
Eur. Phys. J. C (2022) 82:493
https://doi.org/10.1140/epjc/s10052-022-10447-1

Regular Article - Theoretical Physics

Tagging the Higgs boson decay to bottom quarks with
colour-sensitive observables and the Lund jet plane

Luca Cavallini1,a, Andrea Coccaro2,b, Charanjit K. Khosa2,3,4,c, Giulia Manco1,5,d, Simone Marzani2,4,e,
Fabrizio Parodi2,4,f, Daniela Rebuzzi1,5,g, Alberto Rescia1,h, Giovanni Stagnitto6,i

1 Dipartimento di Fisica, Università di Pavia, Via A. Bassi 6, 27100 Pavia, Italy
2 INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy
3 H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
4 Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
5 INFN, Sezione di Pavia, Universita di Pavia, Via A. Bassi 6, 27100 Pavia, Italy
6 Physik-Institut, Universität Zürich, Wintherturerstrasse 190, 8057 Zurich, Switzerland

Received: 29 December 2021 / Accepted: 17 May 2022 / Published online: 28 May 2022
© The Author(s) 2022

Abstract We study the problem of distinguishing b-jets
stemming from the decay of a colour singlet, such as the
Higgs boson, from those originating from the abundant QCD
background. In particular, as a case study, we focus on asso-
ciate production of a vector boson and a Higgs boson decay-
ing into a pair of b-jets, which has been recently observed
at the LHC. We consider the combination of several theory-
driven observables proposed in the literature, together with
Lund jet plane images, in order to design an original Hbb
tagger. The observables are combined by means of standard
machine learning algorithms, which are trained on events
obtained with fast detector simulation techniques. We find
that the combination of high-level single-variable observ-
ables with the Lund jet plane provides an excellent discrim-
ination performance. We also study the dependence of the
tagger on the invariant mass of the decaying particles, in
order to assess the extension to a generic Xbb tagger.
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1 Introduction

Since the discovery of the Higgs boson at the Large Hadron
Collider (LHC) by the ATLAS [1] and CMS [2] experiments
in 2012, our understanding of the properties of this parti-
cle has progressively evolved. In addition to the “golden”
decay modes of the Higgs boson, H → γ γ and H → 4l, in
the past few years other decay channels have been observed,
usually in association with particular production modes. For
instance, due to its large branching ratio, the H → bb decay
plays a central role in studies that aim at probing the structure
of the Higgs couplings to the fermions. In this regard, one of
the most interesting processes is the associated production
of a Higgs boson H and a vector boson V (W or Z ), with
the vector boson decaying leptonically and the Higgs boson
decaying hadronically into a pair of b-quarks, V (ll̄)H(bb̄):
the decay products of the vector boson provide us with a
clean experimental signature, as well as a recoil system for
the Higgs particle. Both ATLAS and CMS experiments have
reported the observation of the H → bb decay and of theV H
production mode [3,4] and the ATLAS experiment reported
the first cross-section measurements [5–8] targeting differ-
ent regimes of reconstructed transverse momenta of the vec-
tor boson and in fiducial volumes, as defined by the simpli-
fied template cross-section framework [9]. The experimental
focus is therefore shifting towards precision measurements
of the kinematics of the H → bb decay channel and, as sug-
gested in Ref. [10], additional differential information, and
hence discrimination of this process against sources of back-
grounds, is crucial for the sensitivity to beyond-the-Standard-
Model operators. After the fragmentation and hadronisation
process, the hard b-quarks produced by the Higgs boson
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decay are usually detected as two separate b-jets [11,12].
In simulation, a b-jet is defined by a suitable particle-level
observable, based on the angular distance of B-hadrons with
respect to the jet axis, or by ghost association [13,14]. On real
data, b-jets are identified by means of dedicated b-tagging
algorithms.

