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Abstract We present the first example of N = (2, 2) for-
mulation for the extended higher-spin AdS3 supergravity
with the most general boundary conditions as an extension
of the N = (1, 1) work, discovered recently by us (Özer
and Filiz in Eur Phys J C 80(11):1072, 2020). Using the
method proposed by Grumiller and Riegler, we restrict a
consistent class of the most general boundary conditions to
extend it. An important consequence of our method is that,
for the loosest set of boundary conditions it ensures that their
asymptotic symmetry algebras consist of two copies of the
sl(3|2)k . Moreover, we impose some restrictions on the gauge
fields for the most general boundary conditions, leading to
the supersymmetric extensions of the Brown and Henneaux
boundary conditions. Based on these results, we finally find
out that the asymptotic symmetry algebras are two copies of
the super W3 algebra for N = (2, 2) extended higher-spin
supergravity theory in AdS3.
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1 Introduction

In modern theoretical physics, unquestionably, one of the
forefront achievements in the past few decades is the dis-
covery of the AdS/CFT correspondence, which was first
presented concretely by Maldacena [2,3] in late 1997. This
remarkable duality has profound implications ranging from a
better understanding of many aspects of theoretical ( and even
experimental) physics, especially general relativity, quan-
tum gravity, quantum field theory, higher spin theory, and
black holes. Moreover, the AdS/CFT correspondence is
an important manifestation of the holographic principle that
posits a relation between a certain classical gravitational
theory and a lower-dimensional non-gravitational one. The
AdS3/CFT2 correspondence which is also a useful testing
arena in this respect, implies an equivalence between pure
Einstein AdS3 gravity with a negative cosmological con-
stant in 3D and a 2-dimensional conformal field theory. As a
matter of fact, the main advantage of this eminent correspon-
dence in three dimensions is to allow Einstein’s gravity can be
reformulated as a Chern–Simons gauge theory in such a way
that all the structure is considerably simplified [4,5]. What
they discovered in their pioneer work is that, in three dimen-
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sions, the action and equations of motions are equivalent to
a Chern–Simons theory for an appropriate gauge group.

Despite the simplicity owing to its topological nature,
besides being a very rich and spectacular theory, it is well
known that three dimensional gravity has outstanding holo-
graphic properties. In this context, the striking feature of 3-
dimensional Einstein’s Gravity is the absence of any local,
propagating degrees of freedom, which means that any neg-
atively curved Einstein space is locally AdS3. There are only
global degrees of freedom and hence no graviton in three
dimensions. Notwithstanding that there are no local propa-
gating degrees of freedom in the theory, its dynamic content
is far from being insignificant due to the existence of bound-
ary conditions. In other words, this means that the theory is
wholly determined by global effects, since general relativ-
ity turns into a topological field theory, whose dynamics can
be portrayed holographically by a 2-dimensional conformal
field theory at the boundary. That is a Chern–Simons theory
in an equivalent formulation. At this point, it would be fair to
say that the dynamics of the theory is totally presided over by
boundary conditions. Furthermore, one should call attention
here that there is an infinite number of degrees of freedom liv-
ing on the boundary under an appropriate choice of boundary
conditions. These boundary conditions are requisite in order
to provide that the action has a well-defined variational prin-
ciple. Nevertheless, their choice is not unique. Essentially, the
dynamic features of the theory take shape according to the
choice of these boundary conditions. So the residual gauge
symmetry on the boundary within this framework emerges
as global symmetry(asymptotic symmetry).

One of the most crucial results this story aforementioned
tells us is that the asymptotic boundary conditions play a vital
role in AdS3 gravity. In their seminal paper [6], Brown and
Hanneux proposed that under a convenient choice of bound-
ary conditions, asymptotic symmetry algebras of AdS3 grav-
ity yields two copies of the Virasoro algebras with a classical
central extension. The reason why this significant result is
pointed out as a pioneer work is the fact that it is actually
the first realization of AdS/CFT correspondence, and also
an important realization of holographic duality. Incidentally,
another notable strength of 2 + 1 dimensional gravity is that
it also contains black hole solutions such as the famous BTZ
black hole in which Einstein equations admit in the presence
of the negative cosmological constant [7,8]. Parenthetically,
since the BTZ geometry is algebraically simple, it has pro-
vided quite a useful playground for studying features of black
holes, which has a tremendous importance in exploring both
classical and quantum gravitational physics.

It is worth mentioning that the Chern–Simons formula-
tion of higher spin gravity in three dimensions has attracted
more attention by the discovery of the Chern–Simons the-
ories based on gauge algebras such as sl(N |R)) and hs(λ)

are versions of Vasiliev higher spin theories [9,10] and also

these are purely bosonic theories [11,12] with higher spin
fields of integer spin. Moreover, the Chern–Simons higher
spin theories could pan out with a realization of the clas-
sical WN asymptotic symmetry algebras as in the related
two-dimensional CFT ’s [13–18]. The promising results
obtained from this perspective are adapted to extend the the-
ory to the supergravity [19,20] as well as higher spin the-
ory [11,12]. Additionally, a supersymmetric generalization
of these bosonic theories can be accomplished by keeping in
view Chern–Simons theories based on superalgebras such as
sl(N |N − 1), see, e.g. [19–24], or osp(N |N − 1) [25] which
can be obtained by truncating out all the odd spin generators
and one copy of the fermionic operators in sl(N |N − 1).

As already noted, one can casually state that three dimen-
sional gravity is all about the choice of boundary conditions.
More precisely, the specification of boundary conditions is
pivotal in comprehending how a theory that (locally) admits
only a single solution. This analysis was first carried out by
Brown and Henneaux [6] in their famous paper. Their study
has also been encouraging to propose new sets of boundary
conditions by sparking a vigorous research area which has
gained in breadth over the years modifying [26–33] and gen-
eralizing [34–41] these bc′s. In [26], Grumiller and Riegler
have considered the most general AdS3 boundary conditions,
as a consequence, they have derived the asymptotic symme-
try algebra consists of two sl(2)k current algebras. Further-
more, they have recovered all other previously found bound-
ary conditions, imposing some certain restrictions to their
most general boundary conditions. It is pertinent to address
that there are several papers recently inspired by them, i.e.,
flat space [42] and chiral higher spin gravity [43], which is
shown a new class of boundary conditions for higher spin
theories in AdS3. The simplest extension of Grumiller and
Riegler’s procedure for the most general N = (1, 1), and
N = (2, 2) extended higher spin supergravity is introduced
by Valcarcel [44] where the asymptotic symmetry algebra for
the loosest set of boundary conditions for (extended) super-
gravity obtained. The most general N = (1, 1) extended
AdS3 higher spin supergravity theory has been similarly pre-
sented, including further in [1].

