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Abstract We study the deflection of light by a magnetic
dipole field in the generalized Born–Infeld electrodynam-
ics. Using the effective index of refraction and the trajectory
equation based on geometric optics, we compute the weak
bending angle of light passing on the equator of the magnetic
dipole. In the limit where the classical Born–Infeld parame-
ter is infinite, the bending angle agree with the one computed
from the Euler–Heisenberg Lagrangian. We also compute the
bending angle using the geodesic equation of the effective
metric induced by a massive object with magnetic dipole. In
the massless limit the bending angle agrees with the compu-
tation using the trajectory equation. We apply the result to
magnetars to estimate the order of magnitude for the bending
angle.

1 Introduction

The classical Born–Infeld action was introduced to solve the
infinite self-energy of a point charge in Maxwell’s electrody-
namics [1,2]. Regardless of the existence of classical Born–
Infeld electrodynamics, in the strong field regime, the non-
linear electrodynamic effects emerge from the vacuum polar-
ization of quantum electrodynamics. The one-loop effective
action is known as the Euler–Heisenberg Lagrangian [3,4].
In the nonlinear electromagnetic theory, the speed of light in
the presence of strong electric or magnetic field background
is not constant and depends on the field strengths. In the
classical Born–Infeld theory, the electric field strength that
the nonlinear effect becomes significant is estimated of the
order 1020 V/m [5] corresponding to magnetic induction of
the order 1011 T. In quantum electrodynamics, the relevant
field strength is Bc = m2

ec
2/eh̄ � 4.4 × 109 T [4].

There have been many ground laboratory experiments
to observe the quantum electrodynamic nonlinearity [6–8].
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However, at strong field strengths unaccessible on Earth, it
seems that charged or magnetized astronomical objects might
give a deeper understanding of nonlinear electrodynamics.
Various nonlinear electrodynamic models are adopted to
many topics of astrophysics and cosmology [9–12]. Interests
in astrophysical compact objects with extreme electromag-
netic field are increasing, especially, in charged black holes
and magnetars.

In geometric optics a light ray passing regions with
nonuniform index of refraction bends towards higher index
of refraction. The light ray passing the massive astronomi-
cal objects also bends by the general relativistic effect. The
path of light is described by the geodesic equation. The light
bending by the gradient in the gravitational field of a massive
object known as the gravitational lensing is a very useful tool
in astronomy and astrophysics. When the light ray is passing
not close to the compact objects, the deflection is small and
one can compute the bending angle in weak field approxima-
tion [13]. If the compact objects have strong electric or mag-
netic field, the path of light is also affected by the nonlinear
interaction between the light and the strong background field.
One can compute the trajectory from the geodesic equation
including both mass and charge (or magnetic dipole). If one
focuses on the bending by purely nonlinear electromagnetic
effect, one can compute the bending angle in the geometric
optics formalism [14–16].

In the previous work of the author, the deflection angle
of light by Einstein–Born–Infeld black hole was computed
in the weak bending limit [17]. The key point is that, due
to nonlinear electrodynamic effects, photons do not propa-
gate along the null geodesics of the background spacetime.
They propagate along the so-called effective geodesics [18–
20]. Magnetic fields are more useful than electric fields in
many areas of high energy astrophysics, for example, mag-
netized neutron stars. The purpose of this paper to compute
the bending angles of light induced by strong magnetic field
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of magnetars in the generalized Born–Infeld electrodynam-
ics.

The organization of the paper is as follows. In Sect. 2,
we begin by briefly reviewing the generalized Born–Infeld
action and the equations of motion. We consider the propa-
gation of light in the magnetic field background induced by
a magnetic dipole. Using the trajectory equation based on
geometric optics, we compute the weak bending angle when
the light is passing on the equatorial plane of the magnetic
dipole. In the limit where the classical Born–Infeld parame-
ter is infinite we compare the bending angle with the result
obtained from the Euler–Heisenberg Lagrangian. In Sect. 3,
we consider a massive object possessing a magnetic dipole
moment to see the general relativistic effects. From the static
axially symmetric solution for the metric and the electromag-
netic four-potential, we compute the bending angle using the
effctive geodesics on the equatorial plane. In the massless
limit, we show that the result agrees with the bending angle
computed from the trajectory equation. In Sect. 4, as a pos-
sible application of the result to astrophysics, we estimate
the order of magnitude of the bending angle for magnetars.
Finally in Sect. 5, we summarize and discuss our results.

