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Abstract We investigate the dynamics of the gravitational
collapse of a compact object via a complexity factor scalar
which arises from the orthogonal splitting of the Riemann
tensor. This scalar has the property of vanishing for sys-
tems which are isotropic in pressure and homogeneous in
the energy density. In this way, the complexity factor can
give further details of the progression of inhomogeneity as
the collapse proceeds. Furthermore, we show that complex-
ity may be used in comparing models and justifying their
physical viability. Thus, it could become an integral part of
the physical analysis of relativistic collapse in addition to
energy conditions analysis, (in)stability, and recently inves-
tigated force dynamics.

1 Introduction

Physical problems involving gravitational collapse have been
well studied since the pioneering work of Oppenheimer and
Snyder [1]. In an effort to improve models, a non-empty exte-
rior spacetime was included [2] which lead to Vaidya’s well-
known solution for a radiation-filled exterior spacetime [3].
Modelling has required the setting of part of the gravita-
tional framework according to physically viable potentials,
with the remaining part often being determined through equa-
tions of state, and more recently through gravitational decou-
pling [4,14]. This has been a method for closing the systems
of equations which arise in applying general relativity and
other gravity theories.

The concept of complexity has now also become useful
in the modelling of self-gravitating systems. Complexity is
used in many branches of science, and as such does not seem
to have a rigorous definition [5]. Perhaps a bit tautological,
but a system which is complex avoids simplification and thus
makes its description somewhat removed from an idealised
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one. Thus idealised systems such as a perfect crystal and an
ideal gas are used as a basis and reference point, endowed
with the condition of vanishing complexity. This connection
with the examples of idealised systems was used in building
the original definition of statistical complexity [6]. A con-
densed matter crystal requires minimal data in its description,
namely identification of a repeating unit. Application of the
space-group symmetry then generates the crystal. As a result
of structural defects and thermal energy, there is no perfect
crystal in nature, nevertheless crystallised matter has a rela-
tively low entropy and minimal complexity. At the opposite
end of the spectrum, an ideal gas requires a knowledge of the
positions and trajectories of every particle and so the data is
maximal. Yet both of these systems have zero complexity.
Within the context of condensed matter physics, complexity
has been defined as a product of the “information content”
and the degree of “disequilibrium” of a system. For a crystal,
the information content is minimal but the system is far from
equilibrium. The reverse situation occurs for an ideal gas,
thus vanishing complexity may be obtained for both of these
systems via a product definition. This is the so-called statisti-
cal measure of complexity as given by López-Ruiz et al. [6].
This formulation of complexity, and extensions thereof [7],
have been used in discerning equations of state and investi-
gating the structure of compact objects [8,9].

A different approach has been taken in the context
of spherically symmetric, self-gravitating relativistic fluids
[10]. In this case, the fluid system is considered to be least
complex if it is homogeneous in energy density and isotropic
in pressure. A definition of complexity is then based on
macroscopic quantities, in contrast to a statistical definition
in which the information content is calculated according to
the populations of microstates. In addition, disequilibrium
does not provide meaningful insight into systems undergo-
ing gravitational collapse since the reference point of equi-
librium is in general unattainable, the end point of collapse
being the formation of an event horizon beyond which no
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further information may be gleaned within the confines of
general relativity.

The orthogonal splitting of the Riemann tensor has been
performed and found to yield various scalar functions [5,
11,12]. In performing this process, five structure scalars are
attained, one of which is well-suited to a definition of com-
plexity. The complexity factor, so defined, links the pressure
anisotropy to the energy density inhomogeneity. It is inter-
esting to note that of these structure scalars, it is not always
the same one that is linked to complexity. This is the case in
f (R, T, Rμν, Tμν) gravity [13]. Much progress has already
been made in using the complexity factor as a constraint for
the closure of the systems of equations arising in gravitational
models for static systems. Investigations of complexity have
assisted in generating new solutions [15] and recently utilised
within the framework of the gravitational decoupling method
[4,14].

Recent studies of complexity in both general relativity
and higher theories of gravity have focused on static sys-
tems. In our study, we consider the case of radiating collapse
and how the complexity factor evolves in this scenario. The
theoretical framework for including heat flux in the compu-
tation of complexity has already been setup by Herrera and
co-workers [10] and we apply a physically viable, radiating
model in order to investigate the behaviour of this dynamical
complexity factor. The inclusion of a dynamical complex-
ity factor could provide a further means of investigating the
evolution of gravitational collapse in addition to (in)stability
[16–18] and dynamical forces [19,20].

