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Abstract We present the perturbation equations in an
embedded four space-time from the linear Nash-Greene fluc-
tuations of background metric. In the context of a five-
dimensional bulk, we show that the cosmological pertur-
bations are only propagated by the gravitational tensorial
field equation. In Newtonian conformal gauge, we study the
matter density evolution in sub-horizon regime and on how
such scale may be affected by the extrinsic curvature. We
apply a joint likelihood analysis to the data by means of the
Markov Chain Monte Carlo (MCMC) method for parame-
ter estimation using a pack of recent datasets as the Pan-
theon Supernovae type Ia, the Baryon Acoustic Oscillations
(BAO) from DR12 galaxy sample and Dark Energy Survey
(DESY1). We discuss the tensions on the Hubble constant
H0 and the growth amplitude factor S8 of the observations
from Planck 2018 Cosmic Microwave Background (CMB)
and the local measurements of H0 with Hubble Space Tele-
scope (HST) photometry and Gaia EDR3. As a result, we
obtain an alleviation below ∼ 1σ in the contours (S8-Ωm) at
68.4% confidence level (CL) when compared with DESY1
data. On the other hand, the H0 tension persists with ∼ 2.6σ

at 68.4% CL and 1.95σ at 95.7% CL, aggravated with the
inclusion of BAO data.

1 Introduction

The Occam’s razor is one of the cornerstone philosophical
principles in science that states that the simplest solution of
a problem should be adopted in detriment of complex ones.
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In this realization, the ΛCDM model has been the simplest
and successful solution to deal with the accelerated expan-
sion of the universe as corroborated for several independent
observations in the last two decades [1–11]. Despite its suc-
cess, the ΛCDM model has important drawbacks that must
be taken into account. For instance, the main components
of ΛCDM model lack a fundamental explanation about the
nature of the cosmological constant Λ and also the cold Dark
Matter (CDM) problem [12–18].

In this paper, we propose a model that adds a new curvature
to the standard Einstein gravity by means of local dynamical
embeddings. As a first test, we focus on studying the problem
of the appearance of tensions at several standard deviations
(σ ) of the growth amplitude factor S8 = σ8 (Ωm0/0.3)0.5 and
the Hubble constant H0 revealed by the mismatch of the data
inferred from Cosmic Microwave Background (CMB) radi-
ation probe and the large scale structure (LSS) observations,
considering the concordance ΛCDM model as a background.
The σ8 is the r.m.s amplitude of matter density at a scale of
a radius R ∼ 8h.Mpc−1 within a enclosed mass of a sphere
[19] and Ωm denotes the matter density cosmological param-
eter. The main problem apparently resides in the fuzzy origin
of such mismatch, which could be a result from systematics
or due to deviations of gravity. In addition, we also analyse
the consequences on the Hubble tension that goes from 4-σ to
6-σ standard deviations of statistical distance between local
measurements of the Hubble constant H0 and CMB Planck
data (see Ref. [20] for review and references thereof). Such
impasse still resists in both early and late universe landscapes
even if one does not consider the Planck CMB data [21]1

and evidences that similar discrepancies may also occur in
the matter distributions around 2-σ [11,22–24] between the
growth amplitude factor σ8 and the matter content Ωm . More-

1 Planck legacy archive available at http://pla.esac.esa.int/pla/#home
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over, the structure growth parameter S8 also presents large
discrepancies as measured by Planck probe compared with
surveys as KiDS 450 [25–27], DESY1 [28,29] and CFTLens
[30–32]. In the recent KiDS 1000 [33], this discrepancy per-
sists around 3σ . In particular, to avoid a biased dependence of
σ8, the quantity f σ8(z) is a good model-independent discrim-
inator for mapping the growth rate of matter. This alleged dis-
crepancy opens an interesting arena for testing gravitational
models, once the possibility to alleviate such tensions may
come from modified gravity and/or their extensions [34–42].

In the context that gravity may be modified departed from
Einstein gravity or other fundamental principle, we explore
the embedding of geometries (or hypersurfaces) to elabo-
rate a model independent based on seminal works on the
subject [43–45] in order to tackle the aforementioned ten-
sions in the problem of explanation of the accelerated expan-
sion of the universe. In hindsight, the seminal problem of
embedding theories lies in the hierarchy problem of funda-
mental interactions. The possibility that gravity may access
extra-dimensions is taken as a principle for solving the huge
ratio of the Planck masses (MPl ) to the electroweak energy
scale MEW in such MPl/MEW ∼ 1016. This option has
been explored more vigorously in the last two decades as a
candidate for solution of the dark energy paradigm. Most of
these models have been Kaluza–Klein and/or string inspired,
such as, for instance, the works of the Arkani-Hamed,
Dvali and Dimopolous (ADD) model [46], the Randall–
Sundrum model [47,48] and the Dvali–Gabadadze–Porrati
model (DPG) [49]. Differently from these models with spe-
cific conditions, and apart from the braneworld standards
and variants, we have explored the embedding as a funda-
mental guidance for elaboration of a gravitational physical
model. Until then, several authors explored the embedding of
geometries and its physical consequences as a mathematical
structure to apply to gravitational problems [43–45,50–63].

The plan of the paper is organised in sections. In the sec-
ond section, we revise the embedding of geometries and on
how it may be used to construct a physical framework. In
this context, the Nash-Greene theorem is discussed. The third
and fourth sections verse on the background Friedmann–Le-
maître–Robertson–Walker (FLRW) metric, transformations
and gauge variables also developed involving the extrinsic
curvature, respectively. The fifth section shows the resulting
conformal Newtonian gauge equations. In the sixth section,
we show the contrast matter density δm(a) as a result of the
Nash fluctuations and an effective Newtonian constant Gef f

is also determined that carries a signature of the extrinsic
curvature. In the seventh section, we analyze both Hubble
and S8 tensions. By means of a MCMC sampler relying on
the Code for bayesian analysis (Cobaya2) [64,65] to con-
strain the posteriors, we make a joint analysis of data taking

2 https://github.com/CobayaSampler/cobaya.

into account the evolution of background parameter H(z)
and Ωm distributions. From CMB fluctuations, we adopted
Planck 2018 data [11] and consider high+low multipoles
from CMB temperature and polarisation angular power spec-
tra, i.e., high-l.plik.TTTEEE, low-l EE polarisation and low-l
TT temperature. To compute growth data, H(z) and BAO,
we further consider SNIa Pantheon data [66], clustering and
weak lensing from DESY1 [28] and the DR12 “consensus”
galaxy sample [67]. As local measurements on H0, we adopt
Riess et al. 2020 [68] data from Hubble Space Telescope
(HST) photometry and Gaia EDR3 parallaxes. The MCMC
chains are analysed by using GetDist3 [69]. As criteria
for model selection, we use three information criteria such
as the Akaike Information Criterion (AIC) [70], Modified
Bayesian Information Criteria (MBIC) [71,72] and Hannan–
Quinn Criterion (HQC) [73]. In the final section, we present
our remarks and prospects.

It is noteworthy to point out that we adopt the Landau
spacelike convention (− + ++) for the signature of the four
dimensional embedded metric and speed of light c = 1. Con-
cerning notation, capital Latin indices run from 1 to 5. Small
case Latin indices refer to the only one extra dimension con-
sidered. All Greek indices refer to the embedded space-time
counting from 1 to 4. Hereon we indicate the non-perturbed
(background) quantities by the upper-script symbol “0”.

2 The induced embedded equations

In the following subsections, we present our theoretical
framework. First, the embedding of geometries is presented
and institutes a mathematical background landscape. Sec-
ondly, by pursuing this intent, the induced field equations of
the embedded space-time are presented that result from the
integrability of the embedding given by Nash-Greene theo-
rem to arise a viable physical framework.

2.1 The Einstein–Hilbert principle for a five dimensional
bulk

Although embeddings can be made in an arbitrary number
of dimensions (see [43–45,53,54,57–60,62,63]), the current
alternative models of gravitation are normally stated in five
dimensions with one degree of freedom. Then, we start with
a model defined by a gravitational action S in the presence
of confined matter field of a four-dimensional space-time
embedded in a five-dimensional larger space as

S = − 1

2κ2
5

∫ √|G |5Rd5x −
∫ √|G |L ∗

md
5x, (1)

3 https://github.com/cmbant/getdist.
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where κ2
5 is a fundamental energy scale on the embedded

space, 5R denotes the five dimensional Ricci scalar of the
bulk and L ∗

m denotes the confined matter Lagrangian in such
the matter energy momentum tensor fulfills a finite hypervol-
ume with constant radius l along the fifth-dimension. In the
first term in Eq. (1), 5R can be expressed in terms of the
intrinsic and extrinsic geometric quantities, and the action S
is rewritten as

S = − 1

2κ2
5

∫ √|G |(R − K 2 + h2)d5x −
∫ √|G |L ∗

md
5x,

(2)

with R is the four-dimensional Ricci scalar, and the extrinsic
quantities as K 2 = kμνkμν is the Gaussian curvature and
the mean curvature h2 = h · h and h = gμν kμν , where
gμν is the four-dimensional metric and kμν is the extrinsic
curvature. It is important to note that the form of the action
in Eq. (2) results from a general process of embedding of
geometries, as shown in detail in references [43–45,54] for
the embedding of a four-dimensional space-time into a D-
dimensional space-time . To obtain the field equations, the
variation of Einstein–Hilbert action in Eq. (1) with respect to
the bulk metric GAB leads to the five-dimensional Einstein
equations

5RAB − 1

2
5RGAB = α	TAB, (3)

whereα	 is the energy scale parameter andTAB is the energy-
momentum tensor for the bulk [43–45,54], and the bulk met-
ric GAB is assumed as

GAB =
(
gμν 0
0 1

)
, (4)

with g55 = 1 and the extra-dimensional indices are fixed to 1,
since in this application we have only one extra-dimension. In
accordance with the Nash-Greene theorem [74,75], orthog-
onal perturbations of the metric induce the appearance of
the extrinsic curvature in that direction. To our purposes, we
are restricted to the fourth dimensionality of the space-time
embedded in a five dimensional bulk space following the
confinement hypothesis [76,77]. Such dimensionality will
suffice based on experimentally high-energy tests [78].

