) and the

model mHom(HP
0 ) does not

provide a good fit of the data, in
agreement with [27], based on
the parameters {HP

0 , MP }, is
the best fit model

Table 1 Results of the fit of the Pantheon data. The inhomogeneous
models have two extra parameters, {zv, δv}, with respect to the homo-
geneous models, which are taken into account in the calculation of
χ2
red = χ2/d.o. f. and AIC . The �AIC and �BIC are defined with

respect to the homogeneous model mHom(HR
0 ). The inhomogeneous

model mInh(HP
0 ) is the best fit model, according to the χ2

red , the AIC ,
and the BIC , while mInh(HR

0 ) is disfavored, in agreement with [27].
This shows that a small local inhomogeneity allows to fit well SNe cal-

ibrated with the value of the absolute magnitude MP implied by HP
0 .

Analyzing low redshift observations ignoring the presence of such an
inhomogeneity can lead to a miss-estimation of M , and the consequent
apparent Hubble tension. The latter is in fact due to the M tension, i.e.
the difference between MR and MP . If the effects of the inhomogene-
ity were taken into account, the M tension, and consequently the H0
tension, could be removed

zsup = 0.15

δv zv χ2 χ2
red AIC � AIC BIC � BIC

mInh(HP
0 ) −0.140 ± 0.042 0.056 ± 0.0002 290.499 0.985 294.499 3.4 304.4082 7.3889

mInh(HR
0 ) −0.031 ± 0.045 0.047 ± 0.0035 297.411 1.008 301.411 − 3.5 311.3202 0.4769

mHom(HP
0 ) – – 301.159 1.014 301.159 − 3.3 315.0682 − 3.2710

mHom(HR
0 ) – – 297.888 1.003 297.888 0 311.7972 0

with previous studies [27]. The density contrast of the best fit
under-density is not large, and the hedge is located around the
depth of the catalog used in [3] for the RC. This is support-
ing the argument [14] that the apparent tension between HP

0
and HR

0 could be the consequence of a local inhomogene-
ity whose effects have not been removed by RC, because its
size is comparable to the 2M++ depth. As noted in [14], the
high redshift luminosity distance is not affected by the local
inhomogeneity, since its effect is proportional to the volume
average of the density contrast, which becomes negligible
at high redshift. The inhomogeneity parameters are in good
agreement with recent results of number counts analysis [1],
further supporting its existence.

This kind of under-density could have been seeded by
a peak of primordial curvature perturbations [35]. The sta-
tistical evidence of its presence should be considered inde-
pendently of the theoretical prediction of the probability of
its occurrence [36–38], i.e. the existence of inhomogeneities
should be investigated using observational data rather than
being excluded a priori from the analysis, on the basis of
theoretical predictions.

The value of M is the key element in detecting or not the
presence of the inhomogeneity in the SNe data. The value of
MR is obtained assuming homogeneity and could be under-
estimated due to the unaccounted effects of a local under-
density, as shown in Eq. (10), causing the well known Hubble
tension.
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5 Conclusions

We have analyzed low redshift SNe data with different cos-
mological models. We have found that a model with a small
local under-density with H0 = HP

0 can fit the data better than
a homogeneous model with H0 = HR

0 . The parameters of
the inhomogeneity we have obtained are in good agreement
with number counts observations [1].

The existence of this local under-density, if not taken into
proper account, can produce a miss-estimation of all back-
ground cosmological parameters obtained under the assump-
tion of large scale homogeneity, and it can explain for exam-
ple the Hubble tension [14]. This is in agreement with the the-
oretical prediction of a local inhomogeneity effects, whose
leading monopole perturbative contribution is proportional
to the volume averaged density contrast, implying that the
high redshift luminosity distance is not affected, including
the distance of the last scattering surface from which the H0

is estimated with CMB observations. It is remarkable that
the edge of the inhomogeneity is located around the depth
of the 2M++ catalog, used to compute the peculiar velocity
redshift correction. This naturally explains why the redshift
correction applied to Pantheon data is not able to remove the
effects of the inhomogeneity obtained in our analysis.

The analysis presented in this paper is not fully Bayesian,
since the values of M are fixed without considering the effects
of their respective errors. While this approach can work as
a first approximation, it would be important to confirm the
results with a full Bayesian analysis. In the future it will
also be interesting to fit independently the values of H0 and
M using low red-shift observations, without using any prior.
It will also be important to confirm our results with a joint
fit of other observables such as as number counts [1,16], to
include the effects of possible anisotropies, and to analyze
data of higher redshift SNe.
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Appendix A: Model independent consistency relation
between H0 and M

From the relation between the distance modulus and the lumi-
nosity distance

log10(DL) = 1 + μ

5
, (1)

μ = m − M , (2)

we obtain

mobs = (5 log d − 5) + (M − 5 log H0)

= l(z) + g(M, H0), (3)

l(z) = 5 log d(z) − 5, (4)

g(M, H0) = M − 5 log H0, (5)

where we have defined DL = d/H0, and the function l(z)
could be an arbitrary function of the redshift, not necessarily
that corresponding to a �CDM model. For a flat �CDM
Universe we have for example

h(z) =
[
�m(1 + z)3 + �λ

]1/2
, (6)

d(z) = (1 + z)
∫ z dz′

h(z′)
, (7)

DL(z) = 1

H0
d(z) . (8)

It is evident from Eq. (5) that there can be a degeneracy
between the parameters H0 and M , since for the same l(z),
different combinations of {H0, M} can give the same mobs ,
as long as g = const . The parameters {�i , H0, M} are in
general independent, and a joint analysis is required to obtain
the best fit values. For�CDM models the function l(z) is only
mildly dependent on �i at low-redshift because

DL(z) = 1

H0

(
z + 1 − q0

2
z2 + ..