2 Bending angle using geometric optics

The classical Born–Infeld action is described by the
Lagrangian

LBI = β2
0

(
1 −

√
1 + 2S

β2
0

− P2

β4
0

)
, (1)

where β0 is the classical Born–Infeld parameter characteriz-
ing the possible maximum value of the field strength, S and
P are Lorentz-invariants defined by

S = 1

4
FμνF

μν = 1

2
(B2 − E2), P = 1

4
Fμν F̃

μν = E · B,

(2)

Fμν = ∂μAν − ∂ν Aμ is the field strength tensor, and F̃μν =
1
2εμναβFαβ is its dual tensor. In the limit β0 → ∞ the above
action reduces to the Maxwell action. Here we use the unit
system with 1/4πε0 = μ0/4π = h̄ = c = 1.

In quantum electrodynamics the one-loop correction of
the vacuum polarization also induces non-linear terms, the
Euler–Heisenberg Lagrangian,

LEH = 8

45

α2

m4
e
S2 + 14

45

α2

m4
e
P2. (3)

As mentioned before the classical Born–Infeld parameter β0

is estimated much larger than Ec. Because the classical Born–

Infeld Lagrangian is the same as the Maxwell Lagrangian for
large β0, the quantum correction of the classical Born–Infeld
electrodynamics to the leading order would be the same as
the Euler–Heisenberg Lagrangian. Thus, the effective action
of the generalized (classical + quantum) Born–Infeld elec-
trodynamics can be written as [21]

L = β2

⎛
⎝1 −

√
1 + 2S

β2 − P2

β2γ 2

⎞
⎠ , (4)

where β and γ are defined as

1

β2 ≡ 1

β2
0

+ 16

45

α2

m4
e
,

1

γ 2 ≡ 1

β2
0

+ 28

45

α2

m4
e
. (5)

The equations of motion, obtained from the Euler–Lagrange
equation and the Bianchi identity, are

∂μ

[
1

R
(
Fμν − P

γ 2 F̃
μν

)]
= 0, (6)

∂μ F̃
μν = 0, (7)

where

R =
√

1 + 2S

β2 − P2

β2γ 2 . (8)

The propagation of light in a static uniform magnetic field,
assuming that the background magnetic field (B̄) is much
stronger than the photon’s field and is perpendicular to the
direction of photon, can be described by the effective index
of refraction given by [21]

n⊥ =
(

1 + B̄2

β2

) 1
2

, n‖ =
(

1 + B̄2

γ 2

) 1
2

, (9)

where n⊥ (n‖ ) is for the light mode polarized perpendicular
(parallel) to the background magnetic field. Assuming that
the photon is traveling in the x-direction and B̄ is in the z-
direction, n⊥ = ny and n‖ = nz . Note that in the classical
Born–Infeld theory where β = γ the two indices of refrac-
tion are the same. However, they are different including the
quantum correction so that vacuum birefringence effect is
relevant.

Because the effective index of refraction depends on the
background field, the light ray can be bent continuously when
the background field is non-uniform. We consider one of the
simple cases to compute the bending angle within the geo-
metric optics formalism. In the weak bending approximation
where the impact parameter is large compared with the radius
of the lensing object, the trajectory equation based on Snell’s
law can be written as [15,16]
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du
ds

= 1

n
(u × ∇n) × u, (10)

where s is the differential distance ds = |d	r| =√
dx2 + dy2 + dz2 and u = dr/ds is the unit vector in the

direction of light. It has been confirmed that the bending
angle computed from this trajectory equation exactly agrees
with the one obtained from the eikonal equation [14,16].

