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Abstract In this paper, we discuss the thermodynamic
phase-transition, thermal stability and criticality of dynamic
phantom AdS black hole (BH) in the presence of electric
charge e and magnetic charge g. To accomplish this, we
construct the specific heat and other important thermody-
namical parameters which help us to investigate the stability
and criticality. The thermodynamical properties of dynamic
phantom AdS BH are examined by utilizing the specific heat
(CP ), volume expansivity (β), isothermal compressibility
(κ), Temperature vs Entropy (T –S), Pressure vs Volume
(P–V ) and Gibbs free energy G, graphically. Specific heat
against entropy describes the divergency behaviour, which
produces the second-order phase transition. We also obtain
isenthalpic curves for both systems in the T –P plane and
determine the cooling and heating regions by utilizing Joule–
Thomson expansion. Moreover, we discuss the behaviour of
(P–V ) isotherm that is equal to the liquid/gas transition of
the Van-Der Waals fluid is exactly matched to 3/8 also known
as a universal number. Furthermore, we investigate Swallow-
tail behaviour and also discuss the stability and instability of
the small black hole (SBH), Intermediate black hole (IBH)
and large black hole (LBH).

1 Introduction

In general theory of relativity, many observations ensure
that our universe is undergoing an accelerated expansion.
To explain this discovered phenomenon, the universe is sup-
posed to be filled with dark energy within the framework
of Einstein’s theory of relativity. Dark energy is the exotic
energy part with negative pressure and covers about 72 per
cent of this total cosmic energy. The best clarification for dark
energy is modelled by cosmological constant [1–4], which is
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a term added to Einstein’s field equations (EFEs). This term
acts as a perfect fluid with an equation of the state � = −1
and the energy density is associated with the quantum vac-
uum. Phantom energy is a theoretical type of dark energy
satisfying the equation of state P = �ρ and � < −1 where
P and ρ are denoted by pressure and energy density, respec-
tively. To perceive phantom dark energy, one can change the
sign before the kinetic expression of a scalar field known as
the phantom scalar field [5]. Phantom fields were first pre-
sented in Hoyle’s form and found as a solution for EFEs
follow by the variation of Lagrangian densities with the neg-
ative sign of kinetic terms. This sort of exotic field is explored
in scalar and electromagnetic fields by [6]. In the past few
years, the phantom fields only provide the theoretical moti-
vation but recent discoveries in cosmological observations
have provided the opportunity to discuss its physical prop-
erties [7]. Aside from different investigations in cosmology,
the impact of the phantom field in BH physics has widely
been examined [8].

Many authors [9,10] have discovered a phantom field
model which has negative dynamic energy and understands
its evolution by considering � < −1. Although the presen-
tation of a phantom field causes numerous theoretical issues,
for example, the violation of some well-known energy condi-
tions and a rapid vacuum decay [11], it is still interesting as it
is the best-fitted model in current observations. The phantom
scalar fields have been investigated in the classical and quan-
tum field theory by many authors [12]. A scalar field with
negative kinetic energy might represent an explicit threat to
the stability of the vacuum states [13].

Over the last few years, the thermodynamical properties
of BH are an active area of research in theoretical physics
[14,15]. In general relativity and modern physics, there are
many similarities between the physical properties of the black
holes (BHs) and the laws of thermodynamics. Moreover,
BH physics is the most important topic in general relativity
and quantum gravity [16–18]. Investigation of the thermo-
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dynamic functions of the charged AdS BH confirmed that
there exists a closed relationship between astrophysical sig-
natures and the liquid–gas framework. The first invention
in this line is Hawking-Page phase-transition [19], which
illustrates the phase-transition among the thermal AdS space
and consequently the Schwarzschild AdS BH. Particularly,
Reissner–Nordström (RN) AdS BH presents first-order phase
transitions whose critical behaviour is much like the consoli-
dated matter [20,21]. Chamblin et al. investigated the phase-
transition of RN-AdS BHs [22] and found a close relation-
ship between charged AdS BHs and consequently the fluid
gas system.

