
Eur. Phys. J. C (2022) 82:452
https://doi.org/10.1140/epjc/s10052-022-10421-x

Regular Article - Theoretical Physics

Echoes from asymmetric wormholes and black bounce

Min-Yan Ou, Meng-Yun Laia, Hyat Huangb

College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China

Received: 26 March 2022 / Accepted: 9 May 2022 / Published online: 17 May 2022
© The Author(s) 2022

Abstract The time evolutions of the field perturbations in
certain asymmetric wormhole and black bounce backgrounds
are investigated. It is found that the echo signals arise only in
some wormhole cases. We examine the influences of these
wormhole echoes by their mass and charge, as well as the
asymmetry of spacetime. The results show that a massive
wormhole with smaller charge is easier to observe echo sig-
nals. Particularly, the asymmetry of wormhole spacetime
causes lower frequency echoes. Besides, analytical results
show that the negative regions of effective potentials are
enclosed by the black hole horizons for a class of symmet-
ric black bounce metrics. This suggests the stability of these
symmetric metrics.
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1 Introduction

Black holes and wormholes are two typical fascinating solu-
tions of General Relativity. Recently, progress in astrophys-
ical experiments has attracted a lot of interest in black hole
physics. Two breakthroughs in this field are the first image of
a black hole with the Event Horizon Telescope [1–3] and the
observation of gravitational waves from a binary black hole
merger [4]. Especially, there is a growing number of detected
cases of GWs reported by LIGO Scientific Collaboration and
Virgo Collaboration [5–7], which provides a lot of concrete
examples to study the properties of black holes.

However, many studies pointed out that there is no suffi-
cient evidence to claim that the GWs ringdown signals come
from black holes [8,9]. In Ref. [9] and earlier research in
Ref. [10], the authors suggested that the horizonless objects
can mimic black holes in the sense of initial ringdown signals.
The compact horizonless objects involve neutron stars [11],
boson stars [12] and wormholes [9,13–17] and so on. The
original concept of wormholes is proposed by Ludwig Flamm
in 1916 [18]. Then Morris and Thorne systemically studied
the properties of traversable wormholes [19]. They found that
the existence of traversable wormhole needs exotic matters.
Ellis [20] and Bronnikov [21] obtained the first eponymous
wormhole solution respectively by introducing a free phan-
tom scalar as the exotic matter. Due to the widespread inter-
est in wormhole physics [22–27], it has a great motivation
to distinguish black holes with wormholes. A useful way to
achieve this goal is to perturb the objects and then observe
the time evolution of the perturbation. When black holes or
wormholes are perturbed, they radiate GWs based on the ini-
tial conditions of the perturbations. After that, they reduce to
damped oscillations with complex frequencies. The modes
of oscillations are the so-called quasinormal modes (QNMs),
which encode information on the evolutions. Researches on
the QNMs of various black hole and wormhole solutions are
quite prominent [28–35]. There is an intriguing phenomenon
called echoes in QNMs. The echoes are generated by the

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10421-x&domain=pdf
mailto:mengyunlai@jxnu.edu.cn
mailto:hyat@mail.bnu.edu.cn


452 Page 2 of 13 Eur. Phys. J. C (2022) 82 :452

reflected waves of the system, in which a sudden increase
of amplitudes in QNM spectrums appears. We should note,
however, that not all black holes or wormholes can generate
echoes after perturbations. An interesting direction is to use
the features of echoes to examine the properties of black holes
and wormholes. For example, Refs. [36,37] pointed out that
echoes arise from black holes if there are local Lorentz sym-
metry violations or discontinuities in the effective potentials.
Reference [14] studied the echoes of two wormhole models,
they found that there are obvious echo signals in wormhole
geometries. Also, echoes from wormhole/black hole transi-
tion were considered in the brane-world model [38]. In a
recent paper [39], the authors presented an interesting dis-
cussion on the echoes from wormholes.

