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Abstract We investigate the weak and strong deflection
gravitational lensing by a black-bounce-Reissner–Nordström
spacetime and obtain their lensing observables. Assuming the
supermassive black holes in the Galactic Center and at the
center of M87, Sgr A* and M87* respectively, as the lenses,
we evaluate these observables and assess their detectability.
We also intensively compare these lensing signatures with
those of various tidal or charged spacetimes. We find that it
might be possible to distinguish these spacetimes by measur-
ing the fluxes difference of the lensed images by Sgr A* in
its quiet stage.

1 Introduction

Black holes are demonstrated to be very common in the Uni-
verse by detection of their gravitational waves [1–6] and by
the direct image of the supermassive black hole M87* in the
center of galaxy M87 [7–12]. They are also thought as ideal
places for examining and testing current understanding of
gravitation in the strong field. Though a black hole is con-
sidered as the simplest celestial body in Einstein’s general
relativity, it is harmed by its event horizon and central sin-
gularity, which would trigger the information-loss problem
and break the general relativity down. A number of propos-
als have been suggested to get rid of the singularity, such as
building a regular core [13–16], bouncing by quantum pres-
sure [17–19] and forming a quasi-black hole [20–23] (see
Ref. [24] for a review).

In the past few years, a black-bounce-Schwarzschild
spacetime was introduced [25]. It can smoothly transition
from a regular black hole (a black bounce) to a traversable
wormhole. In the massless case, it reduces to the Ellis worm-
hole [26]. Such an idea has attracted much attention. It was
extended to a time-dependent case [27], to a spherically sym-
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metric thin-shell traversable wormhole [28] and to several
new classes [29]. Its quasinormal modes [30], absorption of
massless scalar waves [31], geodesic motion [32], thin accre-
tion disk [33] and gravitational lensing [34–37] were studied.
Recently, a charged black-bounce variant of the Reissner–
Nordström spacetime was constructed [38]. Such a black-
bounce-Reissner–Nordström spacetime is considered as a
simple and clean everywhere-regular black hole mimicker,
whose deviation from the Reissner–Nordström spacetime is
in a precisely controlled and minimal manner, and it can be
interpreted as standard Maxwell electromagnetism together
with an anisotropic fluid [38]. It is widely believed that an
astrophysical body in the real Universe has to be free of elec-
tric charges due to quick neutralization by the surrounding
plasma. However, a black hole might be charged by inherit-
ing from its charged collapsed progenitor [39], by accumu-
lating charged matter and by induction through its rotation
in the external magnetic field [40]. It was pointed [41] that
the supermassive black hole in the Galactic center, Sgr A*,
might have transient and small positive charge. Therefore,
besides a significant theoretical impact, the non-zero electric
charge might make the black-bounce-Reissner–Nordström
spacetime show distinctive observable characters. In this
work, we will comprehensively investigate the gravitational-
lensing signatures of the black-bounce-Reissner–Nordström
spacetime, which is still barely known in the literature except
few brief discussion about its photon rings [42] and deflection
angle in the weak field limit [43].

Gravitational lensing bends the trajectory of a photon
passing through gravitational field and delays the arrival time
of the photon, so that it is considered as a powerful probe for
examining the spacetime of a distant object [44]. Accord-
ing to the deflection angle, the gravitational lensing might
roughly be divided into two scenarios. As particularly useful
tools in astronomy [45–48] and in gravitational physics [49–
52], the weak deflection gravitational lensing has its deflec-
tion angle much less than unity. Allowing photons to wind
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around a compact object by a few times and forming rela-
tivistic images in its vicinity [53], the strong deflection grav-
itational lensing has its deflection angle much bigger than 1.
The direct image of M87* by the Event Horizon Telescope
(EHT) [7–12] shows the feasibility of measuring effects of
the strong deflection gravitational lensing by black holes and
its potential for understanding the black hole physics [54–
61], testing various kinds of black holes [62–65] and probing
horizonless compact objects [66–83].

Triggered by previous works [84–91], we will investi-
gate the weak and strong deflection gravitational lensing
by the black-bounce-Reissner–Nordström spacetime for a
whole picture of its lensing signatures, which would be help-
ful for detecting and searching them. In the meantime, we
will carefully compare its observables with those of various
tidal/charged black holes, such as the Reissner–Nordström
black hole [92,93], the tidal Reissner–Nordström black hole
[94], the charged Horndeski black hole [95] and the charged
Galileon black hole [96]. The gravitational lensing of these
black holes have been well studied in Refs. [49,56,57,97,98],
Refs. [99–103], Ref. [104] and Ref. [105], respectively. We
will intensively discuss the possibility of distinguishing these
spacetimes with the current successful technology of radio
and infrared interferometry, such as EHT [7] and GRAVITY
[106].

This paper is structured as follows. In Sect. 2, we
briefly review the spacetime of the black-bounce-Reissner–
Nordström spacetime and the essentials of the gravitational
lensing. In Sects. 3 and 4, we investigate its weak and strong
deflection gravitational lensing, respectively. We find its lens-
ing observables and discuss their observability by assum-
ing Sgr A* and M87* as lenses (if applicable). We also
compare its lensing signatures with those of other tidal or
charged spacetimes and evaluate the feasibility of distin-
guishing them. Conclusions and discussion are presented in
Sect. 5.

2 Spacetime and gravitational lensing

2.1 Spacetime

As a black-bounce variant of a charged black hole, a black-
bounce-Reissner–Nordström spacetime can be constructed
with the Reissner–Nordström spacetime, which is taken as
the solution to the electrovac Einstein field equations of gen-
eral relativity in standard (t, r, θ, ϕ) curvature coordinates,
by the following steps [38]. First, leave dr in the metric ten-
sor unchanged; and second, replace r with

√
r2 + l2• in which

the components of the metric have an explicit dependence of
r . Here, l• is a length scale, also called the bounce parameter,
which is related to the Planck length. Therefore, the metric
of the black-bounce-Reissner–Nordström spacetime with the

mass m• and the charge Q• was found as [38]

ds2 = −A(r)dt2 + B(r)dr2 + C(r)(dθ2 + sin2 θdϕ2), (1)

where

A(r) = [B(r)]−1 = 1 − 2m•√
r2 + l2•

+ Q2•
r2 + l2•

, (2)

C(r) = r2 + l2• . (3)

This spacetime can be interpreted as standard Maxwell elec-
tromagnetism with an anisotropic fluid and the general rela-
tivity is reasonably assumed to be valid at least sufficiently
far away from its core region [38]. It is asymptotically flat
as |r | → ±∞ and globally regular due to the existence of
the bounce parameter l• that smooths the original Reissner–
Nordström spacetime. Such a bounce parameter also char-
acterizes the interpolation between the Reissner–Nordström
spacetime and the traversable wormhole. When l• = 0, the
black-bounce-Reissner–Nordström spacetime returns to the
Reissner–Nordström spacetime. As the charge vanishes, i.e.,
Q• = 0, one arrives at the black-bounce-Schwarzschild
spacetime [25]. When m• = 0 and Q• = 0, the spacetime
(1) goes back to the Ellis wormhole [26]. As Q• = 0 and
l• = 0, one recovers the Schwarzschild black hole.

