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Abstract In this work, we explore the signals of an S3-
symmetric two Higgs doublet model with two generations
of vector-like leptons (VLLs) at the proposed International
Linear Collider (ILC). The lightest neutral component of the
VLL in this model provides a viable dark matter (DM) can-
didate satisfying the current relic density data as well as cir-
cumventing all direct and indirect DM search constraints.
Some representative benchmark points have been selected
with low, medium and high DM masses, satisfying all the-
oretical and experimental constraints of the model and con-
straints coming from the DM sector. The VLLs (both neutral
and charged) will be produced in pair leading to multi-lepton
and multi-jet final states. We show that the ILC will prove to
be a much more efficient and useful machine to hunt for such
signals compared to LHC. Using traditional cut-based analy-
sis as well as sophisticated multivariate analysis, we perform
a detailed analysis of some promising channels containing
mono-lepton plus di-jet, di-lepton, four-lepton and four jets
along with missing transverse energy in the final state at 1
TeV ILC.

1 Introduction

The particle spectrum of the Standard Model (SM) being
complete with the Higgs boson discovery [1,2] still leaves
unanswered questions on our understanding of Nature. In
a more complete picture being established, the SM can be
better termed as an effective theory sustainable up to a cer-
tain scale. To circumvent the theoretical and experimental
shortcomings, several extensions of the SM have been pro-
posed in the literature exploiting new symmetries or mod-
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ifications to the space-time with additional spatial dimen-
sions to name a few. In each such extension addition of either
bosonic or fermionic fields somewhat becomes inevitable. A
typical extension which addresses some of the issues in the
flavor sector of particle phenomenology involves vector-like
fermions with vector-like leptons (VLL) as a natural entity.
Unlike the SM fermions, the left- and right-chiral compo-
nents of VLLs transform identically under the SM gauge
symmetry. Some beyond SM extensions where such exotic
fermions appear naturally are grand unified theories [3–6],
theories with non-minimal supersymmetric extensions [7–
13], warped or universal extra-dimension [14–22], compos-
ite Higgs model [23–29] and little Higgs model [30–34]. The
phenomenology of additional VLLs is expected to be similar
to excited leptons or can differ if the model predicts addi-
tional particles in the spectrum. The VLLs can also modify
the SM Higgs boson decay to di-photon mode. The VLLs are
however less constrained than chiral fourth generation of SM
fermions, typically from electroweak precision observables
and Higgs signal strengths [35]. The VLLs have also been
studied in the context of dark matter (DM) phenomenology
and several DM and collider searches have been performed
in the framework containing SM augmented with Higgs sin-
glet [36], Higgs doublet [37–40], Higgs triplet [35,41,42],
left right symmetric model [43–45] extended by one or more
generations of VLLs.

In the present analysis, we study an S3-symmetric two
Higgs doublet model (2HDM) [46,47], along with two gen-
erations of VLLs. The addition of two generations of VLLs
in this model helps guarantee an S3-symmetric Yukawa
Lagrangian providing an aesthetic picture to their inclusion.
The main motivation of S3-symmetric 2HDM is to provide
proper mass hierarchy and mixing among the SM fermions.
Besides, the S3-symmetric 2HDM incorporates a 125 GeV
SM-like Higgs boson in a very simple and natural way, unlike
in a general 2HDM [46,47]. In our model we impose an addi-
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tional Z2 symmetry, under which all the SM fermions are
even and the VLLs are odd [48]. Thus the mixing between the
SM fermions and VLLs is forbidden throughout the analysis,
and the lightest neutral VLL serves as a viable DM candidate
which satisfies correct relic density, direct detection cross-
sections and thermally averaged annihilation cross-sections
in indirect detection obtained from the experiments [48].
A rigorous collider analysis of the multi-leptons + missing
transverse energy final state at high-luminosity (HL) LHC
can be found in one of our recent studies [48] where we
found that the LHC provided us with a limited sensitivity
for the VLLs for large masses as well as when the spec-
trum satisfying DM results demanded a compressed spec-
trum. Such spectrums will be more likely to be observable in
a cleaner environment of an electron–positron collider such
as the International Linear Collider (ILC) [49,50]. The ILC
will be an invaluable machine with several exciting physics
studies and is hence proposed to run at several center of mass
energies, each driven by the physics study it aims to achieve.
For our analysis, we have chosen the high energy option of√
s = 1 TeV that allows a larger phase space to produce

heavier VLLs. In this work, we therefore study leptonic and
hadronic states with missing transverse energy at 1 TeV ILC
to highlight the sensitivity. We observed that the benchmarks
with high DM masses or with a compressed particle spec-
trum which were challenging to probe owing to small signal
cross-sections at HL-LHC are easily discernible with high
significance in specific final states involving hadronic final
states. To perform our collider analysis we select some bench-
mark points with low, medium and high DM masses from
the multi-dimensional parameter space satisfying the theo-
retical, experimental and DM constraints. There exist several
searches by ATLAS and CMS involving di-lepton [51], four
leptons [52,53] and multi jets [54] along with missing trans-
verse energy in the final states. We have validated all the
benchmark points with the limits arising out of these exist-
ing studies. To optimize the signal over the SM backgrounds,
for each channel we have performed a cut-based analysis and
also shown the possible improvement in the analysis employ-
ing machine learning with a sophisticated multivariate tech-
nique.

The paper is organized as follows. In Sect. 2, we discuss
the relevant scalar and Yukawa sector of the model. In Sect. 3,
we present a collider analysis of the leptonic and hadronic
final states along with missing transverse energy. Finally we
summarize and conclude in Sect. 4.