This model can be regarded as a four dimensional hyper-
surface dynamically evolving in a five-dimensional bulk with
constant curvature whose related Riemann tensor is

5RABCD = K∗ (GACGBD − GADGBC ) , A...D = 1...5,

(5)

where GAB denotes the bulk metric components in arbi-
trary coordinates and the constant curvature K∗ is either

zero (flat bulk) or it can have positive (deSitter) or nega-
tive (anti-deSitter) constant curvatures. In accordance with
recent observations [11], the cosmological constant Λ has a
very small value but we do not consider any dynamical contri-
bution from it. The permanence of Λ is just for completeness
purposes and will be omitted henceforth in the induced four-
dimensional field equations. The bulk geometry is actually
defined by the Einstein–Hilbert principle in Eq. (1), which
leads to Einstein’s equations for the bulk as shown in Eq. (3).

In this sense, it is possible to search a more general phys-
ical theory based on the geometries of embedding. Although
it is not explicitly showed here, depending on the type of the
embedding (e.g., local or global, isometric, analytic or dif-
ferentiable, etc.), braneworld models may be an example of
this framework [44]. Another important aspect of the original
Nash embedding is that it is applied to a flat D-dimensional
Euclidean space. It was explored in a work by Rosen [79]
with an analysis on pseudo-Euclidean spaces. From its gen-
eralisation of pseudo-Riemannian manifolds to non-positive
signatures results that the embedding of the space-times may
need a larger number of dimensions, which was made only
two decades later by Greene [75]. Hereon, we simply call the
Nash-Greene theorem.

In a nutshell, the smoothness of the embedding is the
cornerstone concept of the Nash-Greene theorem, once this
embedding results from a differentiable mapping of functions
of the manifolds. On the other hand, it is not capable of telling
us about the physical dynamic equations or evolution of the
gravitational field by its own. Thus, a natural choice for the
bulk is that its metric satisfies the Einstein–Hilbert principle.
By design, it represents the variation of the Ricci scalar and
the related curvature must be “smoother” as possible [53]. It
warrants that the embedded geometry and their deformations
will also be differentiable. To obtain the induced field equa-
tions, we firstly need to calculate the tangent components of
Eq. (3). To do so, the embedding process must be properly
defined as we show in the following.

2.2 The integrability of the embedding

Let a Riemannian manifoldV4 be endowed with a non-pertur-
bed metric (0)gμν being locally and isometrically embedded
in a five-dimensional Riemannian space V5. Given a differ-
entiable and regular map X : V4 → V5, one imposes the
embedding equations

X A
,αX

B
,β GAB = g(0)

αβ , (6)

X A
,α

0ηB
a GAB = 0, (7)

0ηA
a

0ηB
b GAB = 1, (8)

where we have denoted X A the non-perturbed embedding
coordinate, GAB the metric components of V5 in arbitrary
coordinates, and 0η denotes the non-perturbed unit vector
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field orthogonal to V4. This mechanism avoids possible coor-
dinate gauges that may drive to false perturbations. The colon
signs denote ordinary derivatives.

The meaning of those former set of equations is that Eq.
(6) represents the isometry condition between the bulk and
the embedded space-time. The orthogonality between the
embedding coordinates X and 0η is represented in Eq. (7).
Moreover, Eq. (8) denotes the set of vectors normalisation
0η. As a result, the integration of the set of Eqs. (6), (7) and
(8) gives the embedding map X .

The relation between the geometries involved in (dynami-
cal) embedding naturally leads to the appearance of new geo-
metric objects. Based on in traditional textbooks [80], one of
the fundamental objects is the extrinsic curvature. The extrin-
sic curvature of the embedded space-time V4 is the projection
of the variation of the vector 0η onto the tangent plane such
as

k(0)
μν = −X A

,μ
0ηB

,νGAB = X A
,μν

0ηBGAB . (9)

The main concern of our work is provide a complement to the
Einstein gravity by adding the extrinsic curvature and study
its implications to a physical theory in five dimensions.

2.2.1 The dynamical embedding: the Nash flow

The dynamical embedding mainly reflects on how the ambi-
ent space (the bulk) is related to the embedded space-time. In
this work, we consider a five-dimensional bulk with constant
as in Eq. (5) with an evolving embedded four space-time as
summarised in the following geometrical process. The con-
cept of “pure” Nash deformations is that they are gauge-free
since they access the ambient space and are generated by
perturbations along the direction orthogonal to V4 to filter
out any coordinate gauges. In five dimensions, this process
is simplified and just one deformation parameter (one degree
of freedom) suffices to locally deform the embedded back-
ground, which can be done by the Lie transport. In a geometri-
cal sense, this is motivated by the notion of the curvature radii
of the embedded background. The single curvature radius y0

is then the smallest of these solutions, corresponding to the
direction in which the embedded space-time deviates more
sharply from the tangent plane. The curvature radii of the
background must satisfy the homogeneous equation

det(gμν − y kμν) = 0. (10)

This is a local invariant property of the embedded space-time
and does not depend on the chosen Gaussian system [80].
We reinforce the idea that this process occurs at the linkage
of the ambient space with the deformations of the space-
time and the physical consequences we will analyse after

the induced quantities into the perturbed embedded (physi-
cal) space-time, where the cosmological perturbation theory
applies.

As it happens, let a geometric object Ω̄ be constructed in
V4 in any direction 0η by the Lie transport along the flow
for a certain small distance δy. It is worth noting that it is
irrelevant if the distance δy is time-like or not, nor it is positive
or negative. Then, the Lie transport is given by Ω = Ω̄ +
δy£0ηΩ̄ , where £0η denotes the Lie derivative with respect
to the normal vector 0η. In this sense, the Lie transport of the
Gaussian coordinates vielbein {X A

μ ,0 ηA}, defined on V4,
can be written as

Z A
,μ = X A

,μ + δy £0ηX
A

,μ = X A
,μ + δy 0ηA

,μ, (11)

ηA = 0ηA + δy [0η,0 η]A = 0ηA. (12)

Interestingly, from Eq. (12), it is straightforward the deriva-
tive of 0η is affected by perturbations in a sense η,μ �= 0η,μ.

Concerning perturbations of the embedded space-time V4,
there is a set of perturbed coordinates Z A to satisfy the
embedding equations likewise Eqs. (6), (7) and (8), as

Z A
,μZ

B
,ν GAB = gμν, Z

A
,μηBGAB = 0, ηAηBGAB = 1. (13)

As seen in the non-perturbed case, the perturbed coordi-
nate Z defines a coordinate chart between the bulk and the
embedded space-time.

Replacing Eqs. (11) and (12) in Eqs. (13) and (9), for
instance, we obtain the fundamentals objects of the new man-
ifold in linear perturbation

gμν = g(0)
μν + δgμν + · · · = g(0)

μν − 2δy k(0)
μν + · · · , (14)

kμν = k(0)
μν + δkμν + · · · = k(0)

μν − 2δy 0gρσ k(0)
μρ k

(0)
νσ + · · · (15)

Hence, taking the derivative of Eq. (14) with respect to defor-
mation parameter y and compare with Eq. (15), Nash flow is
written as

kμν = −1

2

∂gμν

∂y
. (16)

This former expression can be generalized to arbitrary num-
ber of dimensions with a set of arbitrary family of orthogonal
deformations δy.

It is noteworthy to point out that the ADM formula-
tion gives a similar expression later discovered by Choquet-
Bruhat and York [81]. In a physical context, the interpre-
tation of Eq. (16) reinforces the confinement of matter as
a consequence of the well established experimental struc-
ture of special relativity, particle physics and quantum field
theory, using only the observable which interact with the
standard gauge fields and their dual properties. It imposes a
geometric constraint that localizes the matter in V4 [43,44].
It is important to note that the Nash-Greene fluctuations on
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Fig. 1 A pictorial view of dynamical embedding in an ambient space.
A “pith helmet” shaped-like surface emphasizes the embedding bubble
formed in the local embedded space-time deformed by the perturbations
of the y parameter. The tangent space is orthogonally deformed and the
related cosmological perturbations can be studied with a chosen gauge
in δgμν

the perturbed metric gμν = g(0)
μν + δgμν + δ2gμν + · · · are

continuously smooth and naturally go on adding small incre-
ments δgμν to the background metric. A pictorial view of this
process can be seen in Fig. 1, where the deformed embed-
ded space-time generates a local bubble of deformation on
the original background. Unlike those of processes of rigid
embedding models [47,48], where the deformation param-
eter y is commonly inserted in the line element to obtain
cosmological perturbations with additional assumptions; in
dynamical embeddings, the orthogonal deformations param-
eter y accesses the ambient space and does not appear in
the line element. If one insists, it will end up to inconsisten-
cies in the perturbed embedded space-time with gauge-fixing
problems.

As it happens, the resulting perturbed geometry gμν can
be bent and/or stretch without ripping the embedded space-
time, which it is not possible to do in the context of the
Riemannian geometry as acknowledged by Riemann him-
self [82]. This feature is exclusive to dynamical embeddings.
Due to the confinement, the standard cosmological theory
cannot be applied beyond the embedded space-time. More
specifically, it applies to the metric perturbation δgμν and to
the induced equations onto the embedded space-time. Then,
we calculate the linear perturbations for five-dimensions that
the new geometry g̃μν = g(0)

μν + δgμν generated by Nash’s
fluctuations is given by

g̃μν = g(0)
μν − 2δyk(0)

μν , (17)

and the related perturbed extrinsic curvature

k̃μν = k(0)
μν − 2δy (0)gσρ k(0)

μσ k
(0)
νρ , (18)

where we can identify δkμν = −2δy (0)gσρ k(0)
μσ k

(0)
νρ valid

in the ambient space. Using the Nash relation δgμν =

−2k(0)
μν δy, δy is replaced and we obtain

δkμν = (0)gσρ k(0)
μσ δgνρ. (19)

This is an important result since it correctly shows how the
effects of the extrinsic quantities (e.g., δy and δkμν) can be
projected onto the perturbed four embedded space-time. In
addition, by means of the induced field equations, as will be
shown in the following, the resulting physics of the embedded
space-time can be consistently studied.

2.2.2 Integrability conditions and induced four
dimensional equations

The integrability conditions of the embedding are given by
the non-trivial components of the Riemann tensor of the
embedding space as

5RABCDZ
A

,αZ
B

,βZ
C
,γ Z

D
,δ = Rαβγ δ + 2kα[γ kδ]β, (20)

5RABCDZ
A

,αZ
B

,βZ
C
,γ ηD = kα[β;γ ], (21)

where 5RABCD is the five-dimensional Riemann tensor. The
semicolon denotes covariant derivative with respect to the
metric. The brackets apply the covariant derivatives to the
adjoining indices only.

