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Abstract We propose exploiting symmetries (exact or
approximate) of the Standard Model (SM) to search for
physics Beyond the Standard Model (BSM) using the data-
directed paradigm (DDP). Symmetries are very powerful
because they provide two samples that can be compared
without requiring simulation. Focusing on the data, exclu-
sive selections which exhibit significant asymmetry can be
identified efficiently and marked for further study. Using a
simple and generic test statistic which compares two matri-
ces already provides good sensitivity, only slightly worse
than that of the profile likelihood ratio test statistic which
relies on the exact knowledge of the signal shape. This can
be exploited for rapidly scanning large portions of the mea-
sured data, in an attempt to identify regions of interest. We
also demonstrate that weakly supervised Neural Networks
could be used for this purpose as well.

1 Introduction

Despite its success in describing the elementary particles and
their interactions, the Standard Model (SM) is still incom-
plete, e.g., it does not account for neutrino masses, baryon
asymmetry or dark matter. Thus, the discovery of physics
beyond the Standard Model (BSM) is one of the main goals
of particle physics. In particular, it is a core component of
the physics program of the two multipurpose experiments,
ATLAS [1] and CMS [2] at the Large Hadron Collider (LHC)
at CERN. So far hundreds of searches for BSM physics have
been conducted, but no significant deviation from the SM
predictions has been found. With only a few exceptions (e.g.,
[3–8]), most of these searches were conducted following the
blind-analysis paradigm according to which the data is only
looked at in the last step of the analysis, after most of the
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time and efforts were invested. Moreover, since the data are
looked at in the end, these analyses were typically designed
to inspect a specific region of the observables space – the
space spanned by all observables of the recorded data. As
a result, despite thousands of person-years invested, a large
portion of the observables space has yet to be fully exploited
(see also Refs. [9,10]). The risk of missing a discovery by
studying only a limited number of final states could be miti-
gated by prioritizing the searches and focusing the efforts on
high priority ones. Traditionally, this is mostly done based
on theoretical considerations. However, by now, the searches
with the strongest theoretical motivation have mostly been
conducted and to a large extent, none of the many remaining
ones are, a priori, more motivated than the others. This calls
for investigating additional search paradigms.

Complementary to the blind searches, we propose extend-
ing the discovery potential of the LHC with a data-directed
paradigm (DDP). Similarly to [5,6,8], its principal objective
is to efficiently scan large portions of the observables space
for hints of new physics (NP), but unlike [5,6,8] without
using any Monte-Carlo (MC) simulation. We look directly
at the data, in an attempt to identify regions in the observ-
ables space that exhibit deviations from a theoretically well
established property of the SM. Such regions should be con-
sidered as data-directed BSM hypotheses, as opposed to
theoretically-motivated ones, and could be studied using tra-
ditional data-analysis methods. As detailed in [11], a search
in the DDP can be implemented with two key ingredients:
(a) a theoretically well established property of the SM and
(b) an efficient algorithm to search for deviations from this
property.

In this work, we show that any symmetry of the SM can
be exploited in such a data-directed search. Symmetries can
be used to split the data into two mutually exclusive sam-
ples which should only differ by statistical fluctuations. By
comparing them, we become sensitive to any potential BSM
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process which breaks this symmetry. In some cases, system-
atic detector effects could also affect the symmetry. There are
methods to account for these effects in principle and so we
do not consider them further in this proof-of-principle study.
In an experimental realization of the symmetry-based DDP
search, such systematic effects must be taken into account.

The concept of exploiting symmetries of the SM for data-
driven BSM searches was previously proposed in [12] and
[13]. It is also implemented in the ATLAS search for lep-
ton flavor violating (LFV) decays of the Higgs (H) Boson
[14], and the search for asymmetry between e+μ− and
e−μ+ events [15]. In the former, the SM background is esti-
mated from the data using the electron-muon (e/μ) symme-
try method, based on the premise that kinematic properties
of SM processes are, to a good approximation, symmetric
under the exchange of prompt electrons and prompt muons.1

In this case, the sample of all recorded data events with one
electron and one muon in the final state is split into the eμ and
μe samples, which differ only by the pT ordering of the two
leptons. The Higgs LFV signal is expected to contribute only
to one of these two samples, while the other is used as the
background estimate. In [14], it was shown that systematic
effects which violate the expected SM symmetry, e.g., the
different detection efficiencies of electrons and muons, can
be accounted for and the symmetry can be restored.2 How-
ever, the implementation of the search still follows the blind-
analysis paradigm where only a specific signal is searched
for, in a small theoretically-motivated subset of the observ-
ables space.

