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Abstract In this paper, we aim to investigate the dynamics
of magnetized particles around magnetically and electrically
charged static black holes (BHs) in Einstein–Maxwell-scalar
theory. First, we explore the possible values of EMS parame-
ters for which the spacetime geometry represents a BH space-
time. Since there is no interaction between the electric field
of the electrically charged BH and the proper magnetic field
of the magnetized test particle. Therefore, we consider BH
immersed in an external asymptotically uniform magnetic
field. We explore the properties of an external magnetic field
around a charged EMS BH. Moreover, we also explored the
effects of BH charge and EMS theory parameters on par-
ticle’s energy and angular momentum in the circular stable
orbits, together with the radius of innermost stable circu-
lar orbits. All the obtained results are compared with the
acquired results of the Reissner–Nordström BH. Finally, we
investigate the behaviour of the center of mass energy of col-
liding magnetized and electrically charged particles around
the EMS BH.

1 Introduction

The spacetime geometry of Reissner–Nordström black holes
(RN BH) is an asymptotically flat, static solution of the
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Einstein–Maxwell equations, describing a non-rotational,
charged spherical BHs and/or naked singularities [1]. These
spacetimes define gravitational source comprise both mag-
netic, and electric charges. For the first time, these space-
times were introduced by Plebanski and Demianski [2], a
while later revisited by Griffiths and Podolský in Ref. [3].
Theoretically, they outline stars or BHs and can additionally
be described by acceleration, angular momentum, the NUT
charge, and a cosmological constant. The authors of Ref. [4]
established a higher dimensional concept of the RN BH.
Besides, Turimov et al. [5] investigated test particle dynamics
and curvature structure near BHs in the Einstein–Maxwell-
scalar (EMS) theory.

The existence of magnetic fields has an extremely solid
impact on charged matter and on the process of accretion. It is
well known that BHs have an accretion disk inaugurated due
to a conducting plasma and its dynamics can originate uni-
form magnetic field. In the scenario of Keplerian accretion
disks [6], the role of local magnetic fields is much essen-
tial to the accretion’s viscosity mechanism because of the
magnetorotational instability [7]. The electromagnetic field
of a BH could possess an inner origin, hence charged par-
ticle motion becomes entirely regular in the background of
Kerr–Newman BH [8]. Eatough et al. [9] found that the exis-
tence of strong magnetic fields near supermassive BH in the
Galaxy center encounters no connection with the accretion
disk. Kološ et al. [10] deduced that BHs can be immersed in
external magnetic fields comprising complicated nature near
horizons. BHs on the equatorial plane of a magnetar can be
immersed in a homogeneous magnetic field if the magnetar
is situated at an enough far distance [11,12].
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Particle dynamics around BHs are of ample interest and
can be used to investigate BH’s physical properties, previ-
ously explored by numerous researchers [13–20]. The ana-
lytical, as well as numerical solution of geodesics equation,
can be obtained. They can dispatch important information
and reveal the prolific formation of background geometry.
Hagihara [21] initiated the analytical solution of geodesics.
Grunau and Kagramanova [1] by considering the RN space-
time studied analytical solutions of magnetically and electri-
cally charged test particles. Chandrasekhar [22] was among
the pioneers who investigate the geodesics in the spacetime
of Schwarzschild, RN, and Kerr BHs. The circular geodesics
can also be used to understand and explore BH’s quasinormal
modes [23]. One can easily integrate and separate the elec-
trically charged particle motion [24], which has been widely
explored by many researchers [25–29]. Particles collision in
ergoregion and the motion of particles are respectively inves-
tigated in the braneworld Kerr and Kerr–Newman–Kasuya
BHs [20,30,31]. Recently, by studying the RN spacetime,
it is found that both the external magnetic field and electric
charge mimic BH’s magnetic charge [32].

The study of the dynamics of test magnetized particle
motion around compact gravitational objects is one of the
most important specific issues in relativistic astrophysics to
testing gravity theories in both strong and weak limits. This
might also be useful to discover novel techniques for under-
standing gravitational and electromagnetic interactions in the
strong and weak field regimes. For the first time, motion of
magnetized particles around Schwarzschild and rotating Kerr
BHs immersed in external asymptotically uniform external
magnetic fields have been investigated by de Felice and Sorge
in Refs. [33,34]. In past years, several studies investigated
the characteristics of electromagnetic fields and their impact
on the magnetized particles’ dynamics in various gravity
theories [35–40]. Recently, Bokhari et al. investigated the
influence of test magnetized particles on deformed electri-
cally and magnetically charged RN BH [41]. Additionally,
Refs. [42,43] have been studied the effect of modified gravity
(MOG) and γ -spacetime on the magnetized particle dynam-
ics.