2 Model

We work in the S3-symmetric 2HDM which contains two
generations of VLLs. Including two generations of VLLs
instead of one allows one to write a Yukawa Lagrangian fully

Table 1 SU (2)L × SU (3)C ×U (1)Y × Z2 quantum numbers assigned
to the particles in the model

Fields SU (2)L SU (3)L U (1)y Z2

φ1 2 1 +1 1

φ2 2 1 +1 1

QiL , i = 1, 2, 3 2 3 + 1
3 1

ui R, i = 1, 2, 3 1 3 + 4
3 1

di R, i = 1, 2, 3 1 3 − 2
3 1

LiL , i = 1, 2, 3 2 1 −1 1

ei R, i = 1, 2, 3 1 1 −2 1

L ′
Li

, i = 1, 2 2 1 −1 −1

L ′′
Ri

, i = 1, 2 2 1 −1 −1

e′
Ri

, i = 1, 2 1 1 −2 −1

e′′
Li

, i = 1, 2 1 1 −2 −1

ν′
Ri

, i = 1, 2 1 1 0 −1

ν′′
Li

, i = 1, 2 1 1 0 −1

S3-symmetric. Each generation of VLL comprises of one left-
handed lepton doublet L ′

Li
, one right-handed charged lepton

singlet e′
Ri

and one right-handed singlet neutrino ν′
Ri

, accom-
panied by their mirror counter parts with opposite chirality,
i.e. L ′′

Ri
, e′′

Li
and ν′′

Li
with i = 1, 2. The quantum numbers

for the SM and beyond Standard Model (BSM) particles are
shown in Table 1, while Table 2 shows the S3 quantum num-
bers of the particles. Two Higgs doublets φ1 and φ2 together
form an S3-doublet. In Table 1, QiL , LiL are the SM left-
handed quark and lepton doublets, while ui R, di R, ei R are
the right-handed up-type, down-type quark and charged lep-
ton singlets respectively for i = 1, 2, 3.

2.1 Scalar and Yukawa Lagrangian

Two SU (2)L doublets φ1 and φ2 in S3-symmetric 2HDM
with hypercharge Y = +1 , jointly behave like a doublet

under S3-symmetry, i.e. � =
(

φ1

φ2

)
.

The neutral components of φi acquire vacuum expectation
value (responsible for the spontaneous symmetry breaking
(SSB) of SM gauge symmetry). The doublets can be written
as shown below,

φi =
(

φ+
i

1√
2
(vi + hi + iρi )

)
(1)

Here vi ’s are VEVs of two doublets with v1 = v cos β, v2 =
v sin β and v =

√
v2

1 + v2
2 = 246 GeV. The ratio of two

vacuum expectation values can be denoted by tan β , i.e.
tan β = v2

v1
.

The most general renormalisable scalar potential for S3-
symmetric 2HDM can be written as the sum of V2(φ1, φ2)

and V4(φ1, φ2) [46]:
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Table 2 S3 quantum number assigned to the particles in the model

V (φ1, φ2) = V2(φ1, φ2) + V4(φ1, φ2) (2)

with

V2(φ1, φ2) = m2
11(φ

†
1φ1) + m2

22(φ
†
2φ2)

−{m2
12(φ

†
1φ2) + h.c.} (3)

and

V4(φ1, φ2) = λ1(φ
†
1φ1 + φ

†
2φ2)

2 + λ2(φ
†
1φ2 − φ

†
2φ1)

2

+λ3

{
(φ

†
1φ2 + φ

†
2φ1)

2 + (φ
†
1φ1 − φ

†
2φ2)

2
}

. (4)

In Eqs. (3) and (4), the subscripts denote the dimensional-
ity of the terms. The hermiticity of the scalar potential in
Eq. (4), forces the quartic couplings λ1, λ2 and λ3 to be
real. In V2(φ1, φ2), m2

11,m
2
22 are real, m2

12 can be complex
in principle. In this analysis, we shall not consider m2

12 to
be complex to circumvent CP-violation. The configuration
m2

11 = m2
22 along with m2

12 = 0 makes the quadratic part of
the potential S3-symmetric. At the same time this condition
results in a massless heavy Higgs boson [46]. Thus to avoid
any other massless heavy Higgs boson apart from the Gold-
stone bosons, we adhere to: m2

11 = m2
22 and m2

12 �= 0. Thus
the value of tan β is fixed to 1, following the minimisation
conditions of the scalar potential in Eq. (2) [46].

The particle spectrum of this model comprises of SM-like
Higgs (h), heavy CP-even Higgs (H ), pseudoscalar Higgs
(A) and charged Higgs (H±). The alignment limit, in which
h resembles SM Higgs boson, is naturally achieved in this
model [46].

The most general Yukawa Lagrangian involving two gen-
erations of VLLs is given by,

LYuk = −M1L
′
L1
L

′′
R1

− M2L
′
L1
L

′′
R2

− M3L
′
L2
L

′′
R1

−M4L
′
L2
L

′′
R2

−1

2
M5νc

′′
L1

ν
′′
L1

− 1

2
M6νc

′′
L2

ν
′′
L2

− 1

2
M7νc

′
R1

ν
′
R1

−1

2
M8νc

′
R2

ν
′
R2

− M9ν
′′
L1

ν
′
R1

−M10ν
′′
L1

ν
′
R2

− M11ν
′′
L2

ν
′
R1

− M12ν
′′
L2

ν
′
R2

−ML1e
′′
L1
e

′
R1

− ML2e
′′
L2
e

′
R2

−ML3e
′′
L1
e

′
R2

− ML4e
′′
L2
e

′
R1

−y2[(L
′
L1

φ̃2 + L
′
L2

φ̃1)ν
′
R1

+ (L
′
L1

φ̃1 − L
′
L2

φ̃2)ν
′
R2

]
−y4

[
(L

′′
R1

φ̃2 + L
′′
R2

φ̃1)ν
′′
L1

+(L
′′
R1

φ̃1 − L
′′
R2

φ̃2)ν
′′
L2

]
− y

′
2

[
(L

′
L1

φ2 + L
′
L2

φ1)e
′
R1

+(L
′
L1

φ1 − L
′
L2

φ2)e
′
R2

]

−y
′
4

[
(L

′′
R1

φ2 + L
′′
R2

φ1)e
′′
L1

+(L
′′
R1

φ1 − L
′′
R2

φ2)e
′′
L2

]
+ h.c. (5)

Here the charge conjugated fields are denoted with super-
script “c” in Eq. (5). In presence of exact S3-symmetry, the
masses of the VLLs will be proportional to the product of
Yukawa coupling and the electroweak vacuum expectation
value (VEV), which in turn will lead to non-perturbative
Yukawa couplings (for vector lepton masses ∼ 1 TeV). Thus
we introduce Dirac and Majorana mass terms in Eq. (5),
that break S3-symmetry softly, while the rest of the terms in
Eq. (5) are S3-symmetric.