Recently, Kubiznk and Mann [25] generalized this con-
nection by analyzing the P–V criticality within the extended
phase space along with the thermodynamical Pressure and
thermodynamical quantity [20]. In this aspect, one can find a
detailed discussion about the concept of cosmological con-
stant treated as a thermodynamical pressure and the similar-
ity between phase transitions, liquid–gas systems and other
important astrophysical signatures, see in detail, [26,30],
[31]- [37]. The thermodynamical properties of a BH are
intensively studied in the literature, see in [42–45]. It is
known that the specific heat of the Schwarzschild BH is usu-
ally negative and the BH is thermodynamically unstable. On
the other hand, the RN BH contains two regions, positive
and negative. Positive regions describe the stability of the
BH and therefore the negative region represents the insta-
bility of the system. Davies discussed the phase-transition
in BH thermodynamics and consequently, find the second-
order phase-transition in the divergencies of specific heat
[46,47]. Husain and Mann [48] indicate that specific heat of
the BH turns into positive when phase transition approaches
the Plank Scale [49]. Another achievement in BHs physics
was the perception of a phase-transition [50] in charged AdS
BHs, like that found in a VdW liquid–gas system. Recog-
nizing the importance of thermodynamics in AdS space, we
will study the background of dynamic phantom AdS BHs and
discuss the small-large BH phase transition. There are also
various strategies for examining the structure of a dynamic
phantom BH system close to a critical point [31].

Our aim in this paper is to explain the thermodynamical
properties of the dynamic phantom AdS BH and addition-
ally examine the critical behaviour and stability for differ-
ent values of state parameter a2. Next, we discuss the P–
V criticality and find the exact universal number of VdW
gas/fluids which shows the presence of inter-molecular forces
in gas. Moreover, we also investigate Gibbs free energy G
and discuss its swallow-tail behaviour of the dynamic phan-
tom AdS BH. This work is presented as follows. In Sect. 2,
we discuss the solution of the dynamic phantom AdS BH
metric. In Sect. 3, we examine the thermodynamics of the
dynamic phantom AdS BH. In Sect. 4, we examine the crit-
ical behaviour by utilizing the P–V Criticality. In Sect. 5,

we investigate Joule–Thomson expansion for dynamic phan-
tom AdS BH. In Sect. 6, we discuss thermal stability and in
Sect. 7, we find the Gibbs free energy G and discuss the
Swallow-tail behaviour [18,22].

2 Dynamic phantom AdS black hole solution

The Einstein-Hilbert with massless phantom fields with a
negative sign of cosmological constant is given by

S = 1

16πG

∫
d4x

√−g

[
R − 2� + 1

2

2∑
i=1

(∂	i )
2

]
. (1)

In the above equation, Gravitational constant is denoted by
G and 	i is the phantom massless scalar fields [5]. In 4D, the
connection among the cosmological constant�with negative
sign and charged AdS radius curvature l is given as follows

� = − 3

l2
. (2)

The equations of the Einstein’s field within the presence of
cosmological constant � corresponding with action (1) read

Tμν = Rμν − 1

2
gμνR + �gμν, (3)

where the energy momentum tensor is

Tμν =
2∑

i=1

[
−∇μ	i∇ν	i + 1

2
gμν(∇	i )

2
]

. (4)

The equation of motion is given as

∇2	i = 0. (5)

It is important to mention here the features of Ricci flat hori-
zon on this framework with that metric is given as

ds2 = −W (r)dt2 + 1

W (r)
dr2 + r2(dx2 + dy2). (6)

With this metric, one has the non-zero part of Ricci tensor
given as follows [5,54]:

Rtt = 1

2
WW ′′ + 1

r
WW ′, (7)

Rrr = 1

2

W ′′

W
+ 1

r

W ′

W
, (8)

Rxx = Ryy = −(W + rW ′), (9)

where W ′, W ′′ are first and second derivatives w. r. t. r ,
respectively. We can write Ricci scalar as:

R = gtt Rtt + grr Rrr + gi j Ri j

= −W ′′ − 4

r
W ′ − 2

r2 W, (10)
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where t and r are the independent coordinates of the fields.
Scalar fields as a component of transverse coordinates:

	1 = bx, (11)

	2 = by, (12)

where b is constant. One can observe that the equation of
the motions satisfied matter and gravitational fields if W (r)
takes in the form:

W (r) = a2 − 1

3
r2� − 2M

r
, (13)

where M is the parameter concerning the mass of the solu-
tion. Indeed, this solution narrates an AdS BHs with a Ricci
flat horizon. One can notice the impact of state parameter a2

in the solution of phantom fields. In the absence of the phan-
tom scalar fields (a = 0), in Einstein gravity, the solution
decreases to AdS BH solution with Ricci flat horizon.