On the other hand, it is necessary to investigate the dif-
ferences between black holes and wormholes in the same
circumstance. To do this, we need to find the theories that
admit both the black hole and wormhole solutions. A natu-
ral candidate is the regular black hole. A regular black hole
means that there is no singularity inside the event horizons.
Simpson and Visser proposed a new concept named black
bounce recently [40]. This new concept was inspired by
Bardeen’s regular black hole and similar to Bronnikov’s dark
universe [41]. Simpson and Visser suggested a two param-
eters metric, which can describe traversable wormholes and
black bounces regarding the values of the parameters. The
black bounce mechanism and the Simpson–Visser (SV) met-
ric have caused concern among physicists. Later, Huang and
Yang (HY) obtained a charged wormhole/black bounce solu-
tion in the Einstein-Maxwell-scalar theory [42]. In their the-
ory, the wormhole/black bounce is supported by the phan-
tom fields. Although there are some disputes, the phantom
fields play important role in many aspects of physics, such as
string theory [43,44], dark energy models [45,46] and parti-
cle physics [47]. One may argue that the phantom fields will
cause negative energies and hence become a sign of instabil-
ities. However, Ref. [48] argued that such instabilities can be
cured. Then Lobo et al. [49] constructed a novel black bounce
spacetimes (LRSSV metric). The observable properties, such
as the gravitational lensing [50–52] and perturbation echoes
[53,54], of the SV metric and the LRSSV metric are studied.
Especially in Ref. [53], they investigated the SV metric and
suggested that the black hole/wormhole transition is charac-
terized by the echoes. A similar conclusion is presented with
respect to the LRSSV metric [54].

It should be mentioned that the SV metric and the LRSSV
metric are both symmetric. Then the symmetry of the met-
rics leads to the symmetric effective potential in the perturbed
equation. Being distinct from the above symmetric metrics,
the HY metric involves asymmetric cases. It is worth exam-
ining how an asymmetric metric affects the time evolution of
the perturbations.

In this paper, we would like to draw attention to the evolu-
tion of (a)symmetric black bounces when they are perturbed.
We found that in symmetric black bounce metrics (SV metric
and LRSSV metric and a special case in HY metric), the neg-
ative regions of effective potentials are enclosed by the black
hole horizons. On the other hand, the asymmetry of metrics
leads to the asymmetric effective potentials in the case of
the HY metric, such that the negative regions could appear
the outside the black hole horizons. In Refs. [53,54], they
listed all the possible shapes of the effective potential in the
SV metric and the LRSSV metric. Here we choose two com-
mon shapes of all the possible effective potentials, namely
the single-peak and the two-peak forms, to compare the dif-
ference. Note that the single-peak potentials can not produce
any echoes, we mainly care about the two-peak potentials in
the present work. For the symmetric metrics, we can only
adjust the depth of the well between the two peaks. On the
other hand, in the asymmetric metrics the relative height of
the two peaks can also be adjusted. These results lead us to a
deeper understanding of the time evolution of the perturba-
tions.

The paper is organized as follows. In Sect. 2, we make
a brief review of the symmetric and the asymmetric worm-
hole/black bounce metrics. In Sect. 3, we derive the pertur-
bation equations for general spherically symmetric metrics,
and then introduce the finite difference method to solve those
perturbation equations. The effective potentials in different
metrics are analyzed in Sect. 4. The time-domain profiles of
the perturbations evolved in the asymmetric spacetime are
presented in Sect. 5. Finally, the conclusion and discussion
are given in Sect. 6.

2 Review of black bounce solutions

A spherically symmetric ansatz with wormhole throat-like
geometry takes the form

ds2 = −h(x)dt2 + h−1(x)dx2 + (x2 + q2)d�2
2, (1)

where

d�2
2 = dθ2 + sin2 θdφ2. (2)

For the Simpson–Visser (SV) metric, we have [40]

h(x) = hsv = 1 − 2m√
x2+q2

. (3)

This metric describes a traversable wormhole or a black
bounce up to the value of parameter q. Specifically, it can
be used to describe a traversable wormhole for q > 2m or
a regular black hole for 0 < q < 2m. It is obvious that the
metric has x to −x symmetry, such that it depicts a sym-
metric wormhole or regular black hole. In the regular black
hole case, there is a wormhole throat-like geometry in x = 0.
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This geometry is a spacelike hypersurface, while the worm-
hole throat usually is timelike. Simpson and Visser treat this
geometry as a bounce into a future incarnation of the Uni-
verse [40].