Two generations of VLLs comprise of eight neutral and
four charged flavor eigenstates. Thus we can construct eight
neutral mass eigenstates (Ni , i = 1–8) and four charged mass
eigenstates (E+

i , i = 1–4) out of the aforementioned flavor
eigenstates. The unbroken Z2 symmetry in the model allows
the lightest neutral state of the VLLs to act as the DM candi-
date. It also ensures that the mixing of VLL with SM fermions
is also prohibited. We do note that the model can incorpo-
rate tiny neutrino masses radiatively through contributions
from the Z2 odd fermions. We however focus on the col-
lider signals of the VLLs at the ILC and leave that study for
future considerations. The mass matrices for the neutral and
charged fermions and the details of their diagonalisation can
be found in [48].

123



538 Page 4 of 17 Eur. Phys. J. C (2022) 82 :538

Table 3 Masses of neutral and charged VLLs for four benchmarks

Benchmark
points

MN1

(GeV)

MN2

(GeV)

MN3

(GeV)

MN4

(GeV)

MN5

(GeV)

MN6

(GeV)

MN7

(GeV)

MN8

(GeV)

ME±
1

(GeV)

ME±
2

(GeV)

ME±
3

(GeV)

ME±
4

(GeV)

BP1 81.3 86.9 119.3 154.4 211.6 268.7 688.4 856.9 171.0 211.8 260.0 322.0

BP2 193.8 204.8 239.8 245.7 268.3 274.9 454.5 494.7 280.2 313.0 356.8 398.5

BP3 261.4 262.5 263.2 263.4 264.0 297.1 444.9 505.5 280.2 313.0 356.7 398.5

BP4 402.8 456.9 461.3 466.1 467.3 508.0 518.3 653.7 486.2 539.4 592.3 657.1

Table 4 DM masses along with DM relic density, spin-dependent, spin-independent cross-sections, thermally averaged indirect detection annihi-
lation cross-sections and corresponding dominant annihilation modes for four benchmarks

Benchmark
points

MDM
(GeV)

�DMh2 σSD
cm2

σSI
cm2

Annihilation
cross-section
(for indirect
detection only)
〈σv〉 (cm3/s)

Annihilation
mode
(for indirect
detection only)

BP1 81.3 1.04 × 10−1 3.4 × 10−42 4.4 × 10−49 2.41 × 10−28 W+W− (100%)

BP2 193.8 9.36 × 10−4 5.98 × 10−42 2.54 × 10−49 3.79 × 10−26 Z Z ( 53.8%)

W+W− (46.1%)

BP3 261.4 4.14 × 10−3 2.57 × 10−41 1.06 × 10−46 2.49 × 10−26 Z Z (55.5%)

W+W− (44.3%)

BP4 402.8 2.97 × 10−4 7.16 × 10−41 9.86 × 10−49 1.05 × 10−26 Z Z (52.0%)

W+W− (46.3%)

3 Collider searches

By the virtue of Z2-symmetry, the lightest neutral VLL N1

cannot decay and becomes a possible DM candidate. To
explore the model parameter space compatible with relic den-
sity (�DMh2),1 direct and indirect DM searches, we imple-
ment the model Lagrangian in FeynRules [55] to generate
the interaction vertices and mass matrices. The CALCHEP
[56] compatible model files obtained from FeynRules is
then included in micrOMEGAs [57], which helps us to cal-
culate the DM observables like relic density (�DMh2), spin-
dependent (σSD) and spin-independent (σSI) cross-sections,
thermally averaged annihilation cross-sections (〈σv〉), etc.
We choose four representative benchmark points BP1 BP2,
BP3 and BP4 according to low, medium and high DM
masses, that we found consistent with observed relic abun-
dance obtained from the PLANCK experiment [58], and also
allowed by the stringent bounds coming from the direct detec-
tion experiments like LUX [59] for spin-independent cross-
sections and PICO [60] for spin-dependent cross-sections,
and from the indirect detection bounds coming from FERMI-
LAT [61], MAGIC [62] and PLANCK [58] experiments.
The masses of the neutral (Ni s) and charged (E+

i s) VLLs

1 �DM is defined as the ratio of non-baryonic DM density to the critical
density of the universe and h is the reduced Hubble parameter (not to
be confused with SM Higgs h).

for our chosen benchmark points can be found in Table 3.
All these four benchmark points represent model param-
eters which satisfy theoretical constraints like stability of
the scalar potential, perturbativity and constraints coming
from electroweak precision data and Higgs signal strengths.2

�DMh2, σSD, σSI, 〈σv〉 and dominant annihilation modes
for indirect detection3 along with corresponding dark matter
masses for the aforementioned benchmark points (BPs) are
tabulated in Table 4. Our choice of BP’s is envisaged to cover
varied and complementary features of the model. For exam-
ple, BP1 corresponds to low DM mass, BP2 corresponds to a
slightly heavier DM mass with substantial mass splitting with
the charged VLLs, BP3 corresponds to a compressed spec-
trum where the mass difference between the components of
the VLL’s are ∼ 20 GeV while BP4 corresponds to an overall
heavy spectrum with higher DM mass which renders them
close to threshold value of the ILC center of mass energy.

We focus on the
√
s = 1 TeV of ILC and present our anal-

ysis for some specific processes in the S3-symmetric model
which gives us the semi-leptonic 1
+2 j+E/T , fully leptonic

2 More details can be found in our earlier work [48].
3 The 6th and 7th columns of Table 4 actually refer to the < σv > rele-
vant for indirect detection, and, the corresponding annihilation channels
respectively. The aforementioned indirect detection annihilation cross
sections alone cannot lead to an estimate for the relic density since there
might be other annihilation/coannihilation channels entering the relic
density calculation.
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2
+E/T and 4
+E/T 4 and the fully hadronic 4 j+E/T final
states. The 1
 + 2 j + E/T and 4 j + E/T channel containing
multi-jets prove to be promising signals at the ILC, compared
to LHC where huge SM backgrounds would supersede the
signal. The spectrum with higher DM mass also proved hard
to search at LHC [48] even with high integrated luminos-
ity, since corresponding signal cross-section was too small
to yield significant signal significance.