3 Dynamic phantom AdS black hole thermodynamics

The solution (13) can be generalized by utilizing the elec-
tric charge e and magnetic charge g from the Maxwell field.
Within the sight of Maxwell field in action Eq. (1), the
dynamic phantom AdS BH solution is given by

W (r) = a2 − 1

3
r2� − 2M

r
+ e2 + g2

r2 , (14)

where W (r) is the metric function of dynamic phantom AdS
BH [55] The BH event horizon can be calculated by taking
W (r) = 0, which provides the mass in terms of horizon
[49,56]

M = �r4+ − 3a2r2+ − 3e2 − 3g2

−6r+
. (15)

The graphical representation of the metric function of
dynamic phantom AdS BH is presented in Fig. 1 for dis-

tinct values of cosmological constant � [57,58]. For a2 = 1,
we find the maximum of two roots and for a2 = 2, we have
a maximum of three roots.

The Bekenstein–Hawking entropy of dynamic phantom
AdS BH is given by [59]

SBH = πr2+. (16)

We can express the BH mass by using the area law [16,18]

M(S,�) = −3πe2 − 3πg2 − 3π Sa2 + �S2

−6
√
Sπ

3
2

. (17)

With the interpretation that the pressure P is associated to
cosmological constant � as [20]

P = − �

8π
. (18)

Moreover, by using Eqs. (17) and (18) we get

M(S, P) = 8PS2 + 3πe2 + 3πg2 + 3Sa2

6
√

π
√
S

. (19)

The thermal property of the dynamic phantom AdS BH is
temperature and it is easy to point out that Mass M , Hawking
Temperature T and Entropy S of the dynamic phantom AdS
BH from the first law of BH thermodynamics.

T = ∂M

∂S
. (20)

The Hawking Temperature can be calculated as [60–62]

T = 1

4
√

π S

(
a2 − π(e2 + g2)

S
+ 8PS

)
. (21)

4 P–V criticality

Here we will explore the P–V criticality of the dynamic
phantom AdS BH. The significant relationship between

Fig. 1 The metric function
W (r) for distinct values of �

and e at fixed g = 0.6 and
M = 1. Left Panel: a2 = 1 and
right panel: a2 = 2
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the cosmological constant and thermodynamical pressure
in Eq. (18) produces significant outcomes in VdWs like
behaviour and first-order phase transition. The VdW fluid
is the first, simplest and most extensively used model of an
associating system of particles that show a phase transition.
A first-order phase transition appears when the VdW the-
ory of the pressure (P) versus volume (V) isotherms is com-
plemented by the Maxwell construction [63] to define the
regions of coexistence of gas.

By using Eq. (21), one can find

P = T

2r+
− a2

8πr2+
+ e2 + g2

8πr4+
. (22)

Since we want to compare Eq. (22) with van der Waals equa-
tion and further applying series expansion to van der Waals
equation with inverse of specific volume V, one can iden-
tify the specific volume V with r+ of the BHs i.e. V = 2r+
[66,68,69]. Hence, one can find

P = T

V
− a2

2πV 2 + 2(e2 + g2)

πV 4 . (23)

We can calculate the critical points from Eq. (23) by utilizing
the following conditions [14,38,39].

∂P

∂V
= 0,

∂2P

∂V 2 = 0. (24)

The corresponding critical temperature Tc, critical volume
Vc, and critical pressure Pc are given below

Tc = a3

3π
√

24e2 + 24g2
, Vc =

√
24e2 + 24g2

a
,

Pc = a4

96π(e2 + g2)
. (25)

These formulas of critical values lead us to the critical com-
pressibility factor [40]

PcVc
Tc

= 0.375000 = 3

8
. (26)

This ratio represents the critical compressibility factor which
measures the behaviour of the ideal fluid and that is perfectly
matched with that of the VdW gas/fluids model and known
as the universal number and modelled for all fluids [14].
Meanwhile, for the VdW fluid, one can construct a univer-
sal dimensionless quantity PcVc

Tc
by employing the essential

thermodynamic quantities, with Vc being the critical specific
volume [18,74]. In RN AdS BH, that ratio is also equivalent
to VdW gas. Hence, dynamic phantom AdS BH also allows
another signature of VdW like connections within the critical
phenomena [41,50].