The outer and inner event horizons for the spacetime (1)
are respectively located at [38]

r± =
√(

m• ±
√
m2• − Q2•

)2

− l2• , (4)

which requires

Q2• ≤ m2• and l2• ≤
(
m• ±

√
m2• − Q2•

)2

(5)

for the existence of positive r±. In order to investigate
the possibility of distinguishing the black-bounce-Reissner–
Nordström spacetime from other tidal or charged black
holes, such as the Reissner–Nordström black hole, the tidal
Reissner–Nordström black hole, the charged Galileon black
hole and the charged Horndeski black hole, we will focus on
a subclass of the black-bounce-Reissner–Nordström space-
time that has its event horizon(s) in this work. The grav-
itational lensing by a horizonless black-bounce-Reissner–
Nordström spacetime will be left as our next move. For later
convenience, we define the following dimensionless quanti-
ties as

x = r

m•
, l = l2•

m2•
and q = Q2•

m2•
, (6)

and the rescaled bounce parameter as

λ = l

(1 + √
1 − q)2

, (7)
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so that the condition for the outer event horizon (5) can be
rewritten as

DH = {(q, λ) | 0 ≤ q ≤ 1, 0 ≤ λ ≤ 1} (8)

and the dimensionless radius of the outer event horizon can
be defined as

xH = r+
m•

= √
1 − λ(1 + √

1 − q). (9)

The left panel of Fig. 1 shows that xH decreases with the
growth of q and λ. When both the charge and the bounce
parameter disappear, i.e., q = λ = 0, the spacetime (1)
will have its biggest event horizon, i.e., xH = 2, which
is the same as the one of the Schwarzschild black hole.
Otherwise, the outer event horizon shrinks until it van-
ishes as λ = 1. The right panel of Fig. 1 demonstrates a
comparison of xH against q for the black-bounce-Reissner–
Nordström spacetime, the Reissner–Nordström black hole,
the tidal Reissner–Nordström black hole, the charged Horn-
deski black hole and the charged Galileon black hole, among
which the Reissner–Nordström black hole and the charged
Galileon black hole share the same xH. With the increment
of q, xH becomes smaller for all of these spacetimes. For
a given q, the black-bounce-Reissner–Nordström spacetime
has the smallest event horizon xH, while a smaller λ, i.e.,
a smaller rescaled bounce parameter, can make xH of the
black-bounce-Reissner–Nordström spacetime more signifi-
cantly deviate from those of other black holes. The tidal
Reissner–Nordström black hole is able to have the biggest
event horizon since its tidal charge q can be negative.

The photon sphere of the black-bounce-Reissner–Nordström
spacetime sets the innermost circular orbit for a photon
and casts the shadow that might be able to observe by
EHT. With the direct image of M87* [7–12], the angular
size of its photon sphere was found to be consistent within
17% with the prediction by the general relativity [107].
Following this approach, we might test the black-bounce-
Reissner–Nordström spacetime and other spacetimes in
their strong-field regime and obtain preliminary bounds on
their (dimensionless) charge. Although the metrics for the
black-bounce-Reissner–Nordström spacetime, the Reissner–

Nordström black hole, the charged Horndeski black hole and
the charged Galileon black hole have very different depen-
dence of q, the radii of their photon spheres surprisedly share
almost the same numerical value for a specific q so that we
find the bound on q for these spacetimes as (see Sect. 4.1 for
details)

D = {q | 0 ≤ q ≤ 0.8144}. (10)

Furthermore, we find the bound for the tidal Reissner–
Nordström black hole as

DTRN = {q | − 1.2198 ≤ q ≤ 0.8144}. (11)

These two bounds will be taken in the following investigation
on the weak and strong deflection gravitational lensing by
these spacetimes and for comparing their observability.

2.2 Gravitational lensing

In the black-bounce-Reissner–Nordström spacetime (1), the
light deflection angle α̂ can be obtained as [54,108]

α̂(r0) = 2
∫ ∞

r0

dr
√
C(r)[C(r)u−2 − A(r)] − π, (12)

where r0 is the closest approach of the light, u is the impact
parameter as

u2 = C(r0)

A(r0)
, (13)

and A(r)B(r) = 1 has been applied. When r0 is much bigger
than m•, we can have α̂ � 1 for the weak deflection gravi-
tational lensing. When r0 is comparable to m•, we can find
α̂ � 1 for the strong deflection gravitational lensing.

For description about the geometric relation among the
source, the lensed images, the lens and the observer, we take
the following lensing equation as [54,55]

tanB = tanϑ − DLS

DOS
[tanϑ + tan(α̂ − ϑ)], (14)

where DOS and DLS are the distances from the source to
the observer and to the lens, respectively, and ϑ and B are
the angular positions of the lensed images and the source,

Fig. 1 Left panel: The
dimensionless radius xH of the
outer event horizon for the
black-bounce-Reissner–
Nordström spacetime with
respect to q and λ. Right panel:
A comparison of xH among the
black-bounce-Reissner–
Nordström spacetime (bbRN),
the Reissner–Nordström black
hole (RN), the tidal
Reissner–Nordström black hole
(TRN), the charged Horndeski
black hole (CH) and the charged
Galileon black hole (CG)
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respectively. The magnification of the image μ is defined as
[109]

μ(ϑ) =
[

sinB(ϑ)

sinϑ

dB(ϑ)

dϑ

]−1

, (15)

which indicates the flux ratio of the lensed image to the
unlensed one.

If the brightness of the source would change with time,
another observable is the time delay between the two lensed
images, which relies on the flight time of the photon traveling
from the source to the observer [108]

T = T (Rsrc) + T (Robs), (16)

where Rsrc is the radial distance from the source to the lens
as

Rsrc =
√
D2

LS + D2
OS tan2 B, (17)

and Robs = DOL is the distance from the observer to the lens.
The function of T (R) reads [54,108]

T (R) =
∫ R

r0

√
C(r)dr

A(r)
√
C(r) − u2A(r)

, (18)

where the relation A(r)B(r) = 1 has also been used.
In the following sections, we will intensively investi-

gate the weak and strong deflection gravitational lensing
by the black-bounce-Reissner–Nordström spacetime. Since
ground-based telescopes have been routinely observing stars
around Sgr A* in the optical/near-infrared band and EHT has
directly imaged M87* in the radio band, these two supermas-
sive black holes will be taken as the lenses (if applicable)
for evaluation of the lensing observables. We will also care-
fully compare these observables with those of other tidal or
charged black holes and comprehensively discuss the possi-
bility of distinguishing these spacetimes.

3 Weak deflection gravitational lensing

For the scenario of the weak deflection gravitational lensing,
the closest approach of the light ray r0 is much larger than the
gravitational radius of the lens m• so that we treat m• r−1

0 �
1 as a small parameter for our investigation in this section.

3.1 Deflection angle

With the standard procedure [108], we can find the deflection
angle α̂ (19) as

α̂(r0) = 4
m•
r0

+
(

15

4
π − 3

4
πq + 1

4
πl − 4

)
m2•
r2

0

+
[

122

3
− 15

2
π +

(
3

2
π − 14

)
q

−
(

1

2
π − 2

3

)
l

]
m3•
r3

0

+ O
(
m4•
r4

0

)

. (19)

The charge has its effect on the deflection angle starting from
the term ofm2•r−2

0 , and this situation also happens in the cases
of the Reissner–Nordström black hole, the tidal Reissner–
Nordström black hole, the charged Horndeski black hole and
the charged Galileon black hole.

Since r0 is coordinate-dependent, we can replace it with
the impact parameter u that is gauge-invariant. After expand-
ing Eq. (13) in terms of the small parameter m•u−1 and rear-
ranging it, we can have that

r0

u
= 1 − m•

u
−

(
3

2
− q

2
+ l

2

)
m2•
u2

−
(

4 − 2q + l

2

)
m3•
u3 −

(
105

8
+ 5

8
q2

+1

8
l2 − 1

4
ql − 35

4
q + 5

4
l

)
m4•
u4 + O

(
m5•
u5

)

. (20)

Substituting it into the deflection angle α̂(r0), we find that

α̂(u) = 4
m•
u

+
(

15

4
π − 3

4
πq + 1

4
πl

)
m2•
u2

+
(

128

3
− 16q + 8

3
l

)
m3•
u3 + O

(
m4•
u4

)
. (21)

It is clear that the charge and the bounce parameter also
start to influence the deflection angle α̂(u) from the term
of m2•u−2.