As far as the index of refraction is close to one, Eq. (10)
can be written as

du
ds

= 1

n
(u0 × ∇n) × u0, (11)

whereu0 is the direction of the incoming light. When the light
ray is coming from x = −∞ and moving to x = +∞ with
impact parameter b, u0 = (1, 0, 0), the trajectory equation
in the leading order can be written as

d2x

ds2 = 0,
d2y

ds2 = 1

n

∂n

∂y
,

d2z

ds2 = 1

n

∂n

∂z
. (12)

The first equation gives ds = dx and we have

d2y

dx2 = 1

n

∂n

∂y
,

d2z

dx2 = 1

n

∂n

∂z
. (13)

We will use Eq. (13) to compute the bending angles of light
for the effective indices of refraction given by Eq. (9). If we
take ϕ as the angle between u and the x axis, the slope of
the trajectory is y′ = dy/dx = tan ϕ � ϕ. Then the bending
angle can be obtained by integration


ϕ = y′(∞) − y′(−∞). (14)

Now we consider the bending of light by a magnetic
dipole. The magnetic induction induced by a magnetic dipole
m, located at the origin, is

B̄ = 3(m · r)r
r5

− m
r3 . (15)

Contrary to the electric field by a Coulomb charge which
is isotropic, the magnetic induction by a magnetic dipole is
anisotropic. So the bending angle depends on the orientation
of magnetic dipole relative to the incoming light ray. For
simplicity of computation, we consider the simple case when
the light ray is passing in the equatorial plane of the magnetic
dipole (Fig. 1).

Taking the direction of magnetic dipole as the z-axis m =
μẑ, the magnetic induction on the equator is given by

B̄ = − μ

r3 ẑ, (16)

Fig. 1 Schematic of light bending when a light ray passes on the equa-
torial plane of a magnetic dipole

where r = √
x2 + y2. The indices of refraction can be writ-

ten as

n⊥ =
(

1 + μ2

β2r6

) 1
2

, n‖ =
(

1 + μ2

γ 2r6

) 1
2

. (17)

Because B̄ = B̄(x, y) on the equator, the index refraction
does not depend on the coordinate z. Thus, there is no bending
in the z-direction from Eq. (13). The bending angle in the y-
direction for the perpendicular mode can be computed from

y′′ = −3
μ2

β2

y

r8

1

1 + μ2

β2
1
r6

. (18)

Because the slope dy/dx = y′ of the trajectory y(x) is the
direction of light, the boundary conditions that the incom-
ing ray with impact parameter b is in the direction of +x-
direction can be written as

y(−∞) = b, y′(−∞) = 0. (19)

Integrating Eq. (18) with the boundary conditions, the bend-
ing angle obtained from Eq. (14) is


ϕ⊥ =
∫ ∞

−∞
y′′dx

= −3π

[
1 − 1

3

1√
1 + a2

−
√

2

3

1

(1 − a2 + a4)1/4

(
1 + 1 − a2/2√

1 − a2 + a4

)1/2 ]
,

(20)
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where a is defined as

a ≡
(

μ

βb3

)1/3

. (21)

The bending angle for the parallel mode can be obtained by
replacing β with γ in Eq. (18).

Let us check whether Eq. (20) reduces to the bending angle
computed from the Euler–Heisenberg Lagrangian when the
classical Born–Infeld parameter becomes infinite. By series
expansion for small a, we obtain


ϕ⊥ = −15π

16

μ2

β2b6 + · · · . (22)

The negative sign means that the bending occurs toward the
magnetic dipole. In the limit β0 → ∞, replacing 1/β2 with
16α2/45m4

e from Eq. (5), the leading order term becomes


ϕ⊥ = −π

3

α2

m4
e

μ2

b6 . (23)

For the parallel mode we obtain 
ϕ‖ = (7/4)
ϕ⊥. This
result exactly matches the bending angle obtained from the
Euler–Heisenberg Lagrangian [14,16].