This paper is concerned with the previously unresolved
phenomenon; we construct a candidate solution for the most
general N = (2, 2) extended higher spin supergravity the-
ory in AdS3. We show that our theory falls under the same
metric class as [42], in which it is seen that the metric formu-
lation could include even both charge and chemical poten-
tials which are present in the Chern–Simons formalism. This
can be considered as an alternative solution to the non-chiral
Drinfeld–Sokolov type boundary conditions. Firstly, we
focus on the simplest case N = (2, 2) Chern–Simons theory
based on the sl(2|1)k superalgebra. The related asymptotic
symmetry algebra is two copies of the sl(2|1)k affine algebra.
Then, we are dealing with the extended N = (2, 2) Chern–
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Simons theory based on sl(3|2) superalgebra, as a result, we
obtain asymptotic symmetry algebra consists of two copies
of the sl(3|2)k affine algebra. Additionally, we impose some
certain restrictions to the gauge fields on the most general
boundary conditions, which leading us to the supersymmetric
extensions of the Brown–Henneaux boundary conditions. We
also show that the asymptotic symmetry algebras are reduced
to two copies of the super W3 algebra for the most general
N = (2, 2) extended higher spin AdS3 supergravity theory.
It is useful to indicate that it would be an interesting problem
in its own right perform a different class of boundary con-
ditions for (super)gravity that emerges in the literature (see,
e.g. [28,30–32]), since their higher spin generalization is not
as clear as Grumiller and Riegler’s boundary conditions. In
light of all these results, it is inevitable to say that this method
yields an excellent laboratory to investigate the rich asymp-
totic structure of extended higher spin supergravity.

This paper is organized as follows. We first introduce
a fundamental formulation of N = (2, 2) supergravity
as sl(2|1) ⊕ sl(2|1) Chern–Simons gauge theory for both
affine and superconformal boundaries, respectively. Then,
in Sect. 3, maintain our calculations to extend the theory
sl(3|2) ⊕ sl(3|2) higher-spin Chern–Simons supergravity in
the case of both affine and superconformal boundaries, in
where we reveal explicitly principal embedding of sl(2|1) ⊕
sl(2|1) and also we come up with how asymptotic symmetry
and higher spin Ward identities arise from these bulk equa-
tions of motion coupled to spin s, (s = 1, 3

2 , 3
2 , 2, 2, 5

2 , 5
2 , 3)

currents. We dedicate this section to perform the asymptotic
symmetry algebras as classical two copies of the sl(3|2)k
affine algebra on the affine boundary and the super W3 sym-
metry algebra on the superconformal boundary, respectively.
Besides, we describe the chemical potentials related to source
fields appearing through the temporal components of the con-
nection. In the final section, we conclude with a discussion,
open issues and future research directions.

2 Review of Chern–Simons supergravity in three
dimensions

In this section, we give a brief discussion for AdS3 higher
spin supergravity based on Chern–Simons formalism. We
especially employ this formulation to analyze AdS3 super-
gravity in the presence of sl(2|1) superalgebra basis, belong-
ing to the same metric class as Grumiller and Riegler’s
recently proposed, the most general AdS3 boundary con-
ditions [26].

2.1 Connection to Chern–Simons theory

In three dimensions, Einstein–Hilbert action for N = (2, 2)

supergravity with a negative cosmological constant, can be

defined in an equivalent Chern–Simons formulation over a
spacetime manifold M as

S = SCS[�] − SCS[�̄] (2.1)

where

SCS[�] = k

4π

∫
M

str

(
� ∧ d� + 2

3
� ∧ � ∧ �

)
(2.2)

which was first noted by Achucarro and Townsend [4] and
further developed by Witten [5].

The Chern–Simons level k will eventually be related to
ratio of AdS3 radius l and Newton constant G, and also the
related central charge c of the superconformal field theory
as k = �

8Gstr(L0L0)
= c

12str(L0L0)
. Notice that while the 1-

forms (�, �̄) connections are defined as to take values in the
gauge group of sl(2|1) superalgebra, the supertrace strwhich
shows a metric on the sl(2|1) Lie superalgebra, is taken over
the superalgebra generators.

It is convenient to get started with standard basis for
sl(2|1) Lie superalgebra. We denote the bosonic genera-
tors by Li (i = ±1, 0), J and the fermionic ones by GM

r
(r = ± 1

2 , M = ±), whose commutations relations read
[
Li ,L j

] = (i − j)Li+ j ,

[
Li ,G

±
r

] =
(
i

2
− r

)
G±
i+r ,[

J,G±
r

] = ±G±
r , (2.3){

G±
r ,G∓

s

} = 2Lr+s ± (r − s)J (2.4)

except for zero commutators.
The Chern–Simons equations of motions, also known

as the flatness conditions correspond to vanishing field
strengths; F = F̄ = 0 where

F = d� + � ∧ � = 0, F̄ = d�̄ + �̄ ∧ �̄ = 0 (2.5)

which is equivalent to Einstein’s equation. The relation to the
Einstein’s equation is made by expressing Lie algebra valued
generalizations of the vielbein and spin connection in terms
of the gauge connections. Then, one can obtain the metric
gμν from the vielbein e = �

2 (� − �̄) in the usual fashion

gμν = 1

2
str(eμeν). (2.6)

By the choice of the radial gauge, asymptotically AdS3 con-
nections can be taken to have the form

� = b−1a (t, φ) b + b−1db,

�̄ = bā (t, φ) b−1 + bdb−1 (2.7)

with state-independent group element (called Grumiller-
Riegler gauge);

b = eL−1eρL0 (2.8)
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which yields a more general metric and means that it includes
all sl(2|1) charges and chemical potentials can be chosen
accordingly. At this point, it is important to note that as long
as δb = 0, the choice of b is irrelevant for asymptotic symme-
tries. Unlike the standard choice of b, this freedom enables
a more general metric. Therefore, it is crucial to choose the
most general boundary conditions preserving this most gen-
eral metric form for supergravity.

Further, in the radial gauge a (t, φ) and ā (t, φ) connec-
tions are the sl(2|1) Lie superalgebra valued fields which are
independent of a radial coordinate as

a (t, ϕ) = at (t, ϕ) dt + aϕ (t, ϕ) dϕ

ā (t, ϕ) = āt (t, ϕ) dt + āϕ (t, ϕ) dϕ (2.9)

Hereafter only focused on the unbarred sector, since the anal-
ysis of the barred sector works in complete analogy yielding
the same outcomes with the barred sector and it can be figured
out by the same algorithm thanks to the procedure used.

2.2 sl(2|1) ⊕ sl(2|1) Chern–Simons N = (2, 2)

supergravity for affine boundary

We begin by reviewing asymptotically AdS3 boundary con-
ditions for sl(2|1) ⊕ sl(2|1) Chern–Simons theory in the
affine case. We present how the procedure mentioned in [26]
can be used to evaluate the asymptotic symmetry algebra.
According to the results obtained, the most general solution
of Einstein’s equation that is asymptotically AdS3 is defined
by the following general metric form:

ds2 = dρ2 + 2
[
eρN (0)

i + N (1)
i + e−ρN (2)

i + O (
e−2ρ

)]
dρdxi

+
[
e2ρg(0)

i j + eρg(1)
i j + g(2)

i j + O (
e−ρ

)]
dxidx j . (2.10)

So, it is important to define the most general N = (2, 2)

supergravity boundary conditions which preserve this form
of the metric.