In order to make the most out of the large set of accu-
mulated data, strategies to better discriminate the H(bb̄)
process over the large QCD background (where the pair of
b-quarks is produced by pure strong interaction, mostly by
g(bb̄) collinear splitting) are being actively developed. The
signal/background discrimination is especially compelling
in the boosted regime, when the transverse momentum of
the jets is much greater than their invariant mass: in such
a situation, the b-quarks may be close in angle, and hence
reconstructed as a single jet. Since the seminal work of
Ref. [15], several jet substructure techniques – which aim
to improve the discrimination performance by finding hard
prongs inside a large radius jet – have been designed, tested
and implemented in the analyses by the experimental collab-
orations (see, for instance Ref. [16] and references therein).
Broadly speaking, two main strategies exist: design high-
level theoretically-motivated observables, sensitive to par-
ticular features of the signal distribution, which can be mea-
sured on data and used as single-variable discriminant; or
produce some low-level representation of the jets (list of
particles, calorimetric images,…), to be used as input for
machine learning (ML) techniques. We refer the reader to the
recent literature about ML based approaches for H → bb̄
tagging [17–27], which is continuously being updated in
Ref. [28].

Our case of interest is particularly challenging because
both signal and background feature a similar flavoured two-
prong structure. However, the two processes have a different
behaviour with respect to the QCD radiation pattern. Namely,
in the signal case, the b-jets originate from the decay of a
colour singlet, and thus radiation will be mostly contained
within the two b-quark system. Instead, in the background
case, we expect QCD radiation to be more diffuse, due to
colour connections with the rest of the event. Therefore, we
would like to exploit observables that are particularly sensi-
tive to the colour flows in the event. In this paper we select
several theory-driven single-valued observables (see Sect. 2)
and a theoretically-motivated representation of a jet (specif-
ically, the Lund jet plane [29]) and build a combined Hbb
tagger, with the aim to exploit the best of both strategies.
Such a combination is performed by means of standard ML
algorithms, for different input choices. We use boosted deci-
sion trees (BDT) for single-valued observables and convo-
lutional neural networks (CNN) for Lund jet images. BDTs
have been part of HEP analyses for a long time [30]. CNNs
are showing promising potential for image based data sets
for various applications in HEP see e.g. [31–33]. Moreover,

in our analysis we account for the experimental detection and
reconstruction of the physical quantities of interest by per-
forming a fast detector simulation on the generated Monte
Carlo events, and we assess the impact of these so-called
detector effects on individual variable distributions and on
the overall performance of the tagger. Finally, in an ideal sce-
nario we would like to apply the same tagger for the decay
products of a generic colour singlet X , without any prior
knowledge on the value of its mass, so as to design a global
Xbb tagger. In this view, it would be desirable to keep the
tagger uncorrelated with the invariant mass of the b-quark
pair, in order to ease its calibration on Z+jet events and to
simplify the determination of the non-resonant background
shape in data-driven approaches.

The paper is organised as follows. In Sect. 2 we briefly
introduce the colour sensitive observables under study and
the Lund jet plane. In Sect. 3 we discuss the event generation
set-up and the selection cuts adopted in our analysis. In Sect. 4
we study the individual distributions of the colour sensitive
observables and the output of the Lund jet plane CNN for
the signal and the background processes, before and after
detector simulation. Moreover, we assess the discrimination
performance of the combination of several observables, by
also including the Lund jet plane CNN output as an additional
input. In Sect. 5 we discuss the BDT dependence on the
invariant mass of the large radius jet used in the analysis
(see Sect. 3), to determine the mass bias of our Hbb tagger.
Finally, in Sect. 6 we draw our conclusions.

2 Description of the observables

We make use of high-level colour sensitive variables intro-
duced in the literature in the past few years: jet pull and its
projections, namely the pull angle, θp [34,35], and the par-
allel and perpendicular components of the pull vector, t‖ and
t⊥ [36,37]; the colour ring O [38]; D2 [39,40] and the Lund
jet plane [29]. We limit ourselves to a brief introduction of
the relevant variables, and we refer the interested reader to
the original papers.

