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Abstract Null energy condition (NEC) is revisited in the
context of thin-shell wormholes (TSW). In a generic spher-
ically symmetric configuration we introduce the condition
upon which NEC is satisfied. Also, we present a general con-
dition which specifies the stability of the generic spherically
symmetric TSW against a radial linear perturbation. Further-
more, we introduce a specific bulk metric in the framework
of gravity coupled minimally with nonlinear electrodynam-
ics such that the corresponding TSW satisfies NEC, uncon-
ditionally. We study the mechanical stability of this TSW
and show that, with a variable equation of state of the fluid
present at the throat, this TSW remains stable irrespective of
the value of the speed of sound.

1 Introduction

Traversable wormholes satisfy the so-called flare-out condi-
tions [1–3]. Applying these conditions reveals that the matter
supporting a traversable wormhole doesn’t satisfy the mini-
mum requirement for being a normal matter [1–3]. The mini-
mum requirement is the Null Energy Condition (NEC). NEC
states that for a physical or a normal matter with an energy–
momentum tensor Tμν, Tμνnμnν ≥ 0 where nμ is any null
vector. Hence, in R-gravity it is a fact that traversable worm-
holes are supported by exotic matter, however, in modified
theories of gravity the effective energy–momentum tensor (
including the matter plus the geometry) violates NEC but the
actual matter respects it [4–17].

With thin-shell-wormholes (TSW) introduced by Visser
[18,19], it was realized that in certain conditions violation
of NEC can be avoided [20]. Let’s add that, in a different
approach [21,22], Lobo considered a thin shell surrounding
the traversable wormhole to reduce the amount of exotic mat-
ter (i.e., NEC-violating matter). Here in this paper, we look
at the NEC in the context of generic spherically symmetric
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TSW. We provide a simple condition that should be satisfied
by the metric tensor of the bulk spacetime in order to have
the NEC satisfied at the throat of the TSW. In addition to the
known TSWs, such as TSW in Schwarzschild and Reissner–
Nordström (RN) spacetime (see the Appendix), we present
a new TSW that gives additional freedoms to keep NEC sat-
isfied. This TSW which satisfies the NEC, unconditionally,
is constructed in a bulk spacetime supported by gravity cou-
pled minimally with nonlinear electrodynamics. The bulk is
purely supported by a magnetic monopole located at the ori-
gin which is, therefore, singular. It is better called a massless
black point which asymptotically is an Anti-de Sitter space-
time.

One of the important physical arguments about a TSW
is its mechanical stability against a radial linear perturba-
tion [23]. In a spherical symmetric configuration, one has to
assume an equilibrium radius where the radial velocity and
acceleration of the throat before the perturbation are zero.
Upon a radial perturbation, the throat is given an initial radial
velocity. The motion of the throat after the perturbation yields
whether the TSW is stable or not. We perform such stability
analysis for the TSW constructed in this study.

2 The master conditions

Following the paper of Eiroa, [24] we consider a general
static and spherically symmetric bulk spacetime with the line
element given by

ds2 = − f (r) dt2 + dr2

f (r)
+ h(r)

(
dθ2 + sin2 θdϕ2

)
. (1)

Applying the method of cut-and-paste we construct a TSW
whose throat is the hypersurface � := {x\F (r) = r
−a (τ ) = 0}. All the details of making such a TSW are
exactly the same as the one published in [24]. Therefore,
we don’t repeat the formalism and instead, we use the results
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reported there. The line element of the bulk has to be con-
tinuous across the throat and consequently, the induced line
element or the first fundamental form of the throat is contin-
uous. Hence the induced line element on the throat is given
by

ds2
� = −dτ 2 + h (a (τ ))

(
dθ2 + sin2 θdϕ2

)

in which τ is the proper time on the shell. In accordance with
[24], the energy–momentum tensor supporting the TSW is
obtained to be S j

i = diag [−σ, p, p] in which the surface
energy density σ and the tangential pressure p are given by
(G = 1)