2 The field equations

The most general, spherically symmetric line element is
given by

ds2 = −A2dt2 + B2dr2 + C2r2(dθ2 + sin2 θdφ2) (1)

where the gravitational potentials are in general both spa-
tially and temporally dependent. In modelling gravitational
collapse, we consider the matter distribution to be shear-free
in addition to spherically symmetric. This is a reasonable
assumption when modelling a relativistic, radiating star and
requires that ∂t log(B/C) = 0. We make use of a line ele-
ment in which the potentials are separable in terms of space
and time coordinates as done by Sharma and Das [21]. With
the coordinates (xα) = (t, r, θ, φ) this line element, for the
interior spacetime of the stellar model, takes the form

ds2 = −A2
0(r)dt

2 + f 2(t)

×
[
B2

0 (r)dr2 + r2(dθ2 + sin2 θdφ2)
]
. (2)

We see that this line element obeys the shear-free con-
dition. In terms of the general line element, we have the
association

A = A0(r), B = B0(r) f (t), C = f (t).

This type of gravitational formalism in which the spatial
and temporal parts are separated and written as a product
is popular in gravitational collapse modelling [22,23]. The
spatial part is often determine by imposing an equation of
state and the temporal part, via the heat flux boundary con-
dition. We consider a model which represents a spherically
symmetric, shear-free fluid configuration with heat flux. For
our model, the energy–momentum tensor for the stellar fluid
takes the form

Tαβ = (ρ + pt )uαuβ + pt gαβ + (pr − pt )χαχβ

+qαuβ + qβuα (3)

where ρ is the energy density, pr and pt are the radial and
tangential stresses respectively, qα = (0, q, 0, 0) is the heat
flux vector assumed to flow in the radial direction due to
spherical symmetry, uα is the fluid four-velocity and χa is
a unit space-like four-vector along the radial direction. The
following relations need to be satisfied

uαuα = −1, uαqα = 0, χαχα = 1, χαuα = 0.

An equivalent, canonical form of the energy momentum
tensor is given by

Tαβ = ρuαuβ + p̂hαβ + (pr − pt )

(
χαχβ − 1

3
hαβ

)

+q
(
uαχβ + χαuβ

)
(4)

where p̂ = 1
3 (pr + 2pt ) and the projection tensor hαβ =

gαβ + uαuβ . This form of the energy momentum tensor is
more convenient in developing the explicit forms of the struc-
ture scalars arising from the splitting of the Riemann tensor.

The fluid collapse rate 
 = uα
;α of the stellar model is

given by


 = 3
Ḃ

AB
, (5)

where dots represent differentiation with respect to t .
One must proceed with caution when exploring shear-free

fluids. It has been demonstrated that the shear-free condi-
tion is unstable [24] in the sense that a shear-free fluid can
mimic shearing behaviour in the presence of density inho-
mogeneities and dissipation. A measure of the stability of
the shear-free condition is encoded in the scalar YTF

YT F = 16πησ + 8π(pt − pr )

+ 4π

(Cr)3

∫ r

0
(Cr)3

(
ρ′ − 3q

B2

A

Ċ

C

)
dr (6)
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where σ is the shear-scalar, pt and pr are the tangential and
radial pressures respectively, ρ is the energy density and q
is the heat flux. This is a prelude to the main topic of our
study. The scalar YTF is a combination of localised pres-
sure anisotropy, energy density inhomogeneities, dissipative
fluxes such as heat flow and shear viscosity. In the absence
of shear viscosity η (if internal friction between layers of the
collapsing fluid is to be ignored) there can be an increase in
the absolute value of the shear scalar induced by density inho-
mogeneities and heat flux dissipation. We also see that energy
density inhomogeneity is responsible for deviations from an
initial shear-free profile. These deviations can be enhanced
in the presence of heat dissipation within the stellar core.