The first equation is called Gauss equation that shows that
Riemann curvature of bulk space acts as a reference for the
Riemann curvature of the embedded space-time. The sec-
ond equation (Codazzi equation) evinces the projection of
the Riemann tensor of the embedding space along the nor-
mal direction that is given by the tangent variation of the
extrinsic curvature. This guarantees to reconstruct the five-
dimensional geometry and understand their properties from
the dynamics of the four-dimensional space-time V4. These
equations provide the necessary and sufficient conditions for
the existence of the embedded manifold. As a solution of
these equations, the analyticity of the embedding functions
[83,84] simplifies some results and imposes a maximum
embedding dimension for all four-dimensional space-times
to be D = 10. On the other hand, if one assumes that the
deformed manifolds remain (at least) differentiable, the limit
dimension for flat embeddings rises to D = 14 (such a num-
ber may be interesting for the study of super-algebras as in
[85]), with a wide range of compatible signatures as shown
by Greene [75] extending Nash theorem’s results for a D-
dimensional bulk n(n + 3)/2, as n refers to the dimension
of the embedded space. Also, D = 14 may induce a GUT
based on a 45 parameter group like for example SO(10) or
equivalent, proposing that a larger gauge symmetry may be
possible to obtain.

As shown, the Nash-Greene theorem constitutes an impor-
tant improvement over the traditional analytic embedding
theorems [83,84]. Thus, our present structure fulfills such
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requirement that limits the number of the extra-dimensions
up to 10. Such limitation avoids bulk instabilities and the
appearance of ghosts like those of some brane-world models.
For instance, one of the points of Ref. [86] lies in the appli-
cation of the longitudinal Goldstone mode acting as a brane
bending mode. This was stated to keep fixed the induced
metric on the brane. Unfortunately, this generates classical
instabilities (negative energy solutions) of this type of DGP
model. In the realm of brane-world program, it has been
implemented mostly on particular models where the bulk
has a fixed geometry and the space-time has a specific metric
ansatz. Such new geometric quantity has a paramount role
on the dynamics of the embedding itself. Then, the extrinsic
curvature is not replaced by any additional principle or alge-
braic relation (e.g., Israel-Lanczos condition). The “bending-
stretching” (and eventually, the “ripping”) of the geometry is
a natural effect of the extrinsic curvature once the embedding
is properly defined.

It is important to point out that the confinement of the
gauge fields to four dimensions is not really an ad-hoc
assumption. It is a consequence of the fact that only in four
dimensions the three-form resulting from the derivative of the
Yang–Mills curvature tensor is isomorphic to the one-form
current. Consequently, all known observable sources of grav-
itation composing the stress energy momentum tensor of the
bulk TAB are confined to these deformable four-dimensional
space-times, independently of the value of the extra coordi-
nate y. Unless experimental evidences prove the contrary, the
confinement hypothesis imposes that the gauge interactions
are only restricted to the embedded space-time, even though
a mathematically constructed higher dimensional extensions
of Yang–Mills equations are always possible in the context
of strings and branes. Moreover, the confined components
of TAB can be proposed in the perturbed Gaussian frame
{Z A

,μ, ηB} as proportional to the energy–momentum tensor
in such a way:

T ∗
μν = T ∗

ABZ
A

,μZ
B

,ν , (22)

T ∗
μb = T ∗

ABZ
A

,μηB, (23)

T ∗ = T ∗
ABηAηB, (24)

Unlike RS models and variants such as the confinement con-
dition commonly takes the form α∗T ∗

μν = Tμνδ(y), where
Tμν vanishes in extra-coordinate with a boundary y = 0, in
Nash dynamical embedding, the confinement must prevail in
all points of the embedded space-time. As a consequence,
we have the conditions

α∗T ∗
μν = 8πGTμν, (25)

α∗T ∗
μ = 0, (26)

α∗T ∗ = 0. (27)

Using the embedding equations in Eqs. (6), (7) and (8), and
by direct calculation of Gauss equation in Eq. (20) contracted
with the metric gμν , they lead to

Rμν = (
gρσ kμρkνσ − kμνh

) +5 RABZ
A

,μZ
B

,ν (28)

−5RABCDηAZ C
,ν Z

B
,μηD.

A further contraction with the metric gμν leads to an
explicit relation of the Ricci scalar of the bulk 5R with the
embedded four dimensional Ricci scalar R as

R= (
K 2 − h2) +5R−2 5RABηAηB+5RABCDηAηBηCηD .

(29)

The last two terms vanishes when using the confinement to
the sooner, and the latter turns a redundant surface term, and
one obtains the action in a form given by Eq. (2). With Eqs.
(28) and (29), one writes

Rμν − 1

2
Rgμν = (−gρσ kμρkνσ + kμνh

) +5 RABZ
A

,μZ
B

,ν

−5 RABCDηAZ C
,ν Z

B
,μηD + 1

2

(
K 2 − h2) gμν

− 1

2

5

Rgμν +5 RABηAηBgμν

− 1

2
g5
μνRABCDηAηBηCηD,

(30)

Then, from Eq. (30), one defines the deformation tensor Qμν

Qμν ≡ (
gρσ kμρkνσ − kμνh

) − 1

2

(
K 2 − h2

)
gμν, (31)

which is straightforwardly conserved by direct derivation
such as

Qμν

;ν = 0. (32)

It is important to point out that such property of the deforma-
tion tensor is valid for an arbitrary number od dimensions.
After neglecting redundant surface terms, one obtains

Rμν − 1

2
Rgμν + Qμν =

(
5RAB − 1

2
5RGAB

)
Z A

,μZ
B

,ν

5RABηAηBgμν.

(33)

Using the confinement conditions in Eq. (25), then one
has(

5RAB − 1

2
5RGAB

)
Z A

,μZ
B

,ν = α∗T ∗
ABZ

A
,μZ

B
,ν = α∗T ∗

μν.
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Hence, after using Eq. (25), we obtain the first induced field
equation

Rμν − 1

2
Rgμν + Qμν = 8πGTμν. (34)

A similar process is made using the Codazzi equation in Eq.
(21) contracted with gνρ

gνρ 5RABCDZ
A

,μηBZ C
,ν Z

D
,ρ = gνρkμν;ρ − gνρkμρ;ν,

and after eliminating redundant surface terms, it leads to

5RABZ
A

,μηB = 5RABCDZ
A

,μηBηCηD + gνρkμν;ρ − gνρkμρ;ν .
(35)

On the other hand, taking Einstein equations for the bulk in
Eq. (3) in the Gaussian frame {Z A

,μ, ηB} and taking Eq. (23),
one gets

5RABZ
A

,μηB
a = 1

2

5

RGABZ
A

,μηB
a = 1

2
Rgμa = 0,

and we obtain the second field equation

kμ[ν;ρ] = 0. (36)

In references [43–45,54], it is shown the results for the
embedding of a four-dimensional space-time in a D-dimen-
sional space-time. It is important to point out that Nash-
Greene theorem is only valid for pseudo-Riemannian met-
ric, but an interesting procedure should be in replacing the
pseudo-Riemannian metric on which GR is based by a Finsle-
rian metric. Physical models on such background have been
explored in recent literature [41,42] and show interesting
consequences in amplifying geometrical analysis and rela-
tions. As compared with our present model, we share a similar
inner proposal that lies in expanding the concept of curva-
ture. As a consequence, extra terms in the modified Fried-
mann equations leads to a novel approach to tackle the dark
energy sector. In Ref. [42] was found that a quintessence
or a phantom fluid behaviour is preferred, which is a simi-
lar result that our model proposes. Concerning embeddings,
a somewhat similar development to Nash-Greene theorem
was made by Burago and Ivanov [87,88] that showed that
any compact Finsler manifold can be isometrically embed-
ded into a finite-dimensional normed space, which may be an
interesting direction to follow in order to attain the physical
consequences of such models.

3 Background FLRW metric

After establishing the induced field equations, we study the
cosmological consequences in both background and per-
turbed universe. It is important to point out that the inte-

grability conditions of the embedding (i.e., Gauss, Codazzi
and Ricci equations), solved by Nash-Greene theorem by
means of differentiable functions, reconstruct the five dimen-
sional geometry and allow us to understand bulk properties
from the perturbations of the four-dimensional space-time
V4 and vice-versa. The Riemann curvature of the bulk space
acts as a reference for the Riemann curvature of the embed-
ded space-time. Hence, the dynamics of the embedded four-
dimensional space-time will lead the overall propagation of
gravitational field to the bulk by means of the induced gravita-
tional equations (from the bulk to the embedded space-time)
leaving the Yang–Mills gauge fields confined to the inner
space even under perturbations according to Nash-Greene
theorem. Thus, we begin with the background cosmology
and we rewrite the induced four dimensional equations for
the background in an appropriate form. Rewriting Eqs. (34)
and (36) in a form

G(0)
μν + Q(0)

μν = 8πGT (0)
μν , (37)

k(0)
μ[ν;ρ] = 0, (38)

where G(0)
μν is the non-perturbed Einstein tensor, T (0)

μν denotes
the non-perturbed energy-momentum tensor of the confined
perfect fluid and G is the gravitational Newtonian constant.
For notation sake, we also rewrite Eq. (39) as the non-
perturbed extrinsic term in a form Q(0)

μν in Eq. (37) and is
given by

Q(0)
μν = k(0)ρ

μ k(0)
ρν − k(0)

μν h − 1

2

(
K 2 − h2

)
g(0)
μν , (39)

where we denote in this notation the mean curvature h2 (0) =
h(0)·h(0) and h = 0gμν k(0)

μν . The term K 2 (0) = kμν (0)k(0)
μν is

the Gaussian curvature. As shown in Eq. (32), the Eq. (39)
is readily conserved in the sense that

Q(0)
μν;μ = 0. (40)

As it happens, the basic familiar line element of FLRW is
given by

ds2 = −dt2 + a2
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
, (41)

where the expansion factor is denoted by a ≡ a(t). The
coordinate t denotes the physical time. In the Newtonian
frame, the former equations turn out to be

ds2 = −dt2 + a2
(
dx2 + dy2 + dz2

)
. (42)
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3.1 Non perturbed field equation in an embedded
space-time