In this work, we use signature (−,+,+,+) for the space-
time and geometrized unit system GN = c = 1. The Latin
indices run from 1 to, 3 and the Greek ones from 0 to 3. In
Sect. 2, we will revisit BH’s spacetime geometry. In Sect. 3,
our main focus will be to investigate magnetized particle
motion in EMS theory. Section 4, will explore some astro-
physical applications of the said BH. Section 5, is devoted
to the explorations of the center of mass energy in collisions
of magnetized and electrically charged particles around the
magnetically and electrically charged BHs. Finally, in Sect.
6, we discuss all the obtained results and findings with con-
cluding remarks.

2 Static BHs in Einstein–Maxwell-scalar theory

The spacetime around an electrically charged BH in EMS
gravity having total mass M and electric charge Q describes
by the following metric using spherical coordinates [44]:

ds2 = −U (r)dt2 + dr2

U (r)
+ f (r)

(
dθ2 + sin2 θdϕ2

)
, (1)

where the radial metric function is

U (r) = 1 − 2M

r
− λ

3
f (r) + βQ2

f (r)
, (2)

with

f (r) = r2
(

1 + γ Q2

Mr

)
. (3)

Here the dimensionless parameters β and γ come from the
EMS theory. Moreover, the λ parameter corresponds to the
cosmological constant (λ > 0 for de Sitter and λ < 0 for anti-
de Sitter spacetime). The metric (2) turns to Schwarzschild
BH for, λ = β = 0 and it reflects RN BH spacetime when
λ = γ = 0 and β = 1. In this work, we will consider the
case λ = 0.

Non-zero component of the electromagnetic four poten-
tials is

At = Q

r

[
γ − β

2

(
1 + r Q

f (r)

)]
. (4)

In Fig. 1, we demonstrate the dependence of radius of
event horizons from the BH charge at zero (top left panel),
positive (top right panel) and negative (bottom panel) values
of parameter γ for the different values of the parameter β. It
is seen that the critical value of the charge Q increases with
an increase of the parameter β. when γ = 0 the minimum
of outer horizon corresponding the critical value of the BH
charge, while positive (negative) values of β cause to increase
(decrease) of the minimum value of the outer horizon.

Next, we briefly describe the analyses of the minimum
radius of the outer horizon. We can find extreme values of
the BH charge and outer horizon using the following simple
conditions:

U (r) = U ′(r) = 0. (5)

Due to the complicated form of Eq. (5), below, we provide
an analysis of the solution graphically.

In Fig. 2, we present the dependence of minimum values
of the outer horizon from critical values of the BH charge
corresponding to the maximum values of γ for the different
values of the parameter β. It is seen from the figure that the
minimum radius of the outer horizon has a linearly decreasing
function of the critical BH charge, and its decreasing rate is
proportional to the parameter β.

In Fig. 3, we show minimum values of the event outer
horizon of the extremely charged EMS BH (left panel) and
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Fig. 1 Graphical behaviour of the event horizon radius is a function of the parameter γ for the different values of the parameter β

Fig. 2 The minimum radius of the outer horizon as a function of the
critical BH charge Qcr , at the corresponding upper values of the param-
eter γ for different values of the parameter β

Fig. 3 Critic values of BH charge and minimal radius of the event
horizon, as a function of the parameter γ for different values of the
parameter β

the extreme charge of the BH (right panel) as a function
of the parameter γ for different values of the parameter β.
Our numerical analysis shows that for all possible values of
parameter β the limits of the event horizon radius

lim
γ→∞ {(rh)min, Qextr} = {2M, 0}, (6)

Table 1 The extreme BH charge and maximum value of γ for different
values of the parameter β

β γmax Qextr/M

1/4 1/8 4

1/2 1/4 2
√

2

3/4 3/8 4/3

1 1/2 2

3/2 3/4 2
√

2/3

2 1
√

2

and,

lim
γ→γmax

{(rh)min, Qextr} = {0, Qextr}. (7)

The upper value of γmax (Qextr) increases (decreases) as the β

parameter increases (decreases). Below, we will show them
in table form. From Table 1, one can clearly understand the
relation between Qextr, γmax and β. Analytically, it can be
expressed as

γmax = β

2
, Qextr = 2√

β
. (8)

3 Magnetic fields around in Einstein–Maxwell-scalar
theory

In fact, the EMS BH spacetime is a Ricci flat out of the inner
horizon [5] and on the other hand, the BH charge does not
generate magnetic fields in the spacetime around the static
BH with respect to a proper observer. Thus, no electromag-
netic forces act on the magnetized particles by electrostatic
field around the BH in EMS theory and the effect of electric
charge of the BH can only be geometrically in the space-
time. In other words, in the above considerations, i.e. when
an electrically charged EMS BH is immersed in an exter-
nal asymptotically uniform magnetic field and one may use
the Wald method [45]. Consequently, we have the electro-
magnetic four-potential corresponding to the magnetic field
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around BH in the following form