σ = −
√

f (a) + ȧ2

4π

h′ (a)

h (a)
(2)

and

p =
√

f (a) + ȧ2

8π

(
2ä + f ′ (a)

f (a) + ȧ2 + h′ (a)

h (a)

)
. (3)

Herein, a prime and a dot stand for the derivative with respect
to r and τ, respectively, and all functions are evaluated at the
throat i.e. r = a. In the static configuration, we set a = a0

such that ȧ = ä = 0 and consequently

σ0 = −
√

f (a0)

4π

h′ (a0)

h (a0)
(4)

and

p0 =
√

f (a0)

8π

(
f ′ (a0)

f (a0)
+ h′ (a0)

h (a0)

)
. (5)

Applying the null energy condition to the matter present on
the TSW yields

σ0 + p0 ≥ 0 (6)

or explicitly
√

f (a0)

8π

(
f ′ (a0)

f (a0)
− h′ (a0)

h (a0)

)
≥ 0. (7)

Having in mind that
√

f (a0) > 0 the later equation simply
reduces to

d

dr
ln

(
f (r)

h (r)

)∣∣∣∣
r=a0

≥ 0. (8)

In a simple explanation, f (r)
h(r) should be an increasing function

in the vicinity of the equilibrium radius r = a0. This should
be noted that a = a0 is the equilibrium radius where ȧ0 =
ä0 = 0. Hence, a mechanical stability analysis is needed
to make sure that such a TSW is stable at a = a0. As we
mentioned in the Introduction, in the mechanical stability
analysis we perturb the throat radially by giving an small

initial velocity to the throat at its equilibrium radius. From
(2) we find

ȧ2 + f (a) −
(

4πh (a)

h′ (a)
σ

)2

= 0. (9)

At a = a0 where ȧ = ȧ0 = 0, (9) simply yields σ = σ0. By
perturbing the wormhole, at a = a0, ȧ0 �= 0 and therefore
the dynamics of the perturbed system with initial speed ȧ0

can be described by

ȧ2 + f (a) −
(

4πh (a)

h′ (a)
σ

)2

= ȧ2
0 . (10)

Furthermore, from the energy conservation law i.e., Si j; j = 0
one gets

dσ

dτ
+ ḣ

h
(p + σ) = ȧσ∂a ln

(
∂a

√
h (a)

)
. (11)

Dividing both sides by ȧ and using the chain rule yield

∂aσ + (p + σ) ∂a ln (h (a)) = σ∂a ln
(
∂a

√
h (a)

)
. (12)

Equation (10) is a one-dimensional equation of motion for a
particle of unit mass undergoing an effective potential

V (a) = 1

2

(
f (a) −

(
4πh (a)

h′ (a)
σ

)2
)

(13)

and total mechanical energy of 1
2 ȧ

2
0 . Introducing a new vari-

able x = a−a0 and using the Taylor expansion of the poten-
tial about a = a0 the one-dimensional equation of motion
reduces to

ẋ2 + 2

(
V (a0) + V ′ (a0) x + 1

2
V ′′ (a0) x

2 + · · ·
)

= ȧ2
0 .

(14)

Derivative of both sides of the latter equation with respect to
τ yields

ẍ + V ′ (a0) + V ′′ (a0) x + O
(
x2

)
= 0, (15)

which up to the first order reads as

ẍ + V ′ (a0) + V ′′ (a0) x � 0. (16)

This is the linearized equation of motion of the throat after
the perturbation. To obtain the explicit forms of V ′ (a0) and
V ′′ (a0) we assume a variable equation of state for the fluid
present at the throat in the form p = ψ (a, σ ) [28,29], upon
which (12) becomes

σ ′ = − (ψ + σ)
h′

h
+ σ

(
h′′

h′ − 1

2

h′

h

)
(17)
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and

σ ′′ =
4σh′′′h2 + 4h′

[
−2h

(
ψ + σ

[
ψ,σ

2 + 9
4

])
h′′ + h′

([
ψ + 3σ

2

] [
5
2 + ψ,σ

]
h′ − hψ,a

)]

4h2h′ . (18)