By direct calculation of Eq. (42) in Eq. (37), the components
of G(0)

μν are given as usual [89,90]:

G(0)
i j = 1

a2

(
H2 + 2Ḣ

)
δi j , (43)

G(0)
4 j = 0, (44)

G(0)
44 = 3

a2 H
2, (45)

where the Hubble parameter is defined in the standard way
by H ≡ H(t) = ȧ

a .
Since the extrinsic curvature is diagonal in FLRW space-

time, one can find the components of extrinsic curvature
using Eq. (38) that can be split into spatial and time parts:

k(0)
i j,k − Γ a

ikk
(0)
aj = k(0)

ik, j − Γ a
i j k

(0)
ak . (46)

In the Newtonian frame, the spatial components are also
symmetric and using the former relation one can obtain
k(0)

11 = k(0)
22 = k(0)

33 = b ≡ b(t), and straightforwardly

k(0)
i j = b

a2 gi j , i, j = 1, 2, 3, k(0)
44 = −1

ȧ

d

dt

b

a
, (47)

and the following objects can be determined as:

k(0)
44 = b

a2

(
B

H
− 1

)
, (48)

K 2 (0) = b2

a4

(
B2

H2 −2
B

H
+4

)
, h(0) = b

a2

(
B

H
+2

)
, (49)

Q(0)
i j = −1

3
Q(0)

44

(
2
B

H
− 1

)
δ44g(0)

i j , Q(0)
44 =−3b2

a4 , (50)

Q(0) = −(K 2 (0) − h2 (0)) = 6b2

a4

B

H
, (51)

where we define the function B = B(t) ≡ ḃ
b in analogy with

the Hubble parameter. At a time t0, we define the dimen-
sionless parameter B|t=t0 ≡ B0 and b(t = t0) ≡ b0. The
parameter B inherits H dimensionality. The former results
for background were originally obtained in [44].

3.2 The Einstein–Gupta equations

In each embedded space-time obtained by the smooth defor-
mations, the metric and the extrinsic curvature are indepen-
dent variables as shown by Nash-Greene theorem (Eq. (16))
in which does not provide per se a dynamics for kμν . From
the total of 20 unknowns gμν and kμν , we count from Eq.
(3) only 15 dynamical equations. To solve that, the remain-
ing unknown equations come from the fact that kμν is an
independent symmetric rank-2 tensor that corresponds to a
spin-2 field. A theorem due to Gupta [91] shows that such

kind of tensors necessarily satisfy an Einstein-like system
of equations, having the Pauli–Fierz equation as its linear
approximation [92,93]. Hence, to our purposes, we adapt
Gupta’s theorem to kμν to obtain its dynamics as originally
shown in [54].

Suchlike to a projective space, we derive Gupta’s equa-
tion for the extrinsic curvature in the embedded space-time
endowed with the metric (0)gμν , analogously to the standard
derivation of Einstein’s equations. Then, we normalise the
background extrinsic curvature by noting that k(0)

μν kμν (0) =
K 2 �= 4, with the definition of tensor

f (0)
μν = 2

K (0)
k(0)
μν , (52)

with its inverse by f μρ (0) f (0)
ρν = δ

μ
ν . Immediately, one

obtains f μν (0) = 2
K (0) k

μν (0). Denoting by || the covariant

derivative with respect to a connection defined by f (0)
μν , while

keeping the usual semicolon notation for the covariant deriva-
tive with respect to (0)gμν , the analogous to the “Levi–Civita”

connection associated with f (0)
μν such that ” f (0)

μν||ρ = 0, is:

Υμνσ = 1

2

(
∂μ fσν + ∂ν fσμ − ∂σ fμν

)
. (53)

Defining Υμν
λ = f λσ (0) Υ

(0)
μνσ , it allows to write the “Rie-

mann tensor” for f (0)
μν that has components

F (0)
ναλμ = ∂αΥμλν − ∂λΥμαν + ΥασμΥ σ

λν − ΥλσμΥ σ
αν, (54)

that leads to the corresponding “f-Ricci tensor” and the “f-
Ricci scalar” for fμν written as, F (0)

μν = f αλ (0)F (0)
ναλμ and

F (0) = f μν (0)F (0)
μν , respectively. Finally, Gupta’s equa-

tions for f (0)
μν can be obtained from the contracted Bianchi

identity as

F (0)
μν − 1

2
F (0) f (0)

μν = α∗Tμν, (55)

where Tμν stands for the source of this field such that
T μν ||ν = 0 and f∗ is a coupling constant. In spite of the

evident resemblances, k(0)
μν is not a metric tensor because it

exists only after the Riemannian geometry has been primely
defined with the metric (0)gμν . Moreover, considering the
simplest option for the “f-curvature”, the related cosmologi-
cal constant is zero and the only option for the external source
of Eq. (55) is the void characterized by Tμν = 0, once in
this region, we only have pure gravitational interaction. With
such interpretation, Eq. (55) becomes simply a Ricci-flat-like
equation

F (0)
μν = 0. (56)
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Moreover, we use the spatially flat FLRW metric in Eq. (42)
and the definitions of Eqs. (52) and (53) to obtain

f (0)
i j = 2

K (0)
(0)gi j , i, j = 1..3, f (0)

44 = − 2

K (0)

1

ȧ

d

dt

(
b

a

)
,

(57)

from which we derive the components of Eq. (53) and the
“f-curvature” F (0)

μνρσ . In this particular example, one obtains
the components of Ricci-flat equation in Eq. (56) given by

F (0)
11 = 1

4

−4b2ξ K̇ 2 + 5bξ K̇ ḃK − ḃ2ξK 2 + 2b2ξK K̈

ξ2K 2b

+ 1

4

−2bb̈ξK 2 − b2 K̇ ξ̇K + bK 2ḃξ̇

ξ2K 2b
= 0

(58)

F (0)
22 = r2 −4b2ξ K̇ 2 + 5bξ K̇ ḃK − ḃ2ξK 2 + 2b2ξK K̈

4ξ2K 2b

+ r2 −2bb̈ξK 2 − b2 K̇ ξ̇K + bK 2ḃξ̇

4ξ2K 2b
= 0

(59)

F (0)
33 = sin2(θ)F22 = 0 , (60)

F (0)
44 = −3/4

ḃ2ξK 2 + 2b2ξK K̈ − 2bb̈ξK 2 − b2 K̇ ξ̇K

ξK 2b2

− 3/4
bK 2ḃξ̇ − 2b2ξ K̇ 2 + bξK K̇ ḃ

ξK 2b2 = 0,

(61)

where for the sake of notation, we have denoted ξ = k(0)
44

and retract the (0) in the squared root of Gaussian curvature
K . By subtracting the relevant equations, i.e., Eqs. (58) and
(61), we obtain b2 K̇ 2 + K 2ḃ2 = 2bK ḃK̇ or, equivalently,

(
K̇

K

)2

− 2
ḃ

b

K̇

K
= −

(
ḃ

b

)2

, (62)

which has a simple solution K (t) = √
3η0b(t), where the

integration constant was conveniently adjusted to
√

3η0.
Replacing the expression of K ≡ K (t) given by Eq. (49),
we obtain

B

H
= 1 ± √

3
√

η2
0a

4 − 1. (63)

In this form, Eq. (63) contributes to the Friedman equation as
a dark radiation-like term. An amplification of this contribu-
tion can be done by simply adding an arbitrary dimensionless
constant c0 to Eq. (63). It results in a vertically shifted par-
ent function of Eq. (63). Thus, we will have an enlargement
of the range (image) of Eq. (63) but preserving its domain
unchanged. From a physical perspective, it allows an addi-
tional contribution to Friedman equation leading to an accel-
erated expansion regime. As a result, one rewrites Eq. (63)

in a generic form

B

H
= β0 ± √

3
√

η2
0a

4 − 1, (64)

where the summation (1+c0) is replaced by a dimensionless
parameter β0. Clearly, the parental function in Eq. (64) does
not affect the evolution of

( B
H

)
in its time derivatives at any

time t , at any order. In the limit β0 → 1, one recovers Eq.
(63). Moreover, the β0 parameter must obey the constraint
β0 ≥ 1 in order to be consistent with the Null energy condi-
tion (NEC) and should be constrained to data.

In addition, Eq. (64) can be readily integrated and one
obtains the following b(t) function as

b(t) =
(

b0

aβ0
0

exp (±γ (a0))

)
aβ0 cos

(√
3

2

√
1 − η2

0a
4

)
e±γ (a)

(65)

where γ (a) is a complex function given by

γ (a) = arctan

(
i
√

1 − η2
0a

4

)
, (66)

and so is γ (a0) = γ (a)|a=a0 . Calculating the modulus of the
complex function b(t), one obtains

|b(t)| =
(

b0

aβ0
0

)
aβ0 cos

(√
3

2

√
1 − η2

0a
4

)
. (67)

The square root term in Eq. (67) also poses a bound over η0.

The η0 parameter is bounded from below at a = a0 in such
a way η0 ≤ 1. Hereon, for the sake of notation, we simply
write the modulus |b(t)| as |b(t)| ≡ b(t).

It is worth noting that the cosine function acts as a damping
function on the evolution of Eq. (67). We verified that a better
growth behaviour is obtained when η0 → 0 for any a(t) and
b(t) increases monotonically as

b(t) =
(

b0

aβ0
0

)
aβ0 , (68)

which can be useful to mimic smooth dark energy perturba-
tions. For the present time, a0 can be set as a0 = 1.

3.3 Hydrodynamical equations

The stress energy tensor in a non-perturbed co-moving fluid
is given by

T (0)
μν =

(
ρ(0) + p(0)

)
uμuν + p(0)g(0)

μν ; uμ = δ4
μ.
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The conservation of T (0)
μν;μ = 0 leads to

ρ(0) + 3H
(
ρ(0) + p(0)

)
= 0. (69)

From the induced field equations in Eqs. (37) and (38), the
resulting Friedmann equation turns

H2 = 8

3
πGρ(0) + b2

a4 , (70)

where ρ(0) is the present value of the non-perturbed matter
density (hereon ρ(0) ≡ ρ

(0)
m (t)) and b(t) is given by Eq. (68).