For T < Tc, an oscillating part of the isotherm represents
the unstable region where the isothermal compressibility is

negative, i.e.,

kT = − 1

V

∂V

∂P
|T< 0. (27)

This instability is replaced by an isobar (the horizontal line)
via the Maxwell equal area construction,

∮
V dP = 0, indi-

cating that the SBH and LBH have a first-order phase tran-
sition. The small-large BH transition region, calculated by
Maxwell construction has the forms [51]

T̃ 2 = P̃(3 −
√
P̃)

2
, (28)

P̃ = 7 + 6Ṽ
2
3 − 4(

√
3 + 6Ṽ

2
3 )

Ṽ
4
3

, (29)

where the reduced thermodynamic variables are defined as

T̃ = T

Tc
, P̃ = P

Pc
, Ṽ = V

Vc
. (30)

It is worthwhile to note that the two phases of small and large
BHs cannot be distinguished above the critical point [52,53].

The plot pressure vs volume by utilizing the Eq. (23) in
Fig. 2 shows the behaviour like the VdW gas/fluids model.
The left and right figures correspond to the case of fixed elec-
tric e = 0.2 and magnetic charges g = 0.6, respectively. The
critical temperature curve is depicted by the red dotted line.
The lower dashed-dotted line corresponds to a small temper-
ature T < Tc, which divides the curve into three branches
of BH, one unstable and two stable configurations. These
two stable configurations have a positive compression coef-
ficient (P decreases asV increases). We also have an unstable
region with a negative compression coefficient (P increases
as V increases) between these two regions at which the BH
of intermediate size can represent the mixture of liquid and
gas phases. In a high-temperature case T > Tc, the BHs
behave like an ideal gas and no phase transition occurs. We
notice that by increasing the value of the state parameter the
pressure increased and also shifted towards the singularity
[40,70,71].

Now, we focus on studying the T –S plots of the dynamic
phantom AdS BH in Fig. 3 [14,18,49]. In the left panel: the
temperature shows critical behaviour in the region 0.47 <

S < 2.5.
In the right panel: the temperature shows critical behaviour

when 0.22 < S < 0.9. The behaviour of the isotherm resem-
bles the VdW fluids. One can notice that by increasing the
state parameter a2, the temperature also increases which indi-
cates that the state parameter plays an important role in the
stability of dynamic phantom AdS BH.

Moreover, we observe that the effect of different param-
eters on important physical quantities of dynamic phantom
AdS BH. In Tables 1, 2, 3 and 4, we observe that by increas-
ing the charge Tc and Pc shows the decreasing behavior while
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Fig. 2 P–V plot of dynamic
phantom AdS BH with e = 0.2,
g = 0.6, a2 = 1 (left) and
a2 = 2 (right). In both graphs
the isotherm decreases from top
to bottom. The zeroth and first
order phase transition are
characterized different colors.
The isobar (black thin line)
remedy unphysical locally and
globally unstable regime

Fig. 3 Hawking temperature T
versus Entropy S at constant
electric charge e = 0.1 and
magnetic charge g = 0.4. Left
panel: a2 = 1 and right panel:
a2 = 2

Vc increases and importantly the ratio is equal to the univer-
sal number of VdW gas model of all fluids. We also observe
that by increasing the state parameter all critical values of
physical quantities increased significantly.

Next, we discuss the critical exponents which help us to
describe the behavior of a system near the critical point. The
critical exponents α, β, γ, δ can be expressed in terms of
power law, as [66,67]:

Cv = T
( ∂S

∂T

)
v

∝| t |−α, (31)

η ∝| t |β, (32)

kT ∝| t |−γ , (33)

| P − Pc |∝| V − Vc |δ, (34)

where α, β, γ and δ characterize the behaviour of specific
heat at constant volume, order parameter, isothermal com-
pressibility and pressure, respectively. One can easily find
the critical exponents for dynamic phantom AdS BHs are
α = 0, β = 1

2 , γ = 1 and δ = 3 which are exactly equal

to the critical exponents of van der Waals liquid–gas sys-
tem. These components are independent of each other [40].
It also provides additional property for dynamic phantom
AdS BH.