2.1 Jet pull

Let us consider a hard jet Ja . The pull vector t is the jet shape
observable that is defined as

t = 1

pTa

∑

i∈Ja

pT i |ri |2r̂i , (1)

where pTa is the transverse momentum of the jet, and the sum
runs over all the jet constituents. y and φ represent rapidity
and azimuthal angle, and ri is the distance vector between

123



Eur. Phys. J. C (2022) 82 :493 Page 3 of 12 493

the jet axis and its i-th constituent in the y-φ plane

ri = (yi − ya, φi − φa). (2)

The pull vector is sensitive to the different colour connections
of the entire event in which the jet is formed. If we consider
events with two hard jets (or subjets) Ja and Jb that originate
from the decay of a colour singlet, additional QCD radiation
tends to be emitted between the two jets, causing the pull
vector of Ja to point in the direction of Jb and vice-versa.
If instead the two jets originate from the decay of a colour
octet, such as the gluon, then the pull vectors will instead
tend to point in different directions.

In order to make these considerations more quantitative,
we can introduce suitable projections of the pull vector t
along two directions: the one given by the unit vector which
points from the centre of Ja to the centre of Jb

t‖ = t · n̂‖, with n̂‖ = 1√
Δy2 + Δφ2

(Δy,Δφ) , (3)

and the other generated by the unit vector perpendicular to
n̂‖

t⊥ = t · n̂⊥, with n̂⊥ = 1√
Δy2 + Δφ2

(−Δφ,Δy) , (4)

where in the above equations we have introduced Δy = ya −
yb and Δφ = φa − φb. We also consider θp, known as the
pull angle, defined as

θp = arccos
t‖
|t| . (5)

Of all the variables built out of the jet pull vector, the pull
angle has been shown to be one of the most effective discrim-
inants of the two different colour configurations [34]. How-
ever, the comparison between experimental measurements
of the pull angle and theoretical calculations has shown that
this observable is not under good theoretical control [41–
43]. This problem can be traced back to the fact that θp is not
infra-red and collinear (IRC) safe, but only Sudakov safe [35]
(for discussions about Sudakov safety, see Refs. [44–46]).
Instead, t‖ and t⊥ are IRC safe observables, so it is interest-
ing to assess whether individually or in some combination
t‖ and t⊥ possess the same discriminating power of its non
IRC safe counterpart. It is also interesting to study how the
discriminating power of the pull vector variables is affected
when combining the variables for both jets Ja and Jb. Thus,
we will include all the three pull vector variables, for both
jets Ja and Jb, as input to the ML algorithms. Furthermore,
although θp is not IRC safe, it is also included.

Finally, we note that there is potential overlap in includ-
ing both t‖, t⊥ and θp because the jet pull is only a two-

component vector. However, this is not an issue, since the
machine learning algorithms are trained to be robust against
interdependence between input variables.

2.2 Jet colour ring

The jet colour ring was introduced in Ref. [38], as an observ-
able that is provably optimal, in certain kinematic limits.
The starting point of its construction is the observation that,
according to the Neyman–Pearson lemma, the ratio of the
matrix elements squared for the signal and the background
process should be monotonic to the optimal single-variable
discriminant [47]. When considering a decay of a colour sin-
glet as signal and a colour octet as background, with a sub-
sequent gluon emission in the boosted regime, and working
in the soft-collinear limit approximation, the ratio simplifies
to

|MS|2
|MB |2 � θ2

ak + θ2
bk

θ2
ab

, (6)

where the indices a and b refer to the hard partons, the index
k to an additional (gluon) emission, and θi j ’s are the angles
between them. The above considerations lead to the definition
of the jet colour ring

O = Δ2
ak + Δ2

bk

Δ2
ab

, (7)

where now Δi j are distances between jets (or subjets) in the
azimuth-rapidity plane. The observable name originates from
its geometric interpretation: radiation from colour singlets
will tend to fall between the two jets, leading to values of
O < 1, while in the case of colour octets, we will tend to
have O > 1.