Aφ = 1

2
B0 f (r) sin2 θ, (9)

where B0 is the asymptotic value of the external uniform
magnetic field measured by the proper observer. One may
easily calculate the non-zero components of the electromag-
netic tensor using the definition Fμν = Aν,μ − Aμ,ν in the
form

Frφ = B0

[
r + γ Q2

2M

]
sin2 θ, (10)

Fθφ = B0 f (r) sin θ cos θ, (11)

Frt = Q

r2

{
β

2

[
1 + 2Q

r f (r)

(
1 − Q2r

M f (r)

)]
− γ

}
. (12)

Non-zero components of the external magnetic fields around
an electrically charged BH in EMS theory, measured in the
frame of reference where the proper observer is located, are
expressed as

Bα = 1

2
ηαβσμFβσ wμ, (13)

where the four-velocity of the proper observer is denoted
by wμ. Furthermore, ηαβσγ represents the pseudo-tensorial
form of the Levi-Civita symbol εαβσγ with the following
mathematical expressions,

ηαβσγ = √−gεαβσγ , ηαβσγ = − 1√−g
εαβσγ . (14)

Here g is for spacetime metric (1) with g = − f (r)2 sin2 θ .
The Levi-Civita symbol is ε0123 = 1 with even permutations,
and for odd permutations, it is −1.

Br̂ = B0 cos θ, B θ̂ =
√
U (r)

f (r)
B0

(
r + γ Q2

2M

)
sin θ. (15)

The features of external magnetic field lines around EMS
BHs are presented in Fig. 4 for different values of the param-
eter γ at Q = 0.8. It is seen that when γ = 0 the magnetic
field is uniform and for negative and positive values of γ the
field is parabolic and hyperbolic like, respectively.

In Fig. 5 we demonstrate the radial dependence of normal-
ized values of the angular component of an external magnetic
field around the EMS BH to its asymptotic values, for differ-
ent values of parameters γ and β. It is observed from the fig-
ure that the angular component shows decreasing behaviour
with respect to increasing the γ parameter. A similar pattern
can also be seen for the case of the β parameter as well.

3.1 Equation of motion for magnetized particles

In this subsection, we consider the motion of magnetized par-
ticles with mass m, around the electrically charged EMS BH
immersed in an external asymptotically uniform magnetic

field. The equation for the motion of magnetized particles
describes by the following Hamilton–Jacobi equation (see
[33,46–49])

gμν ∂S
∂xμ

∂S
∂xν

= −
(
m − 1

2
DμνFμν

)2

, (16)

whereS is an action for the magnetized particle, and DμνFμν

is the product of polarization (Dμν) and electromagnetic field
tensors reflecting the interaction between the external and
proper magnetic field of magnetized particles with dipole
moment. The polarization tensor correspond to the magnetic
dipole moment of the magnetized particles, and it describes
by the following relation [33]:

Dαβ = ηαβσνuσ μν, Dαβuβ = 0, (17)

where μν and uν are the four-vector of magnetic dipole
moment and four-velocity of magnetized particles by the
fiducial comoving observer. The electromagnetic field tensor
can be decomposed through Fαβ by electric Eα and magnetic
Bα field components as

Fαβ = u[αEβ] − ηαβσγ u
σ Bγ . (18)

One can find the product of polarization and electro-
magnetic tensors taking into account the condition given in
Eq. (17) as

DμνFμν = 2μν̂Bν̂ = μB0B(r). (19)

Here μ2 = μîμ
î is the norm of the dipole magnetic moment

of magnetized particles and

B(r) =
√
U (r)

f (r)

(
r + γ Q2

2M

)
. (20)

To investigate the equatorial motion of dipolar magne-
tized particles in circular orbits around an electrically charged
BH in Einstein–Maxwell-scalar theory, we use the following
action for the motion of magnetized particles in the equatorial
plane around the BH which describes in the form

S = −Et + Lφ + Sr , (21)

that allow variables separation of the Hamilton–Jacobi equa-
tion. The equation for radial motion of magnetized particles
can be found as

ṙ2 = E2 − Veff(r;L), (22)

where the effective potential for the radial motion of magne-
tized particles has the following form:

Veff(r; b) = U (r)

(
[1 − bB(r)]2 + L2

f (r)

)
. (23)

In the above equation, L = L/m is the specific angular
momentum of magnetized particles and b = μB0/m is the
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Fig. 4 Magnetic field lines around an EMS BH for different values of the parameter γ . Here we fixed BH charge at Q/M = 0.8 and take β = 1

Fig. 5 Orthonormal angular component of the magnetic field around EMS BHs for different values of the parameters γ and β. Here we fixed the
BH charge as Q/M = 0.8

magnetic interaction parameter responsible for the interac-
tion between the dipole moment of magnetized particles and
the external magnetic field. On the other hand, the effective
potential is also a function of the parameters Q, β, γ, and λ.