We start by proposing sl(2|1) Lie superalgebra valued aϕ

component of the gauge connection in the form:

aϕ = ρJ J + γiLiLi + σ
p
MG p

MGM
p (2.11)

where ρ = 1
k , γ0

2 = −γ±1 = 2
k ,σ

− 1
2± = −σ

1
2± = 1

k are
some scaling parameters to be identified later. We have eight
state-dependent functions consisting of four bosonic

(J ,Li
)

and four fermionic G p
M , usually called as charges. The time

component at of the connection a (t, ϕ) can be given as

at = ηJ + μiLi + ν
p
MGM

p . (2.12)

In this case, we have eight independent functions (η, μi , ν
p
M ),

as chemical potentials which are not allowed to vary, δat = 0.
Using the flatness conditions (2.5), the equations of

motions for fixed chemical potentials impose the following

additional conditions on the charges (J ,Li ,G p
M ):

2∂tL0 = k

2
∂ϕμ0 + 2L+1μ−1

+ 2L−1μ+1 − G+ 1
2− ν

− 1
2+ + G− 1

2− ν
+ 1

2+

−G+ 1
2+ ν

− 1
2− + G− 1

2+ ν
+ 1

2− , (2.13)

∂tL±1 = −k

2
∂ϕμ±1 ± L0μ±1 ± L±1μ0

+G± 1
2+ ν

± 1
2− + G± 1

2− ν
± 1

2+ , (2.14)

∂tG± 1
2± = ±k∂ϕν

± 1
2± ± 2L±ν

∓ 1
2± + 2L0ν

± 1
2±

±G∓ 1
2± μ± ± 1

2
μ0G± 1

2± ∓J ν
± 1

2± − ηG± 1
2± , (2.15)

∂tJ = k∂ϕη + G+ 1
2− ν

− 1
2+ + G− 1

2− ν
+ 1

2+

−G+ 1
2+ ν

− 1
2− − G− 1

2+ ν
+ 1

2− , (2.16)

that represents the temporal evolution of the eight state-
dependent source fields.

We want to derive asymptotic symmetry algebra for the
most general boundary conditions through a canonical anal-
ysis. That’s why we embark on by considering all gauge
transformations:

δλ� = dλ + [�, λ] (2.17)

which preserve the most general boundary conditions. At
this point, it would be appropriate to single out the gauge
parameter in terms of the sl(2|1) Lie superalgebra basis

λ = b−1
[
�J + εiLi + ζ

p
MGM

p

]
b. (2.18)

Note that the gauge parameter includes four bosonic �,εi and
four fermionic ζ

p
M , arbitrary functions of boundary coordi-

nates. And also, we are concerned with the gauge parameters
that satisfy (2.17). One can now determine the boundary pre-
serving gauge transformations. Accordingly, the infinitesi-
mal gauge transformations are given by;

2∂tL0 = k

2
∂ϕε0 + 2L+1ε−1 + 2L−1ε+1 − G+ 1

2− ζ
− 1

2+

+G− 1
2− ζ

+ 1
2+ − G+ 1

2+ ζ
− 1

2− + G− 1
2+ ζ

+ 1
2− , (2.19)

∂tL±1 = −k

2
∂ϕε±1 ± L0ε±1 ± L±1ε0

+G± 1
2+ ζ

± 1
2− + G± 1

2− ζ
± 1

2+ , (2.20)

∂tG± 1
2± = ±k∂ϕζ

± 1
2± ± 2L±ζ

∓ 1
2± + 2L0ζ

± 1
2±

±G∓ 1
2± ε± ± 1

2
ε0G± 1

2± ∓J ζ
± 1

2± − �G± 1
2± , (2.21)

∂tJ = k∂ϕ� + G+ 1
2− ζ

− 1
2+ + G− 1

2− ζ
+ 1

2+

−G+ 1
2+ ζ

− 1
2− − G− 1

2+ ζ
+ 1

2− . (2.22)
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One can also derive the following constraints for the chemical
potentials analogously.

2∂tμ
0 = k

2
∂ϕε0 + 2μ+1ε−1 + 2μ−1ε+1 − ν

+ 1
2− ζ

− 1
2+

+ ν
− 1

2− ζ
+ 1

2+ − ν
+ 1

2+ ζ
− 1

2− + ν
− 1

2+ ζ
+ 1

2− , (2.23)

∂tμ
±1 = −k

2
∂ϕε±1 ± μ0ε±1 ± μ±1ε0

+ ν
± 1

2+ ζ
± 1

2− + ν
± 1

2− ζ
± 1

2+ , (2.24)

∂tν
± 1

2± = ±k∂ϕζ
± 1

2± ± 2μ±ζ
∓ 1

2± + 2μ0ζ
± 1

2±

± ν
∓ 1

2± ε± ± 1

2
ε0ν

± 1
2± ∓ηζ

± 1
2± − �ν

± 1
2± , (2.25)

∂tη = k∂ϕ� + ν
+ 1

2− ζ
− 1

2+ + ν
− 1

2− ζ
+ 1

2+

− ν
+ 1

2+ ζ
− 1

2− − ν
− 1

2+ ζ
+ 1

2− . (2.26)

As a final step, the canonical boundary charge Q[λ] that gen-
erates the transformations (2.19)–(2.22) can be defined. For
this purpose, the variation of the canonical boundary charge
Q[λ] [46–49] leading the asymptotic symmetry algebra is
given by

δλQ = k

2π

∫
dϕ str

(
λδ�ϕ

)
. (2.27)

Hence, the variation of the canonical boundary charge Q[λ]
can be functionally integrated to yield

Q[λ] =
∫

dϕ
[
J � + Liε−i + G p

Mζ
−p
M

]
. (2.28)

After both having determined the infinitesimal transforma-
tions and the canonical boundary charge, now we are in a
position to derive the asymptotic symmetry algebra using
the standard method [45], which can be obtained through the
following relation

δλ� = {�,Q[λ]} (2.29)

for any phase space functional �. The Poisson brackets of
all fields can be calculated as

{Li (z1),L j (z2)}PB

= (i − j)Li+ j (z2)δ(z1 − z2) − kηi j2 ∂ϕδ(z1 − z2),

(2.30)

{Li (z1),G p
±(z2)}PB

=
(
i

2
− p

)
Gi+p

± (z2)δ(z1 − z2), (2.31)

{J (z1),G p
±(z2)}PB

= ±G p
±(z2)δ(z1 − z2), (2.32)

{J (z1),J (z2)}PB

= −kη∂ϕδ(z1 − z2), (2.33)

{G p
±(z1),Gq

±(z2)}PB

=
(

2Lp+q(z2) ± (p − q)J
)

δ(z1 − z2)

+kηpq
3
2

∂ϕδ(z1 − z2). (2.34)

whereη = str(JJ), η
i j
2 = str(LiL j )and η

pq
3
2

= str(GM
p G

M
q )

are the bilinear forms in the fundamental representation of
sl(2|1) Lie superalgebra. J (z) and G p

M (z) charges are also
identified as the generators of the asymptotic symmetry alge-
bra. Finally, the operator product algebra can be written as

Li (z1)L j (z2) ∼
k
2 η

i j
2

z2
12

+ (i − j)

z12
Li+ j (z2), (2.35)

Li (z1)G p
±(z2) ∼ ( i2 − p)

z12
Gi+p

± (z2), (2.36)

J (z1)G p
±(z2) ∼ ±G p

±(z2)

z12
, (2.37)

J (z1)J (z2) ∼
k
2 η

z2
12

, (2.38)

G p
±(z1)Gq

±(z2) ∼
k
2 η

pq
3
2

z2
12

+ 2

z12

(
Lp+q (z2) ± (p − q)

2
J (z2)

)
.