We now present the nonzero components of the Einstein
field equations for the line element (2). In geometrised units
(G = c = 1) we obtain

8πρ = 1

f 2

[
1

r2 − 1

r2B2
0

+ 2B ′
0

r B3
0

]
+ 3 ḟ 2

A2
0 f

2
, (7)

8πpr = 1

f 2

[
− 1

r2 + 1

r2B2
0

+ 2A′
0

r A0B2
0

]

− 1

A2
0

[
2
f̈

f
+ ḟ 2

f 2

]
, (8)

8πpt = 1

f 2

[
A′′

0

A0B2
0

+ A′
0

r A0B2
0

− B ′
0

r B3
0

− A′
0B

′
0

A0B3
0

]

− 1

A2
0

[
2
f̈

f
+ ḟ 2

f 2

]
, (9)

8πq = − 2A′
0 ḟ

A2
0B

2
0 f 3

. (10)

Equations (7)–(9) may be written in the form

ρ = ρ0

f 2 + 3 ḟ 2

8π A2
0 f

2
, (11)

pr = pr0

f 2 − 1

8π A2
0

[
2
f̈

f
+ ḟ 2

f 2

]
, (12)

pt = pt0
f 2 − 1

8π A2
0

[
2
f̈

f
+ ḟ 2

f 2

]
, (13)

where ρ0, pr0 and pt0 denote the energy density, radial pres-
sure and tangential pressure respectively of the initial static
configuration. These are given by

8πρ0 =
[

1

r2 − 1

r2B2
0

+ 2B ′
0

r B3
0

]
, (14)

8πpr0 =
[
− 1

r2 + 1

r2B2
0

+ 2A′
0

r A0B2
0

]
, (15)

8πpt0 =
[

A′′
0

A0B2
0

+ A′
0

r A0B2
0

− B ′
0

r B3
0

− A′
0B

′
0

A0B3
0

]
. (16)

The anisotropy parameter is defined as

� = (pt − pr ) . (17)

We see that in terms of our gravitational formalism, this
simplifies to

�(r, t) = �0(r)

f 2(t)
(18)

where

�0(r) = 1

8π

[
A′′

0

A0B2
0

− A′
0

r A0B2
0

− B ′
0

r B3
0

− A′
0B

′
0

A0B3
0

− 1

r2B2
0

+ 1

r2

]
(19)

The framework is now in place for setting up the initial
static configuration. In our study, we specify the potential B0

according to the Vaidya–Tikekar (V–T) ansatz and make use
of a linear equation of state. The V–T potential is suitable for
modelling superdense compact objects, and a linear equation
of state is a reasonable approximation [25]. Our initial static
configuration is used to model an unstable neutron star which
collapses to form a black hole remnant.

3 Junction conditions

In modelling the gravitational collapse of compact stellar
objects with heat flux, we make use of an exterior spacetime
described by Vaidya’s outgoing solution [3] given by

ds2 = −
(

1 − 2m(υ)

r

)
dυ2 − 2dυdr

+r2
(
dθ2 + sin2 θdφ2

)
. (20)

The quantity m(υ) represents the Newtonian mass of the
gravitating body as measured by an observer at infinity, as
a function of the retarded time υ. The metric given by (20)
is the unique spherically symmetric solution of the Einstein
field equations for radiation in the form of a null fluid. The
Einstein tensor for the line element (20) is given by

Gαβ = − 2

r2
dm

dυ
δ0
αδ0

β. (21)

The energy momentum tensor for null radiation assumes
the form

Tαβ = �wαwβ, (22)
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where the null four-vector is given by wα = (1, 0, 0, 0). Thus
from (21) and (22) we have

� = − 2

r2
dm

dυ
, (23)

for the energy density of the null radiation. Since the star
is radiating energy to the exterior spacetime we must have
dm

dυ
< 0.

The necessary conditions for the smooth matching of the
interior spacetime to the exterior spacetime was first pre-
sented by Santos [27]. The associated junction conditions
for the line elements (2) and (20) are given by

(pr )� = (qB0 f )� (24)

m(υ) =
[
r f

2

(
1 − 1

B2
0

+ (r ḟ )2

A2
0

)]

�

(25)

where � represents the boundary between the interior and
exterior spacetimes.