5 Joule–Thomson expansion

Here, we discuss the Joule–Thomson expansion for dynamic
phantom AdS BH. It is well known that the BH mass is con-
sidered as an enthalpy in AdS space [26]. During the expan-
sion process, the characteristic of the expansion is that tem-
perature changes with pressure, and enthalpy remains con-
stant. It means that our isenthalpic curves are constant. We
know from [27,28] that the mass of the BH is determined as
enthalpy in the AdS space, so the mass of the BH remains con-
stant during the expansion process. To investigate the Joule–
Thomson expansion, its coefficient serves as an important
physical quantity whose sign can be utilized to determine
whether heating or cooling will occur. For a fixed charge, the
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Table 1 At a2 = 1 and e = 0.1 g Tc vc Pc
Pcvc
Tc

0.2 0.19372 1.095445 0.066314 0.375000

0.4 0.10506 2.019900 0.019504 0.375000

0.6 0.071212 2.979932 0.0089614 0.375000

0.8 0.053728 3.9496385 0.0051012 0.375000

1 0.043102 4.9234134 0.0032830 0.375000

1.2 0.035972 5.899152 0.0022867 0.375000

1.4 0.071212 6.876045 0.0016831 0.375000

1.6 0.027020 7.8536615 0.0012902 0.375000

Table 2 At a2 = 1 and g = 0.6 e Tc vc Pc
Pcvc
Tc

0.1 0.071212 2.9799 0.008961 0.375000

0.2 0.068419 3.09838 0.00828 0.375000

0.3 0.06457 3.28633 0.007368 0.374980

0.4 0.060068 3.53270 0.0063760 0.374980

0.5 0.055462 3.82622 0.0054358 0.375000

0.6 0.051051 4.1569219 0.0046053 0.375000

0.7 0.046983 4.5166359 0.0039009 0.374999

0.8 0.043316 4.898979 0.0033158 0.375000

Table 3 At a2 = 2 and e = 0.1 g Tc vc Pc
Pcvc
Tc

0.2 0.54791 0.77459667 0.26526 0.375000

0.4 0.29715 1.42828568 0.078018 0.375000

0.6 0.20142 2.10713075 0.035845 0.375000

0.8 0.15196 2.79284801 0.020405 0.375000

1 0.12191 3.48137904 0.013132 0.375000

1.2 0.10174 4.17133073 0.009147 0.375000

1.4 0.087290 4.8620983 0.0067326 0.375000

1.6 0.076423 5.55337736 0.0051608 0.375000

Table 4 At a2 = 2 and g = 0.6 e Tc vc Pc
Pcvc
Tc

0.1 0.20142 2.10713075 0.035845 0.375000

0.2 0.19372 2.19089023 0.033158 0.375000

0.3 0.18264 2.3237900 0.029473 0.375000

0.4 0.16990 2.49799920 0.05506 0.375000

0.5 0.15687 2.7055498 0.021742 0.375000

0.6 0.14439 2.93938769 0.018421 0.375000

0.7 0.13289 3.19374389 0.015604 0.374999

0.8 0.12252 3.464101622 0.013263 0.374999
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Fig. 4 Inversion curves for
dynamic phantom AdS BH. Left
Panel: a2 = 1 and right panel:
a2 = 2

Fig. 5 Inversion and
isenthalpic curves for dynamic
phantom AdS BH for a2 = 1
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Fig. 6 Inversion and
isenthalpic curves for dynamic
phantom AdS BH for a2 = 2

Joule–Thomson coefficient is given as follows [29],

μ =
( ∂T

∂P

)
M

= 1

Cp

[
T

( ∂v

∂T

)]
− v. (35)

The equation of temperature can be written in term of volume
as

Ti =
61/3

(
12Pv4/3π2/3 + 61/3v2/3π1/3a − 2

3 62/3π(e2 + g2)
)

12πv
,

= 8π Pr4+ + ar2+ − (e2 + g2)

4πr3+
, (36)

and the inversion temperature is calculated by utilizing
Eq. (35)

Ti = −1261/3Pv5/3π2/3 + 62/3vπ1/3a − 12v1/3π(e2 + g2)

36πv4/3 ,

= 8π Pr4+ − ar2+ + 3e2 + 3g2

12πr3+
. (37)

By subtracting Eq. (37) from (36), on can obtain

2ar2+ + 8π Pr4+ − 3(e2 + g2) = 0, (38)

and solving the above equation, the real positive root is given
by

r+ =

√
2π P

(
− a + √

24π P(e2 + g2) + a2
)

4π P
. (39)

By using this root and Eq. (36), the inversion temperature is
given as

Ti =
√

2P
(

− a
√

24π P(e2 + g2) + a2 + 16π(e2 + g2)P + a2
)

2
√

π
(
−a + √

24π P(e2 + g2) + a2
) 3

2

.