(2.39)

where z12 = z1 − z2, or in the more compact form,

JA(z1)J
B(z2) ∼

k
2ηAB

z2
12

+ fABCJ
C (z2)

z12
. (2.40)

Note that ηAB is the supertrace matrix and fABC ’s are the
structure constants of the related algebra with (A, B =
0,±1,± 1

2 ), i.e,ηi p = 0 and f
i j
i+ j = (i − j). Lastly, by

repeating the same analysis for the barred sector also, the
asymptotic symmetry algebra of N = (2, 2) supergravity
for the loosest set of boundary conditions is given by two
copies of the affine sl(2|1)k algebra.

2.3 sl(2|1) ⊕ sl(2|1) Chern–Simons N = (2, 2)

supergravity for superconformal boundary

In this section, our aim is to look into the asymptotic symme-
try algebra for the supersymmetric extension of the Brown–
Henneaux boundary conditions. We start on by imposing
the Drinfeld–Sokolov highest weight gauge condition on the
sl(2|1) Lie superalgebra valued connection (2.11), in order
to further restrict the coefficients. So, the Drinfeld–Sokolov
reduction sets the fields such that

L0 = G+ 1
2± = 0, L−1 = L,

G− 1
2± = G±, γ+1L+1 = 1. (2.41)

Meanwhile, it is worth noting that the super-conformal
boundary conditions are the supersymmetric extension of
the well-known Brown–Henneaux boundary conditions pro-
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posed in [6] for AdS3 supergravity. As a result, the super-
symmetric gauge connection takes the form

aϕ = L+1 + γ−1LL−1 + σ
− 1

2± G±G±
− 1

2
+ ρJ J, (2.42)

where γ−1 = − 1
k ,ρ = 1

2k ,σ
− 1

2+ = 1
2k , and σ

− 1
2− = − 1

2k ’s
are some scaling parameters and we have four functions: two
bosonic (J ,L) and two fermionic G± as charges. After
performing these steps, we are now close to acquire the
superconformal asymptotic symmetry algebra. Following the
results implied by the Drinfeld–Sokolov reduction, the gauge
parameter λ has only four independent functions (�, ε ≡
ε+1, ζ± ≡ ζ

+ 1
2± ) and given as

λ = b−1
[
εL1 − ε′L0 +

(
1

2
ε′′ + 1

k
Lε

+ 1

2k
G+ζ+ + 1

2k
G−ζ−

)
L−1 + ζ+G+

1
2

+ ζ−G−
1
2

−
(

1

2k
G−ε + 1

2k
J ζ+ + ζ ′+

)
G−

− 1
2

−
(

1

2k
G+ε + 1

2k
J ζ− + ζ ′−

)
G+

− 1
2

+ �J

]
b. (2.43)

Substituting this gauge parameter in the transformation of
the fields expression (2.17), we obtain the infinitesimal gauge
transformations:

δλJ = 1

2k
�′ − G+ζ+ + G−ζ−, (2.44)

δλL = k

2
ε′′′ + 2Lε′ + L′ε + 3

2
G+ζ ′+

+3

2
G−ζ ′− + 1

2
G′+ζ+ + 1

2
G′−ζ−

+ 1

2k

(JG+ζ+ + JG−ζ−
)
, (2.45)

δλG± = 1

2k
ζ ′′∓ + 2

(
L + 1

4k

(JJ ))
ζ±

±
(

� − 1

2k
J ε

)
G±∓ζ±J ′ + 3

2
G±ε′

+ εG′±∓J ζ ′∓. (2.46)

In fact, these gauge transformations give a cue for the asymp-
totic symmetry algebra [20]. By taking forward to see the
asymptotic symmetries, one can integrate the variation of
the canonical boundary charges, i.e., δλQ expression (2.27)
such that

Q[λ] =
∫

dϕ
[Lε + GMζM + J �

]
. (2.47)

But, these canonical boundary charges do not give a conve-
nient asymptotic operator product algebra for N = (2, 2)

superconformal boundary,

J (z1)J (z2) ∼ 2k

z2
12

, J (z1)G±(z2) ∼ ∓G±
z2

12

, (2.48)

L(z1)L(z2) ∼ 3k

z4
12

+ 2L
z2

12

+ L′ − G+G−
k

z12
,

×L(z1)J (z2) ∼ 0 (2.49)

L(z1)G±(z2) ∼
3
2G±
z2

12

+ G′± ± JG±
2k

z12
, (2.50)

G±(z1)G±(z2) ∼ ∓4k

z3
12

− 2J
z2

12

+ ∓2

z12

(
L + JJ

4k
± J ′

2

)
.

(2.51)

because L(z) and J (z) do not transform like a primary con-
formal field, besides there exist some nonlinear terms such
as (JJ )(z), (G+G−)(z) and also (JG±)(z). Therefore, it is
necessary to perform a shift on the boundary charge L and
also make a redefinition on the gauge parameter � as follows:

L → L + 3

2c

(JJ )
, � → � + 3

c
J ε. (2.52)

Before closing this section, one should also emphasize that
these new variables do not affect the boundary charges. Thus,
this leads to operator product expansions of the convenient
asymptotic symmetry algebra for N = (2, 2) superconfor-
mal boundary with a set of conformal generators G± →
G+ ± G− in the complex coordinates by using (2.29)

J (z1)J (z2) ∼
c
3

z2
12

, J (z1)G±(z2) ∼ ±G±

z2
12

, (2.53)

L(z1)L(z2) ∼
c
2

z4
12

+ 2L
z2

12

+ L′

z12
,

L(z1)J (z2) ∼ J
z2

12

+ J ′

z12
(2.54)

L(z1)G±(z2) ∼
3
2G±

z2
12

+ G±′

z12
, (2.55)

G±(z1)G∓(z2) ∼
2c
3

z3
12

+ 2J
z2

12

+ 1

z12

(
2L ± J ′). (2.56)

When the same analysis repeated for the barred sector, it is
seen that the asymptotic symmetry algebra for the loosest
set of boundary conditions of N = (2, 2) supergravity, con-
sists of two copies of the super-Virasoro algebra with central
charge c = 6k.

3 N = (2, 2) sl(3|2) ⊕ sl(3|2) higher-spin
Chern–Simons supergravity

Finally, after having laid the groundwork by performing the
canonical analysis of the simplest case, now we are in a posi-
tion to present the extended N = (2, 2) higher-spin Chern–
Simons supergravity theory based on sl(3|2)k superalgebra.
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3.1 For affine boundary

The objective of this section is to construct N = (2, 2)

extended higher-spin AdS3 supergravity as sl(3|2)⊕ sl(3|2)

Chern–Simons gauge theory on the affine boundary. We pro-
ceed our calculations to elucidate the asymptotic symmetry
algebra for the loosest set of boundary conditions.