There is another symmetric metric proposed by Lobo et
al. [49]. They consider a charged solution from the Einstein
gravity with the matter sector as an anisotropic fluid. The
LRSSV metric is given by the same form as (1) and

h(x) = hl = 1 − 2m
(x4+q4)1/4 . (4)

The properties of this metric are very similar to the SV metric.
It also has the x to −x symmetry and describes symmetric
spacetimes. When q > 2m, it depicts a charged traversable
wormhole; When 0 < q < 2m, it depicts a black bounce.

Huang and Yang (HY) introduced a phantom scalar as the
matter sector in the Einstein-Maxwell-phantom scalar theory
[42], then obtained an asymmetric black bounce solution. The
Lagrangian for this theory is given by

L = √−g(R + 1
2 (∂φ)2 − 1

4 Z
−1F2),

Z = γ1 cos φ + γ2 sin φ. (5)

The phantom field is defined by flapping the sign of kinetic
term in Lagrangian, then it is easy to see the scalar field
is phantom-like everywhere. When the coupling function
Z becomes negative somewhere, the Maxwell field is also
phantom-like. The phantom fields as exotic matters support
wormhole throats. Recently, an asymmetric wormhole solu-
tion without exotic matters is found in Ref. [55] and its QNMs
and echoes have been studied in Ref. [56].

Within the ansatz (1), the HY solution is given by

h(x) = 1 − γ2Q2x
4q(x2+q2)

+ γ1Q2

4(x2+q2)
,

φ = φ(x, q), A = ξ(x, q, Q)dt,

φ = 2 arccos( x√
x2+q2

), ξ ′ = QZ
x2+q2 , (6)

where x ∈ (−∞,+∞). It follows that the solution (6) is
asymptotic to flat in x → ±∞. It is easy to reduce the solu-
tion to the Ellis wormhole solution in the limit Q → 0. We
need to emphasize that we won’t take the parameter q to be
zero in this paper. The mass M and the electric charge Qe of
the solution [42]

M = γ2Q2

8q , Qe = γ1Q. (7)

The HY metric characterizes traversable wormholes, if and
only if

Q2 <
8q2(γ1+

√
γ 2

1 +γ 2
2 )

γ 2
2

. (8)

Although the two asymptotic regions at x → ±∞ are both
flat, the spacetime curvatures are different in the vicinity
of the wormhole throat. It means that the HY metric is an
asymmetric solution. When the charge decreases or mass

increases, the spacetime geometry in the vicinity of x = 0
becomes more and more asymmetric.

When

Q2 ≥ 8q2(γ1+
√

γ 2
1 +γ 2

2 )

γ 2
2

, (9)

the HY metric characterizes regular black holes. It can depict
two types of regular black holes in this situation. Type I reg-
ular black hole looks like an RN black hole, which has outer
and inner horizon but the curvature singularity at x = 0 is
replaced by a wormhole throat. Type II regular black hole is
a black bounce where the bounce occurs at x = 0 and the
two horizons are located on both sides of the bounce.

Specially, if γ2 = 0, the function h in metric (6) reduces
to

h(x) = 1 − Q2

4(x2+q2)
, (10)

where we set γ1 = −1 without loss of generality. This is an
analogy with the SV metric (3) and the LRSSV metric (4).
When 2q < Q, it depicts a black bounce; when 2q = Q,
it depicts a one-way wormhole; when 2q > Q, it depicts a
traversable wormhole.

3 Perturbations and finite difference method

In general, there are usually three types of perturbations,
namely scalar, electromagnetic and gravitational field per-
turbations. One of the goals of this work is to discuss how
the asymmetry of spacetimes affects the results of the per-
turbations. Note that the gravitational fields and the scalar
fields behave similarly. And hence we study the scalar field
perturbations as a proxy for the gravitational perturbations
[14].

The equation of motion (E.O.M) of a massless scalar field
φ is given by

1√−g
∂μ(

√−ggμν∂νφ) = 0. (11)

We could separate the scalar field φ into two parts, which are
the spherical harmonics Yl,m and the radial part ψ(t, x),

φ = 

l,m

ψ(t,x)√
x2+q2

Yl,m, (12)

where l denotes the angular number and m denotes the
azimuthal number. Then the E.O.M of the scalar field (11)
reduces to

−∂2ψ(t, x)

∂t2 + 1

h(x)2

∂2ψ(t, x)

∂x2 + h(x)h′(x) ∂ψ(t, x)

∂x

−
h(x)

(
q2h(x) + (q2 + x2)(l(l + 1) + xh′(x))

)

(q2 + x2)2 ψ(t, x) = 0.