In terms of the DDP proposed here, no specific signal
is searched for. Instead, the full eμ and μe samples are
compared in many different sub-samples (corresponding to
exclusive selections of the data), and any significant deviation
observed is considered a potential sign for NP, to be further
investigated. Thus, sensitivity to many more possible BSM
processes and scenarios is enabled, and this eμ/μe compari-
son becomes a general test for lepton flavor universality in the
final state containing one electron and one muon. Similarly,
different final states including a number of electrons, muons
and other objects can be probed (ee vs μμ, e+jet vs μ+jet,
etc.), each potentially sensitive to different BSM manifesta-
tions. In this context, the recent hints for non-universality in
the RK measurements from LHCb [16] are in fact hints of an
asymmetry between the ee and μμ samples in the decay of
b hadrons to a Kaon and two same-flavor leptons. Likewise,
the comparison of e−μ+ to e+μ− in [13,15] is a test of CP

1 This approximate symmetry derives from the lepton flavor universal-
ity of the electroweak force. Phase-space effects and Higgs interactions
only violate it at negligible levels within the energy range of LHC col-
lisions, since the mass of the two leptons is negligible.
2 This effect is suppressed in [15] since the lepton (electron or muon)
detection efficiencies in ATLAS depend on the lepton’s pT, but not on
their charge.

symmetry in the lepton sector. Other symmetries could be
used in similar implementations, such as forward-backward
or time-reversal symmetries.

Given the large number of symmetries in the SM which
can be violated in BSM scenarios, the potential benefits of
implementing such symmetry-based generic searches are sig-
nificant. However, interpreting the results must be done with
care. Indeed, a data-directed search will naturally be tuned
to identify regions including statistical fluctuations, or other
measurement effects which could induce asymmetries. If a
detected signal originates from a statistical fluctuation, it will
disappear with more collected data. If it originates from a
detector or other systematic effect which are correctly mod-
eled in MC simulations then it can be ruled out. Any residual
asymmetry can be considered a data-directed BSM hypothe-
ses, to be inspected using standard analysis techniques. In
this manner, the risk to claim a false discovery should not
be higher than when implementing hundreds of searches in
the blind-paradigm, since the trial factor is high in both cases
[17].

The aim of this paper is to draw the attention on the
potential for discovering BSM physics when implementing
searches in the DDP, and in particular, data-directed searches
based on symmetries of the SM. In this context, we lay the
groundwork for a generic method to compare two data sam-
ples, and quantify the level of any discrepancy between them,
if present. As previously discussed, we do not address here
the treatment of eventual systematic effects which can dete-
riorate the expected SM symmetry between the two samples.
Nonetheless, as shown in [14,15], in analyses that were based
on symmetry considerations, such effects can be accounted
for.

Since the goal is to quickly scan multiple sub-regions of
the observables space in a large number of final states, a fast
method for identifying asymmetries is needed. We develop
this method based on a simplified framework using MC sim-
ulated data. Different test statistics can be used to compare
the two samples (e.g. Kolmogorov–Smirnov [18], student t
test [19]). In the implementation proposed in this paper, the
samples are represented by 2D histograms3 of predetermined
properties of the data and compared using the simple Nσ test
statistic defined below. Since the method is fast, multiple 2D
histograms of all the existing properties and their combina-
tions can be compared efficiently. We leave to future work
the generalization of this study for a more comprehensive
and optimized implementation.

When working with histograms, there is no a priori way
to choose the bins, which is particularly challenging in many
dimensions. One solution to this challenge is to make use
of machine learning. Starting from [20,21] based on [22],

3 The generalization of the proposed analysis approach to n-
dimensional histograms is straightforward.
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there have been a variety of proposals to perform anomaly
detection with machine learning by comparing two sam-
ples [7,20,21,23–30] (see Refs. [31–35] for recent reviews).
Complementary to the binned DDP (henceforth, simply ‘the
DDP’), we demonstrate that asymmetries can also be identi-
fied using weakly supervised Neural Networks (NN), similar
to the approach in [22]. Nevertheless, for now such methods
require training at least one NN for each event selection. This
is time consuming and restricts the number of selections that
can be tested, which could be limiting in the context of the
DDP, depending on the available computational resources.

