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Abstract We construct a holographic effective supercon-
ducting theory by considering a special gauge-axion cou-
pling. In the normal state, we observe that a peak emerges
in the mid-IR in the AC conductivity for certain strength
of broken translations and the gauge-axion coupling. It is
attributed to the emergence of pseudo-Goldstone mode due
to the competition of spontaneous symmetry breaking (SSB)
and the explicit symmetry breaking (ESB). However, when
the ESB dominates over the SSB, the peak disappears. In the
superconducting phase, this gauge-axion coupling also plays
a key role leading to a more evident gap at the low frequency
conductivity. In addition, we also study the combined effects
of the strength of broken translations and various couplings
among the gauge field, axion fields and the complex scalar
field.
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1 Introduction

The Bardeen–Cooper–Schrieffer (BCS) theory [1,2] is a suc-
cessful microscopic theory to describe the superconductivity
discovered in 1911 [3], in which the condensate is understood
from Cooper pairs of electrons bound together by phonons.
The electron-phonon interactions are much weaker, how-
ever in high temperature superconductors and the mechanism
behind high temperature superconductivity is thus believed
beyond the framework considered in BCS theory. Many sci-
entists have been trying to reveal the basic principle behind
them. But until now it still has no satisfied microscopic
description for the high temperature superconductivity.

Alternatively, AdS/CFT correspondence [4–7], or more
generally referring to holography, provides an effective
description for the high temperature superconductors and
also opens up a new window for studying the mechanism
of the high temperature superconductivity. The main idea of
holography is that a strongly coupled quantum field theory
can be mapped to a higher-dimensional bulk gravity system.
Based on this idea, a pioneering holographic superconductor
model is proposed by Hartnoll, Herzog, and Horowitz (HHH)
[8,9]. This model exists two states: the superconducting state
with a non-vanishing charge condensate and the normal state
of a perfect conductor. It means that there exists an infinite
electric direct current (DC) conductivity even in the normal
state due to the translational invariance of the system. To
construct a more realistic superconductor model, it is impor-
tant to break the translational invariance in the holographic
framework such that we have a momentum dissipation sys-
tem.

There are several ways to break the translational invari-
ance in the bulk gravity. The most brutal way is to introduce a
spatially-dependent source in the dual boundary theory. It has
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been implemented by a spatially-periodic real scalar source
or chemical potential [10–14]. They are usually referred to
as the scalar lattice and the ionic lattice, respectively. In this
method, such spatially-dependent sources typically lead to
the inhomogeneity of the dynamic fields in the bulk, which
generate a set of complicated coupled partial differential
equations (PDEs). Though conceptually clear, the applica-
tion of this framework is limited by numerical technology.
This is because the accuracy of solving PDE numerically
depends heavily on the temperature of the background. Thus,
it is extremely difficult to explore the lattice effects at the
extremely low temperature [15].

To bypass the technical complexity of solving the PDEs
but capture the important aspect of the momentum dissipa-
tion, people develop a much simpler but elegant mechanism
to break the translation symmetry but retain the homogene-
ity of the background geometry, for which we only need
solve the ordinary differential equations (ODEs). So far, sev-
eral models have been proposed to implement this mecha-
nism, including holographic Q-lattices [16–19], helical lat-
tices [20] and axions model [21–33]. Holographic Q-lattice
model implements the breaking of the translational symmetry
by the global phase of the complex scalar field. Holographic
helical lattice model possesses the non-Abelian Bianchi VII0