To generate the signal and SM background at leading order
(LO), we use the public packageMG5aMC@NLO [63]. We first
use the following acceptance cuts:

p j
T > 20 GeV, |η j | < 5.0,

p

T > 10 GeV, |η
| < 2.5,

� Ri j > 0.4, with i, j = 
, jets. (6)

Here p j (
)
T , |η j (
)| are the transverse momentum and

pseudo-rapidity of jets (leptons). �Ri j is defined as : �Ri j =√
�η2

i j + �φ2
i j , where �ηi j (�φi j ) is the difference between

the pseudo-rapidity (azimuthal angles) of i th and j t particle
in the final state. Subsequent decays of the unstable particles
are incorporated in Pythia8 [64]. To emulate the detector
effects into the analysis, we pass the signal and background
events in Delphes-3.4.1 [65] using the default ILD
detector simulation card. We note that the results obtained
from traditional cut-based analysis are improved further by
using Decorrelated Boosted Decision Tree (BDTD) algo-
rithm embedded in TMVA (Toolkit for Multivariate Data
Analysis) [66] platform. The signal significance S can be
calculated in both cut-based and multivariate analysis using

S =
√

2
[
(S + B) log

(
S+B
B

)
− S

]
, with S(B) denoting the

number of signal (background) events surviving the cuts on
relevant kinematic variables.

3.1 2
 + E/T final state

We begin with the leptonic signal consisting of two charged
leptons. The final state contains same or different flavour
and opposite sign (OS) di-leptons along with E/T . For the
benchmark points BP1, BP2 and BP4 dominant contribution
to the 2
 + E/T final state comes from e+e− → E+

1 E−
1 →

W+W−E/T channel, where W± is assumed to decay lepton-
ically. But for BP3, the contribution comes from three body
decay, namely e+e− → E+

1 E−
1 → 
+
−E/T . This is due

to the fact that mass difference between E±
1 and N1 is much

less than the mass of W±. Here we consider the following
processes that can lead to the 2
 + E/T final state:

4 Here 
 represents electron or muon and E/T denotes missing trans-
verse energy.

e+e− → E+
i E−

j , E±
i, j → 
±N1,

e+e− → NkN1, Nk → 
+
−N1 (7)

where i, j = 1 . . . 4 and k,m = 1 . . . 8. These processes can
give rise to the 2
 + E/T final state depending on the mass
spectrum of the VLL’s in individual benchmarks. Here we
choose the same or different flavour and opposite sign (OS)
di-leptons in such a way that the leading and sub-leading
leptons have the transverse momenta greater than 10 GeV,
i.e. p
1,
2

T > 10 GeV. At the same time, we reject any third
lepton in the final state. Since our signal does not contain any
jet, we veto the light jets as well as b jets.

The dominant background comes from the e+e− →

+
− + E/T final state comprising of the following possible
subprocesses that lead to a similar final state:

• e+e− → W+W−; W+ → 
+ ν
, W− → 
− ν
,
• e+e− → Z Z ; Z → 
+
−, Z → ν
 ν
,
• e+e− → W+W−Z ;W+ → 
+ ν
, W− → 
− ν
, Z →

ν
 ν
,
• e+e− → Z Z Z ; Z → 
+
−, Z → ν
 ν
, Z → ν
 ν
.

A promising feature at the ILC would be the use of polarized
beams which can affect specific physics studies in which cer-
tain chirality in currents are favored/conserved. To see our
signal in the same spirit we calculate the signal and back-
ground cross sections corresponding to both polarised ([80%
left polarised e−, 30% right polarised e+ beam] and [80%
right polarised e− and unpolarised e+ beam]) and unpo-
larised e+-e− beams [67] which are tabulated in Table 5.
From now on, we shall only present the distributions and
calculate the signal significances for the unpolarised incom-
ing beams using cut-based as well as BDT analysis.

We carry out the cut-based analysis by looking at some
relevant kinematic variables which can help design proper
cuts (A1, A2, A3) on them to improve the signal over the
backgrounds.

• A1: We depict the normalized pseudorapidity distribu-
tions of the leading and sub-leading leptons in Fig. 1a and
b. For the background, the leptons can be produced via s-
channel exchange of γ, Z as well as t-channel exchange
of ν’s, which results in the peaks at higher η values. How-
ever, for the signal, the leptons are produced from the
decay of the W±, which are generated from the decay of
heavier VLLs, produced via s-channel exchange of γ, Z .
As a result, the η distribution for the signal is more cen-
trally peaked. We note that, choosing |ηl1,2 | < 1.0 helps
to reduce the background significantly.

• A2: The normalized distribution of the invariant mass
of the opposite sign (OS) lepton pair (same or different
flavor) M
+
− is shown in Fig. 1c. Since the 2
 + E/T
background consists of the contributions from Z Z and
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Table 5 The leading order (LO)
effective cross-sections of the
signal and background for
2
 + E/T final state at 1 TeV
ILC using unpolarised and
polarised incoming beams.
Pe− , Pe+ denotes the
polarisation for the e− and e+
beam respectively. L and R is
used to denote whether the beam
is left or right polarised

Cross section for
(Pe− , Pe+ =
0, 0) (in fb)

Cross section for
(Pe− , Pe+ =
80%L , 30%R)

(in fb)

Cross section for
(Pe− , Pe+ =
80%R, 0) (in fb)

Signal benchmarks

BP1 6.8 11.77 5.11

BP2 5.28 9.49 3.60 .

BP3 4.42 7.95 3.01

BP4 0.71 1.29 0.47

Background

e+e− → 2
 + E/T 420.22 922.3 88.81

(a) (b)

(c) (d)

Fig. 1 Normalized distributions of η
1 , η
2 , M
1
2 , Meff for 2
 + E/T channel at 1 TeV ILC

γ ∗Z , to exclude the Z-peak, we reject events which lie
within the window: |M
+
− − MZ | < 15 GeV. At the
same time, we also demand M
+
− > 12 GeV to reduce
the γ ∗Z background contribution.

• A3: The variable Meff is constructed as the scalar sum
of the lepton pT and E/T . The distribution is shown in
Fig. 1d. Instead of giving cuts on the lepton pT and E/T
separately, it is useful to put a cut on Meff which helps
to reject the background more efficiently. Since for BP3

and BP4, the mass difference between the charged and
neutral component of the VLL’s are smaller compared
to BP1 and BP2, the lepton pT is less. As a result, Meff

peaks at a smaller value for BP3 and BP4. We impose an
upper cut: Meff < 500 (350) GeV for BP1 and BP2 (BP3
and BP4) to reduce the background.