3.2 Positions of lensed images

For later convenience, we define the dimensionless variables
[49]

β = B
ϑE

, θ = ϑ

ϑE
, ε = ϑ•

ϑE
, (22)

where ϑE denotes the angular Einstein ring radius

ϑE =
√

4m•DLS

DOLDOS
. (23)

Therefore, β and θ are the dimensionless angular posi-
tions of the source and of the image seen by the observer,
respectively. The opening angle of the gravitational radius
m• at the observer from the distance DOL is defined as
ϑ• = arctan(m•D−1

OL). Since it is assumed that both the
observer and the source are far away from the lens, the ratio
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ε is a small parameter in the weak deflection gravitational
lensing.

The position of the lensed image θ can be expanded in
terms of ε as [49]

θ = θ0 + εθ1 + ε2θ2 + O
(
ε3

)
. (24)

Substituting it into the lens equation (14) and using the
deflection angle α̂(u) (21), we can obtain the coefficients
θn (n = 0, 1, 2) at the order of εn for the black-bounce-
Reissner–Nordström spacetime as

θ0 = 1

2
(β + η) , (25)

θ1 = 15 − 3q + l

16
(
θ2

0 + 1
) π, (26)

θ2 = 1

θ0
(
θ2

0 + 1
)3

[
8

3
D2θ8

0 +
(

64

3
D − 16

)
Dθ6

0

+
(

88

3
D2 − 32D + 16

)
θ4

0 +
(

16

3
D2 − 16D

−225

128
π2 + 32

)
θ2

0 − 16

3
D2 − 225

256
π2 + 16

− π2

128

(
1

2
+ θ2

0

)
(l − 3q) (l − 3q + 30)

+2
(
θ2

0 + 1
)2

(
l

3
− 2q

) ]
, (27)

where

D = DLS

DOS
, (28)

and

η =
√

β2 + 4. (29)

We can see that θ0 remains unchanged as the one of the
Schwarzschild black hole [49]. Although the charge and the
bounce parameter cannot affect θ0, they show their combined
effect on the first-order term θ1. If this next-to-leading-order
term in the position of the lensed image might be detected, it
would be possible to distinguish the black-bounce-Reissner–
Nordström spacetime from the Schwarzschild black hole.
However, any attempt to separate the contributions from the
charge q and the bounce parameter l must have the ability
to access the second order term θ2, requiring exceedingly
challenging accuracy for astrometry.

Following the convention adopted in Ref. [49], we set
the angular positions of the lensed images to be positive.
The lensed image is positive-parity, indicated by “+”, if it
is on the same side of the source with respect to the lens
and the position angle of the source is positive, i.e., β > 0.
Otherwise, the lensed image is negative-parity, indicated by
“−”, with β < 0.

The positions of the positive- and negative-parity images
θ±
n can, therefore, be found as

θ±
0 = 1

2
(η ± |β|) , (30)

θ±
1 = 15 − 3q + l

8η (η ± |β|)π, (31)

θ±
2 = 1

η3 (η ± |β|)4

[
64

3
D2β8 +

(
1024

3
D − 128

)
Dβ6

+
(

5056

3
D2 − 1024D + 128

)
β4

+
(

8576

3
D2 − 2304D − 225

16
π2 + 768

)
β2

+2560

3
D2 − 1024D − 675

16
π2 + 1024

−π2

16

(
β2 + 3

)
(l − 3q) (l − 3q + 30)

+16
(
β2 + 2

) (
β2 + 4

) (
l

3
− 2q

) ]

± η|β|
η3 (η ± |β|)4

[
64

3
D2β6 +

(
896

3
D − 128

)
Dβ4

+
(

3392

3
D2 − 768D + 128

)
β2

+3328

3
D2 − 1024D − 225

16
π2 + 512

−π2

16
(l − 3q) (l − 3q + 30)

−16
(
β2 + 4

) (
l

3
− 2q

) ]
, (32)

which lead to the following relations

θ+
0 θ−

0 = 1, (33)

θ+
0 − θ−

0 = |β|, (34)

θ+
1 + θ−

1 = 15 − 3q + l

16
π, (35)

θ+
1 − θ−

1 = − (15 − 3q + l) |β|
16η

π, (36)

θ+
2 − θ−

2 = |β|
[

8D2 − 16 + 225

256
π2

+ π2

256
(l − 3q) (l − 3q + 30) − 2

3
l + 4q

]
.

(37)

The zero-order term θ±
0 and the relations between them are

not influenced by the charge and the bounce parameter, while
the first- and second-order terms θ±

1 and θ±
2 and their rela-

tions θ+
1 + θ−

1 and θ+
1 − θ−

1 are all affected.
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3.3 Magnification

The magnification μ (15) might be expanded in terms of ε

as [49]

μ = μ0 + εμ1 + ε2μ2 + O(ε3). (38)

By making use of θ (24), one can obtain the coefficients μi

as

μ0 = θ4
0

θ4
0 − 1

, (39)

μ1 = − (15 − 3q + l) π

16
(
θ2

0 + 1
)3 θ3

0 , (40)

μ2 = θ2
0

(
θ2

0 + 1
)5 (

θ2
0 − 1

)

[
8

3
D2θ8

0

+
(

48D2 − 32D − 32
)

θ6
0

+
(

272

3
D2 − 64D + 675

128
π2 − 64

)
θ4

0

+
(

48D2 − 32D − 32
)

θ2
0 + 8

3
D2

+ 3

128
π2θ4

0 (l − 3q) (l − 3q + 30)

−4
(

1 + θ2
0

)2
θ2

0

(
l

3
− 2q

) ]
. (41)

Likewise, the leading term of the magnification μ0 is not
changed by the charge and the bounce parameter, while the
higher order terms μ1 and μ2 contain their contributions.

With the magnification (38), one can find μ±
n for the

positive- and negative-parity images as

μ±
0 = 1

2
± β2 + 2

2|β|η , (42)

μ+
1 = μ−

1 = −15 − 3q + l

16η3 π, (43)

μ±
2 = ± 1

|β|η5

[
8

3
D2β4 +

(
176

3
D2 − 32D − 32

)
β2

+192D2 − 128D + 675

128
π2 − 128

+ 3

128
π2 (l − 3q) (l − 3q + 30)

−4
(
β2 + 4

) (
l

3
− 2q

) ]
, (44)

which have the relations

μ+
0 + μ−

0 = 1, (45)

μ+
0 − μ−

0 = β2 + 2

|β|η , (46)

μ+
1 − μ−

1 = 0, (47)

μ+
2 + μ−

2 = 0. (48)

The charge and the bounce parameter appear in the first- and
second-order terms μ±

1 and μ±
2 but do not affect the zero-

order term μ±
0 . However, the combinations mentioned above

are immune to the charge and the bounce parameter.

3.4 Total magnification and centroid

In practice, the positive- and negative-parity images might be
unable to resolve so that their total magnification and centroid
would instead be the observables. The total magnification is
defined as

μtot = |μ+| + |μ−| = μ+ − μ−

= β2 + 2

|β|η + 2ε2μ+
2 + O(ε3). (49)

Its leading term relies on the angular position of the source
only, while the charge and the bounce parameter start to act
from the second-order term μ+

2 . Owning to the relation (47),
the first-order term in the total magnification will never exist.
Therefore, it would be very challenging to distinguish these
tidal/charged spacetimes by measuring the second-order term
in the total magnification.

The centroid Θcent is the weighted average of the mag-
nification by the positions of the two lensed images, which
reads

Θcent = θ+|μ+| − θ−|μ−|
|μ+| + |μ−| = θ+μ+ + θ−μ−

μ+ − μ− . (50)

It can be expanded in terms of ε as

Θcent = |β|(β2 + 3)

β2 + 2
+ |β|ε2

(β2 + 2)2η2

[
8

3
D2β6

+
(

104

3
D2 − 16D

)
β4

+
(

272

3
D2 − 64D + 32

)
β2

−64

3
D2 + 128 − 675

128
π2

− 3

128
π2 (l − 3q) (l − 3q + 30)

+4
(
β2 + 4

) (
l

3
− 2q

) ]
+ O(ε3). (51)

Like the total magnification, the leading term of the centroid
Θcent is not influenced, and its first-order term vanishes. The
charge and the bounce parameter start to play their roles on
the second-order term of the centroid.