2.3 D2

The variable D2 [39] is defined as the ratio of two normalized
N -point energy correlation functions (ECFs) [48], eβ

k :

D(β)
2 = e(β)

3

(e(β)
2 )3

, (8)

where β is a parameter which we have set to β = 2. The vari-
able is usually calculated on a large radius jet, and is useful
to discriminate 2-prong jets from 1-prong jets. Furthermore,
because of its sensitivity to soft radiation at wide angles,
D2 also probes colour correlations and it is therefore useful
to disentangle different colour configurations. However, we
note that D2 retains a correlation with the mass of the large
radius jet; this may be a problem when designing a tagger
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free of any mass bias, see for instance [49]. We will come
back to this aspect in Sect. 5.

2.4 Lund jet plane

The Lund jet plane is a theory-inspired representation of a
jet [29]. It is formed parsing backwards the Cam-bridge-
Aachen (C/A) [50,51] clustering history of the jet. The proce-
dure starts by undoing the final clustering step and by record-
ing the kinematics of the splitting. The primary Lund jet plane
is obtained by iterating the above procedure, always follow-
ing the hardest branch in each splitting and recording the
azimuth-rapidity separation of the branches involved in the
splitting and the relative transverse momentum of the emis-
sion. The Lund jet plane has been exploited in the context of
vector boson [29], top [52] and Higgs [27] tagging. Further-
more, it has been successfully measured at ATLAS [53] and
first-principle theoretical predictions have been performed in
Ref. [54].

3 Event simulation and selection

We generate about 300k events for the pp → H(bb)Z(ν�ν�)

signal and 4M events for the pp → bbν�ν� background pro-
cesses, so as to have about 50k events remaining after all
analysis cuts, in accordance with Table 1, as will be detailed
below. In case of signal, bb pair is produced from the decay
of the Higgs boson, while it comes mainly from QCD inter-
action in case of background. Fig. 1a, b show representative
Feynman diagrams for the signal and the background pro-
cesses, respectively.

We generate hard events using MG5_aMC@NLO
v2.8.3.2 [55], by imposing a 200 GeV cut on the pT for
the neutrino pair in the final state. This is done to ensure that
the events generated are firmly in the boosted regime. These
parton-level events are subsequently showered in Pythia
v8.305 [56], including MPI and underlying events, to pro-
duce particle-level events.

Finally, rather than simulating an entire detector,Delphes
v3.5.0 is used to perform a fast detector simulation [57,58].
This allows us to understand how the discrimination power
could be affected by real-life detector effects, without having
to run a computationally expensive full simulation, which in
addition is strongly detector dependent. From Delphes, we

Table 1 The efficiencies of the analysis after cuts are applied

Truth (%) Reco (%)

Signal 20 17

Background 1.6 1.3

q

q

νl

νl

b

b

Z

Z

H

q

q b

b

νl

νl

g

b

Z

(a) Signal

(b) Background

Fig. 1 Representative Feynman diagrams

extract both the Monte Carlo truth of the event, containing
the particle-level information, e.g. the same one would get
from a perfectly efficient detector (henceforth referred to as
truth), as well as the reconstructed events including the detec-
tor effects (henceforth referred to as reco). The Delphes
simulation is run using the ATLAS card with minor modifi-
cations, described below, to fit our needs. For the truth case,
we consider all visible, stable particles with pT > 0.5 GeV.
Instead, in the reco case, the jets are built using the sim-
ulated calorimeter towers and tracks. All electromagnetic
calorimeter towers with energy E > 0.5 GeV and signif-
icance S > 2.0 and all hadronic calorimeter towers with
energy E > 1.0 GeV and significance S > 2.0 are consid-
ered. Tracks are required to have pT > 0.5 GeV. Delphes
uses FastJet v3.3.4 [59] to perform the jet clustering.