symmetry, which results in the translational symmetry break-
ing but holds homogeneous background geometry. The sim-
plest model is the so-called holographic axions model [21],
which breaks the translational symmetry by a pair of linearly
spatial-dependent scalar fields. Then, guiding in the spirit of
effective holographic low energy theories, it is natural and
interesting to explore the effect of higher-derivative terms of
axion fields [34–37]. The higher-derivative effect turns out
to have a heavy impact on the lower bound of charge diffu-
sion [34] but have no effect on its upper bound [37]. Such
higher-derivative term has no impact on the bound of energy
diffusion [34]. It was also found that the lower bound of DC
conductivity of the usual axions model [21] can be violated
in the holographic effective theory with higher-derivative
terms [35,38], such that we have vanishing DC conductivity
at zero temperature, which provides a framework to model
a more realistic insulating state. In this holographic effec-
tive framework, the spontaneous symmetry breaking (SSB),
which is associated with the gapless excitations called Gold-
stone modes in the low energy description, and the so-called
pseudo-SSB associated with the pseudo-Goldstone mode,
where the SSB dominates over the explicit symmetry break-
ing (ESB), can be implemented [36,39–44]. We would like
to point out that the holographic massive gravity studied in
[45] also belongs to the framework of holographic effective
axionic model. For the detailed discussions, please refer to
[46]. In addition, we can also achieve the momentum dis-
sipation in the dual boundary field theory by introducing a
higher-derivative interaction term between the U (1) gauge

field and the scalar field, which spontaneously generates a
spatially dependent profile of the scalar field [47,48].

The holographic superconductor models with broken
translations have also been constructed and studied [49–58].
In Ref. [49], a pioneering work of holographic lattice super-
conductor model implemented by a periodic potential was
set up. They reproduced some qualitative features of some
cuprates, including the superconducting energy gap and the
power law fall-off at the intermediate frequency. The holo-
graphic Q-lattice superconductor was also built in [50,57].
Their result demonstrates that the condensate of the scalar
field would be suppressed by the lattice effects and thus leads
to a lower critical temperature. In particular, they found that
if the normal state is a deep insulating phase, the conden-
sation never happens for small charge of the scalar field.
Moreover in holographic superconductor with axion fields
[51], the authors found the existence of a new type of super-
conductor induced by the strength of momentum relaxation
even at chemical potential being zero. It means that there
exists a new “pairing” mechanism of particles and antiparti-
cles interacting with the strength of momentum relaxation. In
Ref. [58], a more phenomenologically relevant holographic
superconducting model of momentum dissipation was con-
structed based on Gubser-Rocha model whose ground state
entropy vanishes [59]. It was also shown that some univer-
sal properties of high Tc superconductors, including linear-T
resistivity near Tc and Homes’ law, are observed [58]. In
addition, a superconducting dome-shaped region is imple-
mented on the temperature-doping phase diagram in holo-
graphic axion superconductor proposed in [56].

In this paper, we shall construct an effective holographic
superconductor with broken translations, for which the
higher derivative terms of axion fields are introduced. We
intend to study the alternating current (AC) conductivity over
the normal state and the superconducting properties of this
effective holographic superconductor. The plan of this work
is as follows: In Sect. 2, we construct the effective holo-
graphic model with broken translations. In Sect. 3, we study
the conductivity in the normal state. The superconducting
properties are explored in Sect. 4. In Sect. 5, we conclude.

2 Holographic framework

In this section, we construct an effective holographic super-
conductor model with broken translations. It includes the
following key ingredients: the metric gμν , U (1) gauge field
Aμ, the complex scalar field ψ and two axionic fields X I

(I = x , y) with x , y being spatial coordinates. The super-
conducting phase is supported by the complex scalar field
ψ , which can be defined by ψ = χeiθ with χ being the real
scalar field and θ being the Stückelberg field. A pair of spatial
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linear dependent axionic fields result in the breaking of the
translation symmetry.

Including all the ingredients, we write down the total
action of the model as

S =
∫

d4x
√−g

(
R + 6 + LM + Lχ + LX

)
, (1)

LM = − Z(χ)

4
F2, (2)

Lχ = −1

2
(∂μχ)2 − H(χ)(∂μθ − q Aμ)2 − Vint(χ), (3)

LX = − J (χ)

4
Tr[XF2] − V (X). (4)

Fμν = ∇μAν − ∇ν Aμ is the field strength of gauge field
Aμ. The coupling function of Maxwell field strength takes
the form as

Z(χ) = 1 + aχ2

2
. (5)