3.5 Time delay

Due to h = m• r−1
0 � 1 in the weak deflection gravitational

lensing, the time function T (R) (18) can be expanded in
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terms of h as

T (R) = T0 + r0T1h + r0T2h
2 + r0T3h

3 + O(h4), (52)

where

T0 =
√
R2 − r2

0 , (53)

T1 =
√

1 − ξ2

1 + ξ
+ 2 log

(
1 + √

1 − ξ2

ξ

)

, (54)

T2 = 15

2
arccosξ −

(
2 + 5

2
ξ

) √
1 − ξ2

(1 + ξ)2

+ l − 3q

2
arccosξ, (55)

T3 = −15

2
arccosξ + 1

2

√
1 − ξ2

(1 + ξ)3

×
(

35ξ3 + 133ξ2 + 157ξ + 60
)

+
(

− 1

2
arccosξ +

√
1 − ξ2

1 + ξ

)
(l − 3q)

−1

2

√
1 − ξ2 16 + 15ξ

1 + ξ
q, (56)

with

ξ = r0

R
. (57)

As those of the Schwarzschild black hole [49], the geometric
term T0 and the Shapiro delay term T1 are not influenced by
the charge q and the bounce parameter l, which affect the
second- and third-order terms T2 and T3.

The difference between the flight time of a photon trav-
elling from the source to the observer with and without the
gravitational lensing is defined as the time delay [49]

cτ = T (Rsrc) + T (Robs) − DOS

cosB . (58)

After rescaling by the characteristic time

τE = 4m•
c

, (59)

the dimensionless time delay can also be expanded in terms
of ε as

τ̂ = τ

τE
= τ̂0 + ετ̂1 + ε2τ̂2 + O(ε3), (60)

where

τ̂0 = 1

2

[

1 + β2 − θ2
0 − ln

(
DOLθ2

0 ϑ2
E

4DLS

)]

, (61)

τ̂1 = (15 + l − 3q)π

16θ0
, (62)

τ̂2 = 1

θ2
0

{(
−10

3
D2 + 6D − 2

)
θ6

0 + 4(1 − D)β2θ4
0

+
[ (

10

3
D2 − 2D − 2

)
β4 + 4β2 − 16D2

+16D − 4

]
θ2

0 + 16

3
D2 − 225π2

512(1 + θ2
0 )

+1

3
(l − 3q) − (l − 3q) (l − 3q + 30) π2

512(1 + θ2
0 )

+(θ2
0 − 1)q

}
. (63)

The charge and the bounce parameter begin to affect the time
delay τ̂ from the first-order term of ε.

The time delay τ̂ is not an observable because the
flight time of a photon without the gravitational lensing is
unknown. However, the differential time delay Δτ̂ between
the positive- and negative-parity images is practically mea-
surable and it reads

Δτ̂ = τ̂+ − τ̂− = Δτ̂0 + εΔτ̂1 + ε2Δτ̂2 + O(ε3), (64)

where

Δτ̂0 = 1

2
η|β| + ln

(
η + |β|
η − |β|

)
, (65)

Δτ̂1 = 15 + l − 3q

16
π |β|, (66)

Δτ̂2 = |β|η
{ (

10

3
D2 − 2D − 2

)
β2

−225π2

512η2

(
β2 + 3

)
+ 12D2 − 12D + 4

−π2(β2 + 3)

512η2 (l − 3q) (l − 3q + 30)

+1

3
l − 2q

}
. (67)

Its leading term Δτ̂0 is the same as the one of the
Schwarzschild black hole [49], while its first- and second-
order terms Δτ̂1 and Δτ̂2 are affected by the charge and the
bounce parameter.

In a summary, both the charge and the bounce parameter
affect the image positions, the magnification and the differ-
ential time delay of the lensed images starting from their first-
order terms, while they change the total magnification and the
centroid beginning from their second-order terms. Therefore,
it would be easier to distinguish the black-bounce-Reissner–
Nordström spacetime from the Schwarzschild black hole by
measuring the image positions, the magnification and the dif-
ferential time delay. This circumstance is also true for other
tidal/charged spacetimes, such as the Reissner–Nordström
black hole, the tidal Reissner–Nordström black hole, the
charged Horndeski black hole and the charged Galileon black
hole, so that it would be necessary to assess the possibility
of telling difference among these spacetimes by the weak
deflection gravitational lensing alone.
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3.6 Practical observables

In astronomical observations, the practical observables of
the weak deflection gravitational lensing contain the angular
separation Ptot, the difference of the angular positions ΔP ,
the total flux Ftot, the difference of the fluxes ΔF , the cen-
troid Scent and the differential time delay Δτ of the lensed
images [50]. These practical observables can be found from
the scaled quantities (β, θ, μ, τ̂ ), in which the observed flux
is the magnified one of the unlensed source, i.e., F = |μ|Fsrc.
Keeping the leading contributions of the charge and the
bounce parameter, we find the practical observables of the
weak deflection gravitational lensing by the black-bounce-
Reissner–Nordström spacetime as

Ptot = ϑ+ + ϑ−, (68)

ΔP = ϑ+ − ϑ−, (69)

Ftot = F+ + F−, (70)

ΔF = F+ − F−, (71)

Scent = ϑ+F+ − ϑ−F−

Ftot
, (72)

Δτ = τ+ − τ−. (73)

In order to demonstrate the effects of the charge and the
bounce parameter on these observables in the weak deflec-
tion gravitational lensing, their deviations from those of the
Schwarzschild black hole are defined as

δPtot ≡ Ptot − Ptot(q = l = 0), (74)

δΔP ≡ ΔP − ΔP(q = l = 0), (75)

δrtot ≡ 2.5log10

[
Ftot

Ftot(q = l = 0)

]
, (76)

δΔr ≡ 2.5log10

[
ΔF

ΔF(q = l = 0)

]
, (77)

δScent ≡ Scent − Scent(q = l = 0), (78)

δΔτ ≡ Δτ − Δτ(q = l = 0). (79)

Here, δrtot and δΔr , which are related to the fluxes, are
transformed into the magnitude of brightness according to
the astronomical convention. We find that the charge and the
bounce parameter appear in the first-order terms of Ptot, ΔP ,
ΔF and Δτ , while they only affect the second-order terms
of Ftot and Scent. It means that the deviations δrtot and δScent

would be much more difficult to detect than others and they
would be unreachable with current techniques.

3.7 Example of Sgr A*

We take the supermassive black hole, Sgr A*, as the lens
with the mass m•,SgrA∗ = 4.28 × 106 M
 and the distance
DOL,SgrA∗ = 8.32 kpc [110]. Considering that the star S175
orbiting Sgr A* has the periastron distance of 2 × 10−4 pc

[110], we assume a luminous source with a distance to Sgr A*
as DLS = 10−3 pc. Since the observables in the weak deflec-
tion gravitational lensing depend on two physical parameters,
which are the charge q and the bounce parameter l, and one
geometric parameter, which is the (dimensionless) angular
position of the source β, we adopt three following domains
to evaluate these observables

Dλ = {(β, q, λ)|10−2 ≤ β ≤ 10, 0 ≤ q ≤ 1, λ = 0.5},
(80)

Dq = {(β, q, λ)|10−2 ≤ β ≤ 10, q = 0.5, 0 ≤ λ ≤ 1},
(81)

Dβ = {(β, q, λ)|β = 0.5, 0 ≤ q ≤ 1, 0 ≤ λ ≤ 1}, (82)

where the rescaled bounce parameter λ relates to the dimen-
sionless one l via Eq. (7).