(13)
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Here we introduce the tortoise coordinate x∗. The tortoise
coordinate x∗ is defined by

dx∗ = 1
h(x)dx . (14)

It is also worth mentioning that the tortoise coordinate x∗ is
monotonically increasing with x but avoids the horizon. And
hence (11) becomes the wave function in the time domain,
namely

− ∂2ψ(t,x)
∂t2

+ ∂2ψ(t,x)
∂x2∗

− V (x)ψ(t, x) = 0, (15)

where

V (x) =
h(x)

(
q2h(x) + (q2 + x2)(l(l + 1) + xh′(x))

)

(q2 + x2)2 .

(16)

Furthermore, we could rewrite ψ(t, x) as �(x) exp(−iωl,nt)
,where e−iωt is the time evolution of the scalar field. Then we
obtain the wave function in the frequency domain, namely

d2�(x)
dx2∗

+ (ω2
l,n − V (x))�(x) = 0. (17)

where n denotes the overtone number. The ωl,n is a complex
number that characterizes the frequency of QNMs.

The effective potential, as known as the Regge–Wheeler
potential, can be rewritten as the following form

V (x) = h(x)F(x), (18)

with

F(x) = 1
(q2+x2)2

(
q2h(x) + (q2 + x2)(l + l2 + xh′(x))

)
.

(19)

As we will see as follows, the time evolution of the perturbed
fields is strongly related to the effective potential V .

In order to solve the perturbation equation (15) numeri-
cally, we use the finite difference method. The details of the
method could be found in Ref. [14].

We discretize the coordinates t = i
t and x∗ = j
x∗,
where the i and j are integers. As the result, ψ(t, x∗) becomes
ψ(i
t, j
x∗). After making 
t and 
x∗ to be constant, we
can replace ψ(i
t, j
x∗) with ψ(i, j). In a similar way,
V (x∗) = V ( j
x∗) = V ( j). Then the discretized form of
equation (15) becomes

−ψ(i + 1, j) − 2ψ(i, j) + ψ(i − 1, j)


t2

+ψ(i, j + 1) − 2ψ(i, j) + ψ(i, j − 1)


x2∗
−V ( j)ψ(i, j) = 0. (20)

According to Ref. [57], we consider the initial Gaussian dis-

tribution ψ(t = 0, x∗) = e
− (x∗−ā)2

2b2 and ψ(t < 0, x∗) = 0.

In the present work, we take b = 1 and the value of ā will
be chosen accordingly. Then we can derive the evolution of
ψ by

ψ(i + 1, j) = −ψ(i − 1, j)

+
(

2 − 2

t2


x2∗
− 
t2V ( j)

)
ψ(i, j)

+ 
t2


x2∗

(
ψ(i, j + 1) + ψ(i, j − 1)

)
. (21)

The von Neumann stability conditions require that [57]


t/
x∗ < 1. (22)

In the present paper, we set 
t/
x∗ = 0.5. The setting is the
same with Refs. [57] and [14]. We use the usual boundary
conditions here:

ψ(t, x∗)|x∗→−∞ = e−iωx∗ , ψ(t, x∗)|x∗→+∞ = eiωx∗ .

(23)

The physical interpretation of this boundary condition is that
there are only ingoing waves in x → −∞ and outgoing
waves in x → ∞.

4 Effective potential

Before we solve the discretized equation (21) with the numer-
ical method and show the main results in the next section, it is
necessary to discuss the effective potentials V with different
metrics.

Based on (18), the behavior of the effective potential V (x)
is determined by the roots of the following three equations:

h(x) = 0, (24)

F(x) = 0, (25)
dV (x)

dx
= 0, (26)

where the roots of Eq. (24) determine the existence and the
positions of the horizons, the roots of Eqs. (24) and (25)
describe the transformations of the sign of V (x), and the
roots of Eq. (26) represent the extreme points of V (x).