We define X ≡ Tr[Xμ
ν] with

Xμ
ν = 1

2
∂μX I ∂νX

I , (6)

where I = x, y. The potential V (X) in the Lagrangian den-
sity LX is

V (X) = X , (7)

which is just the simplest axion term proposed in Ref. [21].
As in Refs. [34–36], we introduce a higher derivative term
of axion fields coupled with the gauge field as1

Tr[XF2] ≡ Xμ
νF

ν
ρF

ρ
μ. (8)

The coupling coefficient J (χ) takes the form

J (χ) = α1 + α2χ
2

2
. (9)

In the normal state, the setup is closely similar to that in [36].
The term V (X) = X and the gauge-axion term play the role
of ESB and SSB, respectively. In our setup, α1 controls the
SSB, while α controls both the ESB and SSB. However, in
the setup of [36], the ESB and SSB can be independently
controlled. We shall further discuss the roles of the term
V (X) = X and the gauge-axion term in next section.

Lχ is the Lagrangian density supporting the supercon-
ducting phase transition. The coupling function H(χ) and
the potential Vint(χ) are given by

H(χ) = nχ2

2
, Vint (χ) = M2χ2

2
, (10)

where M is the mass of the scalar field ψ . Without loss of
generality, we choose the gauge θ = 0 in what follows.

1 There is another formula of gauge-axion couplings, for instance,
K Tr[X ]F2 [34,35,60,61].

From the action above, we derive the covariant form of
the equations of motion:

∇μ

[
ZFμν − J

2

(
(XF)μν − (XF)νμ

)]

−2Hq2Aμ = 0, (11)

∇μ∇μχ − ∂χ Hq2A2 − ∂χ Z

4
F2

−∂χ J

4
Tr[XF2] − ∂χVint = 0, (12)

∇μ

[
∇μφ I + J

4
(F2)μ ν∇νφ I

]
= 0, (13)

and
Rμν − 1

2
gμν R − 3gμν − 1

2
∇μφ∇νφ − 1

2
∇μχ∇νχ

−Hq2AμAν − Z

2
FμρFν

ρ − J

4

(1

2
∇(μ|φ I∇σ φ I (F2)σ |ν)

+F(μ|σ (FX)σ |ν) + F(μ|σ (XF)σ |ν)

)

−1

2
gμν(LM + Lχ + LX ) = 0, (14)

where the symmetry brackets above mean A(μν) = (Aμν +
Aνμ)/2.

To solve the above equations, we take the following ansatz

ds2 = 1

u2

[
−(1 − u)p(u)U1dt

2 + du2

(1 − u)p(u)U1

+U2dx
2 +U2dy

2
]

,

At = μ(1 − u)b(u), χ = u3−�φ,

Xx = αx, X y = αy, (15)

with p(u) = 1 + u + u2 − μ2u3/4 and � = 3/2 ± (9/4 +
M2)1/2.u = 1 is the black hole horizon while the AdS bound-
ary locates at u = 0. α is a constant denoting the strength
of broken translations. U1 and U2 are just the function of
the radial coordinate u. We impose the boundary condition
U1(1) = 1 at the horizon so that we have the temperature of
the dual system as

T = 3

4π
− μ2

16π
. (16)

Through this paper we take M2 = −2 such that � = 2.
Then for given coupling parameters a, α1, α2 and n, this
holographic system is depicted by the dimensionless Hawk-
ing temperature T/μ and the strength of broken translations
α/μ. For convenience, we abbreviate the two dimensionless
quantities {T/μ, α/μ} to {T, α} in the following.

3 Conductivity in normal phase

Obviously, in the case of χ = 0, the action describes the non-
superconducting phase. In the case of χ = 0, the black hole
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solution can be analytically worked out. It is found that the
gauge-axion coupling has no effect on the background solu-
tion and this exact background solution is just the Reissner–
Nordström-AdS (RN-AdS) black hole solution with axions
[21]. Here for numerical convenience, we still take the ansatz
(15) to solve the background of the normal state.