Thus, we write the matter density in terms of redshift as

ρ(0)
m (t) = ρ

(0)
m(0)a

−3 = ρ
(0)
m(0)(1 + z)3. (71)

and we rewrite Eq. (70) in terms of redshift as

H2 = 8

3
πGρ

(0)
m(0)(1 + z)3 + b2

0(1 + z)4−2β0 . (72)

Using the definition of the cosmological parameter Ωi =
8πG
3H2

0
ρ

(0)
i(0), we finally have

(
H

H0

)2

= Ωm(0)(1 + z)3 + (1 − Ωm(0))(1 + z)4−2β0 , (73)

where Ωm(0) is the current cosmological parameter for matter
content and for a flat universe Ωext (0) = 1 − Ωm(0). The
extrinsic cosmological parameter Ωext (0) was written using
a fluid analogy, in such a way we define

Ωext (0) = 8πG

3H2
0

ρ
(0)
ext (0) ≡ b2

0

aβ0
0

. (74)

As standard practice, H0 is the current value of Hubble con-
stant in units of km.s−1 Mpc−1. Likewise, in conformal time
η such that dt = a(η)dη and H ≡ aH , we can write the
Friedmann equation in this frame as

H 2 = k0

3
a2

(
ρ(0)
m (t) + b2

0

k0
a2β0−4

)
, (75)

where k0 ≡ 8
3πG and the conformal Hubble parameter is

H = a′
a . The prime symbol represents the conformal time

derivative. Hence, the conformal time derivative of Hubble
parameter is given by

H ′ ≡ dH

dη
=−k0

6
a2

(
ρ(0)
m +3p(0)+(β0 − 4)

b2
0

k0
a2β0−4

)
,

(76)

and completes the set of equations for a non-perturbed fluid
in a conformal Newtonian gauge.

4 Transformations and gauge variables

Using the standard line element of FLRW metric in Euclidean
coordinates in Eq. (42), one finds

ds2 = a2
(
−dη2 + δi j dx

i dx j
)

, (77)

where a = a(η) is the expansion parameter in conformal
time. We start with the standard process as known in GR
[89,90,94]. The novelty of this approach is the inclusion of
the extrinsic curvature in the theoretical framework. Thus,
let be the coordinate transformation xα → x̃α = xα + ξα

such as ξα � 1, then we have for a second order tensor

g̃αβ(x̃ρ) = ∂xγ

∂ x̃α

∂xδ

∂ x̃β
gγ δ(x̃

ρ).

Hence, we can write the perturbed metric tensor in the new
coordinates δg̃αβ as

δg̃αβ = δgαβ − g(0)
αβ,γ ξγ − g(0)

αδ ξ δ
,β − g(0)

βδ ξ δ
,α, (78)

where the infinitesimally vector function ξα = ξ (4) + ξ i can
be split into two parts

ξ i = ξ i⊥ + ζ ,i ,

in which ξ i⊥ is the orthogonal part decomposition and ζ is
a scalar function. The prime symbol denotes the derivative
with respect to conformal time η. As a result, we can obtain

δg̃i j = δgi j + a2
[

2
a′

a
δi jξ

(4) + 2ζ,i j + ξ⊥
i, j + ξ⊥

j,i

]
, (79)

δg̃4i = δg4i + a2
(

ξ ′⊥i +
[
ζ ′ − ξ (4)

]
,i

)
, (80)

δg̃44 = δg44 − 2a(aξ (4))′. (81)

Using Eq. (78), we obtain a similar transformation for kμν

as

δk̃αβ = δkαβ − k(0)
αβ,γ ξγ − k(0)

αδ ξ δ
,β − k(0)

βδ ξ δ
,α. (82)

And taking into account the Nash-Greene theorem

k(0)
μν = −1

2
g• (0)
μν , (83)

where we denote g• (0)
μν = ∂g(0)

μν

∂y , and y is the coordinate of
direction of perturbations from the background to the extra-
dimensions (in this case, just one extra-dimension). Thus, we
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can rewrite Eq. (82) as

δk̃αβ = δkαβ + 1

2
g• (0)
αβ,γ ξγ + 1

2
g• (0)
αδ ξ δ

,β + 1

2
g• (0)
βδ ξ δ

,α, (84)

and we get straightforwardly

δk̃i j = δki j − (a2)•
[

1

2

(
(a2)•

)
,4

(a2)•
δi jξ

(4)

+2ζ,i j + ξ⊥
i, j + ξ⊥

j,i

]
,

δk̃4i = δk4i + 1

2
(a2)•

(
ξ ′⊥i +

[
ζ ′ − ξ (4)

]
,i

)
,

δk̃44 = δk44 +
(
(a2)•ξ (4)

)
,4

− 1

2

(
(a2)•

)
,4

ξ (4).

Taking the previous expressions and to avoid the implications
of the ambiguity of two “times” coordinates, likewise the
Rosen bi-metric theory [2,95] that led to erroneous results
such as a dipole gravitational waves, we adopt y as a set of
space-like coordinates. Then, one obtains

δk̃i j = δki j , (85)

δk̃4i = δk4i , (86)

δk̃44 = δk44. (87)

For scalar perturbations the metric takes the form

ds2 =a2[−(1 + 2φ)dη2 + 2B,i dx
i dη

+ ((1 − 2ψ)δi j − 2E,i j )dx
idx j ], (88)

where φ = φ(x, η), ψ = ψ(x, η), B = B(x, η) and E =
E(x, η) are scalar functions.

For the tensors Gμν , Tμν and Qμν , one can use the same
set of transformations. In this sense, for small perturbations,
we can write the Einstein tensor in a coordinate system x̃ as

G̃μν = G(0)
μν + δG̃μν,

where δG̃μν denotes linear perturbations in the new coordi-
nate system

δG̃αβ = δGαβ − G(0)
αβ,γ ξγ − G(0)

αδ ξ δ
,β − G(0)

βδ ξ δ
,α. (89)

Immediately, we have a similar expression for Tμν

T̃μν = T (0)
μν + δT̃μν,

that leads to

δT̃αβ = δTαβ − T (0)
αβ,γ ξγ − T (0)

αδ ξ δ
,β − T (0)

βδ ξ δ
,α, (90)

and also, for the deformation tensor

Q̃μν = Q(0)
μν + δ Q̃μν,

that leads to

δ Q̃αβ = δQαβ − Q(0)
αβ,γ ξγ − Q(0)

αδ ξ δ
,β − Q(0)

βδ ξ δ
,α. (91)

And using Eq. (88), we obtain for δG̃μν :

δG̃ i
j = δG i

j −
(

(0)G i
j

)′
(B − E ′), (92)

δG̃ 4
i = δG 4

i −
(

(0)G 4
4 − 1

3
(0)G k

k

)
(B − E ′),i , (93)

δG̃ 4
4 = δG 4

4 −
(

(0)G 4
4

)′
(B − E ′). (94)

For the perturbed stress energy tensor δT̃μν , one obtains the
set of equations

δT̃ i
j = δT i

j −
(

(0)T i
j

)′
(B − E ′) (95)

δT̃ 4
i = δT 4

i −
(

(0)T 4
4 − 1

3
(0)T k

k

)
(B − E ′),i , (96)

δT̃ 4
4 = δT 4

4 −
(

(0)T 4
4

)′
(B − E ′). (97)

Likewise, for the perturbed induced extrinsic part δ Q̃μν we
have

δ Q̃ i
j = δQ i

j −
(

(0)Q i
j

)′
(B − E ′) (98)

δ Q̃ 4
i = δQ 4

i −
(

(0)Q 4
4 − 1

3
(0)Q k

k

)
(B − E ′),i , (99)

δ Q̃ 4
4 = δQ 4

4 −
(

(0)Q 4
4

)′
(B − E ′). (100)

5 Scalar perturbations in Newtonian gauge

5.1 Perturbed gravitational equations

In longitudinal conformal Newtonian gauge, the main con-
dition resides in the vanishing functions of B = B(x, η) and
E = E(x, η), as well as the quantities ξ (4), ξ ′, ζ . Hence, the
metric in Eq. (88) turns to be

ds2 = a2[(1 + 2Φ)dη2 − (1 − 2Ψ )δi j dx
i dx j ] , (101)

where Φ = Φ(x, η) and Ψ = Ψ (x, η) denote the Newto-
nian potential and the Newtonian curvature, respectively. In
addition, we obtain a simplification of the previous trans-
formations of the curvature-related quantities and the set of
following outcomes:

δg̃44 = δg44 ; δg̃4i = δg4i = 0; δg̃i j = δgi j , (102)

δG̃ 4
4 = δG 4

4 ; δG̃ 4
i = δG 4

i ; δG̃ i
j = δG i

j ,

δT̃ 4
4 = δT 4

4 ; δT̃ 4
i = δT 4

i ; δT̃ i
j = δT i

j ,

δ Q̃ 4
4 = δQ 4

4 ; δ Q̃ 4
i = δQ 4

i ; δ Q̃ i
j = δQ i

j . (103)
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Taking into account all the former results of Eqs.(102), we
can write the perturbed induced field equations simply as

δGμ
ν = 8πGδTμ

ν − δQμ
ν , (104)

δkμν;ρ = δkμρ;ν . (105)

Using the Nash-Greene theorem, we notice that Codazzi
equations in Eq. (105) do not propagate perturbations in
which are confined to the background. In other words,
Codazzi equations maintain their background form and so
are the perturbations of Gupta equations in which δFμν = 0.