Considering (17) and (18), we obtain V ′ (a0) = 0 and

V ′′ (a0) =
(
1 + 2ψ,σ

)
f
[
2 f hh′′ + f ′h′h − 2 f h′2] − h2

[
16π f 3/2ψ,a − 2 f f ′′ + f ′2]

4 f h2

∣∣∣∣∣
a=a0

. (19)

Herein a prime stands for the derivative with respect to a,
ψ,σ = ∂ψ

∂σ
and ψ,a = ∂ψ

∂a . Finally the condition of having
the TSW stable is V ′′ (a0) = ω2 > 0 such that (16) becomes

ẍ + ω2x � 0 (20)

with a solution of the form x = ȧ0
ω

sin ωτ which indicates the
throat oscillates about its equilibrium radius where x = 0.

3 TSW in a massless asymptotically anti-de Sitter
magnetic black point spacetime

In this section, we provide a massless asymptotically Anti-de
Sitter magnetic black point bulk spacetime where the con-
structed TSW satisfies the NEC for all radii of the throat.
In the theory of gravity coupled minimally to the nonlinear
electrodynamics with a cosmological constant, the action is
given by

S =
∫ √−gdx4

(
R − �

2κ2 − α
√F
4π

)
(21)

in which κ2 = 8πG, R is the Ricci scalar, � is the cosmo-
logical constant, α is a coupling constant, andF = 1

4 FαβFαβ

is Maxwell’s invariant. Variation of the action with respect
to gμν yields Einstein’s field equations given by

Gν
μ + �δν

μ = κ2T ν
μ (22)

where Gν
μ = Rν

μ − δν
μR is the mixed Einstein’s tensor and

T ν
μ = Lδν

μ − LF FμλF
νλ (23)

is the energy–momentum tensor with the Maxwell nonlin-

ear action L = −α
√F
4π

and LF = ∂L
∂F . On the other hand,

variation of the action with respect to the gauge potential Aμ

gives the nonlinear Maxwell equations given by

∇μ

(LF Fμν
) = 0. (24)

We choose the line-element of the form given in Eq. (1) with
h (r) = r2 and the gauge field to be pure magnetic from a
magnetic monopole located at the origin with

F = Brr
2 sin θdθ ∧ dϕ (25)

in which Br is the radial component of the magnetic field.
Applying the Bianchi identity

∇μ

(
F̃μν

)
= 0 (26)

with F̃μν the dual electromagnetic field, we get

Br = P

r2 (27)

in which P is an integration constant representing the mag-
netic monopole. Furthermore, solving Einstein’s field equa-
tions gives the metric function (G = 1)

f (r) = 1 − 2M

r
− �

3
r2 − ακ2P√

2
(28)

in which M is an integration constant representing the ADM
mass of the solution [25]. Having considered −�

3 = 1
�2 > 0,

the solution (28) becomes an asymptotically Anti de-Sitter
black hole, however, setting M = 0 as well as 1− ακ2P√

2
= 0,

the solution becomes a massless black point with the line-
element

ds2 = −r2

�2 dt
2 + �2 dr

2

r2 + r2
(
dθ2 + sin2 θdϕ2

)
. (29)

We add that the energy–momentum tensor of the nonlinear
electromagnetic Lagrangian is given by

T ν
μ = diag

[−ρ, pr , pθ , pϕ

]
(30)

where the energy density, the radial pressure, and the angular

pressures are given by ρ = α
√F
4π

, pr = −α
√F
4π

and pθ =
pϕ = 0, respectively. Therefore, in order to have at least
the NEC satisfied i.e., ρ + pi ≥ 0, one has to impose α >

0. Having α > 0 one also finds that all energy conditions
are satisfied including Weak (ρ ≥ 0, ρ + pi ≥ 0), Strong
(ρ + ∑3

i=1 pi ≥ 0) and Dominant (ρ − |pi | ≥ 0).
Furthermore, applying the coordinate transformation given

by r = 1
R and t = �2T , transforms (29) to

ds2 = �2

R2

(
−dT 2 + dR2 + 1

�2

(
dθ2 + sin2 θdϕ2

))
(31)
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which is conformal to the Bertotti–Robinson spacetime [26,
27].