The sensitivity of the proposed DDP search is compared to
that of two likelihood-based test statistics. While both assume
exact knowledge of the signal shape, one represents an ideal
search in which also the distribution of the symmetric back-
ground components are exactly known, and the other repre-
sents the expected sensitivity of a traditional blind analysis
search employing a symmetry-based background estimation.
According to the Neyman–Pearson lemma [36] these are the
most sensitive tests for the respective scenarios they consider.

This paper is organized as follows. Section 2 describes
some of the statistical properties of the DDP symmetry
search. The simulated data used for our numerical studies
is presented in Sect. 3. Results for the DDP are given in
Sect. 4 and a complementary approach using neural networks
is discussed in Sect. 5. The paper ends with conclusions and
outlook in Sect. 6.

2 Quantifying asymmetries

Given two data samples, our goal is to determine the probabil-
ity that they are asymmetric, as opposed to originating from
the same underlying distribution. The latter represents the
null hypothesis, where both measurements are indeed sym-
metric as expected from the symmetry property of the SM
considered. In the context of the symmetry-based DDP pro-
posed here, and unlike in other statistical tests commonly
used in BSM searches, no signal assumptions are made.
The test is intended to output the probability at which the
background-only hypothesis is rejected.

In order to rapidly scan many selections and final states,
the method used to quantify the asymmetry between two
samples should be efficient. This can be achieved if we ensure
that the results obtained are independent of the properties of
the underlying symmetric background component. Indeed,
one of the most time consuming tasks for implementing a
statistical test to reject an hypotheses is the determination
of the test statistic’s probability distribution function (PDF)
under said hypotheses. But if this PDF is constant and known,
we avoid the time consuming task of deriving it for each
different samples tested.

The generic Nσ test statistic considered is given in Eq.
(1). A and B are two n-dimensional matrices, representing
the two tested data samples projected into histograms of n
properties of the measurements. They each have M bins in
total, the Ai and Bi are their respective number of entries in
bin i , and the σAi and σBi their respective standard errors:

Nσ (B, A) = 1√
M

M∑

i=1

Bi − Ai√
σ 2
Ai + σ 2

Bi

. (1)

In this formalism, we search for a signal in B by com-
paring it to the reference measurement A, but their roles are
exchangeable. When A and B are two (Poisson-distributed)
measurements, Eq. (1) simplifies to:

Nσ (B, A) = 1√
M

M∑

i=1

Bi − Ai√
Ai + Bi

. (2)

It can be shown that in the limits of the normal approxima-
tion, applicable here provided there are enough statistics in
each bin of the two matrices, the symmetry-case PDF of the
Nσ test is well approximated by a standard Gaussian. This
satisfies the condition that the test should be independent of
the underlying symmetric component, ensuring its efficiency.
In what follows, we confirmed that this approximation is
valid when ensuring at least 25 entries per bin. For scenarios
with lower statistics, the distortion of the background-only
PDF from the normal distribution should be evaluated. Nev-
ertheless, large Nσ values would correspond to asymmetries.

The performance of the Nσ test is compared to that of two
distinct likelihood-based test statistics, which are built on the
test statistic for discovery of a positive signal introduced in
[37] and rely on the full knowledge of the signal shape that
is being searched for:

– qL1
0 assumes that the underlying symmetric component

is perfectly known. This is equivalent to the ideal analysis
case in which the signal and background distributions are
perfectly known (no uncertainties).

– qL2
0 uses no a priori knowledge of the underlying sym-

metric distribution, and estimates it from the two mea-
surements as part of the fitting procedure. This represents
the case where the symmetry is the only available infor-
mation.

Since we aim at comparing the sensitivity to detect asymme-
tries using the Nσ test relatively to the likelihood-based tests,
statistical uncertainties on the signal are not included in this
study. The likelihood functions for each scenario are shown
below, where S is the shape of the signal considered, B is
the tested sample, T is the true distribution of the symmetric
background and A is a measurement of T . The parameter
μ represents the signal-strength, and b = {bi } are the back-
ground parameters (one per bin of the matrix):
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L1μ(B, T, S) = Poisson(B | T + μS)

(3)

L2μ(B, A, S; b) = Poisson(B | b + μS) · Poisson(A | b)
(4)

The formalism used, which permits a comparison with the Nσ

test, is shown in Eqs. (5) and (6), where Lμ is the likelihood
function (either L1μ or L2μ), λμ is the profile likelihood
ratio, μ̂ and b̂ are the maximum likelihood estimators of

μ and the bi parameters, and ˆ̂b is the maximum likelihood
estimator of the bi when μ is fixed.