Before proceeding, we would like to further explain the
roles of the two terms in the Lagrangian densityLX (Eq. (4)).
To this end, we assume that the axionic fields X I depend on
the full coordinates xμ. If we only consider the usual axion
term, i.e., the second term of LX , the asymptotic behavior of
X I near the AdS boundary is [36,44]

X I = X (0)
I (t, xi ) + X (3)

I (t, xi )u3 + · · · . (17)

Following the standard quantization, X (0)
I (t, xi ) is the source

of the dual operator and X (3)
I (t, xi ) is interpreted as the

expectation value. The special profile of axionic fields X I =
αxi means the source also has the form X (0)

I (t, xi ) = αxi

in the dual field theory. It indicates that the breaking of the
symmetry is explicit.

If only the first term ofLX survives, the axionic fields near
the AdS boundary behave like [36,44]

X I = X (−1)
I (t, xi )u−1 + X (0)

I (t, xi ) + · · · . (18)

Now, the subleading term is the second one in the above
expansion and should be interpreted as the expectation value〈O I

〉 ∼ αδ Ii x
i with a vanishing source [36]. It means that a

SSB appears, which is associated with the gapless excitations
called Goldstone modes in the low energy description.

If the first term dominates over the second term in the
Lagrangian density LX , the system shall be weak explicit
symmetry breaking, which leads to a slightly gapped exci-
tation and means the emergence of the pseudo-Goldstone
mode [44]. It is obvious that in our setup, α1 controls the
SSB, while α controls both the ESB and SSB.

Next, we shall study the DC and AC conductivities over
the normal state, respectively.

3.1 DC conductivity

Though the gauge-axion coupling has no effect on the back-
ground solution, it enters into the perturbative equations lead-
ing to strong impact on the transports, which has been seen
in the properties of DC transports [34–36]. For complete-
ness, we shall give a brief review on DC conductivity over
the normal state in this subsection.

Based on “membrane paradigm” [62,63] (see also [64–
66]), we can analytically work out DC conductivity deter-
mined by the background data at the horizon. According to
the pivotal point of this method, we construct a radially con-
served current J connecting the horizon and the boundary.

At this stage, we can calculate DC conductivity as

σDC = − (α2μ2α1 − 4U2(1))(α2μ2 + μ2b2(1)U2(1))

α2μ2(4 + α1μ2b2(1))U2(1)
.

(19)

Obviously, different from the simplest axionic model [21],
DC conductivity from the higher-derivative corrections
depends on the temperature T and also the broken transla-
tions strength α. Notice that the requirement of the positive
definiteness of the conductivity imposes a constraint on the
coupling parameter α1 as 0 ≤ α1 ≤ 2/3 [35].

We plot DC conductivity with the coupling parameter α1

turned on in the top left in Fig. 1. The plot is exhibited to
demonstrate DC conductivity as the function of α at zero tem-
perature. It is easy to find that at zero temperature, when the
coupling parameter α1 increases, DC conductivity decreases
with α increasing. In particular, for α1 = 2/3, the DC con-
ductivity tends to zero with α increasing, which violates the
DC conductivity bound in the simplest holographic axion
model [21]. Notice that in the limit of α → 0, due to the
restoration of the violation of the translational symmetry, the
DC conductivity tends to α1-independent infinity.

In holographic system, the temperature behavior of DC
conductivity can well describe some characteristics of the
system. In particular, in many holographic references [16–
20,38,66–74], people often adopt the so-called operational
definition to identify the metallic phase and insulating phase,
i.e.,

• Metallic phase: ∂T σDC < 0.
• Insulating phase: ∂T σDC > 0.
• Critical point (line): ∂T σDC = 0.

Here we also study the temperature behaviors of DC con-
ductivity, which are shown in the rest plots in Fig. 1. When the
higher-derivative term is absent, i.e., α1 = 0, σDC is inde-
pendent of the temperature. Once the coupling parameter
α1 is turned on, DC conductivity decreases with T decreas-
ing. In terms of the operational definition of phase of the
holographic system described above, this holographic sys-
tem exhibits the insulating behavior. But we note that unless
α1 takes the bounded value α1 = 2/3 and α tends to infinity,
DC conductivity cannot vanish in the limit of zero tempera-
ture. For the fixed α, σDC decreases with α1 increasing.