)
, (9)

q0 = 3

2
�m − 1 , (10)

implying that d ≈ z, which is approximately independent of
�i , i.e. we get the Hubble’s law. For this reason only high
redshift observations can provide evidence of dark energy,
because only higher order terms in the Taylor expansion of
DL(z) depend on �i .

Let’s consider two models with the same function d, da =
db, where we are denoting with subscripts a, b quantities
corresponding to the two models. For example these could
be �CDM models with the same parameters �i .
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Under the assumption da = db we get

ga = gb = Ma − 5 log10 Ha = Mb − 5 log10 Hb , (11)

from which

Da
L = Db

L
Ha

Hb
, (12)

μa = μb + 5 log10

(
Hb

Ha

)
, (13)

Ma = Mb + 5 log10

(
Ha

Hb

)
, (14)

i.e. {Da
L , Ha, Ma} and {Db

L , Hb, Mb}. The last equation gives
a consistency relation between the values of H0 and M for
different models. This relation is model independent because
it only assumes Eq. (2).

The derivation of the consistency relation given in Eq.
(14) is also based on assuming that {da = db → ga = gb}.
In this paper we apply the formulae to �CDM models with
the same �i , so the assumption da = db is exact at any
redshift, but even if the �i were different, at low redshift
it could still be safely applied as explained above, because
the relation d ≈ z is in good agreement with observations
in that range, independently of the values of the parameters
�i . The same would apply to any other cosmological model
in agreement with observations, not necessarily a �CDM
model. For example in the case of a FRW model compared
to a FRW+void model, fitting the same low redshift observa-
tions, i.e. with ma = mb, and da = db ≈ z, where Ha = Hb

are the local slopes of Da = z/Ha and Db = z/Hb. The
effects of the inhomogeneity on the luminosity distance lead
to a correction to the Hubble parameter approximately given
by [14]

�H0

H0
= −1

3
f δ(z) , (15)

where δ is the volume average of the density contrast. The
above formula shows that an under-density increases the local
estimation of H0 with respect to the background value.

Considering a set of low redshift SNe we can also derive
the effect of a local inhomogeneity on the absolute magnitude
M

�M = 5 log10
H0 + �H0

H0
= 5 log10

(
1 − 1

3
f δ(z)

)
. (16)

An under-density is expected to induce a positive cor-
rection to M , in agreement with Table 2. If a local under-
density is present, and redshift correction cannot completely
remove its effects on the distance of the anchors, the value
of MHom = Mtrue + �M , obtained analyzing data under
the assumption of homogeneity, would be larger than the
true value Mtrue. Using this value as prior for M , or using

Table 2 Values of {H0, M} used in analysis SNe data, derived using
the values in [3] as reference. The first row shows the values from [3],
and the second row the value of H0 from [2] and the implied value of
M obtained using Eq. (13). The publicly available values are in italics,
while the value of M for Planck, inferred using Eq. (13), is in roman

Dataset H0(km s−1 Mpc−1) M

Riess 73.24 ± 1.59 − 19.25 ± 0.71

Planck 67.4 ± 0.5 −19.4 ± 0.65

as prior the value of H0 obtained from it [3], leads to an
apparent H0 tension, which is in fact the consequence of a
M overestimation.

For the Pantheon data set the parameters {H0 = 73.24 ±
1.59, M = −19.25 ± 0.71} from [3] have been taken as
reference. The values for the parameters obtained using the
formulae above are given in Table 2, including the magnitude
MP corresponding to HP

0 .
This procedure is not always correctly performed in the

literature, producing to an implicit bias in selecting models.

Appendix B: Anchors distance and absolute magnitude
miss-estimation

Since we can only measure the apparent magnitude of SNe,
a calibration is needed to estimate the absolute luminosity
M . For low redshift SNe the distane is obtained from the
period-luminosity relation for Cepheids in the same galaxy
of the SNe, which is calibrated using the angular diameter
distance as anchor, the NGC4258 megamaser [39]. If the
local Universe were not homogeneous the NGC4258 angular
diameter distance would also be affected, implying a miss-
estimation of its distance, and consequently of M .

As shown in [14], the effects of a local inhomogeneity
on the high redshift luminosity distance are negligible, since
they are proportional to the volume average of the density
contrast, making the effects only important for low redshift
observations.

As shown in appendix A, the absolute magnitude can be
miss-estimated due to the unaccounted effects of a local inho-
mogeneity, according to

�M = 5 log10

(
1 − 1

3
f δ(z)

)
, (1)

showing that an under-density can lead to an overestimation
of the anchors distance, and consequently to an overestima-
tion of the value of M obtained using those anchors. The
procedure to estimate M [3] is in fact assuming that all inho-
mogeneities effects have been removed by applying the RC,
but if that is not the case, then also the value of M would
receive a correction, not just H0.
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Appendix C: Volume average δ(z) of a step density con-
trast

For a step density contrast profile of the type given in Eq.
(6), using the low redshift approximation χ ≈ z/(aH0) =
z(1+ z)/H0, the volume average of the density contrast over
a sphere of comoving radius χ(z) is

δ(χ) = 3

4πχ3

∫ χ

0
4πχ ′2δ(χ ′)dχ ′

= H3
0

[z(1 + z)]3 δvχ
3
v = δv

[
zv(1 + zv)

z(1 + z)

]3

. (1)

The factor (1+zv)/(1+z) can be neglected in the low redshift
regime, as shown in Fig. 1.
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