λμ(B, A, S) = Lμ(B, A, S; ˆ̂b)
Lμ̂(B, A, S; b̂) (5)

q0(B, A, S) =
{−2 ln λ0(B, A, S), μ̂ ≥ 0

+2 ln λ0(B, A, S), μ̂ < 0
(6)

When performing a test for discovery, we compare the test’s
score to the background-only PDF to obtain a p value (p)
which gives a measure of the level at which the background
hypothesis can be rejected. We then translate this p value
into an equivalent significance Z = �−1(1− p), where �−1

is the quantile of the standard Gaussian. A significance of 5
is commonly considered an appropriate level to constitute a
discovery, corresponding to p ≈ 2.87 × 10−7. For the case
of the Nσ test, the background-only PDF is itself a standard
Gaussian. Therefore the score obtained is directly a measure
of the obtained significance Z , bypassing the need to compute
the p value:

Z = Nσ (B, A) . (7)

Similarly, regarding the q0 test, we know from [37] that:

Z = √
q0(B, A, S) . (8)

So the
√
q0 background-only PDF is again a standard Gaus-

sian.4 Therefore, in the following, we directly compare the
Nσ and

√
q0 significance values.

3 Data preparation

The symmetry-based DDP is demonstrated in a practical
example, the search for Higgs LFV decays, H → τμ where
the τ further decays to an electron. The SM processes consid-
ered which contribute to the symmetric background includes
Drell-Yan, di-boson, Wt , t t̄ and SM Higgs (H → WW/ττ ).

4 This can also be shown in the more common single-sided formalism
presented in [37], where the background-only PDF of q0 in the asymp-
totic limit is given by 1

2 (δ(0)+χ2
1 ) where χ2

1 is the χ2 distribution with
one degree of freedom. Thus the PDF of

√
q0 is 1

2 (δ(0) + χ1), and the
χ1 distribution is the half-normal distribution.

For each of these processes, a sample equivalent to 40 fb−1

of pp collisions at
√
s = 13 TeV was generated using Mad-

Graph 2.6.4 [38] and Pythia 8.2 [39]. The response of the
ATLAS detector was emulated using Delphes 3 [40]. The
signal processes considered are gluon–gluon fusion and vec-
tor boson fusion Higgs production mechanisms. These SM
events are used to construct an eμ symmetric template (T )
matrix – representing the SM background underlying distri-
butions from which symmetric samples will be drawn (see
description of this process further below). The Higgs LFV
signal events are used to construct a normalized signal tem-
plate matrix S. This is done by projecting the simulated mea-
sured events on a 28 × 28 2D histogram, with two selected
event properties:

– x-axis: collinear mass (defined e.g. in [14]), 5 GeV bins
from 30-170 GeV

– y-axis: leading lepton pT, 5 GeV bins from 10-140 GeV

To demonstrate the concept, and to allow quantitative com-
parisons to the performance of the likelihood-based tests, we
avoided bins with low statistics by adding a flat 25 entries to
each bin in T . The resulting T and S templates are shown in
Fig. 1.

Other background and signals considered are flat T back-
ground distributions (with either 100 or 104 entries per bin),
and rectangle and 2D Gaussian signals S templates.

Given a background template T , which represents the
underlying symmetric distribution, and a signal template S,
which can be injected with different levels of signal-strength,
the procedure to generate the samples used to qualify the dif-
ferent tests is as follows. From T we Poisson draw N pairs of
(A, B)background-only measurements which are symmetric
up to statistical fluctuations. The background + signal mea-
surements Bs are obtained by injecting some signal into the
B samples. We inject the signal with a signal-strength μinj,
determined such that a q0 test for discovery (qL1

0 or qL2
0 ) out-

puts a given significance Z inj when testing Bs = B + μinjS
against B:

√
q0(B + μinjS, B, S) = Z inj . (9)

Since S is normalized, μinj is the number of signal events
added to the B sample.