3.2 AC conductivity

In this subsection, we numerically calculate AC conductivity
in the normal state. Since our system is homogeneous and
isotropy, it is enough to turn on the following consistent linear
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Fig. 1 The DC conductivity with the α1 coupling turned on by setting T = 0 while α vary and by setting α = {0.5, 1, 1.2} while T vary. Here we
have abbreviated the two dimensionless quantities {T/μ, α/μ} to {T, α}

perturbation

δAx (t, u, xi ) =
∫ +∞

−∞
dω

(2π)3 e
−iωtδbx (u),

δgtx (t, u, xi ) =
∫ +∞

−∞
dω

(2π)3 e
−iωt u−2htx (u),

δXx (t, u, xi ) =
∫ +∞

−∞
dω

(2π)3 e
−iωtδφx (u). (20)

Thus we shall have three ordinary differential equations for
htx , δbx , δφx . It turns out that near the UV boundary (u →
0), the asymptotic behavior of the Maxwell field falls in the
following form

δbx = b(0) + b(1)u + · · · . (21)

According to holographic dictionary, we read off the conduc-
tivity as

σ(ω) = − ib(1)

ωb(0)
. (22)

Then, we shall impose the ingoing boundary condition at
the horizon to solve the perturbative system and read off
the conductivity as the function of the frequency in terms of
Eq. (22).

Figure 2 exhibits the real and imaginary parts of AC con-
ductivity in the normal state at T = 0.015. At the high fre-
quency regime, ω 	 μ, the conductivity tends towards a
constant determined by ultraviolet (UV) CFT fixed point.
The interesting physics lies at the low frequency region.

Before proceeding, we present some comments on the
AC conductivity behavior at low frequency without gauge-
axion coupling (α1 = 0) [21], where the translation sym-
metry is explicitly broken. For this case, we observe that
AC conductivity in real part displays a standard Drude peak
at low frequency when the momentum dissipation is weak,
i.e., α is small. It implies that the weak momentum dissipa-
tion drives the current into a coherent state. Theoretically,
it is because the total momentum of the system is approxi-
mately conserved, for which we can implement a perturbative
expansion in the small momentum relaxation rate within the
memory matrix formalism [75–78]. With the strength of the
momentum dissipation increasing, the Drude peak gradually
reduces and we observe a transition from coherent phase to
incoherent phase (see the blue curves in Fig. 2, also see Refs.
[23,79]). In fact, because we must include the contribution
at subleading order in the relaxation rate when the momen-
tum dissipation is strong, the behavior of AC conductivity at
low frequency should be depicted by a modified holographic
formula, first derived in [80] and generalized to a more gen-
eral holographic theory [81], instead of the standard Drude
formula or even the modified hydrodynamic results.

However, when the gauge-axion coupling term α1

Tr [XF2] in the Lagrangian density Eq. (4), which controls
the SSB, is introduced. AC conductivity exhibits some inter-
esting behaviors. Recalling that in this model the strength of
broken translations α controls both the ESB and SSB. From
the first and second rows in Fig. 2, we see that a peak emerges

123



478 Page 6 of 12 Eur. Phys. J. C (2022) 82 :478

Fig. 2 AC conductivity in the normal state at T = 0.015 with different α and α1. The red dots correspond to DC conductivity obtained from
formula (19). Here we have abbreviated the two dimensionless quantities {T/μ, α/μ} to {T, α}

in the mid-IR in the AC conductivity for some α and α1. The
peak moves to higher energy with α1 or α increasing (the first
and second rows in Fig. 2). As discussed at the beginning of
this section (also refer to Refs. [36,44]), this peak attributes
to the emergence of the pseudo-Goldstone mode, which is
the result of the competition of SSB and ESB. Notice that in
the setup of Ref. [36], they can separately control the strength
of SSB and ESB to make the ESB is weak compared with
the SSB such that the peak in min-IR is more pronounced.
However, when the ESB dominates over the SSB (α1 small
or α too large), the peak in min-IR disappears (see the third
row in Fig. 2).