Applying Eqs. (19) to (105), we obtain the background
equation as in (38). In this sense, we have to look for the
effects of the Nash-Greene fluctuations on the perturbed
gravi-tensor equation in Eq. (104) and verify if the propa-
gations of cosmological perturbations may occur. Thus, we
can write the components of Eq. (104) as

δGi
j = 8πGδT i

j − δQi
j ,

δG4
i = 8πGδT 4

i − δQ4
i ,

δG4
4 = 8πGδT 4

4 − δQ4
4 ,

and using the conformal metric in Eq. (101), we have the
components in the conformal Newtonian frame,

Dδi j = 1

2
(Ψ − Φ),i j + 1

2
a2δQi

j − 4πGa2δT i
j , (106)

[
Ψ ′ + H Φ

]
,i = 4πGa2δT 4

i − 1

2
a2δQ4

i , (107)

∇2Ψ − 3H
(
Ψ ′ + ΦH

) = 4πGa2δT 4
4 − 1

2
a2δQ4

4. (108)

whereD = Ψ ′′+H (2Ψ +Φ)′+(H 2+2H ′)Φ+ 1
2∇2(Ψ −

Φ). Actually, the former perturbed Einstein equations in con-
formal-Newtonian gauge coincide with those written in an
arbitrary coordinate system [94], which naturally relates this
gauge to a gauge-invariant framework. Thus, the perturba-
tions δkμν can be determined by the metric perturbations as
shown in Eq. (19) in an adopted gauge. Moreover, the per-
turbation of the deformation tensor Qμν can be made from
its background form in Eq. (39) and the resulting kμν pertur-
bations from the Nash fluctuations of Eq. (19) such as

δQμν = −3

2
(K 2 − h2)δgμν. (109)

The quantity δQμν is also independently conserved in a sense
that δQμν;ν = 0. Moreover, using the background relations
of Eqs. (48), (49), (50), (51), we can determine the compo-
nents of δQμν as

δQi
j = 18β0b

2
0a

2β0−2Ψ δij , (110)

δQi
4 = 0, (111)

δQ4
4 = 18β0b

2
0a

2β0−2Φδ4
4 . (112)

Thus, we get the basic gauge invariant field equations mod-
ified by the extrinsic curvature in the conformal Newtonian
gauge as

Dδi j =9γ0a
2β0Ψ δi j + 1

2
(Ψ − Φ),i j −4πGa2δT i

j , (113)
[
Ψ ′ + H Φ

]
,i = 4πGa2δT 4

i , (114)

∇2Ψ − 3H
(
Ψ ′ + ΦH

) = 4πGa2δT 4
4 − 9γ0a

2β0Φ ,

(115)

where we denote γ0 = β0b2
0. Using Eq.(74), γ0 parameter is

simply written in terms of β0 as

γ0 = β0 Ωext (0), (116)

where Ωext (0) is the extrinsic (current) cosmological param-
eter.

5.2 Hydrodynamical gravitational perturbed equations

For a perturbed fluid with pressure p and density ρ, one can
write the perturbed components of the related stress-tensor

δT̃ 4
4 = δρ , (117)

δT̃ 4
i = 1

a
(ρ0 + p0)δu‖i , (118)

δT̃ i
j = −δp δij , (119)

where δu‖i denotes the tangent velocity potential and ρ0 and
p0 denote the non-perturbed components of density and pres-
sure, respectively. Hence, we can rewrite Eqs. (113), (114)
and (115) as

∇2Ψ − 3H
(
Ψ ′+ΦH

)=4πGa2δρ−9γ0a
2β0Φ, (120)[

Ψ ′ + H Φ
]
,i = 4πGa(ρ0 + p0)δu‖i , (121)

Dδi j − 1

2
(Ψ − Φ),i j =

[
4πGa2δp + 9γ0a

2β0Ψ
]
δi j .

(122)

These set of equations can be better understood in the Fourier
k-space wave modes. In order to maintain the correct phys-
ical dimensions in the k-space modes of objects from the
extrinsic geometry, we need to project the perturbed δQμν

onto the intrinsic k-wave vector field. Therefore, we make
possible a further consistent cosmic fluid correspondence of
extrinsic curvature, which is a fully geometric component.
Thus, considering a vector field k = ki ∂

∂wi with local coordi-

nates {w1, w2, . . . , wn} and coordinate momenta ki = dwi

dt .

Hence, the perturbed δQμν can be dragged into the k vec-
tor flow by Lie derivative £k . Then, one defines the Fourier
transform

δQμν =
∫

£kδQ
(k)
μν (k, w, a)ei

k•xdk, (123)
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where • indicates a scalar product and δQ(k)
μν (k, w, a) is the

defined in terms of variables (k, w, a) as

δQ(k)
μν (k, w, a) = δi j k

iw j f (a)δgμν. (124)

where f (a) is an ab-initio arbitrary function of the expansion
factor a.

In FLRW space-time, k vector flow is conserved in a sense
kρ

;μ = kρ

;ν = 0, and one obtains the drag of δQμν in k-space
as

δQμν =
∫

k2 f (a)δgμνe
i k•xdk, (125)

where, in our present application, f (a) = 9γ0a2β0 .
Taking the Fourier transform of each main quantity (with

subscript “k”), we obtain a new set of equations:

k2Ψk + 3H
(
Ψ

′
k + ΦkH

)
= −4πGa2δρk + χ(a)Φk,

(126)

Ψ
′
k + H Φk = −4πGa2(ρ0 + p0)θ, (127)

where θ = ik jδu‖ j denotes the divergence of fluid velocity
in k-space and χ(a) = 9γ0k2a2β0 . Finally, the third equation
is given by

Dk − 1

2
k̂i • k̂i (Ψk − Φk) = 4πGa2δp + χ(a)Ψk , (128)

where Dk = Ψ
′′
k + H (2Ψk + Φk)

′ + (H 2 + 2H ′)Φk +
1
2k

2(Ψk − Φk).

6 Matter density evolution under subhorizon regime

In order to obtain a bare response of an influence of the extrin-
sic terms, we do not consider anisotropic stresses and pres-
sure for Eqs. (126), (127) and (128), we obtain the following
equation

k2Φk + 3H
(
Φ

′
k + ΦkH

)
= −4πGa2δρk + χ(a)Φk ,

(129)

where the closure condition Ψ = Φ applies which is a result
of the space-space traceless component from Eq.(122).

It is important to notice that when γ0 → 0 (i.e., when
extrinsic curvature component vanishes b0 → 0) in Eq.
(129), the standard GR equations are obtained and we recover
the subhorizon approximation with k2 � H 2 or k2 �
a2H2 which means Φ ′′

k ,H Φ ′
k ∼ 0. To determine the grav-

itational potential Φ, we also need to work with the conti-
nuity and Euler equations from calculating the components

δTμ

μ;4 = 0 and δTμ

μ;i = 0 to obtain, respectively

δρ′ + (p0 + ρ0)ξ(Φ) + 3H (δp + δρ) = 0 , (130)
d

dη
[(p0 + ρ0)ui ] + (p0 + ρ0)ζ(Φ) + δp = 0 , (131)

where we denote ξ(Φ) = ∇2ui −3Φ ′ and ζ(Φ) = 4H ui +
Φ. Moreover, taking Eq. (130) under a Fourier transform, we
obtain the following equation in the k-space as

δρ′
k − k2ρ0uk − 3ρ0Φ

′ + 3H δρk = 0 ,

which in subhorizon approximation gives

δρ′
k − k2ρ0uk � 0 . (132)

For the pressureless form of Eq. (131), we have

ρ′
kuk + ρku

′
k + 4H ukρk + ρkΦk = 0 ,

and using the background formula from conservation equa-
tion of Eq. (69), we have

k2ρ0u
′
k = −k2H uk − k2Φk . (133)

Performing the definition of the “contrast” matter density
δm ≡ δρ

ρ0
, and using Eqs. (129), (132) and (133), we obtain a

relation with Φk and δm as

k2Φk = −4πGef f a
2ρ0δm , (134)

where Gef f is the effective Newtonian constant and is given
by

Gef f (a) = G

1 − 9γ0a2β0
, (135)

that results in a “flat” Gef f in the sense that Gef f is indepen-
dent of k-scale, like that of f (T ) models [96,97].

From Eq. (73), a fluid analogy is provided by the effective
Equation of State (EoS) for an “extrinsic fluid” parameter
wext by defining

wext = −1 + 1

3
(4 − 2β0) . (136)

If we adopt the previous relation of the dimensionless param-
eter β0 with the dark energy fluid parameter w in such a way
β0 = 2− 3

2 (1 + w), or equivalently, w = −1− 1
3 (2β0 − 4),

we obtain wext = w. Hence, we can write the dimensionless
Hubble parameter E(z) as

E2(z) = Ωm(0)(1 + z)3 + (
1 − Ωm(0)

)
(1 + z)3(1+w). (137)

which reproduces a quintessence or/phantom behaviour at
background level depending on the value of w �= −1.
Hereon, the present model is denoted as β-model only to
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facilitate the referencing. Consequently, Gef f can be written
as

Gef f (a) = G

1 − 9γ0a1−3w
, (138)

and using Eqs. (74) and (116), one obtains that γ0 can be
rewritten as

γ0 = 1

2
γs(1 − 3w)(1 − Ωm(0)) . (139)

It is important to point out that due to Eq. (136), which is
an assumption that relates the geometrical approach of β-
model to a physical cosmological parameter w, we also need
to introduce a γs parameter. The necessity is twofold: first,
it is to maintain the reproducibility of GR/ΛCDM limit, i.e.,
when γs → 0. Thus, even a small deviation from that limit
value of γs leads to a deviation from GR. Secondly, it is to
sustain such a level of arbitrariness of γ0 in Eq. (116) as
a heritage from its extrinsic origin in order to stabilise the
evolution of Gef f due to the introduction of EoS for the
“extrinsic fluid”.

In order to analyse the evolution of matter density, we first
take the conformal time derivative of Eq. (132). Then, writing
Eq. (133) in terms of δm and using Eq. (134), we obtain the
equation of evolution of the contrast matter density δm(η) in
conformal longitudinal Newtonian frame

δ′′
m + H δ′

m − 4πGef f a
2ρ0δm = 0 . (140)

To express Eq. (140) in terms of the physical time, we use

the notation δ̇m ≡ δ′
m
a and obtain the useful relation δ′′

m =
a2δ̈m + a2H δ̇m . We are leading to

δ̈m(t) + 2H δ̇m(t) − 4πGef f ρ0δm(t) = 0 . (141)

Thus, we obtain an alternative way to express the former
equation in terms of the expansion factor a(t). We use the

notation dδm(a)
da = δ◦

m(a) and d2δm(a)

da2 = δ◦◦
m (a), and obtain

useful relations δ◦
m(a) = 1

ȧ δ̇m(t) and δ◦◦
m (a) = 1

ȧ2 δ̈m(t).
Hence, the contrast matter density δm(a) is governed by the
equation

δ◦◦
m (a)+

(
3

a
+ H◦(a)

H(a)

)
δ◦
m(a)− 3Ωm0Gef f /G

2(H2(a)/H2
0 )

δm(a) = 0 .