At this point the analysis is the same in both the truth case
and the reco case. First, the constituents are clustered into
jets with radius R = 1.0 using the anti-kT algorithm [60].
For each event, we choose the jet with the highest pT as
the large radius jet. We only accept the event if the large jet
has pT > 250 GeV and |y| < 1.5, because of the tracking
detector acceptance.
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We also cluster the constituents into smaller jets with
radius R = 0.2. We identify those jets having ΔR < 0.8
from the large jet, and call these subjets. We then proceed
to identify the b-subjets which originate from the b-partons,
through a process known as b-labelling. We do this by first
identifying the b-partons originating from the hard scatter-
ing in the event record, requiring a minimum pT of 5.0 GeV.
For each b-parton, we compute the distance between each b-
parton and subjet; the subjet which is closest to the b-parton,
provided that the distance is below 0.2, is labelled as b-subjet.
The association between a b-parton and b-subjet is unique.

For the event to be accepted, we require two b-labelled
subjets with pT > 10 GeV. The pull variables are calculated
on these two b-labelled subjets, and D2 is calculated on the
large jet. For the colour ring to be defined, there must also
be a third non-b-subjet within ΔR = 0.8 from the large jet.
In a majority of cases, this third jet is not present. To avoid
discarding too many events, in these cases we assign a default
value of O = −1 to the colour ring. This allows for higher
statistics, but also provides useful information to the machine
learning algorithms.

For the Lund jet plane, we consider large radius jet con-
stituents and re-cluster them using C/A algorithm. Consid-
ering the declustering history of this jet, we get the primary
Lund jet plane. Considering 25 × 25 pixels for each image,
we put 1 or 0 in a pixel depending on if (ln 1/Δ, ln kT ) value
of the splitting falls in that pixel or not. Our implementation
of the Lund jet plane is based on the one present in fastjet-
contrib [61] repository.

Table 1 shows the percentage of events which pass the
selections in all cases considered. The selection discards
more background than signal events in both the truth and
reco cases. The most important cut is the pT cut on the large
radius jet, accounting for 60% of discarded events. The sec-
ond most important cut is the rapidity cut on the large radius
jet which rejects 10% of the events.

4 Discrimination performance

After event selection, we are ready to evaluate observables
on the selected events. We first show in Fig. 2 the normalised
distributions for the eight colour sensitive (CS) observables
introduced in Sect. 2, both for signal and background, and at
the truth and reco level. By just looking at the plots, we can
appreciate the strong discrimination power of the O and D2,
which is retained at the reco level. Instead, the observables
related to the jet pull vector are more affected by detector
effects: there is a visible difference in t‖i , t⊥i and θpi , both for
the leading jet a and the sub-leading jet b, between the truth
and the reco cases. In particular, the pull angle observables
θpa and θpb seem to be good discriminants at the truth level,

but detector effects noticeably flatten the signal distribution,
hence leading to a worsening of the discrimination power.

We then show in Fig. 3 the averaged Lund images for the
signal and background process, in the truth and reco cases
respectively. We note that detector effects lead to an overall
decrease of the image quality, in the sense that the distinctive
features of the truth case are still present, but in the reco case
there is additional radiation for middle values of Δ and kt
for both the signal and the background events. However, the
high density patch at large Δ and high kt in the case of the
signal is still clearly visible by eye also in the reco case.

After having determined the distributions of the CS
observables and the Lund jet images, we now use these as
inputs to ML algorithms in order to build combined classi-
fiers. Specifically, we train a BDT1 on the CS observables,
whereas Lund images are classified using a CNN. More
details about these methods and architectures are provided
in Appendix A. The output distribution of the CNN Lund jet
plane classifier (LPCNN) is shown in Fig. 2. In the following,
we consider also the combination of (some of) the CS and
LPCNN observables, in order to improve the total discrimi-
nation power; in such cases, we adopt a two-step procedure,
by using the output of the CNN Lund jet plane classifier as
an additional input to the BDT.