From top to bottom, Fig. 2 shows the angular separation
between the two lensed images Ptot, its deviation from the
one of the Schwarzschild black hole δPtot, the difference of
the angular positions of the two lensed images ΔP and its
deviation from the one of the Schwarzschild black hole δΔP
on the domains of Dλ, Dq and Dβ (from left to right). The
dash-dotted lines mark the upper bound on q based on the
shadow of M87* observed by EHT, see Eq. (10). On Dλ

and Dq shown in Fig. 2a, b, Ptot ranges from about 1.1 to
5.7 milliarcsecond (mas) and grows with the angular posi-
tion of the source β, but barely changes with the charge q on
Dλ and with the rescaled bounce parameter λ on Dq . On Dβ

shown in Fig. 2c, it varies from about 1.155 to 1.162 mas
and increases with the growth of λ and with the decline
of q. With about 3 mas angular resolution of GRAVITY
[106], it would be possible to measure Ptot if β and λ are
sufficiently big and q is small enough. In Fig. 2d–f, δPtot

ranges from about −3.0 to 2.0 microarcsecond (µas) on Dλ,
from about −1.7 to 1.4 µas on Dq , and from about −3.1
to 3.9 μas on Dβ . It decreases with q and increases with
λ, but is hardly influenced by β. Below about 10–20 µas
astrometric accuracy for GRAVITY [106], δPtot would be
impossible to detect so that one might not be able to distin-
guish the black-bounce-Reissner–Nordström spacetime from
the Schwarzschild black hole by it. On Dλ and Dq shown in
Fig. 2g, h, ΔP ranges from about 0 to 5.5 mas and increases
with β, but barely varies with q on Dλ and with λ on Dq . On
Dβ shown in Fig. 2i, it varies from about 272.4 to 274.1 µas
and increases with q and with the decrease of λ. When β

and q are big enough and λ is sufficiently small, it might be
possible to measure ΔP by GRAVITY. Based on Fig. 2j–l,
δΔP changes from about −1.6 to 3.0 µas on Dλ, from about
−1.0 to 1.6 µas on Dq , and from about −1.0 to 0.7 µas on
Dβ . When β � 0.5, δΔP would be distinctly grows with q
and decreases with λ; otherwise, it barely affected by q on
Dλ and by λ on Dq . Since GRAVITY does not have enough
astrometric accuracy to detect δΔP , it would be infeasible
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to distinguish the black-bounce-Reissner–Nordström space-
time from the Schwarzschild black hole by this observable.

Figure 3 shows the total flux of the two lensed images Ftot,
its deviation from the one of the Schwarzschild black hole
δrtot, the difference of the fluxes of the two lensed images
ΔF and its deviation from the one of the Schwarzschild black
hole δΔr on the domains of Dλ, Dq and Dβ . On Dλ and Dq

displayed in Fig. 3a, b, the normalized total flux Ftot/Fsrc

ranges from about 1 to 100 and it decreases with β, but barely
changes with q on Dλ and with λ on Dq . On Dβ displayed
in Fig. 3c, it stays at the level of 2.182 and grows with q and
λ. When β � 0.5, the total flux of the two lensed images
can be magnified nearly by a factor of 100, which might be
easily observed if the unlensed flux of the source Fsrc itself
is bright enough. In Fig. 3d–f, δrtot changes from about 0 to
8 × 10−5 mag on Dλ, from about 0 to 6 × 10−5 mag on Dq ,
and from about 0 to 7 × 10−5 mag on Dβ . When β � 1,
δrtot increases with q and λ; otherwise, it hardly affected
by them. Such a small level of δrtot is far beyond the cur-
rent ability of photometry, even for a dedicated space-bone
satellite with photometric resolution of about 300 parts per
million or 3.2 × 10−4 mag [111]. On Dλ and Dq displayed
in Fig. 3g, h, ΔF/Fsrc − 1 ranges from about −7.5 × 10−3

to 0 and it increases with β, but stays almost unchanged with
q on Dλ and with λ on Dq . On Dβ displayed in Fig. 3i, it
varies from about −8 × 10−3 to −5 × 10−3 and increases
with q and with the decline of λ. Such a brightness differ-
ence is reachable by a space telescope [111]. According to
Fig. 3j–l, δΔr changes from about −10−3 to 10−3 mag on
Dλ, from about −7×10−4 to 7×10−4 mag on Dq , and from
about −1.8 × 10−3 to 1.3 × 10−3 mag on Dβ . When β � 1,
δΔr would be distinctly grows with q and decreases with λ;
otherwise, it is barely varied by q on Dλ and by λ on Dq .
Since δΔr is mostly within the photometric resolution of a
dedicated space mission [111], it might be possible to distin-
guish the black-bounce-Reissner–Nordström spacetime from
the Schwarzschild black hole by measuring δΔr ; however,
flares of Sgr A* might wipe out any brightness difference.

Figure 4 shows the centroid of the lensed images Scent,
its deviation from the one of the Schwarzschild black hole
δScent, the differential time delay between the lensed images
Δτ and its deviation from the one of the Schwarzschild black
hole δΔτ on the domains of Dλ, Dq and Dβ (from left to
right). On Dλ and Dq demonstrated in Fig. 4a, b, Scent ranges
from about 0 to 6 mas and grows with β, but barely changes
with q on Dλ and with λ on Dq . On Dβ shown in Fig. 4c, it
stays at the level of 400µas and decreases withq and λ. When
β ∼ 10, it would be possible for GRAVITY to marginally
detect Scent. In Fig. 4d–f, δScent ranges from about −21 to
0 nanoarcsecond (nas) on Dλ, from about −12 to 0 nas on
Dq , and from about −17 to 0 nas on Dβ . When β ∼ 1, δScent

might have its biggest deviations as q ∼ 1 and λ ∼ 1. How-
ever, it would still be too small to measure in the foreseen

future. On Dλ and Dq shown in Fig. 4g, h, Δτ ranges from
about 0.03 to 76 min and increases with β, but barely changes
with q on Dλ and with λ on Dq . On Dβ shown in Fig. 4i, it
varies from about 85.9 to 86.5 min and increases with λ and
with the decrease of q. Since typical datasets of Sgr A* and
S2 star by GRAVITY contains exposures with an individual
integration time of 10 s, Δτ might be measurable if it can
reach the level longer than a few minutes. Based on Fig. 4j–l,
δΔτ changes from about −4.2 to 2.6 s on Dλ, from about
−2.4 to 1.5 s on Dq , and from about −0.2 to 0.3 s on Dβ .
When β ∼ 10, δΔτ would be distinctly decreases with q and
increases with λ; otherwise, it barely influenced by q on Dλ

and by λDq . Since the individual integration time of GRAV-
ITY is longer than δΔτ , it would be infeasible to distinguish
the black-bounce-Reissner–Nordström spacetime from the
Schwarzschild black hole by this observable.

As shown in Fig. 5, in order to indicate the differences
in the lensing signatures and assess the possibility to dis-
tinguish various tidal or charged spacetimes, including the
black-bounce-Reissner–Nordström spacetime, the Reissner–
Nordström black hole, the tidal Reissner–Nordström black
hole, the charged Horndeski black hole and the charged
Galileon black hole, we compare their observables (left y-
axes) and their deviations (right y-axes) from those of the
Schwarzschild black hole in the case of β = 0.5. Ptot for
all these spacetimes can reach the level of 1.1 mas, while
its difference between them is no more than 10 µas, see
Fig. 5a. Since such a tiny difference is beyond the current
astrometric accuracy, it would be impossible to distinguish
these spacetimes by measuring Ptot. Based on Fig. 5b, ΔP
for these spacetimes stays at the level of 273 µas, but its dif-
ference between them is less than 2 µas, which is infeasible
to detect by the present techniques of astrometry. Figure 5c
shows that Ftot/Fsrc for these spacetimes are at the level
of 2.182, and the difference between them is smaller than
1.5 × 10−4 mag, which is unreachable for the current ability
of photometry. Seen from Fig. 5d, we find that ΔF/Fsrc − 1
ranges from −7.5 × 10−3 to −4.5 × 10−3 for various space-
times. The difference between them can reach about a few
10−3 mag, which is within the capacity of a space-borne
telescope. Moreover, as the increment of λ, the difference of
ΔF between the black-bounce-Reissner–Nordström space-
time and other spacetimes can be enlarged, promising for
distinguishing them. Scent is at the level of about 400 µas for
all of these spacetimes, while its difference between them
does not exceed 40 nas as shown in Fig. 5e, which is far
beyond the territory of current technology. Δτ for all these
spacetimes is around 86 s, but its difference between them is
no longer than 1 s as displayed in Fig. 5f, which is shorter
than the integration time of an individual exposure in astro-
nomical observation, making them indistinguishable.