4 Superconducting phase

In this section, we turn to study the superconducting proper-
ties of this holographic effective theory with gauge-axion
coupling. Some works have studied the superconducting
properties of holographic axion model [51,52,56,82,83].
Here, we shall mainly focus on the effect of gauge-axion
coupling.

4.1 Condensation

Under the ansatz (15), we numerically solve the equations of
motion (11)–(14) to explore the properties of the condensa-
tion. Again, it is easy to find that the gauge-axion coupling
term JTr[XF2] has no any effect on the background solu-
tion even in the superconducting phase. Only three parame-
ters: the strength of broken translations α, the gauge coupling
parameters a and n, exert their influence on the condensation.
Notice that from the Lagrangian density Lχ , i.e., Eq. (3), we
see that the relevant quantity is the product of q and n. At
the same time, since the increase of charge makes the con-
densation easier, which had been widely studied in previous
references for example [49,50], we shall set q = 2 and n = 1
through this paper without loss of generality.

In the unit of the critical temperature we plot the conden-
sation < O2 > as a function of the temperature by fixing the
gauge coupling parameter a or by fixing the strength of bro-
ken translations α, respectively. When we fix the gauge cou-
pling parameter a, the stronger the strength of broken trans-
lations, the expectation value of the condensation becomes
much larger and thus the critical temperature becomes lower
(Fig. 3), which had also been observed in many works for
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Fig. 3 The condensation < O2 > as a function of temperature for given a (from left to right a = −0.1, a = 0 and a = 1) and various values of
α. We have set q = 2 and n = 1. Here we have abbreviated the two dimensionless quantities {T/μ, α/μ} to {T, α}

Fig. 4 The condensation < O2 > as a function of temperature for given α (from left to right α = 0.5, α = 1 and α = 5) and various values of a.
We have set q = 2 and n = 1. Here we have abbreviated the two dimensionless quantities {T/μ, α/μ} to {T, α}

example [50,51,53]. Therefore, we conclude that the con-
densation becomes harder with the strength of broken trans-
lations increasing even in presence of the gauge coupling.
We expect that the condensation is violated as the broken
translations becomes stronger beyond some critical values.

And then, we fix the strength of broken translations α and
vary the gauge coupling parameter a to see the effects of
gauge coupling on the condensation. From Fig. 4, we see
that with a increasing, the expectation value of the conden-
sate becomes much smaller. It indicates that the condensation
becomes easier and the critical temperature becomes higher.

4.2 Superconducting conductivity

To calculate AC conductivity in the superconducting phase,
we can follow the same procedure in the normal state out-
lined in Sect. 3.2. Different from the condensation, there are
four theory parameters (α, a, α1, α2) affecting the supercon-
ducting conductivity. In what follows, we shall explore the
effects of these coupling parameters on the conductivity step
by step.

We first study the effects of the momentum dissipation on
AC conductivity. To this end, we turn off the other coupling
parameters. In Fig. 5, we plot the real and imaginary parts
of AC conductivity as a function of frequency for various α.
We also show the evolution of the conductivity with the tem-
perature from normal phase to superconducting phase. We
observe that once the system enters into the superconduct-
ing phase, the imaginary part of the conductivity climbs up
rapidly and tends to infinity in the limit of ω = 0. Accord-
ing to the Kramers-Kronig (KK) relation, a pole emerges in