We tabulate the number of signal and background events
surviving after the application of each cut for each benchmark
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Table 6 The cut-flow for signal and backgrounds for 2
+E/T channel
along with the required integrated luminosity required for 5σ signifi-
cance for benchmarks BP1, BP2, BP3 and BP4 at 1 TeV ILC. The
bracketed term in the A3 cut denotes the surviving number of events for
Meff < 350 GeV cut for the background

SM-background Number of events after cuts (L = 100 fb−1)

A1 A2 A3
2
 + E/T 4826 2817 535 (289)

Signal L5σ

(fb−1)

BP1 417 366 318 16

BP2 322 261 260 23

BP3 291 225 223 18

BP4 45 36 36 570

at an integrated luminosity 100 fb−1 in Table 6. From Table
6 we infer that to attain 5σ significance, we need 16 fb−1, 23
fb−1, 18 fb−1 and 570 fb−1 integrated luminosity (L5σ ) for
BP1, BP2, BP3 and BP4 respectively.

To showcase further improvement of the signal sensitivity
from the cut-based analysis, we carry out the multivariate
analysis (MVA) using Decorrelated Boosted Decision Tree
(BDTD) algorithm within the Toolkit for Multivariate Data
Analysis (TMVA) framework. A detailed description of the
method has already been described in one of our earlier work
[48]. According to the discerning ability between the signal
and the backgrounds of this channel, the most important kine-
matic variables turn out to be 5:

M
1
2 , η
1, η
2 , E/T , Meff , p
1
T . (8)

The BDTD parameters likeNTrees, MinNodeSize,
MaxDepth, nCuts and KS-scores [48] for both signal
and backgrounds are tabulated in Table 7. The first four input
parameters are regulated in such a way, that the KS-scores
for both signal and backgrounds become stable [48]. The
next task is to tune the BDT cut value or BDT score to max-
imise the signal significance. Figure 2b shows the variation of
significance with BDT-score. From this figure, it is evident
that the signal significances of different benchmarks attain
a maximum value for different BDT cut values. The BDT
scores for BP1, BP2, BP3 and BP4 are 0.167, 0.164, 0.23 and
0.201 respectively. In the Receiver’s Operative Characteris-
tic (ROC) plot (Fig. 2a), we show the degree of background

5 This is clearly in accordance with the variables highlighted in the
cut-based analysis.

rejection against signal efficiency. It can clearly be inferred
that the degree of background rejection is maximum for BP4
(magenta curve in Fig. 2(a)).

The signal and background yields for 2
+ E/T channel at
L = 100 fb−1 along with the integrated luminosity required
to achieve a 5σ significance for each benchmark points using
MVA, have been tabulated in Table 8. The integrated lumi-
nosities required for achieving 5σ significance for BP1, BP2,
BP3, BP4 are 17.1, 22.8, 14.5, 216.3 respectively. Comparing
with the results obtained from the cut-based analysis, one can
find that the integrated luminosities required for achieving 5σ

significance is lowered for BP3 and BP4 after performing
the BDTD analysis, which implies an overall improvement
of results after the multivariate analysis is done. It is instruc-
tive to acknowledge systematic uncertainties at the experi-
ment which can effect our results. To show this we include
a 5% systematic uncertainty and highlight its effect in Table
8 along side the null systematic uncertainty results. The sig-
nal significance gets modified by introducing a systematic
uncertainty (σsys_un) in the SM background estimation [68]
following:

Ssys =
√√√√2

(
(NS + NB) log

(
(NS + NB)(NB + σ 2

B)

N 2
B + (NS + NB)σ 2

B

)
− N 2

B

σ 2
B

log

(
1 + σ 2

BNS

NB(NB + σ 2
B)

))
, (9)

where σB = σsys_un × NB .

3.2 1
 + 2 j + E/T final state

The dominant contribution to 1
+ 2 j + E/T final state orig-
inates from e+e− → E+

1 E−
1 → W+W−E/T , where one of

the W± decays leptonically and other one decays hadroni-
cally. The SM processes that can give rise to the similar final
state are:

• e+e− → W+W−; W+(W−) → 
+(
−) ν
(ν
),

W−(W+) → j j ,
• e+e− → Z Z; Z → 
+
−, Z → j j , (one of the leptons

is missed)
• e+e− → W+W−Z ;

1. W+ → 
+ ν
, , W− → 
− ν
, Z → j j , (one of
the leptons is missed)

2. W+ → 
+ ν
, , W− → j j, Z → ν
 ν
,

• e+e− → Z Z Z; Z → 
+
−, Z → j j, Z → ν
 ν
,
(one of the leptons is missed)

• e+e− → Zh;

1. Z → 
+
−, h → j j (one of the leptons is missed)
2. Z → j j, h → 
+
− (one of the leptons is missed)
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Table 7 Tuned BDT parameters for BP1, BP2, BP3 and BP4 for the 2
 + E/T channel

NTrees MinNodeSize (%) MaxDepth nCuts KS-score for Signal(Background)

BP1 110 4 2.0 40 0.545 (0.437)

BP2 110 4 2.0 50 0.303 (0.418)

BP3 110 3 2.0 50 0.969 (0.053)

BP4 110 3 2.0 50 0.018 (0.035)

Fig. 2 (a) ROC curves for chosen benchmark points for 2
+ E/T channel. (b) BDT-scores corresponding to BP1, BP2, BP3 and BP4 for 2
+ E/T
channel

Table 8 The signal and background yields at 1 TeV ILC with 100 fb−1 integrated luminosity for BP1,BP2, BP3 and BP4 along with luminosity
required for 5σ significance for the e+e− → 2
 + E/T channel after performing the BDTD analysis

Benchmark
point

Signal yield at
100 fb−1

Background yield
at 100 fb−1

Significance at 100 fb−1 with
0%(5%) systematic uncertainty

L5σ (fb−1) with 0%(5%)
systematic uncertainty

BP1 346 711 12.1 (6.9) 17.1 (52.5)

BP2 283 643 10.5 (6.7) 22.8 (55.7)

BP3 214 203 13.1 (10.2) 14.5 (24.0)

BP4 50 200 3.4 (2.7) 216.3 (342.9)

Contributions from Z Z Z and Zh backgrounds are insignif-
icant due to small production rate. The LO cross sections of
the signal and backgrounds using polarised and unpolarised
incoming beams are tabulated in Table 9.