Constructing TSW in this bulk spacetime with the line
element given in (29) one obtains (see Eqs. (4) and (5))

σ0 = − 1

2π�
(32)

and

p0 = 1

2π�
. (33)

It is easy to observe that σ0 + p0 = 0 and consequently
the NEC is satisfied, unconditionally. This is unlike the other
known TSWs which we provide two of them in the Appendix.
Finally, we comment that in addition to the NEC the strong
energy condition (SEC) (i.e., σ + ∑2

i=1 pi ≥ 0) is also sat-
isfied on the shell.

Finally, to investigate the mechanical stability of the TSW
we apply the radial linear perturbation introduced in the pre-
vious section. All we should do is to set f (a) = a2

�2 and

h (a) = a2 in (19) which yields

V ′′ (a0) = −4πa0

�

∂ψ

∂a

∣∣∣∣
a=a0

. (34)

Hence, with
(

∂ψ
∂a

)
a=a0

< 0 we find V ′′ (a0) > 0 and there-

fore the motion of the throat becomes oscillatory and con-
sequently the TSW is stable against the linear radial pertur-

bation. Physically,
(

∂ψ
∂a

)
a=a0

< 0 means that the angular

pressure (or negative surface tension) should be a decreasing
function of a. A typical example of such an EOS is

ψ (σ, a) = ψ (σ) e−ζ (a−a0) (35)

in which ζ > 0 is a dimensionful constant.

4 Conclusion

We revisited the violation of NEC by TSW constructed
in generic static spherically symmetric bulk spacetime. We
obtained a condition, namely Eq. (8), in which upon being
satisfied by the bulk metric tensor, the surface matter at the
throat of TSW satisfies the NEC. In addition to that within
a general formalism, we obtained another condition namely
Eq. (19) which should be satisfied in order to have the TSW
stable against a linear radial perturbation. Furthermore, we
introduced the black-point bulk in the context of nonlin-
ear electrodynamics minimally coupled with Einstein’s R-
gravity, such that the constructed TSW in the resulting bulk
spacetime satisfies the NEC and SEC, unconditionally. We
also examined the stability of the TSW against a linear radial
perturbation with a variable equation of state for the fluid
present at the throat. It was shown that, irrespective of the

value of the speed of sound i.e.,
(

∂ψ(a,σ )
∂σ

)
a=a0

, the TSW is

stable provided
(

∂ψ(a,σ )
∂a

)
a=a0

< 0 where p = ψ (a, σ ) is

the variable equation of state [28,29].
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Appendix A

Here we revisit the two well-known TSWs and study the
status of the NEC by applying the main equation (8).

(i) For the first example we try the Schwarzschild black
hole for the bulk spacetime where f (r) = 1 − 2M

r and
h (r) = r2. The master equation (8) reduces to

2 (3M − a0)

a0 (a0 − 2M)
≥ 0 (A.1)

upon which only for 2M < a0 ≤ 3M the NEC is satisfied.
(ii) Our second example is the Reissner–Nordström black

hole to be the bulk spacetime. In this case, f (r) = 1− 2M
r +

Q2

r2 , h (r) = r2 and the NEC becomes

2a2
0 − 6Ma0 + 4Q2

a0
(−a2

0 + 2Ma0 − Q2
) ≥ 0. (A.2)

Taking into account that a0 > rh where

rh = M +
√
M2 − Q2 (A.3)

is the radius of the event horizon, (A.2) reveals

M +
√
M2 − Q2 < a0 ≤ 3

2

(
M +

√
M2 − 8

9
Q2

)
. (A.4)

In summary, we have shown that for the Schwarzschild
bulk spacetime the radius of the throat a0 should lie
in the interval (2M, 3M] in order to have NEC satis-
fied. For TSW constructed in RN bulk spacetime a0 ∈(
M + √

M2 − Q2, 3
2

(
M +

√
M2 − 8

9 Q
2

)]
for having

NEC respected.
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