As a studied in Ref. [58], the exponentially growing
QNMs could appear when the effective potential V satisfies
a sufficient condition (33). This is a signal of the instability
of the systems. In what follows, we will point out that there
are no negative regions outside the black hole horizons in the
cases of symmetric black bounce, which suggests the stability
of these symmetric metrics. But this argument could be bro-
ken in the asymmetric black bounce cases (see Appendix A
for details).
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4.1 Symmetric spacetimes

As we mentioned above, the SV metric, the LRSSV metric
and the HY metric with γ2 = 0 are both symmetric solutions.
It is worth noting that γ2 = 0 corresponds to the solution
with zero mass. A symmetric wormhole with zero mass is
acceptable, such as the famous Ellis wormhole [20].

As the conclusions of Ref. [53], there are two shapes of
effective potentials in the SV metric. The two-peaks shapes
happen only in certain traversable wormhole cases, namely
q > 2m. It follows that the black bounce cases have only
single-peak shapes of the effective potential and hence there
are no echoes. The LRSSV metric holds a similar conclu-
sion, besides a new three-peaks shape arises in the traversable
wormhole cases. Let’s expand the effective potential V at the
two asymptotic regions, namely x → ±∞, we found that the
above two symmetric metrics have the same form. For any
l 	= 0 perturbation, it leads to the same leading term of the
effective potential V , namely

V (±∞) = l(l+1)

x2 + · · · (27)

When l = 0, the leading term changes to

V (±∞) = 2m( 1
x2 )3/2 + · · · (28)

Keeping this in mind, it is clear that the effective potentials
tend to 0+ no matter x → +∞ or x → −∞ . We would use
this conclusion to prove that there are no negative regions of
the effective potentials outside of the horizons in the cases
of the SV metric, the LRSSV metric and the HY metric of
γ2 = 0, γ1 < 0.

The SV metric, the LRSSV metric and the HY metric of
γ2 = 0, γ1 < 0 share the following form of h(x):

h(x) = 1 − A

(x2N + q2N )B
(29)

where A > 0, B > 0 and N is a positive integer. Let us
assume that the roots of h(x) locate at x = ±x0. Then we
have h(x) > 0 for x > |x0| and h(x) < 0 for x < |x0|, since
h(x) > 0 for x → ±∞. On the other hand, it can be easily
verified that xh′(x) ≥ 0. Therefore the roots of F(x) = 0
can only appear in the region x ≤ |x0|, and F(x0) = 0 only
happens for x0 = 0 and l = 0.

From the above arguments, we arrive at the conclusion that
the transformation of the sign of V (x) only happens between
the two horizons. Combining with the asymptotic behavior
of V (x), it is positive when x → ±∞. Because for l 	= 0 the
leading term of V at the boundaries are the same with (27).
For l = 0, the leading term becomes

V (±∞) = q2−Q2γ1/2
x4 + · · · . (30)

Thus the negative region of the effective potential only
appears between the two horizons. This suggests the stability
of these symmetric metrics.

To sum up, we show that there are no negative regions of
the effective potentials outside the horizons in all the three
symmetric metrics. We use the illustrations, varying with q,
to exhibit our conclusion more intuitively in Fig. 1. For a
certain value of q, the red dashed line denotes how many
peaks and wells of the effective potential V (x) while the
blue solid line denotes how many horizons. Based on such
profiles, we found that for a large q the three metrics give
rise to traversable wormholes that possess a single peak of
effective potential at the wormhole throat. When q decreases,
more peaks emerged. To be specific, there are two peaks in
the SV metric and the HY metric with γ2 = 0 and three peaks
in the LRSSV metric. For a small q, there are two symmetric
black hole horizons emerge and each side of the horizon has
only one peak.