In real astrophysical cases, when exploring the dynamics
of a neutron star with the magnetic dipole moment μ =
(1/2)BNSR3

NS, is treated as a magnetized particle, orbiting
around an SMBH at the center of a galaxy to be as EMS
BH. In the presence of the external magnetic fields around
the EMS SMBH, the magnetic coupling parameter b can be
expressed in the following form, including the parameters of
the neutron star and the external magnetic field value around
the SMBH,

b = BNSR3
NSBext

mNS
� π

103

(
BNS

1012G

) (
Bext

10G

)

×
(

RNS

106cm

)3 (
mNS

1.4M�

)−1

. (24)

We show radial dependence of the effective potential of
radial motion of test magnetized and neutral particles around
electrically charged EMS BH in Fig. 6 by varying γ, β, and
b parameters. It is assumed that the BH is immersed in an
external asymptotically uniform magnetic field and the BH
charge is Q/M = 1.2 and angular momentum is taken as
L2/M2 = 19. It can be observed that in the absence of the
external magnetic field and/or magnetic moment of the par-

Fig. 6 Radial dependence of effective potential for the radial motion
of magnetized particles around electrically charged BHs in EMS the-
ory immersed in an external magnetic field at various values of the
parameters γ, β and b

ticle, the maximum in the effective potential increase as the
parameter β increase, while the orbits where the effective
potential takes the maximum shifts towards the central BH,
meanwhile, positive values of γ cause a decrease in the max-
imum. it is also seen that at the distances about ∼ 10M from
the BH, the effects of EMS parameters weakens, being almost
the same as it is around the Schwarzschild BH. However, the
magnetic interaction forces to decrease the effective potential
everywhere.

The stability of circular orbits of test particles around axi-
ally symmetric BHs can be described using the following
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general condition:

∂r Veff(r;L) = 0. (25)

The possible values of the angular momentum of the magne-
tized corresponding to stable circular orbits around the BHs
can be found using the solution of Eq. (25) and we get,

L2 = f (r)2 [1 − bB(r)]

f (r)U ′(r) −U (r) f ′(r)
× {

2bU (r)B′(r) − [1 − bB(r)]U ′(r)
}
. (26)

Immediately, one may obtain the energy of the particles
at the orbits by omitting Eq. (26) into Eq. (23) as (Fig. 7),

E2 = U (r)2[1 − bB(r)]
f (r)U ′(r) −U (r) f ′(r)

× {
2b f (r)B′(r) − [1 − bB(r)] f ′(r)

}
. (27)

Figure 7 demonstrates radial dependence of specific angu-
lar momentum and energy of test magnetized particles along
circular stable orbits around charged EMS BHs. It is seen
from this figure by the comparisons of grey, black-dotted and
blue dot-dashed lines which correspond to test neutral parti-
cles, the existence of BH charge and increase of the parameter
β cause decrease in the minimal values of both energy and
angular momentum, while the non-zero and positive values
of the parameter γ force to increase it. However, at larger
distances from the BH, the EMS parameters and BH charge
effects on the energy and angular momentum almost vanish.
Moreover, in the presence of magnetic dipole moment of
particles and/or the external magnetic field, i.e. the magnetic
interaction, the values of the energy and angular momentum
sufficiently decrease even as far from the central objects.

In order to find the radius of innermost stable circular
orbits’ (ISCOs) of magnetized particles around electrically
charged EMS BHs in the presence of the external magnetic
field can be found using the general condition ∂rr Veff(r;L).
Here, we use Eq. (26) as the particle’s angular momentum
L. After some algebraic calculations, one can immediately
obtain the following large equation that can help to find the
ISCO radius:

2U (r) [1 − bB(r)] f ′(r)2
[
2bU (r)B′(r) + [1 − bB(r)]

×U ′(r)
]

+ f (r)
(

2bU (r)2
{
(bB(r) − 1)B′(r) f ′′(r)

+ f ′(r)
{
B′′(r) − b

[
B(r)B′′(r) + B′(r)2

]})

+2 [1 − bB(r)]2 f ′(r)U ′(r)2 +U (r) [1 − bB(r)]2

× [
f ′′(r)U ′(r) − f ′(r)U ′′(r)

] }
+ 2b f (r)2

×
{

2(bB(r) − 1)B′(r)U ′(r)2 +U (r)
[

[1 − bB(r)]B′(r)

×U ′′(r) +U ′(r)
(

[1 − bB(r)]B′′(r) + bB′(r)2
) ]}

≥ 0.

(28)

In fact, it is seen from Eq. (28) that to have an analytical
solution of Eq. (28) with respect to radial coordinate is quite
hard, even impossible, due to its complicated form. For this
reason, to see the effects of EMS parameters and BH charge
on the ISCO radius of test magnetized particles, we have
included a graphical analysis below.