4 A Vaidya–Tikekar static configuration

Vaidya and Tikekar [28] have developed realistic compact
stellar models according to the gravitational potential for-
mulation given by

B2
0 (r) = 1 − K (r2/L2)

1 − (r2/L2)
(26)

where K is a spheroidal parameter which allows for depar-
ture from spherical symmetry with respect to the radial coor-
dinate. This formulation has been shown to be suitable for
modelling superdense stellar matter and is less prone to insta-
bility due to anisotropy in pressure towards the surface. Fol-
lowing Sharma et al. [25], we employ a linear equation of
state, pr = αρ −β, together with the Vaidya–Tikekar poten-
tial. Using the standard time-independent Einstein field equa-
tions, we obtain

A2
0(r) = J

(
1 − r2/L2

)n (
1 − Kr2/L2

)α

eK
(
L2−r2

)
β/2

(27)

where

n = 1

2

(
−1 − 3α + L2β + K (1 + α − L2β)

)
(28)

and J is a constant to be determined through matching of both
potentials at the boundary. Matching of the internal metric to
a Schwarzschild exterior at the boundary provides

L2 = R2 (2KM − K R + R)

2M
. (29)

The surface energy density is given by

ρs = (1 − K )
(
3 − K R2/L2

)

L2
(
1 − K R2/L2

)2 (30)

and surface density parameter

β = αρs . (31)

We choose the standard value α = 1/3 which then sets
ρs = 4B where B is the MIT Bag constant. The linear
equation of state, incorporating the Bag constant, has been a
popular choice in modelling relativistic stars [26].

5 Temporal dependence of the collapse process

We make use of the boundary condition (pr )� = (qB)� for
establishing the temporal dependence of the collapse process.
Making use of (10) and (12) with the static part set to zero
since (pr0)� = 0, we obtain

2 f f̈ + ḟ 2 − 2a ḟ = 0 (32)

where the temporal dependence parameter, which has units
of acceleration, is given by

a =
(
A′

0

B0

)

�

. (33)

An integral of (32) is given by

ḟ = 2a

(
1 − 1√

f

)
(34)

in which the integration constant was set so that f = 1
represents the initial static configuration at t = −∞. This
can be further integrated to obtain

t = 1

a

[
f

2
+ √

f + ln(1 − √
f )

]
. (35)

The temporal dependence of the collapse process has been
modelled in a similar way previously [22,29] and is well-
adapted to models linked to realistic equations of state [22].
The second derivative of f is given by

f̈ = −2a2

f 2

(
1 − √

f
)

(36)

which is useful for writing the field equations in derivative-
free form.
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It is necessary to determine the lower limit of f at which
the event horizon is formed. This is determined by examining
the asymptotic behaviour of the surface redshift, given by

z� =
[
dυ

dτ

]

�

− 1 =
[

1

B0
+ r ḟ

]−1

�

− 1 (37)

where τ is the proper time defined on the surface boundary.
Divergence of z� leads to

fbh =
(

2M

R

)2

(38)

which gives the time of formation of the black hole.

6 A dynamical model

We utilise a model describing the gravitational collapse of an
unstable neutron star of radius R = 9.384km and mass M =
2.015M� with the gravitational formalism used previously
by Bogadi et al. [20]. The collapse of unstable neutron stars
to form black holes has been previously investigated [22,
30]. The model parameters are shown in Table 1 with the
spheroidal parameter (K ) set at the standard value of K = −2
as initially proposed by Vaidya and Tikekar [28] and a second
model with a more radially asymmetric setting of K = −5
chosen for comparison. Values of the MIT Bag constant B
are calculated from ρs = ρ(r = R) and are a bit higher than
the more common values around 60MeV/ f m3. Higher MIT
Bag constants have been utilised in studies of strange stars
[31,32] wherein it is noted that a higher value softens the
equation of state.

The temporal dependence parameter, a, is calculated to be

a =
(
A′

0

B0

)

9.384km
= 0.03377km−1 (39)

The mass function (25) is given by

m(r, f ) = f m0(r) + 2r3 a2

A0(r)2

(
1 − √

f
)2

(40)

where

m0(r) = 4π

∫
ρ0(r)r

2dr = r3
[
R3

M
+ 2K

1 − K

(
R2 − r2

)]−1

(41)

is the mass of the initial configuration. The temporal func-
tion, evaluated at the time of horizon formation, gives fbh =
0.4018.