4.2 Asymmetric spacetimes

When γ2 	= 0, the HY metric describes an asymmetric space-
time. It should be noted that the asymptotic behavior of V (x)
becomes

V (±∞) = l(l+1)

x2 − (−1+l+l2)Q2γ2

4qx3 + · · · (31)

If l 	= 0, the leading term is the same with the above symmet-
ric cases and the effective potential V (x) in two asymptotic
regions both tend to 0+. But in the cases of l = 0, we find
that

V (±∞) = Q2γ2

4qx3 + · · · (32)

It follows that V (+∞) and V (−∞) have always different
signs. In fact, V (+∞) tends to 0+ and V (−∞) tends to 0−.
Comparing with the symmetric cases in the above section,
we may conclude that, for the s-wave (l = 0) perturbations,
the asymmetry of spacetime causes negative regions of the
effective potentials outside the horizons. The negative region
perhaps relates to unstable or stable situation. The existence
of the unstable modes dependents on whether the depth of the
gap is sufficient to form a bound state with negative energy.
We discuss the details of the stability in Appendix A.

In this work, we concentrate on the black bounce and
wormhole cases and hence ignore the RN-like black hole
cases. Moreover, we do not interest in the structures inside
black hole horizons. Within these assumptions, there are only
single-peak shapes and two-peaks shapes. These two shapes
are good examples to illustrate how the asymmetry affects
the time evolution of the perturbations. The single-peak cases
involve all the black bounce cases and some wormhole cases.

The two-peaks cases arise in certain traversable wormhole
geometries. The left column of Figs. 2, 3, 4 and 5 show the
shapes of these two-peaks cases with different parameters.
We should emphasize that the implications of each parameter
are different. γ2 arises in the coupling function Z(φ) of the
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Fig. 1 Roots of (24) (blue solid line), (25) (green dotted line) and
(26)(red dashed line) of the three symmetric metrics. From top to bot-
tom, they correspond to the SV metric, the LRSSV metric and the HY

metric with γ2 = 0 respectively. The left column shows the case of
l = 0 while the right column shows the case of l = 1

Lagrangian. l is the eigenvalue of the spherical harmonics
Yl,m , which corresponds to the angular momentum of the
perturbation fields. The scalar parameter q relates to the mass
M of the wormhole when we fix Q. The parameter Q is
proportional to the electrical charge Qe of the wormhole.

5 Quasinormal modes and echoes

The frequencies of QNMs are complex numbers that depict
the properties of compact objects when spacetimes against

perturbations. The real and imaginary parts of QNMs fre-
quencies (QNFs) describe oscillation frequency and damp-
ing rate in the time-domain profiles of ψ respectively. Here
we use the Prony method to calculate the QNFs.

The QNFs for different angular numbers l, wormhole mass
M and charge Qe are shown in Tables 1 and 2. As we will see
in what follows, echoes appear in double-peaks potentials.
Hence the QNFs have different values for each echo and we
don’t show them in the tables. We can see that in Table 1 the
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Fig. 2 The effective potentials and the corresponding time evolution profiles with different γ2. We set q = 1.65, γ1 = −10, l = 2, Q = 1

Fig. 3 The effective potentials and the corresponding time evolution profiles with different l. We set q = 1.6, γ1 = −10, γ2 = 2, Q = 1

Fig. 4 The effective potentials and the corresponding time evolution profiles with different M . We set γ1 = −10, γ2 = 2, l = 2, Q = 1

imaginary parts of QNFs have maximum values for different
l, while in Table 2 the real and imaginary parts of QNFs both
have maximum values. As examples, some time-profiles of
QNMs in Tables 1 and 2 are presented in Appendix B. One
can see that the tendency of our data matches the behavior
of time-domain profiles in Figs. 8 and 9.

We would like to show the important results of the time-
evolution profiles that contain echo signals now. For the two-
peak profiles, as we present in Fig. 2, 3, 4 and 5, we classify
the situations with different γ2, l, M, Qe. The two-peak cases
can produce echoes. The left columns of these figures show
the effective potential V (x∗) while the right columns show

123



452 Page 8 of 13 Eur. Phys. J. C (2022) 82 :452

Fig. 5 The effective potentials and the corresponding time evolution profiles with different Qe. We set M = 0.147059, γ1 = −10, γ2 = 2, l = 2

Table 1 The QNM frequencies with different Qe. We set M = 0.147059, γ1 = −10, γ2 = 2