Im[σ ] implying a corresponding delta function in Re[σ ],
which is one of the hallmarks of genuine superconductor.
In order to exhibit such sudden change more distinctly, we
plot the conductivity in low frequency region with the tem-
perature dropping through the critical point in Fig. 6. Unlike
the abrupt changing behavior of the imaginary part, the real
part of the conductivity only changes slightly near the criti-
cal temperature. The real part of optical conductivity at low
frequency goes down with the temperature decreasing and
finally vanishes at extremal low temperature. In addition, we
also work out the normal fluid density nn defined by

nn = lim
ω→0

Re[σ(ω)]. (23)

which depicts the contribution from the normal, non-
superconducting component on the DC conductivity in the
superconducting phase. The results are showed in Table 1. It
is found that the values of nn are still finite when the system
just enters the superconducting phase, while nn goes down
with the temperature decreasing and vanishes at extremal low
temperature. Therefore, our holographic model also resem-
bles a two-fluid model as the standard holographic supercon-
ductor model [8,9,84], the holographic Q-lattice supercon-
ductor [50], and the holographic superconductor from higher
derivative theory [85,86].

Furthermore, we study the combined effect of the strength
of broken translations α and the gauge coupling parameter a
in the superconducting state. Here we have fixed the remain-
ing parameters (α1 and α2) to be zero. In Fig. 7, we show
both real and imaginary parts of conductivity with different
a and α. At low temperature (T/Tc ≈ 0.2), the real part of
the conductivity tends to zero in the limit of ω → 0 (see
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Fig. 5 The conductivities σ as a function of the frequency for different α fixing a = 0, α1 = 0, and α2 = 0. The left panels are for the real part
and the right panels are for the imaginary one. Here we have abbreviated the two dimensionless quantities {T/μ, α/μ} to {T, α}

Fig. 6 The critical behavior of the conductivity near the critical temperature in the low frequency region for the different α. We have turned off
other coupling parameters. Here we have abbreviated the two dimensionless quantities {T/μ, α/μ} to {T, α}
Table 1 The normal fluid density nn in the superconducting phase for the different temperature with different α. Here we turned off other coupling
parameters and the dimensionless quantity {α/μ} is abbreviated as {α}
nn

T
Tc

= 1 T
Tc

= 0.95 T
Tc

= 0.90 T
Tc

= 0.85 T
Tc

= 0.80 T
Tc

= 0.50 T
Tc

= 0.20

α = 0.5 5 4.0230 3.2377 2.6031 2.0873 0.4624 0.0307

α = 1 1.9999 1.6311 1.3280 1.0778 0.8706 0.1929 0.0118

α = 5 1.0400 0.7622 0.5549 0.4004 0.2858 0.0266 0.0006
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Fig. 7 The behavior of conductivity with varying a for different α in the superconducting state. Here we fix the temperature T/Tc ≈ 0.2. Here
we have abbreviated the two dimensionless quantities {T/μ, α/μ} to {T, α}

Fig. 8 The real part of conductivity as the function of the frequency at T/Tc ≈ 0.2. Left plot: different α1 for α = 0.5, a = 0 and α2 = 0. Right
plot: different α2 for α = 0.5, a = 0 and α1 = 0. Here we have abbreviated the two dimensionless quantities {T/μ, α/μ} to {T, α}

Fig. 9 The real part of conductivity as the function of the frequency with various α2 for fixed α = 0.5 and a = 0 at T/Tc ≈ 0.2. Left plot is for
α1 = 1/3 and right plot for α1 = 2/3. Here we have abbreviated the two dimensionless quantities {T/μ, α/μ} to {T, α}

the dashed red lines in Fig. 7 and also see Fig. 5). It implies
that at this temperature, most of the normal components of
the electron fluid have formed the superfluid component. For
negative a (a = −0.1), the case is similar to that of a = 0.
However, for positive a (a = 1), the DC conductivity starts
to rise up. It means that we need further cool the system to
drive the normal component of the electron fluid forming the
superfluid component.

We also explore the impact of gauge-axion coupling
parameters (α1 and α2) on the optical conductivity in the
superconducting state. The results are exhibited in Figs. 8
and 9. In order to avoid the effect of gauge parameter a on
the conductivity, here we fix a = 0. In addition, we also set

α = 0.5 without loss of generality. We summarize the main
effects of the gauge-axion coupling as what follows:

• Increasing the gauge-axion coupling α1, it is easier to
drive the normal component of the electron fluid form-
ing the superfluid component and the superconducting
energy gap becomes evident (left plot in Fig. 8). We also
observe that the peak in the mid-IR in the normal state is
smoothed out when the system enters into the supercon-
ducting phase.