In Fig. 8, we illustrate how the ISCO radius of magne-
tized and test particles in the spacetime around electrically
charged BH in EMS gravity varies with the BH charge for
different EMS theory parameters. The figure shows that when
the parameter γ increases, the minimum of ISCO decreases
due to the decrease of the extreme charge of the BH, but
the existence of an external magnetic field causes the ISCO
radius to rise.

4 Magnetized particles motion around magnetically
charged BHs in Einstein–Maxwell-scalar theory

The electromagnetic four-potential of the electromagnetic
field around magnetically charged BHs describes as

Aφ = Qm cos θ. (29)

Using the potential in Eq. (29) one may immediately
obtain the non-zero component of the electromagnetic field
tensor as

Fθφ = −Qm sin θ. (30)

The orthonormal radial component of the magnetic field
is generated by the magnetic charge of the BH

Br̂ = Qm

f (r)
. (31)

Equation (31) implies that the radial component of the
magnetic field around magnetically charged BHs is not
affected by the spacetime curvature, and it looks its standard
Newtonian expression.

In dynamics of the magnetized particle around magneti-
cally charged BH in EMS. We generally assume (a) the direc-
tion of the magnetic dipole moment of the particle must be
always parallel to the equatorial plane and the proper mag-
netic field of the EMS BH, (b) magnetic dipole components
have to be in the following form: μi = (μr , 0, 0). We note
that other configurations can not provide stable equilibrium
in the motion of magnetized particles. The fact is that, in equi-
librium energetic states, the energy of the magnetic interac-
tions take its minimum and magnetic field lines and the dipole
moment directions become the same. Moreover, (c) using the
second part of the condition (17) one may study the motion
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Fig. 7 Radial profiles of specific energy (left panel) and angular momentum (right panel) correspond to circular orbits of test neutral and magnetized
particles around EMS BHs for the different values of parameters β, γ and β. In both plots, we chose the BH charge as Q/M = 1.2

Fig. 8 ISCO radius of
magnetized particles around
EMS BHs as a function of
electric charge of the BH for
different values of parameters
β, γ and b

of magnetized particles in the proper observer frame of ref-
erences. Choosing this frame of reference helps to avoid the
problem of finding the observer’s velocity due to the rela-
tive motion. Finally, (d) we assume the magnetic moment to
be constant. Consequently, we rewrite the interaction taking
into account Eqs. (19) and (30) in the following form

DαβFαβ = μr̂ Br̂ . (32)

Since the axial symmetric configuration of the proper mag-
netic field of the BH in EMS theory does not break the space-
time symmetries, therefore, one can still consider the parti-
cle’s energy pt = −E and angular momentum pφ = l are
conserved quantities. The radial motion of a magnetized par-
ticle around a magnetically charged EMS BH at the equato-
rial plane, where θ = π/2, with pθ = 0, using (19), (16) and

the action (21) takes the following form

ṙ2 = E2 − Veff(r; l, B̃), (33)

where the effective potential has the form

Veff(r; l, B̃) = U (r)

⎡
⎣

(
1 − B̃

f (r)

)2

+ L2

f (r)

⎤
⎦ . (34)

In the above Eq. (34), B̃ = μQm/m is a parameter corre-
sponding to magnetic interaction between magnetic fields of
the magnetic dipole and magnetically charged BH. Addition-
ally, we denote the parameter B = μ/(mM) characterizing
magnetic dipole moment and mass of the magnetized parti-
cle and mass of the central BH. One can easily see that the
parameter B is positive, and it is for the system of a neu-
tron star orbiting around an SMBH, treating neutron stars as
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magnetized particles have the form,

B = BNSR3
NS

2mNSMSMBH

� 0.18

(
BNS

1012G

) (
RNS

106cm

)3 (
mNS

M�

)−1 (
MSMBH

106M�

)−1

.

(35)

Here, we evaluate the approximate value of the parame-
ter B, using data from real astrophysical observations of the
system of magnetar called SGR (PSR) J1745–2900 (μ �
1.6 × 1032G · cm3 and m ≈ 1.4M�) orbiting SMBH Sgr A*
(M � 3.8 × 106M�) [50] is B ≈ 10.2 .