(40)

In Fig. 4, inversion curves are presented for various values e
and g. There is only a lower inversion curve. The branch
above the inversion curve is the cooling region, and the
branch below the inversion curve is the heating region. In
contrast to Van der Waals fluids, the expression inside the
square root in Eq. (40) is always positive, so this curve does
not terminate at any point.

Next, we plot isenthalpic, i.e constant mass, curves in the
T –P plane. From Eqs. (19) and (23), one can get the isen-
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Fig. 7 Event horizon of
dynamic phantom AdS BH for
a2 = 1. A: e2 = 0.36,
g2 = 0.64, B: e2 = 0.04,
g2 = 1.96, C : e2 = 1, g2 = 9,
D: e2 = 4, g2 = 16

thalpic curves in the T –P plane. In Figs. 5 and 6, inver-
sion and isenthalpic curves are presented for a2 = 1 and
a2 = 2, respectively. Cooling happens in a region where
isenthalpic curves have a positive slope over the inversion
curves. Heating occurs in the region where the sign of the
slope changes under the inversion curves. It is very impor-
tant to discuss the naked singularities for dynamic phantom
AdS BH.

In Figs. 7 and 8, we plot r+ versus mass (enthalpy)
and pressure. We present four 3D plots, which relate to
e = 0.6, 0.2, 1, 2 and g = 0.8, 1.4, 3, 4, respectively. The
regions can be seen that denote the naked singularities in
Figs. 7 and 8. One can’t think about Joule–Thomson expan-
sion because of the absence of an event horizon for a naked
singularity. For instance, we cannot characterize event hori-
zon for e = 2, g = 4 and M ≥ 2. For these val-
ues, an event horizon is imaginary and it relates to naked
singularity, the isenthalpic curves in the T –P plane are
imaginary [64].

6 Thermal stability

Furthermore, we want to explore thermal stability which is
the most important thermodynamic property that indicates
the system’s behaviour after a small deviation among ther-
modynamical parameters. Specific heat is the most signifi-
cant physical quantity in thermodynamics, which shows the
thermal stability and instability of the system. Positive spe-
cific heat shows the stability and a negative value of specific
heat show instability of the system. Conventionally, we find
the specific heat for dynamic phantom AdS BHs in two dif-
ferent ways. First, the specific heat of the dynamic phantom
AdS BHs at constant volume are stated as

CV = T
( ∂S

∂T

)
V

= 0. (41)

From Eq. (41), one can notice that if V and S are con-
stants then isochoric processes are additionally adiabatic for
dynamic phantom AdS BH due to the connection between
volume and entropy [18]. Secondly, at constant pressure Spe-
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Fig. 8 Event horizon of
dynamic phantom AdS BH for
a2 = 2. A: e2 = 0.36,
g2 = 0.64, B: e2 = 0.04,
g2 = 1.96, C : e2 = 1, g2 = 9,
D: e2 = 4, g2 = 16

cific heat [14] can be written as, Eq. (42),

Cp = T
( ∂S

∂T

)
P
, (42)

Cp =
−2S

(
− 8PS2 + πe2 + πg2 − Sa2

)

8PS2 + 3πe2 + 3πg2 − Sa2 . (43)

In Fig. 9, for a2 = 1, we plot Cp − S to find the order
of Phase-transition for the dynamic phantom AdS BH. We
observe that there is no singularity for P > Pc, find one
singularity at P = Pc and produces two singularities at P <

Pc. In the left panel, there are two unique regions separated by
a singularity i.e. SBH and LBH lie in positive specific heat. At
P = Pc, SBH and LBH are thermodynamically stable. The
middle panel shows the most important finding for dynamic
phantom AdS BH is the singularity disappears at P > Pc, In
the right panel, we have two singularities at P < Pc which
divides the region into three parts i.e. SBH and LBH lie in
the positive region which shows the stability while IBH lies
in the negative Specific heat that presents the unstability of
the system [14,72]. In Fig. 10, for a2 = 2, we observe a
similar behavior as in Fig. 9. It is important to mention here
that by increasing the state parameter overall stability of the

system is also increased which provides evidence that the
state parameter plays a vital role in the stability of the system.