• To see the effect from the coupling α2, which is a coupling
among gauge field, axion fields and complex scalar field
being responsible for condensation, we turn off α1. The
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low frequency behaviors of conductivity are exhibited in
the right plot in Fig. 8. For negative α2, DC conductivity
rises up with the absolute value of α2 increasing and then
the conductivity forms a small peak at low frequency for
large absolute value of α2. For positive α2, we see that
with α2 increasing, DC conductivity goes down at first
and then rises up exhibiting a non-linear change. When
α2 rises up to a large value, the conductivity also sprouts
up a small peak at low frequency. Based on these observa-
tions, it is obvious that the role α2 playing is completely
different from that of α1. We attribute this difference to
the effect of condensation field χ . Furthermore, we would
like to point out that the mechanism of this small peak
emerging at low frequency deserving further pursuit.

• We further study the combined effects of the coupling α1

and α2, and also the competition between them. Fig. 9
shows the real part of conductivity with various α2 for
fixed α1 = 1/3 (left plot) and α1 = 2/3 (right plot). It is
clear that for negative α2, DC conductivity is suppressed
with the increase of α1.

• However, for positive α2, the effect of the coupling term
α2 dominates over that of the coupling term α1. From
Fig. 9, we see that once the coupling terms α1 and α2 are
both turned on, a peak emerges at low frequency. Recall-
ing that for α1 = 0, a gap is evident at low frequency
even for α2 = 0.3. With α1 increasing, the peak at low
frequency becomes more evident.

5 Conclusion

In this paper, we construct a holographic effective supercon-
ducting theory including some coupling terms among the
gauge field, axion fields and complex scalar field. In the nor-
mal state, this holographic effective superconducting theory
reduces to the so-called J model studied in Refs. [35,36]. In
the normal state, though the gauge coupling term α1Tr[XF2]
has no effect on the background solution, it enters into the per-
turbative equations affecting AC conductivity. An important
properties is that a peak emerges in the mid-IR in the AC con-
ductivity for some α and α1. It is attributed to the emergence
of the pseudo-Goldstone mode, which is the consequence of
the competition of SSB and ESB. However, when the ESB
dominates over the SSB, the peak disappears.

In the superconducting phase, we first study the properties
of the condensation. Since the gauge-axion coupling term
JTr[XF2] has no effect on the black hole solution, there
are only two theoretical parameter considered in our model
(the strength of broken translations α and the gauge coupling
parameter a) exerting their influences on the condensation.
It is easy to find that with the parameter α increasing, the
condensation becomes harder for fixed parameter a, while
fixed parameter α with the parameter a increasing, the con-

densation becomes easier. Such an opposite effect means
a competitive relationship between α and a. Similarly, the
competitive behavior can be observed in superconducting
conductivity.

Then we also study the properties of AC conductivity
in the superconducting phase. We respectively explore the
effects of coupling parameters (α, a, α1, α2) in our model
on the conductivity. First, we explore the effect of momen-
tum dissipation on AC conductivity. The features of the con-
ductivity with temperature from normal phase to supercon-
ducting phase resemble a two-fluid model as the standard
holographic superconductor model [8,9,84], and the holo-
graphic Q-lattice superconductor [50], and the holographic
superconductor from higher derivative theory [85,86]. Then
for the influence of the gauge coupling a, we find that a plays
a key role in driving the normal component of the electron
fluid forming the superfluid component. Especially, for posi-
tive a, it is harder to implement the transition from the normal
component of the electron fluid forming the superfluid com-
ponent. In the end, we explore the effect of the gauge-axion
coupling. We find that the coupling parameter α1 can drive
the electron superfluid component forming which is similar
with the effect of negative a. The increasing of α1 leads to
a more evident gap in AC conductivity. In addition, we find
that the coupling of α2 plays a completely different role from
that of α1, which is attributed to the effect of condensation
field χ .
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