As already stated in the previous section, we consider
the principal embedding of sl(2|1) into sl(3|2) as a sub-
algebra, giving rise to the asymptotic symmetry, where the
even-graded sector of the superalgebra decomposes into spin-
2, the sl(2) generators Li , (i = ±1, 0), a spin-1 element
J, a spin-2 multiplet Ai , (i = ±1, 0) and a spin-3 multi-
plet Wi , (i = ±2,±1, 0). All these generators together span
the bosonic sub-algebra sl(3) ⊕ sl(2) ⊕ u(1). Furthermore,
the odd-graded elements decompose in two spin 3

2 multi-
plets GM

r , (r = ± 1
2 ), (M = ±) and two spin 5

2 multiplets
SM
r , (r = ± 3

2 ,± 1
2 ), (M = ±). Then, the bosonic sector of

this algebra is given as follows:

[Li ,L j ] = (i − j)Li+ j , [Li ,A j ] = (i − j)Ai+ j , (3.1)

[Li ,W j ] = (2i − j)Wi+ j , [Ai ,A j ] = (i − j)Li+ j ,

[Ai ,W j ] = (2i − j)Wi+ j , (3.2)

[Wi ,W j ] = −1

6
(i − j)(2i2 + 2 j2 − i j − 8)(Li+ j + Ai+ j ) .

(3.3)

Additionally, the explicit commutation relations between the
bosonic and fermionic sectors are given by

[
Li ,G

±
p

]
=

(
i

2
− p

)
G±
i+p,

[
Li ,S

±
p

]
=

(
3i

2
− p

)
S±
i+p,

(3.4)

[J,G±
r ] = ±G±

r , [J,S±
r ] = ±S±

r , (3.5)

[Ai ,G±
r ] = 5

3

(
i

2
− r

)
Gi+r ± 4

3
S±
i+r , (3.6)

[Ai ,S±
r ] = 1

3

(
3i

2
− r

)
S±
i+r∓

1

3

(
3i2 − 2ir + r2 − 9

4

)
G±
i+r ,

(3.7)

[Wi ,G±
r ] = −4

3

(
i

2
− 2r

)
S±
i+r , (3.8)

[Wi ,S±
r ] = ∓1

3

(
2r2 − 2ri + i2 − 5

2

)
S±
i+r

− 1

6

(
4r3 − 3r2i + 2ri2 − i3 − 9r + 19

4
i

)
G±
i+r .

(3.9)

And lastly, the fermionic sector satisfy the following anti -
commutation relations

{
G±
r ,G∓

s

} = 2Lr+s ± (r − s)J (3.10)

{G±
r ,S±

s } = −3

2
W∓
r+s + 3

4
(3r − s)Ar+s − 5

4
(3r − s)Lr+s ,

(3.11)

{S±
r ,S∓

s } = −3

4
(r − s)Wr+s

+ 1

8

(
3s2 − 4rs + 3r2 − 9

2

)
(Lr+s − 3Ar+s)

− 1

4
(r − s)

(
r2 + s2 − 5

2

)
J (3.12)

except for zero commutators.
Having discussed the principle embedding of sl(2|1) into

sl(3|2), we are now able to formulate the most general bound-
ary conditions for asymptotically AdS3 spacetimes. In accor-
dance with this purpose it is useful to define the gauge con-
nection as

aϕ = ρJ J + γiLiLi + ϑiAiAi

+ωiW iWi + σ
p
MG p

MGM
p + τ

p
MS p

MSM
p (3.13)

at = ηJ + μiLi + ξ iAi + f iWi + ν
p
MGM

p + ψ
p
MSM

p (3.14)

where

ρ = σ
1
2
M = −σ

1
2
M = 1

k

2γ1 = 2γ−1 − 2γ0 = 2ϑ1 = 2ϑ−1 = −ϑ0 = 4

k

3τ
− 3

2
M = −3σ

3
2
M = τ

1
2
M = −σ

1
2
M = 8

3k

6ω−2 = 6ω2 = −3

2
ω−1 = −3

2
ω1 = ω0 = 3

k

are some scaling parameters. As a result, we have twenty
four functions; twelve bosonic

(J ,Li ,Ai ,W i
)

and twelve
fermionic

(G p
M ,S p

M

)
as charges. Also, we have in total

twenty four independent functions
(
η,μi , ξ i , f i , ν p

M , ψ
p
M

)
too, as chemical potentials for the time component.

In the presence of the loosest set of boundary condi-
tions, thanks to the flatness conditions (2.5), the equations
of motion for fixed chemical potentials impose the addi-
tional conditions as the temporal evolution of the twenty four
independent source fields

(J ,Li ,Ai ,W i ,G p
M ,S p

M

)
as cal-

culated in Appendix A. Thus, the consequences of our cal-
culations to derive the relevant superalgebra for the loosest
set of boundary conditions can now be evaluated through a
canonical analysis. We now consider the boundary preserving
gauge transformations (encompassing all) (2.17) generated
by the sl(3|2) Lie superalgebra-valued gauge parameter λ,
which we choose as

λ = b−1
[
�J + εiLi + φiAi + υiWi + ς

p
MGM

p + ω
p
MSM

p

]
b.

(3.15)

Note that there are in total twenty four arbitrary functions
on the boundary, consist of twelve bosonic (�, εi , φi , υi )
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and twelve fermionic (ς
p
M , ω

p
M ). Inserting this expression

into (2.17) imposes the gauge transformations. For further
details, see Appendix B. Analogously, the gauge transfor-
mations for the chemical potentials are calculated whose
details can again be found in Appendix C. Following a sim-
ilar approach as previous section, we act on to make out the
canonical boundary charges Q[λ] that generates the trans-
formations (B.1)–(B.11). As is well known, it is convenient
to express the variation of the canonical boundary charge
δλQ (2.27), to reach out the asymptotic symmetry algebra
[46–49]. Hence, the canonical boundary charge Q[λ] can be
obtained which reads

Q[λ] =
∫

dϕ
[
J � + Liε−i + Aiφ−i

+W iυ−i + G p
Mς−p + S p

Mω−p
]
. (3.16)

The next step to derive the asymptotic symmetry algebra is to
calculate Poisson bracket algebra using the standard method
[45], which is acquired by the relation (2.29) given for any
phase space functional �.

In light of the above statement, the operator product alge-
bra for the bosonic sector is then achieved as

Li (z1)L j (z2) ∼
k
2 η

i j
2

z2
12

+ (i − j)

z12
Li+ j ,

J (z1)J (z2) ∼
k
2 η

z2
12

, (3.17)

Li (z1)A j (z2) ∼ (i − j)

z12
Ai+ j ,

Li (z1)W j (z2) ∼ (2i − j)

z12
W i+ j , (3.18)

Ai (z1)A j (z2) ∼
k
2 η

i j
2

z2
12

+ (i − j)

z12
Ai+ j ,

Ai (z1)W j (z2) ∼ (2i − j)

z12
Ai+ j , (3.19)

W i (z1)W j (z2) ∼
k
2 η

i j
3

z2
12

+ 1

z12

(
1

3
(i − j)

(
2i2 − i j + 2 j2 − 8

)

×
(
Ai+ j + Li+ j

))
. (3.20)

Furthermore, the explicit operator product algebra between
the bosonic and fermionic sectors is given by

J (z1)G p
±(z2) ∼ ±G p

±
z12

,

Li (z1)G p
±(z2) ∼ ( i2 − p)

z12
Gi+p

± , (3.21)

Li (z1)S p
±(z2) ∼ ( 3i

2 − p)

z12
S i+p

± ,

J (z1)S p
±(z2) ∼ ±

k
2

z12
S p+i

± , (3.22)