Qe l = 2 l = 4 l = 6

− 10 Echoes Echoes Echoes

− 11 Echoes Echoes Echoes

− 12 Echoes 1.19266 − 0.0364921i 1.69622 − 0.0381044i

− 13 0.640863 − 0.0525415i 1.12010 − 0.0496164i 1.60403 − 0.0544553i

− 14 0.586778 − 0.0587905i 1.02922 − 0.0552181i 1.47679 − 0.0554772i

− 15 0.533745 − 0.0611461i 0.938147 − 0.0578268i 1.34675 − 0.0570986i

− 16 0.484689 − 0.0611087i 0.853258 − 0.0582675i 1.22537 − 0.0574519i

− 17 0.440437 − 0.0596644i 0.776279 − 0.0572291i 1.11519 − 0.0564954i

− 18 0.400901 − 0.0573685i 0.707389 − 0.0553362i 1.01653 − 0.0547212i

Table 2 The QNM frequencies with different M . We set Qe = −10, γ1 = −10, γ2 = 2

M l = 2 l = 4 l = 6

0.06 0.568957 − 0.0972813i 1.00753 − 0.0951763i 1.44955 − 0.0945854i

0.07 0.644494 − 0.103215i 1.14051 − 0.100152i 1.64020 − 0.0993764i

0.08 0.711233 − 0.103597i 1.25595 − 0.100205i 1.80528 − 0.0991781i

0.09 0.766541 − 0.0992767i 1.35004 − 0.0948321i 1.93922 − 0.0935736i

0.10 0.807406 − 0.0892818i 1.41847 − 0.0843187i 2.03626 − 0.0834710i

0.11 0.830400 − 0.0740977i 1.45387 − 0.0696909i 2.08485 − 0.0730659i

0.12 0.830063 − 0.0539434i 1.44300 − 0.0505802i 2.05484 − 0.0559045i

0.13 Echoes Echoes Echoes

0.14 Echoes Echoes Echoes

the corresponding time evolution profiles. Based on those
profiles, we sum up our results as follows:

• Theoretical parameter γ2 relates to the coupling strength
between the scalar field and the electromagnetic field.
When γ2 = 0, there are two symmetric peaks in V (x∗).
With the increase of γ2, these two peaks become further
and further, and thus lead to a broad well. We should
note that one of the peaks becomes higher while another
peak becomes lower. The corresponding QNMs profile

suggests that larger γ2 leads to lower frequency but larger
amplitude echoes. The first echo signal after the initial
ringdown arises earlier for smaller γ2. One may expect
to observe large amplitudes when γ2 becomes large.

• When we use the scalar waves with different angular
momentum l to perturb the same wormholes, the height
of the effective potential changes. Larger l gives rise to
higher peaks. Interestingly, changing l does not signifi-
cantly affect the width between the two peaks. According
to the QNMs profiles, we can see that smaller l leads to
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higher frequencies of the echoes. The amplitudes of the
echoes become smaller with larger l. With smaller l, we
can detect the first echo signal earlier.

• The wormhole mass M strongly affects the width of the
two peaks. An intriguing feature is that changing the mass
of the wormholes does not significantly alter the height
of the two peaks. A larger mass leads to a broader width
and a deeper well in the two-peak effective potential. The
corresponding QNMs profiles suggest that larger mass
wormholes have larger amplitude and lower frequency
echoes. The wormhole mass relates to the parameters Q
and q. Here we fix Q and vary q to change wormhole
mass.

• As a charged solution, we would like to discuss how the
electric charge of the wormhole affects the time evolu-
tion after a scalar field perturbation. As we can see in
Fig. 5, with the increase of the electric charge, the peaks
of the effective potential become lower. A wormhole with
a smaller electric charge could create more obvious sig-
nals of echoes.

6 Conclusion and discussion

In this paper, we investigated the time evolution of the sym-
metric and asymmetric regular black holes after a scalar field
perturbation, based on three black bounce solutions. The SV
metric and the LRSSV metric and the γ2 = 0 case of HY
metric both describe symmetric traversable wormholes or
black bounces. But if γ2 	= 0, the HY metric becomes an
asymmetric solution, which leads to the different sides of the
wormhole throat or black bounce.

We considered the scalar field perturbations as a proxy for
the GWs in the present work. We derived a general form of the
effective potential for the spherically symmetric metric with
throat-like geometry. We analyzed the effective potentials
in both symmetric and asymmetric metrics. In conclusion,
we found that the negative regions of the effective potentials
only arise inside the black hole horizons in symmetric black
bounce cases. This situation is changed in asymmetric black
bounce cases, namely, they admit a negative region outside
the black hole horizons.