3 Bending angle using geodesic equation

In the previous section, we computed the bending angle by a
magnetic dipole using the trajectory equation, which is based
on geometric optics. If we are interested in the light bending
by a compact astronomical object with strong magnetic field
we have to consider the general relativistic effect. The bend-
ing of light by an electrically charged Born–Infeld black hole
was computed using the geodesic equation [17]. In the limit
where the mass of black hole is going to zero, it was con-
firmed that the bending angle agree with the one computed
from the geometric optics formalism. Here we compute the
bending angle of light by a compact object with mass and
magnetic dipole moment.

For simplicity and comparision with the result in the pre-
vious section, we consider the light bending in the equator of
the static magnetic dipole. We start from the Einstein–Born–
Infeld action

S =
∫

d4x
√−g

(
R

16π
+ 1

4π
L

)
, (24)

where L is given by Eq. (4). We use the unit system with
1/4πε0 = μ0/4π = G = c = 1. The equations of motion
can be obtained by varying the action with respect to gμν

and Aμ with the Bianchi identity. Since we consider only the
background magnetic component of Fμν is nonzero (B̄ �=

0, Ē = 0), there is no contribution from the invariant P . In
this case the equations of motion are given by

Rμν − 1

2
gμνR = 8πTμν, (25)

∇
⎛
⎝ Fμν√

1 + 2S
β2

⎞
⎠ = 0, (26)

where Tμν is the energy momentum tensor given by

Tμν = 1

4π

⎡
⎣β2

(
1 −

√
1 + 2S

β2

)
gμν + FμαFα

ν√
1 + 2S

β2

⎤
⎦ . (27)

These field equations have axially symmetric solution for
the magnetic dipole moment 	μ = μẑ at the center. Because
of the axial symmetry, it is convenient to use the cylindrical
coordinates, xμ = (t, r, z, φ), with the following ansatzs for
the metric and the electromagnetic four-potential

ds2 = gμνdx
μdxν

= f (r, z)dt2 − g(r, z)(dr2 + dz2) − r2h(r, z)dφ2,

(28)

Aμ = (0, 0, 0,−ψ). (29)

The power series solutions in powers of gravitational constant
was obtained by Martin and Pritchett [22]. Up to the first order
in the gravitational constant, the solutions are given by

f (r, z) = 1 − 2GM

X
+ Gμ2z2

X6 , (30)

g(r, z) = 1 + 2GM

X
− Gμ2(r4 − 6r2z2 + 2z4)

2X8 , (31)

h(r, z) = 1 + 2GM

X
− Gμ2z2

X6 , (32)

ψ(r, z) = μr2

X3

(
1 + GM

2X

)
, (33)

where X is the spherical distance X = √
r2 + z2, M is the

mass and we recover G to show the order of powers of the
gravitational constant. The quantum electrodynamic correc-
tion to first order for the magnetic potential, in a flat space-
time background, has been computed in spherical polar coor-
dinates [23]. Similarly the higher order corrections for the
magnetic four-potential ψ(r, z), in curved spacetime back-
ground, can also be considered in cylindrical coordinates.

In the linear Maxwell electrodynamics coupled to gravity,
photons and gravitons follow the same null geodesic made
by mass and magnetic dipole. However, in the nonlinear elec-
trodynamics coupled to gravity, the null geodesic of the elec-
tromagnetic wave is different from the null geodesic of the
gravitational wave due to the nonlinear coupling of the elec-
tromagnetic wave to the background electromagnetic field.