G p
±(z1)Ai (z2) ∼ ∓S p

∓
z12

,

G p
±(z1)W i (z2) ∼ −

4
3 (2i − p

2 )

z12
S p+i

∓ , (3.23)

A(z1)S p
±(z2) ∼ 1

z12

(
1

3

(
3i

2
− p

)
S i+p

±

∓1

4

(
3i2 − 2i p + p2 − 9

4

)
Gi+p

±
)

, (3.24)

S p
±(z1)W i (z2) ∼ ∓ 1

z12

(
1

3

(
i2 − 2i p + 2p2 − 5

2

)
S p+i

∓

+1

8

(
4p3 − i3 + 2i2 p − 3i p2 − 9p + 19

4
i

)

×G p+i
∓

)
. (3.25)

Finally, the explicit operator product algebra for the fermionic
sector yields

G p
±(z1)Gq

±(z2) ∼
k
2 η

pq
3
2

z2
12

+ 2

z12

×
(
Lp+q + 5

3
Ap+q ± (p − q)

2
J

)
, (3.26)

G p
±(z1)Sq

±(z2) ∼ 2

z12

(
3

4
W p+q −

(
3p

2
− q

2

)
Ap+q

)
, (3.27)

S p
±(z1)Sq

±(z2) ∼
k
2 η

pq
5
2

z2
12

± 1

z12

(
1

8

(
3p2 − 4pq

+3q2 − 9

2

) (Ap+q + 3Lp+q)

∓3

4
(p − q)W p+q

± 3

16
(p − q)

(
p2 + q2 − 5

2

)
J

)
, (3.28)

where z12 = z1 − z2, or in the more compact form,

JA(z1)J
B(z2) ∼

k
2ηAB

z2
12

+ fABCJ
C (z2)

z12
. (3.29)

Note that ηAB is the supertrace matrix and fABC ’s are the
structure constants of the related algebra with (A, B =
0,±1,± 1

2 , 0,±1,± 1
2 ,± 3

2 ), i.e,ηi p = 0 and f
i j
i+ j = (i −

j).
Since the barred sector is completely analogous, the same

results are obtained. Eventually, it follows that the asymptotic
symmetry algebra for the loosest set of boundary conditions
ofN = (2, 2) supergravity is two copies of the affine sl(3|2)k
algebra.

3.2 For superconformal boundary

As already discussed, it is convenient to point out that the
super-conformal boundary conditions are the supersymmet-
ric extension of the well-known Brown–Henneaux boundary
conditions, presented in [6] for AdS3 supergravity. In this
section, our main goal is to construct the asymptotic symme-
try algebra for the most general boundary conditions as the
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supersymmetric extension of the Brown–Henneaux bound-
ary conditions. In accordance for this purpose, we launch
into our section by imposing the Drinfeld–Sokolov heigh-
est weight gauge condition on the sl(3|2) Lie superalgebra
valued connection (3.13), setting the fields as

L0 = A0 = A+1 = G+ 1
2

M = S+ 1
2

M = S+ 3
2

M = 0,

L−1 = L, A−1 = A, G− 1
2

M = GM ,

S− 3
2

M = SM , γ+1L+1 = 1. (3.30)

Correspondingly, the supersymmetric gauge connection is
taken to be

aϕ = L1 + γ−1LL−1 + ϑ−1AA−1 + ω−2WW−2 + ρJ J

+σ
− 1

2
M GMGM

− 1
2

+ τ
− 3

2
M SMSM

− 3
2
, (3.31)

at = ηJ + μL1 + ξA1 + fW2 + νMGM
+ 1

2
+ ψMSM

+ 3
2

+
0∑

i=−1

μiLi +
0∑

i=−1

ξ iAi

+ν
− 1

2
M GM

− 1
2

+
1
2∑

p=− 3
2

ψ
p
MSM

p , (3.32)

where η, μ ≡ μ+1, ξ ≡ ξ+1, f ≡ f+2, νM ≡ ν
+ 1

2
M , and

ψM ≡ ψ
+ 3

2
M can be interpreted as the independent chemical

potentials.
When we request to gather up our next steps yielding the

asymptotic symmetry algebra in a one paragraph, it is an
appropriate option to give the following brief summary. The
all functions except the chemical potentials can be fixed by
the flattness conditions (2.5) in the usual manner. The equa-
tions of motion for the fixed chemical potentials can also be
obtained conventionally as the time evolution of the canon-
ical boundary charges. But unfortunately, moving from the
sl(2|1)-case to sl(3|2)-extension brings along the technical
cumbersome although we have overcomen. Our preference
is to ignore presenting these calculations here, because they
take up too much space. We make choice to spare space for
the calculations of the gauge parameter λ and further.

In line with all these results to be obtained, we are now
able to derive the superconformal asymptotic symmetry alge-
bra. Using the Drinfeld–Sokolov reduction we have only six
independent parameters as �, ε ≡ ε+1, φ ≡ φ+1, υ ≡ υ+2,

ςM ≡ ς
+ 1

2
M and ωM ≡ ω

+ 3
2

M It is now possible to com-
pute the gauge transformations by considering all transfor-
mations (2.17) that preserve the boundary conditions with
the sl(3|2) Lie superalgebra valued gauge parameter λ. See
Appendix D, for more details.

Since we are dealing with the asymptotic symmetries, it is
natural to demand obtaining the canonical boundary charges

Q[λ]. So, the variation of the canonical boundary charge, i.e.,
δλQ (2.27) can be integrated to yield

Q[λ] =
∫

dϕ
[J � + Lε + Aφ + Wυ + GMςM + SMωM

]
.

(3.33)

But, these canonical boundary charges do not give a con-
venient asymptotic operator product algebra in the complex
coordinates by using (2.29) for N = (2, 2) superconformal
boundary,

L(z1)L(z2) ∼ 3k

z4
12

+ 2L
z2

12

+ L′ − G+G−
k

z12
(3.34)

L(z1)J (z2) ∼ 0 (3.35)

L(z1)G±(z2) ∼ 3G+
2z2

12

+ G′+ ± JG+
2k

z12
(3.36)

L(z1)A(z2) ∼ A′

z12
+ 2A

z2
12

(3.37)

L(z1)S±(z2) ∼ 5S+
2z2

12

+ S ′+ ± JS+
2k

z12
(3.38)

L(z1)W(z2) ∼ +3W
z2

12

+ 1

z12

(
W ′ + G+S−

k
− S+G−

k

)
(3.39)

J (z1)J (z2) ∼ 2k

z2
12

(3.40)

J (z1)G±(z2) ∼ ∓G±
z12

(3.41)

J (z1)A(z2) ∼ 0 (3.42)

J (z1)S±(z2) ∼ ∓S±
z12

(3.43)

J (z1)W(z2) ∼ 0 (3.44)

G±(z1)G±(z2) ∼ ∓4k

z3
12

− 2J
z2

12

+ ∓2

z12

(
L + JJ

4k
± J ′

2
∓10A

3

)
(3.45)

G±(z1)G∓(z2) ∼ 0 (3.46)

G±(z1)A(z2) ∼ ∓15S±
4z12

(3.47)