Explicitly, for the qL1
0 and qL2

0 cases, it is found by solving
Eqs. (10) and (11), respectively:

2

⎛

⎝−μinj1 +
M∑

i=1

[
(Bi + μinj1Si ) ln

(
1 + μinj1

Si
Bi

)]⎞

⎠ = Z2
inj1

(10)
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Fig. 1 The e/μ background template matrix T (top) and the Higgs
LFV signal template matrix S (bottom). The x , y and z axes are the
collinear mass, leading lepton pT and number of entries per bin respec-
tively (S is normalized)

2
M∑

i=1

[
(Bi + μinj2Si ) ln

(
1 + μinj2

Si
2Bi + μinj2Si

)

−Bi ln

(
1 + μinj2

Si
2Bi

)]
= Z2

inj2 (11)

For each separate experiment considered and detailed
below, the number of A, B and Bs = B + μinjS matrices
we generate is N = 20000. For the Nσ and qL2

0 tests, the
PDFs of the symmetric case (background-only) are obtained
by comparing the B and A pairs, and the PDFs of the asym-
metric case (signal+background) by comparing the Bs and
A pairs. The same is applied for the qL1

0 test, when the A
matrices are replaced by the template T .

4 Results

Focusing on the Higgs LFV example, using the signal (S)
and background (T ) templates shown in Fig. 1, we apply
an injected signal-strength μinj which corresponds to 5σ

significance of the ideal qL1
0 test. To give an impression,

Fig. 2 Significance PDFs comparing results of the Nσ , qL1
0 and qL2

0
tests for the Higgs LFV example, with injected signal strength corre-
sponding to 5σ of qL1

0

when applied to T , this corresponds to a signal fraction of
0.2%, or in a 6 × 6 window centered around the signal of
2.8%. In Fig. 2, we compare Z PDFs obtained with the qL1

0 ,
qL2

0 and Nσ tests. As expected, the symmetric-case PDFs of
all tests are consistent with standard Gaussian distributions.
We observe that the background + signal (asymmetric-case)
PDFs are consistent with Gaussians with variance 1 ± 0.05
(for all examples considered), centered around the resulting
average significance Zavg of the relevant test. The Zavg of
each test can be directly estimated by using the Asimov data
[37]; setting A = T and Bs = T + μinjS. The resulting sig-
nificance with the qL1

0 test is predictably Zavg = 5.0 ≈ Z inj.
With Zavg = 3.53, qL2

0 is less sensitive than qL1
0 since it

does not use an a priori knowledge of the background, but
estimates it from the two measurements as part of the fit-
ting procedure. Since the Nσ test is averaged on all the bins,
and most of them only include background contributions, the
resulting average significance Zavg = 1.48 is significantly
lower than the separation power measured with the qL2

0 test.
In general, it can be much more efficient to apply the Nσ

test in a sub-region of the data samples. Even though the sig-
nal’s shape and location is not known in a generic test, since
the calculation of Nσ is fast, one could test multiple bin sub-
sets,5 or develop an algorithm to optimize this selection. In
Fig. 3, we show Nσ scores with the Asimov data, obtained
when the test is performed on square windows of different
sizes, centered around the location of the signal. The Nσ sen-

5 There is a trials factor for performing multiple tests, but as stated
earlier, the goal is to identify interesting regions and not to compute
a precise global p value. That could be done with k-folding or other
divide-and-test schemes, which we leave for future work to explore.
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Fig. 3 Significance measured from the Asimov data, with the Nσ test
applied to increasing window sizes, and compared to the qL1

0 and qL2
0

significance. Results for the Higgs LFV example and the ideal (flat)
scenario are shown, with injected signal strength corresponding to 5σ of
qL1

0 . The green and yellow bands correspond to the 1σ and 2σ deviations
from the symmetry (no signal) assumption, respectively

sitivity increases when the window encapsulates the signal
region more precisely, reaching up to Zavg,max = 2.74 with
the 6×6 bins window. Thus, for this example, the sensitivity
achieved is only slightly worse than the one achieved with
the qL2

0 test, which exploits a full knowledge of the signal
shape. The Nσ results presented hereafter are for the best
suited window (6 × 6 bins for all examples considered).

In Fig. 4 we show the Receiver Operating Characteris-
tic (ROC) curves obtained from the PDFs of the different
tests. The Area-Under-Curve (AUC) measured is approxi-
mately 1.0 for the qL1

0 test and 0.994 for the qL2
0 test. With

an AUC of = 0.973, the Nσ test is only 2.6% less sensitive
than the qL1

0 test, and 2.0% less sensitive than the qL2
0 test.