123



Eur. Phys. J. C (2022) 82 :485 Page 5 of 8 485

Fig. 2 Bending angle 
ϕ of light ray on the equatorial plane of the
magnetic dipole. The distance of the closest approach r0 is the minimum
of the radial coordinate r , b is the impact parameter and rs is the radius
of the compact object with magnetic dipole

The modification of light cone condition can be represented
by [18,24,25]

(
gμν + 4

LSS

LS
FμαFν

α

)
kμkν = 0, (34)

where kμ is the 4-vector of the propagating photon and LS

denotes the derivative of L with respect to S. The effective
metric that makes kμ a null vector is

g̃μν = gμν + 4
LSS

LS
FμαFν

α. (35)

Substituting Eqs. (28) and (29) into Eq. (35), up to the
quadratic order in Born–Infeld parameter, we obtain

g̃μν =

⎛
⎜⎜⎝
g00 0 0 0
0 g11(1 − ψ2

r /β2r2) ψrψz/β
2r2 0

0 ψrψz/β
2r2 g22(1 − ψ2

z /β
2r2) 0

0 0 0 −g33[1 − (ψ2
r + ψ2

z )/β
2r2]

⎞
⎟⎟⎠ , (36)

where ψr = ∂ψ/∂r and ψz = ∂ψ/∂z.
The trajectory of weak bending on the equatorial plane

(z = 0) can be computed from the following effective metric,
up to the first order in G and second order in μ,

ds2
eq = B(r)dt2 − A(r)dr2 − C(r)dφ2, (37)

where

B(r) = 1 − 2GM

r
, (38)

A(r) = 1 + 2GM

r
− Gμ2

2r4 + μ2

β2r6 , (39)

C(r) = 1 + 2GM

r
+ μ2

β2r6 . (40)

Following the notation and procedure in [13], the bending
angle of light coming from infinity can be obtained from
(Fig. 2)


ϕ = 2|ϕ(r0) − ϕ∞| − π, (41)

whete r0 is the distance of closest approach and

ϕ(r0) = ϕ∞ +
∫ ∞

r0

[
A(r)

C(r)

]1/2 [
C(r)B(r0)

C(r0)B(r)
− 1

]−1/2

dr.

(42)

Substituting Eq. (37) into Eq. (42), we have

ϕ(r0) − ϕ∞ =
∫ 1

0

dx√
1 − x2

×
[

1 + GM

r0

1

1 + x
− Gμ2

4r4
0

x4

+ μ2

2β2r6
0

(1 + x2 + x4) + · · ·
]

, (43)

where x = r0/r . The integral yields

ϕ(r0) − ϕ∞ = π

2
+ 2GM

r0
− 3π

64

Gμ2

r4
0

+ 15π

32

μ2

β2r6
0

+ · · · .

(44)

Inserting Eq. (44) in Eq. (41), we have


ϕ = 4GM

r0
− 3π

32

Gμ2

r4
0

+ 15π

16

μ2

β2r6
0

. (45)

The first two terms having the gravitational constant come
from the general relativistic effects while the third term
reflects the nonlinear electrodynamic effects. The relative
sign of the second term is different from the first and the
third terms. This means that the contribution of the mag-
netic dipole to the total bending angle by nontrivial geodesic
is repulsive while the contribution by nonlinear electrody-
namic effect is attractive. For the mode polarized parallel to
the magnetic field (z-mode), β is replaced by γ in Eq. (45).
In the weak deflection limit where r0 � b, the third term in
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Eq. (45) exactly matches the leading order computed from
geometric optics Eq. (22).

4 Order-of-magnitude estimation for magnetars

The strongest magnetic field in the present observed uni-
verse is observed at highly magnetized neutron stars known
as magnetars. The magnetic field on the surface of magne-
tars is estimated to reach up to the order 1011 T [26,27]. Let
us apply the results to magnetars for the order-of-magnitude
estimation. For this purpose we decompose Eq. (45) accord-
ing to the order of the impact parameter b as


ϕ = 
ϕ1 − 
ϕ2 + 
ϕ3, (46)

where


ϕ1 = 4GM

b
, 
ϕ2 = 3π

32

Gμ2

b4 , 
ϕ3 = 15π

16

μ2

β2b6 . (47)