In summary, we find that (1) the angular separation Ptot,
the angular difference ΔP , the total flux Ftot, the fluxes dif-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2 From top to bottom, color-indexed Ptot , δPtot , ΔP and δΔP in the weak deflection gravitational lensing for Sgr A* are shown on the
domains of Dλ, Dq and Dβ (from left to right). The dash-dotted lines mark the upper bound on q based on the shadow of M87* observed by
EHT (10)

ference ΔF , the centroid Scent and the differential time delay
Δτ are possible to detect with current technology; (2) it
would be possible to distinguish the black-bounce-Reissner–
Nordström spacetime from the Schwarzschild black hole,
the Reissner–Nordström black hole, the tidal Reissner–
Nordström black hole, the charged Horndeski black hole and
the charged Galileon black hole by measuring δΔr with a
dedicated space-borne mission when Sgr A* is in its quies-
cence.

4 Strong deflection gravitational lensing

In the strong deflection gravitational lensing, the closest
approach of the light ray to the black-bounce-Reissner–
Nordström spacetime r0 is at the same order of the grav-
itational radius of a compact object. As r0 decreases to the
radius of the photon sphere, the deflection angle of the photon
will become divergent. This phenomenon can wind the light
ray around the object before the photon reaches the observer,
and, therefore, produce a set of relativistic images, which are
absent in the weak deflection gravitational lensing.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3 From top to bottom, color-indexed Ftot , δrtot , δrtot and δΔr in the weak deflection gravitational lensing for Sgr A* are shown on the domains
of Dλ, Dq and Dβ (from left to right). The dash-dotted lines mark the upper bound on q based on the shadow of M87* observed by EH (10)

4.1 Photon sphere and shadow

As the unstable circular orbit of a photon for the black-
bounce-Reissner–Nordström spacetime, the photon sphere
has its radius rm that is the biggest root to the following
equation [55,112]

A′(r)
A(r)

= C ′(r)
C(r)

, (83)

where ′ means the derivative against r , and we can have

rm = 1

2

√

(3m• +
√

9m2• − 8Q2•)2 − 4l2• (84)

and its corresponding dimensionless one as

xm = rm

m•

= 1

2

√
(3 + √

9 − 8q)2 − 4λ(1 + √
1 − q)2, (85)

where Eqs. (6) and (7) are used. The left panel of Fig. 6
represents that xm decreases with the increment of q and
λ. When both the dimensionless charge q and the rescaled
bounce parameter λ are zeros, the photon sphere of the
black-bounce-Reissner–Nordström spacetime will have its
biggest radius with xm = 3, which is the same as the
one of the Schwarzschild black hole. As q = λ = 1,
the spacetime (1) will has its smallest photon sphere with
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(k)

(i)

(j) (l)

Fig. 4 From top to bottom, color-indexed Scent , δScent , Δτ and δΔτ in the weak deflection gravitational lensing for Sgr A* are shown on the
domains of Dλ, Dq and Dβ (from left to right). The dash-dotted lines mark the upper bound on q based on the shadow of M87* observed by
EHT (10)

xm = √
3. The right panel of Fig. 6 displays a compari-

son of xm with respect to q for the black-bounce-Reissner–
Nordström spacetime, the Reissner–Nordström black hole,
the tidal Reissner–Nordström black hole, the charged Horn-
deski black hole and the charged Galileon black hole, among
which the Reissner–Nordström black hole and the charged
Galileon black hole share the same xm. As the growth of q,
xm shrinks for all the spacetimes. For a given q, the photon
sphere of the black-bounce-Reissner–Nordström spacetime
is the smallest one, while a bigger rescaled bounce param-
eter λ renders xm of the black-bounce-Reissner–Nordström
spacetime even smaller than those of other black holes. The

tidal Reissner–Nordström black hole has the biggest photon
sphere due to its negative tidal charge q.

Such a photon sphere can cast a shadow with the radius
as

rsh =
√
Cm

Am
, (86)

where and hereafter a subscript “m” denotes the value of a
quantity at r = rm and whose dimensionless version is

xsh = rm

m•
=

√
2

2

(3 + √
9 − 8q)3/2

(1 + √
9 − 8q)1/2

. (87)
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Comparisons of the observables in the weak deflection gravi-
tational lensing for Sgr A* by the black-bounce-Reissner–Nordström
spacetime (bbRN), the Reissner–Nordström black hole (RN), the tidal
Reissner–Nordström black hole (TRN), the charged Horndeski black
hole (CH) and the charged Galileon black hole (CG) in the case of

β = 0.5. The left and right dash-dotted lines mark the lower and
upper bound on q based on the shadow of M87* observed by EHT,
see Eqs. (10) and (11). The horizontal dotted lines denote those values
for the Schwarzschild black hole

When the charge vanishes, i.e., q = 0, it returns to the one of
the Schwarzschild black hole with xsh,Sch = 3

√
3. Figure 7

shows xsh with respect to q for the black-bounce-Reissner–
Nordström spacetime, the Reissner–Nordström black hole,
the tidal Reissner–Nordström black hole, the charged Horn-
deski black hole and the charged Galileon black hole. All
of xsh declines as the increment of q. While the tidal
Reissner–Nordström black hole has the biggest shadow due
to its negative q, the charged Horndeski black hole has the
smallest one since its q can reach 9/8. For a given q, the

black-bounce-Reissner–Nordström spacetime, the Reissner–
Nordström black hole and the charged Galileon black hole
share exactly the same xsh, and the xsh of the charged Horn-
deski black hole is very close to them numerically, making
these four spacetimes indistinguishable based on the size of
the shadow.

The size of the shadow of M87* measured by EHT is con-
sistent with the prediction by general relativity within 17% at
the 68-percentile level [107], paving the way for the strong-
field tests of black holes and theories of gravitation. Applying
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the scheme of Ref. [107] and using Eq. (86), the prelimi-
nary bounds on the dimensionless charge q for these space-
times can be obtained according to the right y-axis and grey
area in Fig. 7. We find that, for the black-bounce-Reissner–
Nordström spacetime, the Reissner–Nordström black hole,
the charged Horndeski black hole and the charged Galileon
black hole, they have the same bound on q as

D = {q | 0 ≤ q ≤ 0.8144},
while the bound for the tidal Reissner–Nordström black hole
is

DTRN = {q | − 1.2198 ≤ q ≤ 0.8144}.
It is necessary to address that we did not consider the effects
of the spin of M87* and its inclination on the bounds on
q. Since their effects on the size and the shape of M87*’s
shadow are less than 4% and 7% respectively [113], it might
be expected that the EHT measurement could be used to
test these non-rotating tidal/charged spacetimes sufficiently
and these bounds on the dimensionless charge q are valid
at least for the leading order. For the physical (tidal) charge
Q2• = q m2• of these spacetimes, they depend explicitly on
the masses and would be different for various systems even
for the same q.