We used the finite difference method to solve the time evo-
lution equation of the perturbations. We showed our numer-
ical results of QNFs in Tables 1 and 2. The time-domain
profiles are shown in Figs. 2, 3, 4 and 5. As some refer-
ences have pointed out, the symmetric black bounce cases
do not produce echo signals. Our results support this argu-
ment and show that it is also valid even in the asymmetric
black bounce cases. All these features characterize the prop-
erties of the (a)symmetric wormholes with two-peak effective
potentials.

When the effective potential has two peaks, it form a
well. These situations can happen in some wormhole cases.
Such shapes of the effective potentials admit echoes after
the perturbations. We studied the relationship of the theo-
retical parameter, the angular momentum of the perturbed
waves, the mass and the electric charge of the wormholes
with the properties of the echoes respectively. According to
the numerical results, we may therefore conclude that mas-
sive wormholes with smaller charges are easier to observe
echo signals after the scalar perturbations. Increase with γ2

aggravates the asymmetry of the effective potentials, which
leads to lower frequency but larger amplitude echoes. The
angular momentum l of the perturbed waves changes the
height of the peaks, while it has no significant influence on
the widths of effective potentials. We found that larger l leads
to lower frequency echoes.

As we mentioned above, the HY metric can describe RN-
like black holes. We didn’t touch on this situation in the
present paper. For future work, one can go further to investi-
gate the time evolution after the scalar field, electromagnetic
field, and gravitational field perturbations of the HY metric
or other asymmetric spacetime geometries.
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Appendix

A Discussion on the stabilities of massless scalar pertur-
bations in asymmetric wormholes

In Sect. 4, we pointed out that the asymmetric wormholes
allow negative regions in effective potentials. For example,
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Fig. 6 In the left column, roots of (24) (blue solid line), (25) (green
dotted line) and (26) (red dashed line) of the asymmetric wormhole case
in the HY metric. We set γ1 = 1, γ2 = 1, Q = 1, l = 0. Under these
parameters, it represents the asymmetric wormholes for q > 0.2275

and the effective potentials are asymptotic to 0− in x → ∞. The right
column presents two examples with negative regions of the effective
potentials

Fig. 7 Time-domain profiles with the same parameters with Fig. 6

we show a plot of roots and the corresponding effective poten-
tials of the asymmetric metric case in Fig. 6. In this appendix,
we would like to discuss the influence of the negative regions
on the stabilities of the asymmetric wormholes.

According to Ref. [59], the unstable modes arise if
∫ +∞

−∞
V
h dx < 0 → I ≡

∫ +∞

−∞
F(x)dx < 0. (33)

For simplicity, we consider the s-wave(l = 0) perturbation.
Now F(x) reduce to

F = 1
4q(q2+x2)3

(
4q5 − 2qQ2x2γ1 + q3(4x2 +1 Q2)

−2γ2q
2Q2x + γ2Q

2x3). (34)

Integrating this function, we have

I = (16q2+γ1Q2)π

32q3 . (35)

The wormhole cases in the HY metric must satisfy an inequal-
ity in (8). Under the assumption q ≥ 0, it is easy to see that
these two inequalities (8) and (33) are incompatible. In fact

this argument is also valid for l 	= 0 because the l term in
(19) is always positive. Therefore, we can conclude that the
integration I is always positive for wormholes in the HY
metric.

Thus we can see that it is hard to determine whether the
asymmetric wormholes are stable under the perturbations.
Nevertheless, our numerical results show that at least in a
large parameter region the wormholes are stable. As exam-
ples, two time-domain profiles are shown in Fig. 7.

B Time-domain profiles of QNMs

In Figs. 8 and 9, we show the time-domain profiles of worm-
hole geometry with the parameter values in Tables 1 and 2
respectively. It is obvious that the data of those tables are
consistent with the time-domain profiles.
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Fig. 8 The time evolution profiles with different Qe. We set l = 2, M = 0.147059, γ1 = −10, γ2 = 2

Fig. 9 The time evolution profiles with different M . We set l = 2, Qe = −10, γ1 = −10, γ2 = 2
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