Furthermore, one can analyze other response functions
such as the volume expansivity β is given by [64,73]

β = 1

V

(∂V

∂T

)
P
. (44)

The volume expansivity β for dynamic phantom AdS BH is
given by

β = 4S
3
2
√

π

8PS2 + 3π(e2 + g2) − Sa2
∼= 1

P
. (45)

The isothermal compressibility κ is as follows

κT = − 1

V

(∂V

∂P

)
T
. (46)

By utilizing Eq. (23), the isothermal compressibility κ for
dynamic phantom AdS BH is given as

κT = 4S
5
2
√

π

2πT S2 + 2π
3
2
√
S(e2 + g2) − S

3
2 πa2

∼= 1

T
(47)

We also plot the curves of β−S, κ −S in Figs. 11, 12, 13, 14,
respectively. We can see from these curves that there is an
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Fig. 9 Cp versus S with a2 = 1, e = 0.2 and g = 0.6. Left panel: P = Pc, middle panel: P > Pc and right panel: P < Pc

Fig. 10 Cp versus S with a2 = 2, e = 0.2 and g = 0.6. Left panel: P = Pc, middle panel: P > Pc and right panel: P < Pc

infinite peak in the dynamic phantom AdS BH. In Figs. 11,
12, we plot β − S to describe the phase transition of the
dynamic phantom AdS BH. In Fig. 11, fora2 = 1, at P = Pc,
one can locate two singular points, which divide the graph
into two regions i.e. SBH and LBH lie in positive region.
The singularity disappears at P > Pc and P < Pc shows two
singular points at S = 5.1, S = 14.5 which divides the region
into three parts i.e. SBH, IBH and LBH. In Fig. 12, for a2 =
2, the plot shows similar behaviour. We also observe that
by increasing the value of state parameter a2 the singularity
moves towards the origin. The surprising results β ∼= 1

P and
κ ∼= 1

T are obtained for dynamic phantom AdS BHs which
resembles ideal gas.

In Figs. 13, 14, for a2 = 1, we plot κ − S at T = Tc
and T < Tc, the singularity points are S = 7.2, 7.9 and
S = 4.1, 19.7, respectively. The singularity disappears at
T > Tc. In Fig. 14, for a2 = 2, the plot shows similar
behaviour as in Fig. 13. We also observe that by increasing the
value of state parameter a2 the singularity moves towards the
origin. From these graphs, One can conclude the behaviour
of state parameter a2 plays an important role.

7 Gibbs free energy

Finally, we discuss the behaviour of Gibbs free energy G,
which is the important parameter to finding the thermody-
namical phase transition. Gibbs energyG = M−T S [14,74]
is a thermodynamic Potential that can be calculated by uti-
lizing Eqs. (19), (21),

G = M − T S = −8PS2 + 9πe2 + 9πg2 + 3Sa2

12
√
Sπ

. (48)

We investigate the behaviour of G vs S in Fig. 15 and also
discuss the stability and instability of the dynamic phantom
AdS BH. In the left and right figures, we can see the behaviour
of the parameter in which the Gibbs free energy at critical
pressure Pc = 0.00828 produces a local minimum near a
critical value of S. We observe that the overall stability of
the system increased for higher values of the state parameter.
One can find the local minima near the critical value of S at
critical pressure, also the local minima shifted towards the
singularity for higher values of state parameter a2.
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Fig. 11 β versus S with a2 = 1, e = 0.2 and g = 0.6. Left panel: P = Pc, middle panel: P > Pc and right panel: P < Pc

Fig. 12 β versus S with a2 = 2, e = 0.2 and g = 0.6. Left panel: P = Pc, middle panel: P > Pc and right panel: P < Pc