7 Dynamical complexity

We give a brief overview of the main mathematical features
which may be found by retracing the steps back from the
most recent definition of the complexity factor for dissipative
self-gravitating systems, given by Herrera et al. [10].

In four-dimensional spacetime, unit time-like vector fields
enable an orthogonal splitting (also known as 3+1 decompo-
sition) of a tensor. In particular, the Riemann tensor which
describes the curvature of the spacetime manifold, can be
used to generate the following tensors, namely

Yαβ = Rαγβδu
γ uδ (42)

Zαβ = 1

2
ηαγ ερR

ερ
βδu

γ uδ (43)

Xαβ = 1

2
ηαγ

ερR∗
ερβδu

γ uδ (44)

where

R∗
αβγ δ = 1

2
ηεργ δRαβ

ερ (45)

and ηαβγ δ is the Levi-Civita tensor which gives the four-
dimensional volume element. This orthogonal splitting was
first studied by Bel [11] and then followed up by Gómez-
Lobo [12]. Herrera et al. [33] did further calculations in order
to express the above tensors in terms of the physical quantities
according to the Einstein field equations so that the following
may be obtained:

Yαβ = 4π

3
(ρ + pr + 2pt ) hαβ

+4π (pr − pt )

(
χαχβ − 1

3
hαβ

)
+ Eαβ (46)

Zαβ = κ

2
qχγ uδηδαγβ (47)

Xαβ = κ

3
ρhαβ + κ

2
(pr − pt )

(
χαχβ − 1

3
hαβ

)

−Eαβ (48)

where the Weyl tensor is given in terms of its electric part,
namely Eαβ = Cαγβδuγ uδ for spherically symmetric sys-
tems. The Weyl tensor may be further expressed as

Table 1 Model parameters of initial unstable static configuration (M = 2.015M�; R = 9.384km)

Model N0 K L (km) ρs (km−2) n J B (MeV/fm3)

1 − 2 15.51 0.01551 − 0.4670 0.5425 117

2 − 5 19.83 0.01399 1.168 13.45 105
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Eαβ = E

(
χαχβ − 1

3
hαβ

)
(49)

where the amplitude E is calculated via the gravitational
potentials according to

E = 1

2A2

[
C̈

C
− B̈

B
−

(
Ċ

C
− Ḃ

B

) (
Ȧ

A
+ Ċ

C

) ]

+ 1

2B2

[
A′′

A
− C ′′

C
− 2C ′

rC
+

(
1

r
+ B ′

B
+ C ′

C

)

×
(

1

r
+ C ′

C
− A′

A

) ]
− 1

2r2C2 . (50)

In terms of our shear-free metric we obtain

E = 1

2B2
0 f 2

[
A′′

0

A0
+

(
1

r
+ B ′

0

B0

) (
1

r
− A′

0

A0

)]
− 1

2r2 f 2 .

(51)

Now, an additional way of expressing tensors (42)-(44)
gives rise to five structure scalars (XT , XT F ,YT ,YT F , Z ) as
follows,

Yαβ = 1

3
YT hαβ + YT F

(
χαχβ − 1

3
hαβ

)
(52)

Xαβ = 1

3
XT hαβ + XT F

(
χαχβ − 1

3
hαβ

)
(53)

Z =
√
Zαβ Zαβ = √

32πq. (54)

The scalars XT = Xγ
γ and YT = Y γ

γ are the traces of their
respective tensors. The trace-free parts (XT F ,YT F ) may be
determined by comparison with Eqs. (46) and (48) and are

YT F = 4π� + E (55)

XT F = 4π� − E (56)

where � = pt − pr .
The structure scalar YT F has been identified by Herrera

et al. [10] as the complexity factor. Further use of the field

equations and the Misner and Sharp mass function provide
the integral form for YT F ,

YT F = 8π� + 4π

(Cr)3

∫ r

0
(Cr)3

(
ρ′ − 3q

B2

A

Ċ

C

)
dr. (57)

As applied to our shear-free, separable potential model,
we calculate the complexity factor to be

YT F = 8π� + 4π f

C3

∫ r

0

(
r3ρ′

0

)
dr (58)

where ρ0 is the static energy density as defined in Sect. 2.
We note that the dissipative term in the integral cancels with
the time-varying part of the energy density gradient. Equa-
tion (58) can be integrated to yield

YT F = 8π� + 1

f 2

(
4πρ0 − 3m0(r)

r3

)
. (59)

Thus, apart from the anisotropic parameter �, the com-
plexity factor is described in terms of static quantities. For
further analysis, we set

Y1 = 8π�

Y2 = 1

f 2

(
4πρ0 − 3m0(r)

r3

)
(60)

and identify component Y2 as the energy density inhomo-
geneity.