Since the signal consists of one lepton and two jets along
with transverse missing energy, we reject any second lep-
ton or any third jet in the final state for the backgrounds.
This helps us to suppress Z Z background. Finally we are
left with W+W− and W+W−Z background. Apart from the
basic acceptance cuts mentioned in Eq. (6), we implement
the following cuts to enhance the signal over backgrounds.

• B1: The pseudorapidity distributions for lepton and jets
are different for the signal and background as can be
seen in Fig. 3a–c due to the t-channel dominant back-
ground. Choosing the pseudo-rapidity of the lepton and
jets within the range: |η
1 |, |η j1,2 | < 1.0, helps to reduce
the background drastically.

• B2: The normalized E/T distribution is shown in Fig. 3d.
For the background, the missing energy comes from the
neutrinos and the distribution peaks at a lower E/T value.
On the other hand, for the signal, apart from the neutrinos,
missing energy can arise from the DM candidates and as
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Table 9 The effective cross-sections of the signal and backgrounds for 1
+ 2 j + E/T channel at LO at 1 TeV ILC using unpolarised and polarised
incoming beams

Cross section for (Pe− , Pe+ =
0, 0) (in fb)

Cross section for (Pe− , Pe+ =
80%L , 30%R) (in fb)

Cross section for (Pe− , Pe+ =
80%R, 0) (in fb)

Signal benchmarks

BP1 19.30 33.39 14.50

BP2 17.27 31.04 11.76

BP3 9.11 16.36 6.20

BP4 1.65 3.0 1.10

Background subprocesses

e+e− → W+W− 229.21 535.74 33.08

e+e− → Z Z 3.41 5.77 2.65

e+e− → W+W−Z 3.82 8.89 0.57

e+e− → Z Z Z 0.01 0.02 0.009

e+e− → Zh 0.18 0.27 0.27

a result it will peak relatively at a higher value. A lower
cut of E/T > 50 GeV helps to diminish the background.

• B3: We use the kinematic variable transverse mass MT
6

to distinguish the signal and background. As expected
for the background, MT will peak at the W± mass while
for the signal the corresponding distribution is smeared
as seen in Fig. 3e. As there is additional source of E/T in
the signal, we get a tail in MT distribution for the signal.
We observe that putting a cut of MT > 90 GeV helps to
suppress the background.

• B4: We depict the �R
1 j1,2 distributions in Fig. 4a, b. It
can be seen that an upper cut of �R
1 j1,2 < 3.2 helps to
enhance the signal significance.

We show the effect of the each cut in Table 10. It is noticed
that after putting all the cuts, we merely need 4, 3 and 14
fb−1 integrated luminosity to probe BP1, BP2 and BP3 for
achieving 5σ significance. However, due to small production
cross-section, to probe BP4 we need comparatively higher
(220 fb−1) luminosity.

We now perform the multivariate analysis for 1
 + 2 j +
E/T channel. According to the degree of differentiating
potential between the signal and backgrounds, the most
important variables turn out to be:

�R
1 j1, �R
1 j2 , MT , E/T , η
1, η j1,

η j2 , Mj1 j2 , �φ
1 j1, �φ
1 j2 (10)

Here �φ
1 j1 , (�φ
1 j2) are the azimuthal angle between 
1

and j1 ( j2), while the other variables have been defined ear-
lier. The tuned BDT parameters for each benchmark points

6 MT is defined as MT =
√

2p

T E/T (1 − cos �φ
,E/T ), where

�φ
,E/T is the azimuthal angle between the lepton and transverse miss-
ing energy.

are listed in Table 11. The signal and background yields for
an integrated luminosity 100 fb−1 are shown in Table 12.
The same table contains the necessary integrated luminosi-
ties to attain 5σ significance for all benchmarks. Fig. 5a and
b depict the ROC curves and variation of significances with
BDT-scores for all benchmarks respectively. The BDT scores
for the four benchmarks are 0.13,0.165, 0.193, 0.141 respec-
tively.

3.3 4
 + E/T final state

In this section, we analyse the final state comprising 4
+E/T .
The 4
 + E/T final state for the signal can be obtained from
the following processes:

e+e− → Ni Ni , Ni → N1

+
−,

with i = 2, 3, . . . 8. (11)

Table 10 The cut-flow for signal and backgrounds along with the sig-
nificances for BP1, BP2, BP3 and BP4 at 1 TeV ILC and the required
integrated luminosity for 5σ significance for the e+e− → 1
+2 j+E/T
channel

SM-
background

Number of events after cuts (L = 100 fb−1)

B1 B2 B3 B4
W+W− 1008 873 39 26
W+W−Z 101 85 33 28

Signal L5σ

(fb−1)

BP1 1129 891 329 310 4

BP2 915 710 330 314 3

BP3 526 334 134 127 14

BP4 108 42 28 27 220
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(a)

(b) (c)

(d) (e)

Fig. 3 Normalized distributions of η
1 , η j1 , η j2 , E/T , MT for 1
 + 2 j + E/T channel at 1 TeV ILC

Table 11 Tuned BDT parameters for BP1, BP2, BP3 and BP4 for the 1
 + 2 j + E/T channel

NTrees MinNodeSize (%) MaxDepth nCuts KS-score for Signal(Background)

BP1 110 3 2.0 50 0.263 (0.048)

BP2 110 3 2.0 50 0.576 (0.242)

BP3 110 4 2.0 50 0.071 (0.197)

BP4 110 3 2.0 50 0.809 (0.307)
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(a) (b)

Fig. 4 Normalized distributions of �R
1 j1 , �R
1 j2 for 1
 + 2 j + E/T channel at 1 TeV ILC

Table 12 The signal and background yields at 1 TeV ILC with 100 fb−1 integrated luminosity for BP1,BP2, BP3 and BP4 along with luminosity
required for 5σ significance for the e+e− → 1
 + 2 j + E/T channel after performing the BDTD analysis

Benchmark
point

Signal yield at
100 fb−1

Background yield
at 100 fb−1

Significance at 100 fb−1

with 0%(5%) systematic
uncertainty

L5σ (fb−1) with 0%(5%)
systematic uncertainty

BP1 1531 641 47.3 (25.4) 1.1 (3.9)