The circular stable orbits of particles around a central
object are defined by the following conditions:

V ′
eff = 0, V ′′

eff ≥ 0. (36)

Specific angular momentum and energy of the magnetized
particle along the circular orbits can be expressed by the
following expressions,

L2 = f (r) − B̃
f (r) (U ′(r) f (r) − f ′(r)U (r))

×
[
2B̃U (r) f ′(r) − f (r)

(
f (r) − B̃

)
U ′(r)

]
, (37)

E2 =
(
f 2(r) − B̃2

)
U (r) f ′(r)

f 2(r) (U ′(r) f (r) − f ′(r)U (r))
. (38)

Figure 9 demonstrates radial dependence of specific angu-
lar momentum and energy of magnetized particles at their
circular stable orbits around magnetically charged EMS BH.
In this figure, we show the relationship for the different values
of the parameter β = 1/4, 1/2. We also compare the ISCO
radius of neutral and magnetized particles with B = 5 and
10. It is obtained that as the value of β grows, the minimum
of both energy and angular momentum are decreased. While
in the presence of γ , the minimum and radius of the orbit
increases where the minimums take place. However, in the
presence of magnetic interaction, the orbital energy (angular
momentum) of the magnetized particles sufficiently decrease
(increase).

One can easily obtain the equation of ISCO taking into
account the conditions (36) for the effective potential (34) in
the following form

0 ≤ 2 f (r)2 f ′(r)U ′(r)2
[
f (r)2 − B̃2

]
− 2B̃2U (r)2 f ′(r)3

+ f (r)U (r)

{
f (r) f ′(r)U ′′(r)

[
B̃2 − f (r)2

]
+U ′(r)

×
[
f (r) f ′′(r)

(
f (r)2 − B̃2

)
+ f ′(r)2

(
4B̃2 − 2 f (r)2

) ]}
.

(39)

It is impossible to solve Eq. (39) analytically with respect
to the radial coordinate, therefore, we analyse the ISCO
graphically.

Figure 10 depicts the relationship between the ISCO
radius of magnetized particles around an EMS BH and
the magnetic charge of the BH for various EMS and mag-
netic interaction parameters. The figure clearly shows that
the ISCO radius lowers as the magnetic charge of the BH
increases and that raising the parameters β and B causes a
rise in the decreasing rate in the ISCO profiles. The positive
values of the parameter, on the other hand, reduce the rate.

5 Magnetized particles collisions around magnetically
and electrically charged BHs in
Einstein–Maxwell-scalar theory

The mechanisms of energy extraction from rotating BHs are
still one of the major issues in relativistic astrophysics. R.
Penrose has first been introduced an energy extraction model
from rotating Kerr BHs [51]. The model suggests that a parti-
cle comes to the region called the ergosphere, and decays by
two particles. According to the scenario, one of these parti-
cles falls into the BH with negative energy and the other one
goes away from the BH with an energy higher than the initial
one. When the ergoregion vanishes, the energy released from
the BH doesn’t happen by the above discussed mechanism.
This process in the presence of an external magnetic field
called the magnetic Penrose process (MPP) has been intro-
duced by Wagh et al. [52] and later developed by N.Dadhich
et al. [53]. Recently, Tursunov et al. [54] have first shown the
role of an electric field of charged BHs in the Penrose process.
Another scenario for the energy release process is studied by
Banados–Silk–West explained by collisions of particles near
the BH horizon. In this work, we will explore the collisions
of particles around magnetically electrically charged BHs in
EMS theory and study the behaviour of the center of mass
energy. The energy of two colliding particles has the form

E2
cm = E2

cm

4m2c4 = 1 − gαβu
α
1u

β
2 . (40)

Where uα
i (i = 1, 2) is the four velocities of the particles

relative to distance observer. We consider the collision occurs
in the background of equatorial plane, where θ = π/2 and
θ̇ = 0 (pθ = 0).

5.1 Collisions of magnetized particles

In this subsection, we investigate the magnetized particle’s
collision in a magnetically charged BH environment. In the
equatorial plane, the components of the four-velocity are
expressed in the form
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Fig. 9 Radial dependence of specific angular momentum (at left) and energy (at right) correspond to the circular orbits of the magnetized particles
around magnetically charged BHs in EMS theory for different values of the parameters β, γ and B

Fig. 10 ISCO radii as a
function of the magnetic charge
of the EMS BH for the different
values of parameters β, γ and β

ṫ = E
U (r)

, (41)

φ̇ = L
f (r)

, (42)

ṙ2 = E2 −U (r)

[(
1 − BMQm

f (r)

)2

+ L2

f (r)

]
. (43)

Using the above equations the expression for the center of
mass energy takes the following form

E2
cm = 1 − L1L2

f (r)
+ E1E2

U (r)
− 1

U (r)

×
√√√√E2

1 −U (r)

[(
1 − B1

MQm

f (r)

)2

+ L2
1

f (r)

]

×
√√√√E2

2 −U (r)

[(
1 − B2

MQm

f (r)

)2

+ L2
2

f (r)

]
. (44)

The radial dependence of the center of mass energy in the
case of two colliding particles having the same positive dipole
moment is shown in Fig. 11. Here we check the behaviour
of the energy at β = 0.25, 1, 1.5 for different values of the
parameter γ , and near the corresponding critical values of
the BH charge, Qcr . While plotting this figure, we chose
L1 = −L2 = 2M , and the same initial energies E1 = E2 = 1
and the magnetar PSRJ175-2900 orbiting Sgr A∗ is treated
as a magnetized particle with B = 10.2 in all cases. It is
observed from the figures that by increasing the value of β,
the peak value of the energy decreases. However, it increases
by increasing the value of the parameter γ .