(142)

which solutions are possible only numerically. For instance,
in the context of GR, where Gef f = G turns δm(a) indepen-
dent of the scale k, with the fluid parameter w, one has the
following solution

δ(a)=a.2F1

(
− 1

3w
,

1

2
− 1

2w
; 1− 5

6w
; a−3w(1 − Ω−1

m )

)

(143)

where 2F1(a, b; c; z) is a hypergeometric function. Clearly,
the presence of Gef f function in Eq. (142) marks the depar-
ture of the β-model from any analogy with ΛCDM (w = −1)
at perturbation level.

The form of the effective Newtonian constant is given by
Eq. (135) as a result of the linear Nash-Greene fluctuations
of the metric and the induced extrinsic curvature as shown in
Eqs. (14) and (15).

7 Analysis on tensions of Hubble parameter and growth
amplitude factor

In this section, we focus on the growth amplitude factor S8,
Hubble constant H0 and matter density Ωm , since they are
the main actors of the discrepancy problem in cosmological
probes. We basically compare the results of our model with
the minimal flat ΛCDM model. For the numerical imple-
mentation, we wrote a code using Cobaya [64,65] sam-
pler and the module Classy to include the cosmological
theory code CLASS [98–100] by means of a modification
EFCLASS[101] to better define the perturbation equations
of the model. Concerning the ΛCDM model, the CLASS
code was kept intact and all the related chains ran using the
standard Cobaya vanilla code. In order to keep the analysis
on the sub-horizon linear scale, we set in the EFCLASS code
the minimum value of expansion parameter as amin = 0.001.

The joint analysis is made by using of data on the evo-
lution of background parameter H(z) and Ωm distributions
from Planck likelihood code [11] with 2810 points, SNIa
Pantheon data [66] with 1048 points, the galaxy cluster-
ing and weak lensing from DES Y1 [28] with 90 points,
the BAO SDSS DR12 “consensus” galaxy sample [67] with
6 points from redshift-space distortions (RSD) to compute
gro-wth data, H(z) and BAO. As of writing, it is impor-
tant to point out that we opt not to include other RSD mea-
surements due to (still) unsolved issue in BAO+RSD likeli-
hood4 once fσ8 is not implemented so far in CLASS and pro-
duces an error when calculating by Cobaya. From Planck
2018 data [11], we consider CMB temperature and polari-
sation angular power spectra (high-l.plik.TTTEEE + low-l
EE polarisation+ low-l TT temperature) quoted simply as
P18. As local measurements on Hubble constant H0, we
use Riess et al. 2020 [68] data, hereon R20, from Hubble
Space Telescope (HST) photometry and Gaia EDR3 paral-
laxes with H0 = 73.2 ± 1.3kms−1.Mpc−1 with 20 data-

4 https://github.com/CobayaSampler/cobaya/issues/44.
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Table 2 Flat priors on the cosmological parameters used in our MCMC
analysis

Parameter Priors

Ωbh2 [0.001,0.3]

Ωcdmh2 [0.001,0.99]

τreio [0.01,0.8]

w [−3, 0]

ns [0.8,1.2]

ln(1010As) [1.61,3.91]

100θMC [0.5,10]

points. For model comparison, we adopt the following com-
bination of joint dataset as P18+R20, P18+R20+BAO and
P18+R20+BAO+ +DESY1+Pantheon.

The MCMC chains are analysed by using GetDist [69]
in which was also used to make the contour plots. We sample
the posterior distributions of the MCMC chains by means of
Metropolis-Hastings algorithm [102,103] in Cobaya. The
parallel runs were stopped by applying the Gelman–Rubin
convergence criterion [104] R − 1 < 0.02 and the first 30%
of chains were discarded as burn-in for each sample of joint
data. We summarise the results of MCMC analyses in Table 1
with the mean marginalised posterior values for the parame-
ters. We adopt baseline priors as shown in Table 2: the baryon
density is given by Ωbh2, Ωcdmh2 represents CDM density,
the reonisation optical depth τreio, dark fluid parameter w,
scalar spectral index ns, the amplitude of primordial fluc-
tuations ln(1010As) and the angular size of the first CMB
acoustic peak 100θMC . In the case of ΛCDM, the dark fluid
parameter is fixed as w = −1.

In order to check the modification of the value of the grav-
itational constant during Big Bang nucleosynthesis (BBN)
epoch as zBBN ∼ 109, we calculate the BBN speed-up factor
[105,106]. At the BBN epoch the bound is about | ΔH2

H2
ΛCDM

| <

10%. From the values of MCMC chains, we obtain the
BBN speed-up factor between ΛCDM and the β-model is
roughly 1%, 0.7% and 0.6% from the joint datasets P18+R20,
P18+ +R20+BAO and P18+R20+BAO+DESY1+Pantheon,
respectively. In all cases, they largely satisfy the bounds on
BBN speed-up factor. Concerning Gef f in Eq. (135), we also
need to check if it obeys BBN constraints. To do so, we have
rewritten Eq. (138) with its right-shifted parent function as

Gef f (a) = GN

1 − 9γ0(a − 1)1−3w
. (144)

This parent function only changes from the growth pattern of
the original function in Eq. (138) to a decaying behaviour. To
guarantee the positivity of Gef f > 0, then γs must comply

with

γs <
0.111

(1 − 3w)(1 − Ωm(0))
. (145)

For P18+R20, we findγs < 0.0273±0.0003, P18+R20+BAO
with γs < 0.0281 ± 0.0003 and P18+R20+BAO+DESY1+
+Pantheon with γs < 0.0244 ± 0.0002. We notice that since
w and Ωm(0) have bounded values, fixing γs ≤ 1 × 10−3

will suffice for all cases and it attends the condition of
Eq. (145) and Gef f constraints. Hence, γs is a data inde-
pendent parameter. The form of Eq. (135) complies with
the constraint

Gef f
GN

�a=0 = 1,
Gef f
GN

�a=1 = 1 expected for
both BBN and solar scales for any w < 0. We obtain
Gef f
G �a=0 ∼ 1.02 and

Gef f
G �a=1 = 1 , which obeys BBN

constraints |Gef f /G − 1| ≤ 0.2 [107]. Regardless of the

value of γ0, we also obtain the derivative
dGef f
da /G�a=1 = 0,

that obeys the constraint
dGef f
da /G�a=1 � 0 [108]. For early

times, considering that the BBN constraint is not so strin-
gent [35], we have

dGef f
da /G�a=0 > 0. For completeness

purposes, in Fig. 3 we also present the contours on the
constrained β0 and γ0 parameters in contrast with the fluid
parameter w. The posterior probability of β0 and γ0 appears
to be multimodal.

In this paper, we use as a reference for model compar-
ison three information criteria (IC) classifiers to estimate
the strength of tension between the data fitting and partic-
ular models using maximum likelihood estimation. To sum
up, the model with higher IC tends to aggravate the tension
when more (free) parameters are allowed, and the simpler
model is normally preferable rather than the complex one.
In cosmology, this situation must be seen with caution once
considering only the maximum likelihood analysis it may
induce false positives (or negatives) and choose an ultimate
reliable model turns a non trivial task to decide between the
model simplicity over complexity [109–113].

Adopting the data as being Gaussian, we use the Akaike
criterion (AIC) [70] for small samples sizes [114,115] such
as

AIC = χ2
b f + 2k

2k(k + 1)

N − k − 1
, (146)

where χ2
b f is the best fit χ2 of the model, k represents

the number of the uncorrelated (free) parameters and N is
the number of the data points in a dataset. The difference
|ΔAIC | = AICmodel (2) − AICmodel (1) represents the Jef-
freys’ scale [116] that qualitatively classifies the intensity
of tension between two (competing) models. Higher values
for the difference |ΔAIC | indicates more tension between
the models and thus more statistically uncorrelated they are.
Jeffreys’ scale stands for |ΔAIC ≤ 2| in which the tension
is weak and the models are statistically consistent with a
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Fig. 2 The one-dimensional marginalised posterior distributions and
two-dimensional contour plots with 68.4% and 95.7% C.L. of cos-
mological parameters (Ωm , S8, H0). Red and Blue colours indicate
the β-model and ΛCDM, respectively. The grey colour indicates the

Planck 2018 high-l temperature TTTEEE+low-l+low-E+lensing data.
(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

considerable level of empirical support. For 4 < ΔAIC < 7
indicates a positive tension against the competing model with
a higher value of AIC. For |ΔAIC ≥ 10| indicates a strong
evidence against the model with a higher AIC. The other
two IC classifiers tend to impose a major penalty on model
complexities. In order to correct the original BIC [71] that
does not get rid of change-point processes (which is particu-
larly important in MCMC processes), the Modified Bayesian

Information Criterion (MBIC) [72], is given by the formulae

MBIC = χ2
b f + k(ln[N ] − ln[2π ]) . (147)

From the Jeffreys’ scale, as in the AIC case, higher val-
ues for |ΔMBIC | denotes more tension between competing
models and more statistically uncorrelated they are. Unlike
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Table 3 A summary of the obtained values of AIC, MBIC and HQC for the studied models. ΛCDM is adopted as a reference model

Model AIC ΔAIC Evidence MBIC ΔMBIC HQC ΔHQC Evidence

ΛCDM (full) 3922.40 0 Null 3940.6 0 3931.72 0 Null

β-model (full) 3922.72 0.1 Weak 3944.95 4.34 3933.85 2.13 Positive

ΛCDM (P18+R20+BAO) 2808.01 0 Null 2824.45 0 2816.59 0 Null

β-model(P18+R20+BAO) 2809.72 1.71 Weak 2830.26 5.81 2820.43 3.85 Positive

ΛCDM (P18+R20) 2805.51 0 Null 2820.94 0 2813.08 0 Null

β-model(P18+R20) 2804.51 0.9 Weak 2025.95 5.01 2816.13 3.04 Positive

Fig. 3 Red, blue and grey colours indicate the resulting contours for the
β0, γ0 and w parameters at 68.4% and 95.7% C.L. of P18+R20+BAO,
P18+R20+BAO+DESY1+Pantheon joint data, respectively. (For inter-
pretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

AIC, MBIC requires a better detailed Jeffreys’ scale for
a qualitative analysis of model comparison. For instance,
|ΔMBIC ≤ 2| indicates that is not worth more than a bare
mention (about tension) and the models are statistically con-
sistent with a considerable level of empirical support. For
2 < ΔMBIC ≤ 6 indicates a positive tension against the
model with a higher value of BIC. For 6 < ΔMBIC ≤ 10,
it defines a strong evidence against the model with a higher
MBIC value and a very strong evidence against the model
with a higher BIC value happens when ΔMBIC > 10.