In Fig. 4, we show the receiver operating characteris-
tic (ROC) curves for several combinations of observables.
Namely, we consider all the colour sensitive observables
(CS) or just the D2 and the colour ring (D2+CR), combined
through a BDT; the LPCNN; the combination of all the CS
observables with the LPCNN (CS+LPCNN), by means of the
two-step procedure explained above. For each curve in Fig. 4,
we report the value of the area under the ROC curve (AUC)
in Table 2, both for the truth and the reco cases. A perfect
classifier would have AUC = 1, whereas a random classifier
is associated with AUC = 1/2.

As expected, we first observe a worsening of the discrimi-
nation power by moving from the truth case to the reco case,
as can also be seen by comparing the value in the left and in
the right column of Table 2. However, the performance after
taking into account detector effects is still good for most of
the combinations, close to 0.85 for the CS+LPCNN combi-
nation. Furthermore, we see that most of the discriminat-
ing power of the set of CS observables is actually coming
from the combination of D2+CR alone. This is in agreement
with what observed at the level of distributions at the begin-
ning of Sect. 4: the jet pull observables, including the pull
angle, seem not to add any additional information useful for
classification. At reco level, their discrimination power is
almost unnoticeable. Moving to the combinations involving

1 We have also tried a neural network, which returns similar results in
all the cases analysed. Hence, we only report results obtained with the
BDT.
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Fig. 2 The distributions of the colour sensitive variables and Lund jet plane after the selection cuts. Signal (ZH(bb̄)) and background (Zbb̄)
distributions are shown in red and blue, respectively, for both truth and reco cases

the Lund jet plane, we observe that the Lund jet plane alone
is performing better than the whole set of CS observables,
especially in the region of high signal efficiencies. When we
combine LPCNN with the CS observables, we see a notice-
able improvement of the overall classification power, with a
value of AUC equal to 0.893 in the truth case and 0.846 in
the reco case.

Finally, in Table 3 we rank the variables based on their
importance in the BDT, both in the truth and reco case. The
ranking presented here also includes the output of the Lund

jet plane CNN as an additional input. LPCNN is the most
discriminating variable, both in the truth and in the reco case.
It is followed in order by D2 and the colour ring O. The jet
pull variables are all of similar importance, at the bottom
of the ranking score. For the reconstructed case, O gains
additional importance with respect to the pull variables.

We end this Section with a comment about the usage of
the pull angle. As already mentioned in Sect. 2, the pull angle
θp is only Sudakov safe. One may wonder what is the effect
of keeping only its (IRC-safe) projections t‖ and t⊥, instead
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Fig. 3 Averaged primary Lund jet plane images for ZH(bb̄) and Zbb̄ in the truth and reco case

of using all the three observables t‖, t⊥ and θp as input in
the BDT, as we have done. Unsurprisingly, by looking at the
correlation matrix in the BDT, we observe a strong correla-
tion between these variables. Given that the variables derived
from the jet pull vector(s) have a small influence on the over-
all performance, a variant of the tagger could be conceived,
with comparable performance, by dropping θp among the list
of inputs to the BDT.

5 Invariant mass dependence

Since our goal is to develop a tagger purely sensitive to the
colour configuration of the decaying particle, in order to be
applied to other contexts (such as Z or W boson hadronic

decays), ideally our procedure should be insensitive to the
invariant mass of decaying system, specifically to the invari-
ant mass of the pair of b-jets.

In Fig. 5 we show the distribution of the invariant mass
measured on the whole set of background events and on
three subset of events, each of the same size, corresponding
to signal-enriched, intermediate and background-enriched
regions. These regions are defined by means of a set of
cuts on different discriminant variables: D2 alone (Fig. 5a),
combined BDT with CS but D2 (Fig. 5b), Lund plane CNN
(Fig. 5c). We show results for the reco case only, since the
ones in the truth case are similar. In an ideal scenario, a cut
on the discriminating variable should not also concomitantly
imply a cut on the invariant mass of the system, hence the
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Fig. 4 The ROC curves showing background rejection as a function of signal efficiency for the truth (left) and reco case (right) for CS variables,
LPCNN and the combined cases