BP2 1480 301 58.0 (40.3) 0.7 (1.5)

BP3 834 224 40.2 (28.5) 1.5 (3.1)

BP4 151 41 17.0 (15.6) 8.6 (10.3)

Fig. 5 a ROC curves for chosen benchmark points for 1
 + 2 j + E/T channel. b BDT-scores corresponding to BP1, BP2, BP3 and BP4 for
1
 + 2 j + E/T channel

The SM backgrounds [52] that give rise to the similar final
state is VVV, (V = W±, Z ) production along with addi-
tional contribution coming from Z Z production. Demand-
ing that opposite sign same flavor (OSSF) lepton pair invari-
ant mass lies away from the Z peak reduces the Z Z → 4


and Z Z Z background significantly. Finally we are left with
the irreducible W+W−Z background. The signal and back-
ground cross sections at LO are depicted in Table 13.

Along with the basic cuts (Eq. (6)), we implement the
following cuts to maximise the signal significance:
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Table 13 The effective cross-sections of the signal and background for 4
 + E/T signal at LO at 1 TeV ILC using unpolarised and polarised
incoming beams

Cross section for
(Pe− , Pe+ = 0, 0) (in fb)

Cross section for
(Pe− , Pe+ = 80%L , 30%R)

(in fb)

Cross section for
(Pe− , Pe+ = 80%R, 0) (in fb)

Signal benchmarks

BP1 0.029 0.05 0.02

BP2 0.056 0.1 0.038

BP3 0.006 0.01 0.004

BP4 0.001 0.002 0.0007

Background

e+e− → W+W−Z 0.19 0.44 0.029

Table 14 The cut-flow for signal and backgrounds for BP1, BP2, BP3
and BP4 at 1 TeV ILC and the required integrated luminosity for 5σ

significance for the e+e− → 4
 + E/T channel. The bracketed term in
C4 cut denotes the surviving number of events for Meff < 500 GeV cut
for the background

Number of events after cuts (L = 4 ab−1)

SM-background C1 C2 C3 C4
W+W−Z 81 35 32 5(2)

Signal L5σ (fb−1)

BP1 95 69 63 55 550

BP2 188 132 110 109 150

BP3 26 19 10 10 4500

BP4 3 3 2 2 65000

• C1: Out of the four leptons, we choose two pairs of OS
same flavor leptons ((M
+
−)1,2 ) which have invariant
mass close to the Z -mass. We reject all events where
|(M
+
−)1,2 − MZ | < 15 GeV to exclude the Z -peak of
Z Z -background.

• C2: The pseudo-rapidity distributions of the leading and
sub-leading leptons look similar to Fig. 1a, b as the t-
channel contribution dominates. The |η
1,2 | < 1.0 cut
helps to suppress the background.

• C3: The E/T distribution for the background peaks at
a lower value as it gets contribution only from neutri-
nos unlike the signal that also gets contribution from the
heavy dark matter. A lower cut on E/T > 30 GeV helps
to enhance the signal significance.

• C4: The normalized Meff distribution is similar to Fig. 1d,
except a larger tail. This is due to the fact that instead of
two leptons, here Meff includes the scalar sum of four
lepton pT ’s and the missing transverse energy. We have
optimized Meff < 600(500) GeV for BP1(rest of the
BPs) to suppress the background significantly.

We tabulate the surviving events for the signal and back-
grounds after each cut in Table 14 at an integrated luminosity
4 ab−1. It can be seen that to probe benchmark BP1 and BP2
at 5σ significance, we need 550 fb−1 and 150 fb−1 luminosity
and BP3 and BP4 are beyond the ILC projected luminosity
[49,50].

3.4 4 j + E/T final state

This final state originates from e+e− → E+
1 E−

1 →
W+W−E/T process, where both the W± decay hadroni-
cally. The background for this process comes from e+e− →

Table 15 The effective cross-sections of the signal and background for 4 j + E/T channel at LO at 1 TeV ILC using unpolarised and polarised
incoming beams

Cross section for
(Pe− , Pe+ = 0, 0) (in fb)

Cross section for (Pe− , Pe+ =
80%L , 30%R) (in fb)

Cross section for (Pe− , Pe+ =
80%R, 0) (in fb)

Signal benchmarks

BP1 20.21 34.97 15.18

BP2 18.82 33.66 12.75

BP3 7.21 12.95 4.91

BP4 1.20 2.19 0.80

Background

e+e− → 4 j + E/T 267.69 594.57 77.69
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(a) (b)

(d)(c)

Fig. 6 Normalized distributions of η j1 , E/T ,�R j1 j2 , Mj1 j2 for 4 j + E/T channel at 1 TeV ILC

Table 16 The cut-flow for signal and backgrounds for 4 j + E/T chan-
nel along with the required integrated luminosity required for 5σ sig-
nificance for benchmarks BP1, BP2, BP3 and BP4 at 1 TeV ILC. The

bracketed term in the D4 cut denotes the surviving number of events
for Mji jk < 150 GeV cut for the background

SM-background Number of events after cuts (L = 100 fb−1)

D1 D2 D3 D4
4 j + E/T 3554 1198 326 134(27)

Signal Significance at 100 fb−1 L5σ (fb−1)

with 0%(5%) uncertainty with 0%(5%) uncertainty

BP1 1263 1096 1009 921 50.1 (37.9) 1.0 (1.7)

BP2 1224 1058 990 989 52.8 (39.8) 0.9 (1.6)

BP3 507 407 382 370 37.3 (33.7) 1.8 (2.2)

BP4 106 66 63 63 9.5 (9.0) 27.7 (30.9)

4 j + E/T which is dominated by di-boson (in that part of the
phase space where E/T measurement is not important) and
tri-boson production. However, due to small cross-section,
Z Z Z contributes insignificantly, while W+W−, Z Z and
W+W−Z act as the irreducible backgrounds for this sig-
nal. We have demanded a b-veto to reduce the t t background
(t t production cross-section is one order of magnitude less

than Z Z production cross-section and two orders of magni-
tude less than W+W− production cross-section) as the effi-
ciency of mistagging a b jet as light jet is 1%. The effective
cross-sections for the signal and backgrounds are shown in
Table 15.