Moreover, the last classifier relies on Hannan–Quinn
information Criterion (HQC) [73] as an alternative to AIC
and MBIC based on the law of the iterated logarithm. It
penalises the complex model with an (ln ln N ) factor by

HQC = χ2
b f + 2k ln[ln[N ]] . (148)

Concerning Jeffreys’ scale, we use the same arrange like that
of MBIC. As about to be seen, MBIC penalises additional
parameters of a model much heavily than AIC and HQC. The
results are presented in Table 3 in which we compare the mod-
els in the light of their response from different datasets. The
“full” data stands for P18+R20+BAO+DESY1+Pantheon.
As a result, for all cases, ΔAIC indicates a weak tension
between the models and a positive support by the data for
β-model, being ΛCDM adopted as a reference model. Both
ΔMBIC and ΔHQC indicate a positive tension. An inter-
esting situation rises from the fact that the inclusion of the
BAO data (except for the case of “full” data), concerning the
β-model, signs a direction towards to the low limit (ΔHQC)
and the higher limit (ΔMBIC) of Jeffreys’ scale in the posi-
tive tension classification. This merits further research since
the inclusion of more BAO data may aggravate or not the IC
values.

As a matter of comparison, we use the full chains of Planck
2018 high-l temperature TTEE low-l+low-E+lensing [11] to
reproduce the grey contours in Fig. 2 with different joint data.
In the plots, our model (β-model) is represented by the red
colour and ΛCDM by the blue colour (the reader is referred to
the web version of this article). The left and right upper panels
present a similar pattern for P18+R20 and P18+R20+BAO.
Concerning the Hubble tension, when compared with R20 of
H0 = 73.2±1.3kms−1.Mpc−1, we obtain at 68.4% ∼ 2.67σ

and ∼ 2.89σ , which is lower than the values obtained for
ΛCDM, with ∼ 3.25σ and ∼ 3.34σ , respectively. We point
out the particular influence of BAO which tends to worsen
the discrepancy on H0, which was already observed in the
IC analysis. This reinforces the problem with BAO data,
which is model dependent. In the lower panel, when consider-
ing P18+R20+BAO+DESY1+Pantheon, we obtain ∼ 2.81σ ,
which is lower than the one observed with P18+R20+BAO,
and better than the value obtained with ΛCDM that present
a discrepancy around 3.22σ . In all cases for β-model, we
obtain a negative correlation between Ωm and H0, and the
dark fluid parameter w prefers a phantom EoS in accordance
with Planck data. At 95.7% C.L., we obtain fluid parameter
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Fig. 4 The two-dimensional contour plots at 68.4% and 95.7% C.L. in
the plane (S8 −Ωm ). Red, green and blue colours indicate the β-model
for P18+R20 joint data, Planck 2018 high-l temperature TTTEEE+low-
l+low-E+lensing data and KIDS+VIKING-450 in combination with
DESY1 data, respectively. The grey colour indicates DESY1 data. (For
interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

w < −0.978, (< −0.982) and (< −1.02); the values for
H0 as 69 ± 1.6, 68.9 ± 1.3 and 69 ± 1.1 that give ∼ 1.95σ ,
∼ 2.24σ and ∼ 2.36σ for P18+R20, P18+R20+BAO and
P18+R20+BAO+DESY1+Pantheon, when compared with
R20, respectively. Our resulting mean values on H0 are close
to the observed one for nearby galaxies with a red giant
branch (TRGB) with H0 = 69.8 ± 1.1kms−1.Mpc−1 [117].

Concerning the amplitude discrepancy on S8 parame-
ter, we compare our results with DESY1 [28] shear results
adopting the S8 parameter that has the values of S8 =
0.773+0.026

−0.020 (with ΛCDM background) at 68.4%CL. Hence,
from P18+R20, P18+R20+BAO and P18+R20+BAO+DESY1
+Pantheon, we obtain ∼ 0.93σ , ∼ 0.99σ and ∼ 0.978σ ,
which reveal a reducing of tension as compared with those
values obtained for ΛCDM with ∼ 1.1σ and ∼ 1.14σ for
the two first joint data. On the other hand, we obtained for
P18+R20+BAO+DESY1+Pantheon that ΛCDM tension is
around ∼ 0.98σ maintaining an agreement with β-model.
In all cases, β-model indicates a good agreement with the
DESY1 probe and thus an alleviation of the S8 tension. Again,
BAO tends to worsen sightly the discrepancy on S8.

In Fig. 4, it is shown the constraints on Ωm and S8 for
the joint data in contrast with DESY1 alone with ΛCDM
background. It is also shown a comparison with KIDS
plus VISTA-Kilo Degree Survey Infrared Galaxy Survey
(KIDS+VIKING-450) and DESY1 combined [118] with
S8 = 0.762+0.025

−0.024 that has a discrepancy with Planck ΛCDM
about 2.5σ . For the studied dataset, we obtained P18+R20,
P18+R20+BAO and P18+R20+BAO+DESY1+Pantheon, we
obtain ∼ 1.34σ , ∼ 1.42σ and ∼ 1.41σ , respectively.

For Kids1000 [33] that has the value of S8 = 0.766+0.020
−0.014

at 68.4%CL, we obtained a slight better result as compared
with KIDS+VIKING-450. We find values above 1σ , that is,

1.4σ for P18+R20, ∼ 1.51σ for both P18+R20+BAO and
P18+R20+BAO+DESY1+Pantheon scenarios indicating a
soft tension between the probes.

8 Remarks and prospects

In this paper, we have studied cosmic perturbations of matter
in a search of understanding if the contribution of the extrin-
sic curvature to complement Einstein’s gravity is rather than
semantics and relies on physical reality. It may pinpoint a
renewed consideration of the concept of curvature, which
has been regarded a paramount element of contemporary
physics, as a fundamental physical agent itself. We work at
two different (but correlated phases). First, we present the
mathematical framework based on the embedding of Rie-
mannian geometries in order to obtain the main expression
of the embedded space-time deformations summarised in the
extrinsic curvature perturbation δkμν and on how its projec-
tion is possible onto the embedded space-time by means of
the Nash flow. We have shown that for dynamical embed-
dings, the perturbation coordinate y, that accesses the ambi-
ent space, does not appear in the four dimensional confined
line element, unlike those of rigid embedding models that
need additional arguments to generate perturbations, such as
the bulk equations and/or any additional principle like Israel-
Lanczos condition that replaces the dynamics of extrinsic
curvature. Rather, we explore the bare effect of the dynamics
of extrinsic geometry showing that the effects of the orthogo-
nal perturbations of the background geometry are transferred
by δkμν into the perturbed embedded space-time. The inte-
grability conditions (Gauss, Codazzi and Ricci equations)
guarantee that from the dynamics of the four-dimensional
space-time V4 we obtain information of the bulk space and
vice-versa since Riemann curvature of bulk space acts as a
reference for the Riemann curvature of the embedded space-
time. Then, only the induced perturbed four-dimensional
equations will suffice to analyse the physical folding and
consequences. From the linear Nash-Greene perturbations of
the metric, we have shown how to transpose the initial pro-
cess in the background metric of the embedding of geome-
tries to trigger the perturbations by the Lie transport. Sec-
ondly, in order to construct a viable physical model, we have
focused on the embedded space-time with the obtainment of
the induced field equations and on the related the perturbed
field equations where the cosmological perturbation theory
is applied.

An interesting fact resides that in five dimensions the grav-
itational tensor equation is indeed a perturbed equation, once
the perturbation of the Codazzi equation does not propagate
cosmological perturbations being hampered by linear Nash’s
fluctuations. On the other hand, this presented landscape is
dramatically different in dim ≥ 6 with appearance of new
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geometric objects, such as the third fundamental form Aμνa

that is associated to gauge fields, which should be a theme
of future research. We also calculated the longitudinal New-
tonian gauge of this framework in the simplest case that the
gravitational potentials coincide Ψ = Φ. Moreover, we have
obtained in the subhorizon scale the contrast matter density
ignited by the embedding equations. The finding of the mat-
ter overdensity equation δm is a paramount quantity for latter
studies to identify any signature of modifications of gravity
due to cosmic acceleration. We also have shown the deter-
mination of effective Newtonian constant Gef f and how it
satisfies the BBN and solar constraints [119–121].

We have summarised our results from the numerical anal-
ysis in Table 1 marginalising the parameters by means of
Cobaya sampler and GetDist package. In Fig. 2, we have
presented the triangular plots with contours of the parame-
ters (Ωm, S8, H0) and show a reduction of positive correla-
tion between S8 and H0. Our best results have come from
the joint dataset P18+R20 and indicates that the H0 ten-
sion persists around ∼ 2.67σ and the S8 tension is allevi-
ated with tension below 1σ when compared with DESY1
in all dataset considered. We compared our results with
KIDS+VIKING-450 and DESY1 combined and we obtained
a tension around ∼ 1.34σ up to ∼ 1.5σ . When compared
with Kids1000 probe, we obtained similar results. From a
larger dataset, with P18+R20+BAO+DESY1+Pantheon, our
model also presented a “promising” performance (as pro-
posed in Ref. [38], table B2) with the H0 tension below 3σ

at 68.4% CL and below 2σ at 95.7% CL, since the tensions
between Planck and other probes sit well above three standard
deviations. In all cases examined in β-model, the fluid param-
eter w is preferred to be like that of a phantom dark energy
in accordance with Planck data w = −1.58+0.52

−0.41. We have
noticed that the inclusion of BAO has slightly aggravated the
tensions. Interestingly, this phantom behaviour corroborates
Ref. [42] that proposes a scalar-tensor Finsler cosmological
model.

These results pose an interesting scenario since the model
seems to provide a necessary gravitational strength to alle-
viate both H0 and S8 tensions for further analysis. This was
obtained by the inclusion of the extrinsic curvature as a pivot
element to modify standard Einstein’s gravity. As prospects,
we intend to analyse a combination with BAO+BBN on the
Hubble tension with two free parameters of the model. The
integrated Sachs-Wolfe (ISW) effect will be analysed in the
light of larger surveys on dark energy and to study the impact
of this model on CMB power spectrum with anisotropic
parameters.
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