Table 2 Area under the ROC curves for different combination of
observables

AUC-test sample

Truth Reco

CS observables 0.826 0.788

D2+CR 0.817 0.787

LPCNN 0.876 0.828

CS + LPCNN 0.893 0.846

Table 3 BDT observable ranking for the truth and reco cases

Observable ranking

Rank Truth Reco

Obs. Importance Obs. Importance

1 LPCNN 6.6 × 10−1 LPCNN 4.8 × 10−1

2 D2 1.4 × 10−1 O 1.0 × 10−1

3 O 5.7 × 10−2 D2 9.3 × 10−2

4 θpb 3.0 × 10−2 θpb 7.0 × 10−2

5 θpa 2.9 × 10−2 θpa 6.5 × 10−2

6 t‖b 2.6 × 10−2 t⊥b 6.0 × 10−2

7 t‖a 2.4 × 10−2 t‖a 4.5 × 10−2

8 t⊥b 1.9 × 10−2 t⊥a 4.3 × 10−2

9 t⊥a 1.0 × 10−3 t‖a 3.3 × 10−2

curves for the three regions should overlap, and agree with
the curve without any cut.

We find that the sensitivity to the invariant mass is intro-
duced mainly through the D2 observable, which is highly
correlated to the value on the mass, as it is clear from Fig. 5a.

Such a correlation has been already investigated in the litera-
ture [49,62]. By removing D2 from the CS input variables of
the BDT, the mass bias is greatly reduced, as can be observed
by comparing Fig. 5a and Fig. 5b. However, given the fact
that the D2 observable is ranked as one of the most important
(see Table 3), the removal of this variable comes at the price
of loosing a good part of efficiency.

Finally, it is interesting to study whether the LPCNN alone
retains or not a dependence on the invariant mass of the
decaying system. This is shown in Fig. 5c. Unfortunately,
the output of the LPCNN appears to be notably correlated
to the invariant mass of the pair of b-jets. In order to bet-
ter understand this behaviour, by looking at the correlation
matrix of the BDT with the CS variables and the LPCNN as
input, we note that LPCNN and D2 are largely correlated.
Hence, the behaviour we observe in Fig. 5c for LPCNN can
be related to the known behaviour of D2 of Fig. 5a. Given the
fact that LPCNN is our best discriminating variable, consid-
ering removing it from the combination comes at the price
of loosing a good part of discrimination power.

6 Conclusions

In this paper, we have investigated the problem of distin-
guishing the b-jets originating from the decay of a colour
singlet from those originating from the pure QCD back-
ground (mostly through g → bb̄ collinear splitting). We
have focused on the signal process pp → H(bb)Z(ν�ν�),
but we are confident that our strategy is valid in a more gen-
eral context. Specifically, we have trained a BDT architecture
on eight high-level, colour sensitive observables, in order to
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(a) (b) (c)

Fig. 5 The distribution of the invariant mass of the b-jets pair in the reco background sample for a different cuts on D2, b different ranges of the
BDT output for the CS without the inclusion of D2, c and for different cuts on Lund plane CNN output

develop a combined colour tagger. We have also explored the
discrimination performance of a CNN architecture trained on
Lund jet plane images. Finally, we have combined the high-
level observables and the output of the Lund jet plane CNN
in a common BDT architecture. We have also performed a
fast detector simulation in order to better assess the experi-
mental feasibility of this tagging strategy. Namely, we have
compared individual distributions and the final performance
of the tagger before and after the inclusion of detector effects.

We have found a good discrimination power for our com-
bination of colour sensitive observables with the output of the
Lund jet plane CNN (AUC = 0.893), slightly deteriorated
when including detector effects (AUC = 0.846). The Lund
jet plane alone has been proven to be a powerful Hbb tagger
even in presence of detector effect, thus extending the results
of Ref. [27], and when combined with theoretically moti-
vated single-variable observables, such as D2 or the colour
ring, the overall performance appreciably improves. In the
end, we have shown that our tagger, which is a combination
of several theory-driven single-variable observables with a
representation of radiation pattern within a jet, is not only
effective in theory, but also shows promising prospects for
application to experimental analyses.