To ensure that our signal contains exactly four jets, we
veto any fifth jet with p j

T > 20 GeV along with the basic
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Table 17 Required integrated
luminosity for 5σ significance
reach based on cut-based
analysis for the chosen
benchmark points for 2
 + E/T ,
1
 + 2 j + E/T , 4
 + E/T ,
4 j + E/T respectively

Benchmark points L5σ (fb−1)

2
 + E/T 1
 + 2 j + E/T 4
 + E/T 4 j + E/T

BP1 16 4 550 1.0

BP2 23 3 150 0.9

BP3 18 14 4500 1.8

BP4 570 220 > 104 27

cuts described in Eq. (6). In addition to these cuts, we put the
following set of cuts to suppress the background.

• D1: We draw normalized pseudo-rapidity distribution in
Fig. 6a for the leading jet. For the signal, the jets are
much more centralised. Therefore putting a cut of |η j | <

1.2, j = 1 . . . 4, helps to suppress the background very
efficiently.

• D2: For the background, the source of E/T is only the
neutrinos coming from the decay of W± or Z . For the
signal, the additional source is the massive dark matter.
By examining the distribution as depicted in Fig. 6b, we
put a cut of E/T > 30 GeV to enhance the signal.

• D3: �R between the jets become an important variable.
We put a cut of �R ji jk < 3.5, i �= k = 1 . . . 4, to sup-
press the background.

• D4: The invariant mass for two jet pair becomes an effi-
cient variable. For BP1 and BP2, since the mass differ-
ence between the charged and neutral VLL’s is higher
compared to BP3 and BP4, the invariant mass distribution
has a larger tail. As seen from Fig. 6d, Mji jk < 300(150)

GeV, i �= k = 1 . . . 4, helps to enhance the signal for
benchmark BP1 and BP2 (BP3 and BP4) over the back-
ground.

We present the cut-flow for the signal and backgrounds at
integrated luminosity 100 fb−1 in Table 16. We observe that
compared to all the remaining aforementioned channels, this
channel performs the best.

As we can achieve 5σ significance with low integrated
luminosity with cut-based analysis already, we refrain our-
selves in performing the multivariate analysis. Comparing
with the previous channels, this channel fares the best among
all at 1 TeV ILC .

We conclude this section by a thorough comparison of the
four aforementioned channels. We have quoted the required
luminosity to probe the benchmark points with 5σ signifi-
cance by cut-based analysis only. From Table 17, it can be
seen that out of the four channels, 4 j + E/T channel per-
forms the best as it requires < 2 fb−1 luminosity to probe the
first three BP’s and 27.7 fb−1 luminosity to probe BP4 with
5σ significance. 1
 + 2 j + E/T channel performs the sec-
ond best to probe the selected benchmarks. The benchmark

points BP1, BP2, BP3 and BP4 can be probed with 5σ sig-
nificance with luminosity 4, 3, 14 and 220 fb−1 respectively
in this mode. The third best performing channel is 2
+ E/T .
To probe the first three benchmark points with 5σ signif-
icance one requires luminosity < 25 fb−1. However, due
to small effective cross-section, probing the BP4 at 5σ , one
requires 570 fb−1 luminosity. The 4
+E/T channel performs
the worst at ILC although the background cross-sections are
small. This is due to the fact that the effective production-
cross section of signals in 4
 + E/T channel is very small.
Only for BP1 and BP2, 5σ significance can be achieved with
500 fb−1 and 150 fb−1 integrated luminosity respectively.
Thus one can conclude that, the final states containing one
or more jets, which are challenging to probe at LHC due to
large backgrounds, turn out to be promising at ILC due to
clean environment. We would like to mention here that these
results can be improved by using the multivariate analysis.

4 Conclusion

In this work we study the signals for an S3-symmetric 2HDM
extended with two generations of VLLs. We impose an addi-
tional Z2-symmetry through which the mixing between the
SM fermions and VLLs is disallowed, since the SM fermions
are even and the VLLs are odd under the aforementioned
symmetry. Thus the lightest neutral VLL turns out to be a
viable DM candidate owing to the Z2-symmetry.

We choose four representative benchmark points BP1,
BP2, BP3 and BP4 corresponding to low, medium and high
DM masses, which satisfy the constraints coming from vac-
uum stability, perturbative unitarity, electroweak precision
variables and Higgs signal strength along with the DM con-
straints coming from relic density, direct and indirect detec-
tions. We have presented detailed collider analysis for four
distinct channels to probe these BPs at 1 TeV ILC, namely
2
 + E/T , 1
 + 2 j + E/T , 4
 + E/T and 4 j + E/T .

For 2
+E/T and 1
+2 j+E/T channels, we perform both
cut-based and BDT analysis. All these channels originate
from the pair production of the charged and neutral VLLs. In
the 2
 + E/T channel, both the W± decay leptonically and
in the 1
 + 2 j + E/T channel, one W± decays leptonically
and the other hadronically and for 4 j + E/T channel, both
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the W± decay hadronically. However, it is seen that one can
probe 4 j+E/T channel with 5σ significance with integrated
luminosity < 2 fb−1 for the first 3 benchmark points and with
27 fb−1 luminosity for BP4 even with the cut-based analysis.
This is the best performing channel at 1 TeV ILC. 1
+ 2 j +
E/T channel at 1 TeV ILC is the second best performing
channel as it requires only O(1) fb−1 luminosity to probe the
first three benchmark points and 8.6 fb−1 luminosity to probe
BP4 using MVA. The third well-performing channel is 2
 +
E/T , where 5σ significance is achieved for the first three BPs
with luminosity < 25 fb−1. However, due to small effective
cross-section, one requires 216.3 fb−1 luminosity to attain
5σ significance for BP4. The 4
 + E/T channel performs
the worst among all channels at ILC. Only for BP1 and BP2
with luminosity 550 fb−1 and 150 fb−1 respectively, one
can attain 5σ significance. We find that a better sensitivity to
heavier VLLs with high DM masses can be obtained at ILC in
both the leptonic and hadronic channels, which proved more
challenging and nearly impossible at HL-LHC due to smaller
signal cross sections as well as large hadronic backgrounds.
Thus ILC will prove to be a better hunting ground for such
particles which have electroweak strength interactions.
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