G±(z1)S±(z2) ∼ ± 16A
15z2

12

± 1

z12

(
4A′

15
± 8AJ

15k
∓4W

)
(3.48)

G±(z1)S∓(z2) ∼ 0 (3.49)

G±(z1)W(z2) ∼ −5S∓
4z2

12

− 1

z12

(S ′∓
4

− 2AG∓
15k

∓JS∓
2k

)
(3.50)

A(z1)A(z2) ∼ 3k

z4
12

+ 2L
z2

12

+ L′ − G+G−
4k

z12
(3.51)

S±(z1)S∓(z2) ∼ −2G∓G′∓
5kz12

(3.52)

A(z1)S±(z2) ∼ 4G+
5z3

12

+ 1

z2
12

(
5S±

6
+ 4G′±

15
± 2G±J

15k

)

+ 1

z12

(G±J 2

60k2 − 3AG±
5k

± G±J ′

30k
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±JG′±
15k

+ 3G±L
5k

± JS±
6k

+ S ′±
3

+ G′′±
15

)

(3.53)

W(z1)W(z2) ∼ 2k

z6
12

+ 2(A + L)

z4
12

− 1

z3
12

×
(
A′ + 13G−G+

12k
+ L′

)

+ 1

z2
12

(
3A′′

10
− 13G+G′−

24k
− 13G−G′+

24k

+ 16A2

15kz2
12

+ 32AL
15kz2

12

+ 16L2

15k
+ 3L′′

10

)

− 1

z12

(
G−G+J 2

30k3 + 32AG−G+
45k2 − A(3)

15

−G+JS−
3k2 + G−JS+

3k2 − G+JG′−
15k2

+G−JG′+
15k2 + 16G−G+L

15k2

−16LA′

15k
− 16AA′

15k
− 16AL′

15k
− 5S+G′−

12k

+G+S ′−
4k

− 5S−G′+
12k

+ G−S ′+
4k

+ 7G′−G′+
30k

+11G+G′′−
60k

+ 11G−G′′+
60k

+ 10S−S+
k

−16LL′

15k
− L(3)

15

)
(3.54)

S±(z1)W(z2) ∼ ∓3G∓
4z4

12

± 1

z3
12

(
5S∓

4
∓G∓J

4k
− G′∓

4

)

∓ 1

z2
12

(G′′∓
16

+ 3G∓J 2

64k2 + 91AG∓
240k

± 5G∓J ′

32k

±JG′∓
16k

+ 11G∓L
16k

∓3JS∓
8k

− S ′−
2

)

− 1

z12

(
G∓J 3

160k3 ∓G∓(3)

80
+ 13AG∓J

120k2

±3J 2G′−
320k2 ± 9G∓JJ ′

160k2 ± 9G∓JL
40k2 ∓J 2S∓

16k2

(3.55)

±13G∓A′

80k
± 13AG′∓

80k
∓11AS∓

4k

+9G∓J ′′

160k
+ 7G′∓J ′
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(3.56)

S±(z1)S±(z2) ∼ 12k
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(3.57)

because some boundary charges do not transform like a
primary conformal field, and also there exist some nonlin-
ear terms such as (JJ )(z) , (G+G−)(z), and (JG±)(z), as
already discussed in the previous section (2.3). Therefore, it
is required to consider some redefinitions on the boundary
charges and gauge parameters as

γ−1L → 6

c

(
L − 3

2c

(JJ ) + κ

2
A

)
,

ε → ε + κ

2

(
φ + 6

c
υJ

)
(3.58)

ϑ−1A → −9κ

5c
A,

φ → φ − 3κ

10

(
φ + 6

c
υJ

)
(3.59)

ω−2W → 3κ

5c

(
W − 6

c
JA

)
,

υ → 3κ

10
υ (3.60)

ρJ → 3

c
J ,

� → � + 3

c

(
εJ + 2υA

)
(3.61)

σ
− 1

2± G± → ∓3

c
G±, ς± → ±ς± (3.62)

τ
− 3

2± S± → ±4κ

5c
S±, ω± → ∓2κ

5
ω± (3.63)

where κ = ± 5i
2 , which is defined to make a relation with the

notation in [50] at the classical level.
It is important to emphasize that these new variables do

not affect the boundary charges.
Finally, this leads to operator product expansions of conve-
nient asymptotic symmetry algebra for N = (2, 2) super-
conformal boundary with a set of conformal generators
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G± → G+ ± G− and S± → S+ ± S− in the complex
coordinates by using (2.29). After repeating the same pro-
cedure for the barred-sector, one can say that the asymptotic
symmetry algebra for the loosest set of boundary conditions
of N = (2, 2) supergravity is two copies of the super W3

algebra with central charge c = 6k. In this paper, we do not
explicitly carry out the whole computation to obtain the clas-
sical N = (2, 2) super W3 algebra (see [50] for the entire
quantum N = 2 super W3 algebra and [51] for the clas-
sical case). Recently, a detailed derivation of the asymptotic
symmetry algebra is also given in [52] for the sl(3|2) case.

3.3 Remarks on charges and the nature of quantum gravity
through holography

Before we move on to the last section, we make some signifi-
cant remarks on the physical interpretation for the charges of
the extended algebras. As previously mentioned, when one
analyzes a theory with a boundary, it is essential to con-
sider boundary conditions for the dynamical variables. In the
covariant approach, the boundary conditions imposed on con-
formal gravity such that it entails to having a well-defined
variational principle give the boundary conditions preserving
transformations, and subsequently the asymptotic symme-
try algebra. These conditions can be physically motivated, or
determined to make into the theory self-consistent. As is well-
known, if the original action is not differentiable in the pres-
ence of the boundary conditions in question, a boundary term
is needed to be added it. In this context, the canonical bound-
ary charges are defined as the boundary terms added to the
smeared generators of the gauge transformations to make
them differentiable. In order to be endow with the canonical
boundary charges related to the mass and angular momen-
tum of the BTZ black hole for pure gravity case, one would
in principle work with the metric formulation or use the
Chern–Simons description through the proposed holonomies
which contain the gauge-invariant information [18,53]. It is
also worth noting within this framework that the charges for
extended algebras give rise to the symmetries of the dual
two-dimensional CFT and so by evaluating the charges and
their corresponding algebras, one can determine what chi-
ral algebra the dual CFT has. In other words, the charges of
these extended algebras have a physical meaning as con-
served charges of the putative dual CFTs, and as such, one can
define generalized partition functions with chemical poten-
tials that couple to these conserved charges. Moreover, these
could be corresponding to the black hole solutions that carry
higher spin charges in AdS3. Chiral and anti-chiral functions
appearing in the canonical boundary charges characterize the
physical state space in the black hole solutions. These are the
vacuum expectation values of the corresponding operators in
the holographic interpretation.

In addition, it would be appropriate to point out that these
higher spin theories have been studied quite a bit over the
last few years, and it is by now pretty clear which higher
spin theory yields which two-dimensional chiral algebra. In
brief: if the higher spin theory is described by a Chern-Simons
theory based on Lie algebra g, then the dual CFT will be the
Hamiltonian reduction of g. Which Hamiltonian reduction
appears depends on the boundary conditions one imposes on
the Chern–Simons theory, but also this has been studied in
various examples by now.