Finally, in Fig. 5, we show Zavg per test (estimated from the
Asimov data), for increasing injected signal strength. Using
the Nσ test statistic, the symmetric case (background only)
can be separated from the asymmetric case at the level of
2σ if the signal that would have been measured assuming an
ideal analysis (qL1

0 ) is at the level of 3.5σ . This should be
compared also to the 2.5σ separation that would have been
obtained in the same case using the profile likelihood ratio
test statistic that uses the two samples to estimate the sym-
metric background and a full knowledge of the signal shape
(qL2

0 ).
For clarity, we also consider a flat background template T

with 104 entries in each bin, and a flat rectangle signal tem-
plate S of size 6×6 bins, located at the center of T . Since the
qL1

0 and qL2
0 are independent of the background and signal

shapes, and only depend on the injected signal strength, their

Fig. 4 ROC curves comparing results of the Nσ , qL1
0 and qL2

0 tests for
the Higgs LFV example, with injected signal strength corresponding to
5σ of qL1

0

symmetry- and asymmetry-case PDF will remain unchanged.
The PDF associated with the Nσ in the asymmetric case will
change. As shown in Figs. 3 and 5, in this simplified case
the Nσ sensitivity matches exactly the sensitivity of qL2

0 test.
This hints that the loss of sensitivity of the generic Nσ test,
compared to qL2

0 , is mainly due to shape variations of the
background and the signal (in the optimal sub-region that is
tested). But even in a realistic scenario like the Higgs LFV
example, the sensitivity loss is reasonable (from Zavg = 3.53
to 2.74) and the power achieved to identify regions with
asymmetry, even though the Nσ test is generic, is significant.

In terms of the ability to identify asymmetries, similar
performance was obtained for all the other shapes of signal
and background considered.

5 Identifying asymmetries with neural networks

Machine learning-based anomaly detection methods con-
structed by comparing two samples are categorized as
weakly- or semi-supervised learning because both samples
are mostly background and one of them will have more signal
than the other. The sample with more potential signal is given
a noisy label of one and the other sample is given a label of
zero. A classifier trained to distinguish the two samples can
then automatically identify subtle differences between the
samples without explicitly setting up bins. Existing propos-
als construct the samples from signal region/sideband regions
[7,20,21], from data versus simulation [23,24,30,41], as
well as other approaches [25–29]. We propose to extend this
methodology to symmetries.
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Fig. 5 Significance measured from the Asimov data for increasing
injected signal, comparing results of the Nσ , qL1

0 and qL2
0 tests. Results

for the Higgs LFV example and the ideal (flat) scenario are shown. The
green and yellow bands correspond to the 1σ and 2σ deviations from
the symmetry (no signal) assumption, respectively

The combination of machine learning and symmetry has
received significant attention. For a given symmetry, one
can construct machine learning methods that are invariant
or covariant (in machine learning, this is called equivariant)
under the action of that symmetry. For example, recent pro-
posals have shown how to construct Lorentz covariant neu-
ral networks [42–44]. Symmetries can also be used to build a
learned representation of a sample [45]. There have also been
proposals to use machine learning methods to discover sym-
metries automatically in samples [46–48]. In the context of
BSM searches, Refs. [49,50] recently described how to use a
weakly supervised-like approach to test if a given symmetry
is broken by applying the transformation to the input data.
Our approach also starts by positing a symmetry, but we do
not apply the symmetry transformation to each data point.
Instead, we have two samples which should be statistically
identical in the presence of a symmetry, but which could be
different when BSM is present.

In the following, we demonstrate the concept of identify-
ing asymmetries using a weakly supervised approach. Con-
sidering the eμ symmetry example discussed above, one of
the samples is the eμ sample and the other is the μe sam-
ple. The same two-dimensional space as described earlier is
used for illustration; extending to higher dimensions is tech-
nically straightforward. A deep neural network with three
hidden layers and 50 nodes per layer is used for the classifier.
Rectified Linear Units (ReLU) are used for all intermediate
layers and the output is passed through a sigmoid function.
This network is implemented using Keras [51] and Tensor-
flow [52] using Adam [53] for optimization. We train for 20

Fig. 6 The maximum neural network score from training a classifier
to distinguish the eμ from μe samples with (asym) and without (sym) a
BSM contribution. The green (yellow) and blue bands represent (twice)
the standard deviation over 10 bootstrap samples.The separation power
is shown as a function of the injected signal fraction (bottom scale)
and the corresponding significance calculated with the ideal qL1

0 test.
Note that these results are not directly comparable to the binned DDP
because it is not possible to ignore signal statistical uncertainties

epochs with a batch size of 200. None of these parameters
were optimized. Figure 6 shows the symmetry/asymmetry
separation power of the NN as a function of the signal frac-
tion injected to the μe sample. The background-only band
is computed via bootstrapping [54]. For each bootstrap, two
samples are created by drawing from the eμ and μe events
with replacement. By mixing the two samples, any asymme-
try is removed.