4.2 Observables

Applying the method of the strong deflection limit [56], we
can find the deflection angle in the strong deflection gravita-
tional lensing as

α̂(θ) = −ālog
(θDOL

um
− 1

)
+ b̄

+O[(u − um)log(u − um)], (88)

with

ā =
√

2

AmC ′′
m − CmA′′

m
, (89)

b̄ = −π + ālog

[
2Cm(1 − Am)2

ā2A3
mC

′
m

2

]

+2
∫ 1

0

[
(1 − Am)

A′
zCz

(
Am

Cm
− Az

Cz

)− 1
2 − ā

z

]
dz, (90)

where Az ≡ A[r(z)], Cz ≡ C[r(z)], the variable z is defined
as

z = A(r) − Am

1 − Am
, (91)

and u is the impact parameter, see Eq. (13).
Considering that both the observer and the source are dis-

tant from the lens and that the three of them are almost in
a linear configuration, we can simplify the lens equation as
[114]

B = ϑ − DLS

DOS
(α̂ − 2nπ), (92)

where n is the number of circles that the photon goes around
the lens. Putting the deflection angle (88) into the lens equa-
tion (92), we can find the angular positions of the relativistic
images. With the help of Eq. (16), the differential time delay
between two relativistic images can be obtained as [115]

Fig. 6 Left panel: The dimensionless radius xm of the photon sphere
for the black-bounce-Reissner–Nordström spacetime with respect to
q and λ. Right panel: A comparison of xm among the black-bounce-

Reissner–Nordström spacetime (bbRN), the Reissner–Nordström black
hole (RN), the tidal Reissner–Nordström black hole (TRN), the charged
Horndeski black hole (CH) and the charged Galileon black hole (CG)
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Fig. 7 The dimensionless radius xsh (left y-axis) for the black-bounce-
Reissner–Nordström spacetime (bbRN), the Reissner–Nordström black
hole (RN), the tidal Reissner–Nordström black hole (TRN), the charged
Horndeski black hole (CH) and the charged Galileon black hole
(CG), and its relative deviation (right y-axis) from the one of the
Schwarzschild black hole xsh,Sch = 3

√
3. The grey area shows the

allowed range of xsh by the EHT measurement of M87*’s shadow

Ta − Tb = T̃ (r0,a) − T̃ (r0,b) + 2
∫ r0,b

r0,a

1

A(r)
dr, (93)

where r0,a and r0,b are the closest approaches of the photons
for the relativistic images a and b, respectively, and the time
function T̃ (r) is

T̃ = −ã log

(
u

um
− 1

)
+ b̃

+O[(u − um) log(u − um)], (94)

with

ã = āum, (95)

b̃ = −π + ã log

[
(1 − Am)2

A′2
m

(
C ′′

m

Cm
− A′′

m

Am

)]

+2
∫ 1

0

{
(1 − Am)

√
Am

A′
z Az

[(
1 − AzCm

AmCz

)− 1
2 − 1

]

− ã

z

}
dz. (96)

If one can resolve the first relativistic image (n = 1) only
and see other images (n ≥ 2) packed together, the observ-
ables in the strong deflection gravitational lensing can be
found as the angular radius of the photon sphere (shadow)
ϑ∞, the angular separation s between the first relativistic
image and the packed others and their magnitude difference
Δm [56]

ϑ∞ = um

DOL
, (97)

s = θ∞ exp

(
b̄

ā
− 2π

ā

)
, (98)

Δm = 5π

ā log 10
. (99)

If one can separate the first and second relativistic images,
their differential time delay can be another observable as
[115]

ΔT2,1 = ΔT 0
2,1 + ΔT 1

2,1, (100)

where the perimeter term ΔT 0
2,1 and the exponential term

ΔT 1
2,1 are

ΔT 0
2,1 = 2πum, (101)

ΔT 1
2,1 = 2

√
2āum exp

(
b̄

2ā

)

×
[

exp
(
−π

ā

)
− exp

(
−2π

ā

)]
. (102)

Since the perimeter term cannot provide information than
um, we define the following ratio

η2,1 = log10

(
ΔT 1

2,1

ΔT2,1

)

, (103)

to indicate the contribution of the exponential term to the
total time delay. The deviations of these observables in
the strong deflection gravitational lensing by the black-
bounce-Reissner–Nordström spacetime from those of the
Schwarzschild black hole can be obtained as

δϑ∞ = ϑ∞ − ϑ∞|q=l=0, (104)

δs = s − s|q=l=0, (105)

δΔm = Δm − Δm|q=l=0, (106)

δΔT2,1 = ΔT2,1 − ΔT2,1|q=l=0, (107)

δη2,1 = η2,1 − η2,1|q=l=0. (108)

4.3 Examples of Sgr A* and M87*

We take the supermassive black holes, Sgr A* and M87* as
the lenses which have the following masses and distances
m•,SgrA∗ = 4.28 × 106 M
, DOL,SgrA∗ = 8.32 kpc [110]
and m•,M87∗ = 6.5 × 109 M
, DOL,M87∗ = 16.8 Mpc [12].
The observables in the strong deflection gravitational lensing
will be estimated on the domain DH, see Eq. (8).

From top to bottom, Fig. 8 shows the angular radius of
the photon sphere ϑ∞, its deviation from the one of the
Schwarzschild black hole δϑ∞, the angular separation s
between the first relativistic image and the packed others, its
deviation from the one of the Schwarzschild black hole δs,
the magnitude difference between the first relativistic image
and the packed others Δm and its deviation from the one of
the Schwarzschild black hole δΔm. Since the observables
have the same pattern for Sgr A* and M87*, one color bar
with two specific scales and units (if necessary) is used. The
dash-dotted lines mark the upper bound on q based on the
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(a)

(c)

(b)

(d)

(e) (f)

Fig. 8 Color-indexed ϑ∞, δϑ∞, s, δs, Δm and δΔm in the strong deflection gravitational lensing are shown for Sgr A* and M87* on DH (8). The
dash-dotted lines mark the upper bound on q based on the shadow of M87* observed by EHT (10)

shadow of M87* observed by EHT (10). On DH shown in
Fig. 8a, b, ϑ∞ ranges from about 20.7 to 26.6 µas for Sgr A*
and from about 15.5 to 19.9 µas for M87*, while its devi-
ation δϑ∞ varies from about −6.0 to 0 µas for Sgr A* and
from about −4.4 to 0 µas for M87*. As shown in Sect. 4.1,
ϑ∞ and the resulting δϑ∞ are independent on λ and decrease
with the charge q. Although the values of ϑ∞ are within the
ability of EHT, such a tiny δϑ∞ no more than 6 µas would
be currently impossible to detect by EHT and one would not
be able to distinguish the black-bounce-Reissner–Nordström
spacetime from the Schwarzschild black hole by δϑ∞. Based
on Fig. 8c, d, s ranges from about 33 to 225 nas for Sgr A*

and from about 25 to 168 nas, while its deviation δs changes
from about 0 to 192 nas for Sgr A* and from about 0 to
143 nas for M87*. As q and λ increase, s and δs become
bigger. Both s and δs are too small to resolve and detect for
current technology. Figure 8e, f demonstrate that Δm ranges
from about 4.1 to 6.8 mag and δΔm changes from −2.7 to
0 mag. Since neither Δm nor δΔm rely on the mass and the
distance of the lens, Sgr A* and M87* share exactly the same
these two observables. Both Δm and δΔm are well within
the current ability of photometry, whereas neither of them
can be detected due to the fact that the angular separation of
the first relativistic image s is too tiny to resolve.
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(c) (d)

(a) (b)

Fig. 9 Color-indexed ΔT2,1, δΔT2,1, η2,1 and δη2,1 in the strong deflection gravitational lensing are shown for Sgr A* and M87* on DH (8). The
dash-dotted lines mark the upper bound on q based on the shadow of M87* observed by EHT (10)

Figure 9 shows the differential time delay between the first
and second relativistic images ΔT2,1, its deviation from the
one of the Schwarzschild black hole δΔT2,1, the ratio of the
exponential term to the total time delay η2,1 and its deviation
from the one of the Schwarzschild black hole δη2,1. From
Fig. 9a, b, it can be seen that ΔT2,1 ranges from about 9.3
to 11.8 min for Sgr A* and from about 9.9 to 12.6 days for
M87*, while its deviation δΔT2,1 can reach −2.6 min for
Sgr A* and −2.7 days for M87*. The values of ΔT2,1 and
δΔT2,1 for M87* are within the current ability, but the insep-
arableness of the first and second relativistic images makes
them unreachable. Figure 9c, d display that η2,1 ranges from
about 1.5 to 6.2% and δη2,1 changes from 0 to 4.6% for both
Sgr A* and M87* because η2,1 and δη2,1 are independent on
the mass and the distance of the lens. Like the case of the
differential time delay, they are inaccessible as well due to
the tiny separation between the first and second relativistic
images.