Having studied the asymptotic symmetry algebra real-
ization of the classical extended N = (2, 2) superalgebra
in terms of higher-spin fields on AdS3 with the most gen-
eral boundary conditions, the corresponding dual field the-
ory being two classical copies of the sl(3|2)k is highly sug-
gestive because the physical Hilbert space, belongs to rep-
resentations of two copies of the related superalgebra, as in
the bosonic case. Therefore, it is of interest to investigate the
holographic implications of our new encouraging boundary
conditions, and also, this super extension will be novel in that
it follows the boundary conditions discussed in [26].

It is also convenient to note that the choice of var-
ious boundary conditions enriches the holographic inter-
pretation. Most prevalent works in the literature based on
AdS3/CFT2 duality are those belonging to the class of
Brown–Henneaux boundary conditions, obtained via
Drinfeld–Sokolov reduction in the highest-weight gauge of
the Chern–Simons theory. The holographic interpretation of
each boundary condition is idiosyncratic for both Brown–
Henneaux boundary conditions [6] and its (extended) super-
symmetric extensions [8], and also other boundary condi-
tions that have been proposed by altering and generalizing
the Brown–Henneaux boundary conditions in the last years
[28,31,32]. The most general boundary conditions and their
supersymmetric extensions make it possible to look at the
holographic picture from a much broader perspective in this
sense. From this point of view, it is considerable to impose
the most general boundary conditions, explore the asymp-
totic structure for (extended) supergravity and obtain new
algebras. It is also important to check out whether these most
general boundary conditions and their (extended) supersym-
metric extensions encompassing or not the Brown–Henneaux
boundary conditions in terms of consistency as a first test, or
even other boundary conditions in the literature.

Furthermore, the analysis we performed is essentially
classical. However, it is also possible to examine the cor-
responding dual conformal field theory at the quantum
level. The usual way in this case is to compute Poisson brack-
ets and then quantize them canonically by replacing with the
commutators. An additional point worth noting here is that to
make a relation with the holographic description, one needs to
extract the semiclassical limit of the operator product expan-
sion relations. This procedure involves taking a large-c and
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large-current limit, a procedure that is more subtle than a
naive expansion in 1/c.

3.4 Remarks on the correspondence of higher spin theories
to the string theory and recent developments

It is pertinent to discuss how a supergravity theory con-
structed in this manner can be physically interesting. Infact, it
is not exactly known how these higher spin theories (and their
dual CFT s) sit inside string theory (and their dual CFT s)
in general. Fortunately, there is one example in the literature
that is understood well: this is the N = 4 higher spin theory
in the limit λ → 0 which sits inside superstring theory on
AdS3 × S3 × T 4 at the tensionless point, the dual CFT
is then exactly the symmetric orbifold of T 4. This was origi-
nally explained in [54]; more recently, the relevant string the-
ory has been managed to construct in detail, see in particular
[55,56] and [57].

It would also be intriguing to see what the analogue
of [54] should be for other theories, particularly with less
supersymmetry. As a result, there can be made some sugges-
tions in this direction for the questions such as: “ Can one
identify the higher spin theory corresponding to the theory
in [58] ? ”, or, alternatively, “ Can one see what string theory
could correspond to higher spin theories?. ” So, it could cor-
respond to a limit of our higher spin theory at this very point.

4 Concluding remarks

In the present paper, it is clearly put forward that the Chern–
Simons formulation of AdS3 (super)gravity also allows a
more convenient generalization of higher spin theories for
fermionic states as well as for bosonic states. Furthermore,
we also confirm explicitly that although the higher spin fields
do not propagate any degrees of freedom, there exists a large
class of intriguing nontrivial solutions. Specifically, we build
up a candidate solution for N = (2, 2) extended higher spin
AdS3 supergravity and scrutinize its asymptotic symmetries.

To summarize, we give a brief discussion for AdS3 higher
spin supergravity based on Chern–Simons formulation. We
first work out sl(2|1) ⊕ sl(2|1) Chern–Simons N = (2, 2)

supergravity theory in detail. Then, we construct AdS3 higher
spin supergravity enlarging sl(2|1) ⊕ sl(2|1) to sl(3|3) ⊕
sl(3|2) in the presence of a tower of higher-spin fields up
to spin-3. Thereafter we obtain two classical copies of the
sl(3|2)k affine algebra on the affine boundary and two copies
of superW3 symmetry algebra on the superconformal bound-
ary as asymptotic symmetry algebras. We also go through
the chemical potentials related to source fields appearing
through the temporal components of the connection. On the
other hand, we see that Chern–Simons action is compati-
ble with our boundary conditions, resulting in a finite effect
for higher spin fields and a well-defined variational princi-

ple. Consequently, this method can be considered as a good
laboratory for researching the fertile asymptotic structure
of extended supergravity. It also might be worthwhile to
translate our outcomes into the metric formulation language
because it will lift our boundary to higher dimensions, where
is a Chern–Simons theory.

The results in our paper leave some further investigations
which we put in order a few here:

It is a natural question to ask if another class of bound-
ary conditions appearing in literature (see, e.g. [28,30–32]),
whose higher-spin generalization is not as clear as the Gru-
miller and Riegler ’s, are consistent with these most general
ones, and it would be interesting to examine this. Besides, it
has arousing curiosity to get two copies of N = (2, 2)

warped superconformal algebras for the supersymmetric
boundary conditions of [31] and also to check the super-
symmetric extension of the Avery–Poojary–Suryanarayana
boundary conditions [1,32]. In this point, it is also worth not-
ing that the boundary conditions are more restrictive than the
pure bosonic case [26]. While the first motivation is to extend
them, it is worth mentioning that these generalizations about
boundaries would also have a good potential for novel holo-
graphic applications.

Finally, we close scratching the limits in our debate of
the most general boundary conditions of supergravity. Many
open questions still exist for further investigations, e.g., what
other boundary conditions from a similar starting point can
be attained? Or how can be explained the puzzling result that
the related geometries have an entropy? Overall, we think it is
satisfying to see that even in specific instances of three dimen-
sional gravity, the asymptotically AdS tale of the most gen-
eral boundaries recently set forth by Grumiller and Riegler
inspires new and unexpected innovations.

Last but not least, according to [26] and [1] there is N =
(2, 2) extended supergravity with new boundaries. However,
it is an open problem to decide whether we end up to its
enough higher order N extension by taking the Grumiller-
Riegler method as we perform in this paper. Therefore, our
results presented in this paper can be extended in various
ways. One possible extension is N = 3 supergravity theory
in AdS3. In this context, the details of this possible extension
will be examined in our forthcoming paper.
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A The temporal evolution of the twenty four
independent source fields

In this appendix, we collect explicit calculations of additional
conditions that the equations of motions impose for fixed
chemical potentials as the temporal evolution of the twenty
four source fields.
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B The gauge transformations of the twenty four
independent source fields

In this appendix, we present in more detail the gauge trans-
formations of the twenty four independent source fields as:
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S
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C The gauge transformations of the twenty four
chemical potentials

This appendix consists of the gauge transformations for the
twenty four chemical potentials.
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D The sl(3|2) Lie superalgebra valued gauge
parameter λ

This appendix contains an explicit calculated form of the
sl(3|2) Lie superalgebra valued gauge parameter λ as:
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