From Eq. (5), in the limit β0 → ∞, 
ϕ3 can be written as


ϕ3 = π

3

α2

m4
e

μ2

b6 . (48)

Restoring all normalized units, 
ϕ1,
ϕ2 and 
ϕ3 can be
written as


ϕ1 = 4GM

c2b
, (49)


ϕ2 = 3π

32

G

c4

μ0

4π

μ2

b4 , (50)


ϕ3 = π

3

α2

m4
e

(
h̄3ε0

c3

) (μ0

4π

)2 μ2

b6 . (51)

It is more useful to express 
ϕ2 and 
ϕ3 in terms of the
magnetic induction on the surface of the magnetar and QED
critical field strength as


ϕ2 = 3π

32

G

c4

4π

μ0
B2
s
r6
s

b4 , (52)


ϕ3 = α

12

B2
s

B2
c

r6
s

b6 , (53)

where rs is the radius of the magnetar, Bs = (μ0/4π)(μ/r3
s ),

Bc = m2
ec

2/eh̄ = 4.4 × 109 T, and α = e2/4πε0h̄c.
For the order-of-magnitude estimation for magnetar, we

consider the mass and radius of the typical neutron star, M =
1.4Msun = 2.8 × 1030 kg, rs = 10 km, and the maximal
surface magnetic field Bs = 1011 T. For these values the
Schwarzschild radius is about 4.2 km. The possible maximal

bending angle is obtained from a light ray glancing (b � rs)
the equator of the magnetar as


ϕ1 = 8.30 × 10−1 rad,


ϕ2 = 2.42 × 10−8 rad,


ϕ3 = 3.14 × 10−1 rad. (54)

In Table 1, we list the numerical estimations of 
ϕ1, 
ϕ2 and

ϕ3 for certain values of impact parameter. Near the equator
of the magnetar, the bending caused by nonlinear electrody-
namic effect 
ϕ3 is comparable to gravitational lensing by
mass 
ϕ1. Because 
ϕ1 ∝ b−1 while 
ϕ3 ∝ b−6, we can
neglect the lensing by nonlinear electrobynamic effect away
from the magnetar. For example, at b = 5rs , we have


ϕ1 = 1.67 × 10−1 rad,


ϕ2 = 3.87 × 10−11 rad,


ϕ3 = 2.01 × 10−5 rad. (55)

To see the effect of the finiteness of the classical Born–
Infeld parameter, we plot the bending angle |
ϕ⊥| given
by Eq. (20) and the bending angle 
ϕ3 given by Eq. (53),
corresponding to Euler–Heisenberg limit, compared with the
gravitational bending angle 
ϕ1 in Fig. 3. We also plot |
ϕ⊥|
and the total bending angle 
ϕ(� 
ϕ1 + 
ϕ3) in Eq. (45)
to see the dependence on mass in Fig. 4.

Here we consider the bending of light by magnetic dipole
for the simple case when the light ray is passing on the equa-
tor. For a magnetic dipole located at the origin with arbitrary
orientation, the bending can occur in both the horizontal and
the vertical directions. Taking the direction of the incoming
light as x-axis, the bending angle of each direction in the
Euler–Heisenberg electrodynamics can be written in terms
of the directional cosines α̂ = μ̂ · x̂, β̂ = μ̂ · ŷ, γ̂ = μ̂ · ẑ
as [16]

Table 1 Numerical estimation of each bending angles in Eq. (47) for
certain values of rs ≤ b ≤ 10rs with M = 1.4Msun, rs = 10 km and
Bs = 1011 T