5.2 Collisions of magnetized and electrically charged
particle

In this case, we consider collisions of charged and magne-
tized particles. The four-velocity of the charged particle is
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Fig. 11 Dependence of center of mass energy of two magnetized particles collision for different values of β and critical charge Q

obtained by using the following Lagrangian, as

L = 1

2
mgμνu

μuν + euμAμ, (45)

where e is the particle charge. Then the expressions of the
energy and angular momentum are,

E = mgtt ṫ, L = mgφφφ̇ + eAφ, (46)

Consequently, expressions of the four-velocity for the charged
particles in the equatorial plane take the following form

ṫ = E
U (r)

, (47)

φ̇ = L − Q
f (r)

, (48)

ṙ2 = E2 −U (r)

[
1 + L

f (r)
(L − Q)

]
, (49)

where (Q = eQm/m stands for the interaction between the
BH and particle charges. Thus, the expression of the collision
energy takes the form,

E2
cm = 1 − L1 − Q

f (r)
L2 + E1E2

U (r)
− 1

U (r)

×
√
E2

1 −U (r)

[
1 + L1

f (r)
(L1 − Q)

]

×
√√√√E2

2 −U (r)

[(
1 − BMQm

f (r)

)2

+ L2
2

f (r)

]
. (50)

Figure 12 shows the behaviour of center of mass energy in
magnetized and positively charged particles’ collision around
the charged BH in EMS theory. Similar to the previous case,
these graphs are plotted for different values of parameter β

and γ at a critical value of the BH charge. It can be easily seen
from the figure that the energy shows decreasing behaviour
upon increasing the value of parameter γ . However, the
energy possesses a slight increment in case of the increas-
ing value of parameter β. The result can be explained by the
characteristic of the electromagnetic interaction between the
BH with magnetic charge and the particles with an electrical
charge being different.

5.3 Collision of magnetized and neutral particles

Finally, we explore the center of mass energy in the collision
of the magnetized and neutral particle around magnetically
charged RN BH in EMS theory. The equations of motion for
neutral particles in the vicinity of a BH may be found in the
following form:

ṫ = E
U (r)

, (51)

φ̇ = L
f (r)

, (52)

ṙ2 = E2 −U (r)

[
1 + L2

f (r)

]
. (53)

Similarly, using the above equations, the expression for the
center of mass energy in case of magnetized and neutral par-
ticle collision can be obtained as

E2
cm = 1 − L1L2

f (r)
+ E1E2

U (r)
− 1

U (r)

×
√√√√E2

1 −U (r)

[
1 + L2

1

f (r)

]

×
√√√√E2

2 −U (r)

[(
1 − BMQm

f (r)

)2

+ L2
2

f (r)

]
. (54)

In Fig. 13, we present the dependence of the center of mass
energy of magnetized and neutral particle collision around
EMS charged BHs with respect to β and γ at Q = Qcr for
B = 10.2 and L1 = −L2 = 2M . From the figures, one
can clearly observe the growth of the energy after increasing
the values of parameter β. The graphical representation of
the collision of magnetized and neutral particles also shows
that the center of mass energy decreases by increasing the
parameter γ .

5.4 Collisions of magnetized particles near electrically
charged EMS BHs

Now we consider collisions of two magnetized particles, their
collisions with electrically charged and neutral particles in
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Fig. 12 Dependence of center of mass energy of magnetized and charged particle collision with respect to β at the corresponding values of γ and
critical charge

Fig. 13 Dependence of center of mass energy of the magnetized and neutral particle collision with respect to β, at the corresponding values of γ

and critical charge

the close environment of an electrically charged EMS BHs.
WE assume that the BH is immersed in external asymptot-
ically uniform magnetic fields in the proper frame of refer-
ence, and we consider the external magnetic field is a test
field.

5.4.1 Two magnetized particles

Using the Hamilton–Jacobi equation one can obtain the four
components of velocity as

ṫ = E
U (r)

, (55)

φ̇ = L
f (r)

, (56)

ṙ2 = E2 −U (r)

(
[1 − bB(r)]2 + L2

f (r)

)
. (57)

Therefore, we have

E2
cm = 1 − L1L2

f (r)
+ E1E2

U (r)
− 1

U (r)

×
√√√√E2

1 −U (r)

[
1 − b1B(r) + L2

1

f (r)

]

×
√√√√E2

2 −U (r)

[
1 − b2B(r) + L2

2

f (r)

]
. (58)

A graphical representation of the dependence of center
of mass energy of two magnetized particles collision with

respect to γ and β is shown in Fig. 14. Here, the graphs
are plotted corresponding to the same direction of magnetic
dipole moment. Here, we observe that the center of mass
energy increases upon the increasing values of parameter β.
Similar behaviour of center of mass energy can be observed
in the case of parameter γ .