Fig. 13 κ versus S with a2 = 1, e = 0.2 and g = 0.6. Left panel: T = Tc, middle panel: T > Tc and right panel: T < Tc
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Fig. 14 κ versus S with a2 = 2, e = 0.2 and g = 0.6. Left panel: T = Tc, middle panel: T > Tc and right panel: T < Tc

Fig. 15 G versus S with
e = 0.2, g = 0.6. Left panel:
a2 = 1 and right panel: a2 = 2

Fig. 16 Gibbs free energy G
versus Temperature T for the
fixed Pressure and e = 0.2,
g = 0.6. Left panel: a2 = 1 and
right panel: a2 = 2
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Fig. 17 Gibbs energy vs
Temperature for the fixed
Pressure, e = 0.1 and g = 0.2.
left panel: a2 = 1, right panel:
a2 = 2

The VdW like phase-transition between two distinct
phases is characterized by a Swallow-tail shape in Figs. 16
and 17. In the case of dynamic phantom AdS BH solu-
tions, such behaviour represents a SBH and LBH phase-
transition [66,75]. In these figures, we observe that swallow-
tail behaviour shows only below the critical pressure P < Pc
which shows the unstability of the system, while P ≥ Pc
swallow-tail behaviour vanishes which shows the stability
of the system. It is important to mention here the overall
system stability increases by considering the higher values
of the state parameter which shows the vital role of the state
parameter in dynamic phantom AdS BH. By comparing both
Figs. 16, 17, we can conclude that Swallow-tail appears only
below the critical pressure and it vanishes for P ≥ Pc which
is the significant finding of the dynamic phantom AdS BH.

8 Conclusion

In this work, we have investigated the thermodynamics, crit-
icality, Joule Thomson Expansion and Gibbs free energy of
the dynamic phantom AdS BH. The electric charge e has
a phantom nature because the electromagnetic energy den-
sity that enters the corresponding action is negative [7]. The
investigation of thermodynamic behaviour has uncovered
several interesting results and P–V criticality, Joule Thom-
son Expansion, specific heat, response functions and Gibbs
free energy also produce the most interesting and signifi-
cant results of the dynamic phantom AdS BH [70]. We have
also obtained different thermodynamic parameters like crit-
ical temperature Tc, critical pressure Pc and critical volume
Vc by utilizing Eq. (25) for dynamic phantom AdS BH.

The significant result PcVc
Tc

is obtained by utilizing crit-
ical values [77] which models the VdW gas/fluid, that is
exactly matched to 3/8 also known as the Universal num-
ber for dynamic phantom AdS BH. This ratio represents the

critical compressibility factor which measures the behaviour
of the ideal fluid and that is perfectly matched with VdW
gas/fluids model [14]. This factor model the intermolecular
forces in gases. It is important to mention here that this ratio
remains the same at 3/8 by variating the state parameter a2.

Next, we have presented the Joule–Thomson expansion
for dynamic phantom AdS BHs. BHs generally cool above
the inversion curve and heat below the inversion curve during
the Joule–Thomson expansion. Cooling and heating regions
were displayed for different values of the charge e, g and
mass M (enthalpy) [24]. We have also investigated the naked
singularity which is not suitable for Joule–Thomson expan-
sion because of the absence of an event horizon [64,65].

Moreover, the Cp vs S produces the second order, first
order and zero-order phase transitions at P < Pc, P = Pc
and P > Pc, respectively. A phase transition is described
through divergences in second moments like specific heat
and compressibility in statistical mechanics. The presence of
local minimum in the G − S plot shows a thermodynamic
instability [14]. We have explored the other response func-
tions β volume expansibility and κT isothermal compress-
ibility which produces similar findings like Cp [73]. The sur-
prising results β ∼= 1

P and κ ∼= 1
T are obtained for dynamic

phantom AdS BHs which resemble ideal gas.
Furthermore, we can see that the G surface demonstrates

the characteristic of Swallow-tail behaviour, which indi-
cates the occurrence of VdW like SBH/LBH phase transi-
tion below the critical pressure P < Pc in the corresponding
system while at critical pressure P ≥ Pc, the Swallow-tail
behaviour vanishes [74]. It is worth mentioning that the sys-
tem is stable at P > Pc and higher values of state parameters.
Hence, the state parameter a2 plays a vital role in the stability
of dynamic phantom AdS BH.
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