b/rs 
ϕ1 
ϕ2 
ϕ3

1 8.30 × 10−1 2.42 × 10−8 3.14 × 10−1

2 4.15 × 10−1 1.51 × 10−9 4.91 × 10−3

3 2.77 × 10−1 2.99 × 10−10 4.31 × 10−4

4 2.08 × 10−1 9.45 × 10−11 7.67 × 10−5

5 1.67 × 10−1 3.87 × 10−11 2.01 × 10−5

6 1.38 × 10−1 1.87 × 10−11 6.73 × 10−6

7 1.19 × 10−1 1.01 × 10−11 2.67 × 10−6

8 1.04 × 10−1 5.91 × 10−12 1.20 × 10−6

9 9.22 × 10−2 3.69 × 10−12 5.91 × 10−7

10 8.30 × 10−2 2.42 × 10−12 3.14 × 10−7
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Fig. 3 The plots of 
ϕ1 (solid), |
ϕ⊥| (dashed), and 
ϕ3 (dotted) for
β0 = 5 × 1011 T with the same M , rs and Bs as in Table 1. As β0
becomes larger the dashed curve comes closer to the dotted curve

Fig. 4 The plots of |
ϕ⊥| (dashed) and 
ϕ (solid) for varying mass.
Here M = 2Msun, 1.4Msun, Msun (top to bottom) and β0 = 5 × 1011 T
with the same rs and Bs as in Table 1. As M → 0, the solid curve
approaches to the dotted curve of Fig. 3, corresponding to the bending
by Euler–Heisenberg Lagrangian


ϕ3,y = π

3 · 27 a
α2

m4
e

(
h̄3ε0

c3

)(μ0

4π

)2 μ2

b6 (15α̂2 + 41β̂2 + 16γ̂ 2),

(56)


ϕ3,z = 5π

3 · 26 a
α2

m4
e

(
h̄3ε0

c3

)(μ0

4π

)2 μ2

b6 β̂γ̂ , (57)

where a = 8 (14) for the perpendicular (parallel) polazation.

5 Conclusion

We consider the bending of light when it passes in the vicinity
of a compact astrophysical object with strong magnetic field
in the generalized Born–Infeld electrodynamics. To be spe-
cific, we compute the weak bending angle when the light is
passing in the equatorial plane of the magnetic dipole. First
we compute the bending angle using the trajectory equa-

tion based on geometric optics and show that it corresponds
with the result from the Euler–Heisenberg Lagrangian in the
appropriate limit.

Then we consider the light bending by a massive object
possessing magnetic dipole moment for the general relativis-
tic computation. We compute the bending angle using the
geodesic equation of the static axially symmetric solution
for the metric and the four-potential. We obtain the bend-
ing angle as a function of impact parameter. In the mass-
less limit, we confirm that the result agrees with the bending
angle obtained from the trajectory equation. As an applica-
tion to astrophysics, we estimate the order of magnitude of
the possible maximum bending angle for magnetars. When
the impact parameter is large, the bending by mass term dom-
inates. However, for magnetars with surface magnetic field
of the order 1011 T, the bending by nonlinear electromag-
netic effects can be comparable to the bending by mass term
when the ray is passing close to the magnetar. There are other
nonlinear electrodynamic consequences by such extremely
intense field that can be comparable to those by mass. For
example, it has been shown that the nonlinear electrodynamic
shift from Euler–Heisenberg dipole for strong enough back-
ground field can reach values that are of the order of the
gravitational redshift [28].

As mentioned before the classical Born–Infeld parame-
ter β is estimated much larger than the critical field of QED
Bc. Then the nonlinear electrodynamic bending of light is
essentially the same as the bending by Euler–Heisenberg
Lagrangian. Because the bending angle obtained from
the Euler–Heisenberg Lagrangian is polarization-dependent
while the bending angle from general relativistic effect 
ϕ1

is isotropic, birefringence of 
ϕ3 may play an important role
for observation.

Recently astronomers, using the Event Horizon Telescope,
have observed the signature of magnetic field at black holes
[29]. If the magnetic field of black hole is intrinsic and
strong enough, although this violates the no-hair theorem,
one might consider the light bending by nonlinear electrody-
namic effects. Close to the event horizon where the bending
is strong one should compute the trajectory numerically from
the geodesic equation. Not close to the event horizon where
the bending is weak the same formalism used in this paper
can be applied to compute the bending angle. We leave the
extensions of our results to future work.
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