8 Discussion

We now turn our attention to studying the evolution of the
terms contributing to YT F . In Fig. 1 we have plotted the
components of the complexity factor at the surface as a func-
tion of the temporal progression parameter f , for spheroidal
parameter K = −2 and K = −5 respectively. In Fig. 1a we

(a) (b)

Fig. 1 Complexity factor: components and sum
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observe that the anisotropy is positive, i.e., the radial pres-
sure dominates the tangential pressure while contributions
from the density inhomogeneities are negative. This interplay
between these two components tends to lead to a vanishing
of the complexity factor throughout the evolution of the col-
lapsing star. For K = −5, which is a further departure from
spherical symmetry than the K = −2 model, we observe
that complexity is close to zero for early times ( f = 1) and
becomes increasingly negative for late times. In Fig. 2 we
display the behaviour of the complexity factor as a function
of the temporal parameter f for different values of the radial
coordinate. For K = −2 we observe that YT F is positive at
the surface for all time. For the inner collapsing shells located
at R/4 and R/2 respectively, the complexity factor becomes
negative for all time. This trend is further enhanced as the star
departs from spherical symmetry. In Fig. 3 we observe the
departure from zero complexity for fixed epochs, viz., early
collapse and late-time collapse close to the time of formation
of the horizon. It is clear that the fluid is driven further away
from vanishing complexity closer to the time of formation of
the horizon. This trend has also been observed in terms of the
Tolman–Oppenheimer–Volkoff (TOV) forces at play during
dynamical collapse. There is a strong connection between
the evolution of the complexity factor (sum of anisotropy
and inhomogeneity) and the TOV forces (anisotropic, grav-
itational and hydrostatic forces) [20]. Figure 4 displays the

Fig. 2 Complexity factor temporal progression

Fig. 3 Complexity factor versus co-moving radial coordinate

Fig. 4 Complexity factor progression for K = −2

behavior of the complexity factor for K = −2 as a function
of the radial and temporal coordinates. We note that YT F is
smoothly behaved at each interior point of the stellar config-
uration. For late times, the complexity factor changes sign
due to the interplay between pressure anisotropy and density
inhomogeneity. The deviation from zero complexity can also
be linked to the interplay between the TOV forces within the
collapsing fluid.

9 Conclusion

In this work we investigated the dynamics of the complexity
factor during the evolution of a shear-free radiating sphere
undergoing gravitational collapse. We showed that for a
shear-free metric in which the potentials are separated into
their spatial and temporal components, the dissipative con-
tribution to the complexity factor is cancelled by the time-
dependent contribution of the inhomogeneity of the energy
density. The complexity factor could then be expressed as
a sum of two components viz., contributions from the pres-
sure anisotropy and density inhomogeneities. We utilized the
generalized Vaidya–Tikekar solution as the initial static con-
figuration and studied the evolution of the complexity factor
as collapse ensued. Several observations were made regard-
ing departure from zero complexity:

(1) Deviation from spherical symmetry (larger magnitudes
of the spheroidal parameter) leads to enhanced disequi-
librium.

(2) When the star loses hydrostatic equilibrium, it moves
into a regime of increasing complexity due to the inter-
play between the pressure anisotropy and density inho-
mogeneity.
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(3) In this particular model, the magnitude of the complexity
increases for all time and at each interior point of the
stellar configuration.

For shear-free fluids with separable metric functions, the
dissipative contributions to the complexity factor are anni-
hilated by terms from the density inhomogeneity. From a
physical standing we can think of the energy radiated in the
form of a radial heat flux as being counterbalanced by the col-
lapsing shells with inhomogeneous densities. This highlights
the inertial effect of the heat flux which plays an important
role in radiating collapse [34]. Furthermore, the contribu-
tions of the complexity factor mimic the TOV forces within
the stellar fluid [20]. We believe that our findings are novel
and show for the first time, in a dynamical collapse model
the generation of increased complexity.
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