5.4.2 Magnetized and charged particle

Here, we study collisions of magnetized and electrically
charged particles around electrically charged BH in EMS
theory immersed in an external asymptotically uniform mag-
netic field. The four-velocity of a charged particle, with the
charge e and mass m, can be described by the following form
of Lagrangian for charged particles in the electromagnetic
field:

L = 1

2
mgμνu

μuν + euμAμ. (59)

We find the four-velocity of the particle using the well-known
Euler-Lagrange equation, in the following form:

ṫ = E
U (r)

, (60)

φ̇ = L
f (r)

− ωB, (61)

ṙ2 =
(
E − eQ

mr

)2

−U (r)

[
1 +

( L
f (r)

− ωBr

)2
]

. (62)
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Fig. 14 Dependence of center of mass energy of two magnetized particles with respect to β for different values of the magnetic parameter b, at
the corresponding values of γ and critical charge

Fig. 15 Dependence of center of mass energy of the magnetized and charged particles with respect to the BH charge Q, for different values of the
magnetic parameter b

Fig. 16 Dependence of center of mass energy of magnetized and neutral particles for the different values of the EMS parameters γ and β

Immediately, after small algebraic calculations, the expres-
sion for the center of mass energy finds as,

E2
cm = 1 −

( L1

f (r)
− ωB

)
L2 + E1E2

U (r)
− 1

U (r)

×
√√√√

(
E1 − eQ

mr

)2

−U (r)

[
1 +

( L1

f (r)
− ωBr

)2
]

×
√√√√E2

2 −U (r)

(
[1 − bB(r)]2 + L2

2

f (r)

)
. (63)

Figure 15 presents the radial dependence of the center
of mass energy in collisions of a magnetized and electrically
charged particle with respect to parameter γ . We have plotted
graphs for three different cases of β and positive values of
magnetic coupling and magnetic interaction parameter are
taken as |ωB | = 0.1 as well as b = 0.1, respectively. It is
seen from the result in this figure that the energy increases by
increasing the value of parameter β. However, the center of

mass energy shows decrements upon increment in the value
of the parameter γ .

5.4.3 Magnetized and neutral particles

Finally, we investigate head-on collisions of particles with
and without magnetic dipole moment near the EMS BH. In
this case, the expression of the center of mass energy takes
as,

E2
cm = 1 − L1L2

f (r)
+ E1E2

U (r)
− 1

U (r)

×
√√√√E2

1 −U (r)

(
[1 − bB(r)]2 + L2

1

f (r)

)

×
√√√√E2

2 −U (r)

[
1 + L2

2

f (r)

]
. (64)
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Graphical illustrations of the center of mass energy of
collisions of neutral and magnetized particles are shown in
Fig. 16 for the different values of the parameters γ and β.
It is also seen from the figure that the positive values of γ

cause to increase the energy.

6 Conclusion

In the present paper, we have studied magnetized particles
dynamics and collisions of the particles with electrically
charged particles around both magnetically and electrically
charged BHs in EMS theory, and the following main results
are obtained:

– maximum value of the γ parameter and extreme values of
the BH charge are numerically found for different values
of the β parameter.

– studies on the magnetic field around the BH have shown
that negative values of the parameter γ increase the angu-
lar component of the magnetic field measured by a distant
observer.

– it is obtained from the studies of the radial motion of mag-
netized particles around electrically charged particles
EMS BHs immersed in an external asymptotically uni-
form magnetic field that the magnetic interaction cause
to decrease the maximum value of the effective potential
and minimum values of the energy and angular momen-
tum of the magnetized particles corresponding to circular
stable orbits;

– the behaviour of ISCO radius on the BH charge has shown
that as the parameter β increase the radius decreases more
rapidly;

– studying circular magnetized particles’ motion around
magnetically charged EMS BHs, we assumed the mag-
netic must keep the direction of magnetic dipole moment
radially along proper magnetic field lines of the BH. It
is shown that the ISCO radius of the particle decreases
faster as compared to the radius of test neutral particles.
Moreover, the decreasing rate also increases at the higher
values of the EMS parameters β and γ ;

– we study the effects of EMS parameters in the center
of mass energy of collisions of magnetized particles and
charged particles around electrically and magnetically
charged BHs, and show that positive (negative) values of
the parameter γ increases (decreases) the energy in the
collisions of magnetized particles with magnetized and
electrically charged particles. However, it is vice-versa
in the case of the collisions of charged and magnetized
particles.
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