We have also studied to what extent the tagger is sensitive
to the mass of the decaying particle. In the case of the colour
sensitive observables, the mass bias has been shown to be
ultimately due to the D2 input variable, as already known
from the literature. However, we have also found that the
Lund plane CNN retains a large mass bias, and to the best of
our knowledge this has not been pointed out in the literature
so far. The elimination of these variables come at the cost
of classification efficiency, especially in the case of the Lund
plane CNN. Further studies are needed in order to understand
how to remove such a mass bias. For instance, one could

plan to explore techniques similar to the ones presented in
Refs. [49,62], based on a debiasing a posteriori.

Even if a fast detector simulation offers a good starting
point in order to assess the feasibility of a tagging strategy, in
the end a full detector simulation within a more defined exper-
imental context would be required. Such a more realistic sce-
nario would also entail the inclusion of the efficiency of real-
life existing b-tagging algorithms used by the experimental
collaborations, whereas in this paper we have assumed a b-
tagging algorithm with 100% efficiency. Further, although
the main scope of this study is to assess the performance
of relatively simple observables and ML architectures for
Hbb tagging, it is interesting to investigate the importance of
physics information beyond the primary Lund plane, which
can be exploited by including planes originated by sec-
ondary splittings. In this context, we have made a prelim-
inary investigation using the LundNet-5 model of Ref. [52],
which employs graph neural networks, and obtaining an
improved performance corresponding to AUC = 0.925 and
AUC = 0.894, for truth and reco, respectively.

We leave the implementation of these suggestions, as well
as the opportunity to consider new high-level observables as
input for our tagger, for future studies.
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Appendix A: Details about ML algorithms

In this Appendix, we report some details about BDT param-
eters and CNN architecture adopted in the analysis.

A.1 BDT parameters

The boosted decision tree (BDT) has been implemented
using the ROOT Toolkit for Multivariate Analysis (TMVA)
library [63]. The BDT is made up of 50 trees, with a maxi-
mum depth of 5 and minimum node size set to 2.5% of the
total number of events (Table 4). The Gini index is used as
the optimisation criterion. AdaBoost has been chosen as the
boosting model and the number of cuts is set to 80. We use a
50/50 train/test sample, and there is no downsampling.

A.2 CNN architecture

We used CNN (implemented using Keras [64]) for the Lund
jet images data set. Balanced data set for the binary classifica-
tion is used; 70% for the training, 15% for the validation and
15% for the testing. We tried several models with different
combinations of hyper-parameters and the best architecture
is described in the Table 5. Here Ni , i = 1 · · · 4 denotes the
number of filters in the corresponding convolutional layer.
Filter size is 3 × 3 in all the convolutional layers. Activation
function ‘relu’ and ‘softmax’ are used for the intermediate

Table 4 BDT parameters used for the truth and reco data set

Parameters Value

No. of trees 100

Max depth 3

MinNodeSize 2.5%

Boost type AdaBoost

Train/test 50/50

No. of cuts 200

Downsampling No

Table 5 CNN architectures used for truth and reco cases

Parameter Value

N1 Conv2D 30

N2 Conv2D 30

Dropouts −(0.3)

N3 Conv2D 30

Dropouts −(0.3)

N4 Conv2D 10

Dropouts −(0.1)

Flat layer 150

Epochs 30

Batch size 800

and last layer, respectively. For the optimisation, ‘adam’ opti-
miser is used. We used pooling (MaxPooling) operation after
the second and fourth convolutional layer for image down-
sizing. Note that CNN architecture used is same for truth and
reco data except the dropouts. The numbers mentioned in the
brackets are the dropouts strength used for the reco data set.
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