In order to indicate the differences in the signatures of the
strong deflection gravitational lensing and evaluate the possi-
bility to distinguish these tidal/charged spacetimes, we com-
pare the observables for Sgr A* (left y-axes) and M87* (right
y-axes) by the black-bounce-Reissner–Nordström space-
time, the Reissner–Nordström black hole, the tidal Reissner–
Nordström black hole, the charged Horndeski black hole and

the charged Galileon black hole as shown in Fig. 10. The
left and right dash-dotted lines mark the lower and upper
bound on q based on the shadow of M87* observed by
EHT, see Eqs. (10) and (11). ϑ∞ for all these spacetimes
can reach the level of about 20–30 µas, while its difference
between them is no more than 10µas, see Fig. 10a. In fact, the
black-bounce-Reissner–Nordström spacetime, the Reissner–
Nordström black hole, the charged Horndeski black hole and
the charged Galileon black hole have nearly identical ϑ∞
for a given q, making them effectively indistinguishable.
Although the tidal Reissner–Nordström black hole can have
a bigger ϑ∞ due to its negative charge, such a difference
is still beyond the ability of EHT. Based on Fig. 10b, s for
these spacetimes and its difference between them for a given
q are less than 200 nas and a few tens of nas, respectively,
both of which are impossible to reach for the present tech-
niques. Figure 10c shows that Δm for these spacetimes are at
the level of several mag, and the difference between them is
smaller than 1 mag. Due to the inseparability of the first and
second relativistic images, it is infeasible to distinguish these
spacetimes by measuring it. Seen from Fig. 10d, we find that
ΔT2,1 for these spacetimes can reach about 15 min for Sgr
A* and about 15 days for M87*. The difference among the
black-bounce-Reissner–Nordström spacetime, the Reissner–
Nordström black hole, the charged Horndeski black hole and
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(a) (b)

(c)

(e)

(d)

Fig. 10 Comparisons of the observables in the strong deflection gravi-
tational lensing for Sgr A* (left y-axes) and M87* (right y-axes) by the
black-bounce-Reissner–Nordström spacetime (bbRN), the Reissner–
Nordström black hole (RN), the tidal Reissner–Nordström black hole
(TRN), the charged Horndeski black hole (CH) and the charged Galileon

black hole (CG). The left and right dash-dotted lines mark the lower
and upper bound on q based on the shadow of M87* observed by EHT,
see Eqs. (10) and (11). The horizontal dotted lines denote those values
for the Schwarzschild black hole

charged Galileon black hole for a given q is too tiny to tell.
According to Fig. 10e, η2,1 for all these spacetimes is no
more than 6.2%, and its difference between them for a given
q is less than about 2%. Since it is unable to resolve the first
and second relativistic images, neither ΔT2,1 nor η2,1 can be
used to distinguish these spacetimes.

In summary, we find that (1) it is possible to observe
the apparent size of the photon sphere ϑ∞; (2) it is impos-
sible for the current ability to detect any other observ-
ables in the strong deflection gravitational lensing due to

exceedingly small separation of the first and second rela-
tivistic images; and (3) it is also impossible to distinguish
the black-bounce-Reissner–Nordström spacetime from the
Schwarzschild black hole, the Reissner–Nordström black
hole, the tidal Reissner–Nordström black hole, the charged
Horndeski black hole and the charged Galileon black hole by
measuring observables in the strong deflection gravitational
lensing by Sgr A* and M87*.
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5 Conclusions and discussion

In this work, we investigate the weak and strong deflec-
tion gravitational lensing by the black-bounce-Reissner–
Nordström spacetime. For the scenario of the weak deflection
gravitational lensing, we find its lensing observables, such
as the angular positions, magnification and time delay of the
two lensed images. Taking Sgr A* as the lens, we assess
their observability and show that it is possible to measure the
angular separation, the angular difference, the fluxes differ-
ence, the centroid and the differential time delay between the
lensed images with current techniques. The black-bounce-
Reissner–Nordström spacetime might be distinguished from
the Schwarzschild black hole, the Reissner–Nordström black
hole, the tidal Reissner–Nordström black hole, the charged
Horndeski black hole and the charged Galileon black hole
by measuring the fluxes difference with a dedicated space
telescope as long as Sgr A* is in its quiescence. For the
case of the strong deflection gravitational lensing, we work
out its observables, for instance the apparent radius of the
photon sphere, the angular separation and the brightness dif-
ference between the first and the packed other images, and
the differential time delay between the first and second rel-
ativistic images. Using Sgr A* and M87* as the lenses, we
evaluate the possibility for measuring these observables and
detecting their deviations from those of the Schwarzschild
black hole. We demonstrate that it is possible to measure the
apparent size of the photon sphere. However, other observ-
ables and all of the deviations are far beyond the reach of
current technology. We also find that it is infeasible to distin-
guish the black-bounce-Reissner–Nordström spacetime from
the Schwarzschild black hole, the Reissner–Nordström black
hole, the tidal Reissner–Nordström black hole, the charged
Horndeski black hole and the charged Galileon black hole
by the strong deflection gravitational lensing of Sgr A* and
M87*; even so, we still obtain preliminary bounds on the
(dimensionless) charge based on the apparent size of M87*’s
photon sphere observed by EHT: 0 ≤ q ≤ 0.8144 for the
black-bounce-Reissner–Nordström spacetime, the Reissner–
Nordström black hole, the charged Horndeski black hole and
the charged Galileon black hole and −1.2198 ≤ q ≤ 0.8144
for the tidal Reissner–Nordström black hole.

Black holes are rotating and moving in the real Universe.
The EHT’s observation disfavors a non-rotating M87* [7].
As an extension of the black-bounce-Reissner–Nordström
spacetime by including the spin, the black-bounce-Kerr–
Newman spacetime can be interpreted as charged dust with
a nonlinear electrodynamics, or as Maxwell electrodynam-
ics with an anisotropic fluid [38,116]. A study on its grav-
itational lensing will be our next move. Before proceeding,
we might make a well-educated guess that its gravitational-
lensing characters would be distinctly different from those
given in this work because its spin might shift and distort

the caustic, which is already known in other cases [117–
135]. Moreover, the interpretation of the EHT’s observation
on M87* relies heavily on the general relativistic magneto-
hydrodynamics of plasma around the Kerr black hole [11]
with many untested assumptions about accretion flow and
emission physics [136]. It is hardly possible to tell whether
any detected deviation would become from a new space-
time or from the violation of these astrophysical assump-
tions. Although very challenging space-based interferome-
try would be demanded [137–139], the photon ring [140]
around M87* might provide a more robust test. Therefore,
we have to admit that we might not be able to constrain
the black-bounce-Reissner–Nordström spacetime and other
tidal/charged spacetimes based on the M87*’s photon sphere
self-consistently in the current stage, but the preliminary
bounds on them we given in this work might still be valid
at the leading order. Considering that it would not be easy
to distinguish the black-bounce-Reissner–Nordström space-
time from the Schwarzschild black hole and other various
spacetimes, the timelike geodesic motions around it, such as
precessing [141–147] and periodic [148–160] orbits, might
be another important way to understand and test it.
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