There is no unique way to quantify the NN perfor-
mance. An optimal test statistic by the Neyman–Pearson
Lemma [36] is monotonically related to the likelihood ratio.
Refs. [23,24,30,55] show how to modify the loss function so
that the average loss approximates the (log) likelihood ratio.
Here, we find that in practice, the maximum NN score using
the standard binary cross entropy loss function is an effective
statistic, which goes from 0.5 in the case of no signal and
increases as more signal is injected. The background-only
band in Fig. 6 is computed via bootstrapping and where the
blue line and green/yellow bands cross indicate the approxi-
mate 1σ/2σ exclusion. The NN is able to automatically iden-
tify the presence of BSM for signal fractions that are a few
per mil, corresponding to around 5σ significance calculated
with the ideal qL1

0 test. Future explorations of this idea will
understand the best way to set up the training, what statistics
are most effective, and how to best extend to higher dimen-
sions.
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6 Discussion

With limited resources at hand and yet no conclusive indica-
tion of BSM physics found, we must try novel and comple-
mentary avenues for discovery. To overcome the limitations
stemming from adapting the blind-analysis strategy, we pro-
pose developing the DDP. Similarly to [3–6,8] yet without
relying on MC simulations, its principal objective is to allow
scanning as many regions of the observable-space as possi-
ble and direct dedicated analyses towards the ones in which
the data itself exhibits deviation from some fundamental and
theoretically well-established property of the SM. Relative
to regions in which the data agrees well with the SM pre-
dictions, the ones that exhibit deviations are promising for
further investigations into BSM physics.

We propose developing the DDP based on symmetries
of the SM and demonstrate its potential sensitivity using as
an example the e/μ symmetry. Symmetries allow splitting
the data into two mutually exclusive samples which, under
the symmetry assumption, differ only by statistical fluctua-
tions. Thus, asymmetry observed between the two samples
in any observable and at any sub-selection of these samples,
is potentially interesting and should be considered for further
study.

While different algorithms can be developed to identify
asymmetries, even the most simple one developed, the Nσ

test statistic, already provides good sensitivity. It is com-
pared to the sensitivity obtained with two likelihood-based
test statistics; the first, qL1

0 , represents an ideal analysis in
which both the signal and the symmetric contribution from
the SM processes are perfectly known. The second, qL2

0 , rep-
resents the expected sensitivity of a traditional blind analysis
search for a predefined signal that employs a symmetry-based
background estimation ([14]).

Compared to the sensitivity obtained in an ideal analy-
sis, the separation power between the symmetric case and an
asymmetry at the level of 5σ is less than 3% lower in terms
of the area under the ROC curve, and a separation at the
level of 2σ is achieved for 3.5σ signal injected. Compared to
a traditional symmetry-based analysis, the separation power
between the symmetric case and an asymmetry at the level of
3.5σ is less than 2% lower in terms of the area under the ROC
curve, and a separation at the level of 2σ achieved using the
Nσ test is only slightly degraded relative to the 2.5σ obtained
with the qL2

0 test. The results quoted are when applying the
Nσ test in the best suited window for the examples consid-
ered. The ability to find this optimal window demonstrates
the strength of the DDP. Since the test is rapid, a large num-
ber of n-dimensional histograms and windows within can be
tested efficiently. This could permit scanning the data sys-
tematically in search for asymmetries.

We have shown that weakly-supervised NNs can also be
used to identify asymmetries between two samples. This
paves the way towards NN based DDP.

We emphasize that traditional blind-analyses are expected
to be the most sensitive ones for any predefined signal.
Nonetheless, it is impossible to conduct a dedicated search
in any possible final state and at any possible event selection.
Moreover, not all potential signals can be thought of. Thus,
the DDP could significantly expand our discovery reach.
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