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Abstract In this work, a Hard-Wall AdS/QCD model with
4 flavours is utilized to calculate the transition form fac-
tors for the semileptonic D → (V, A, S) � ν�. These decays
occur by c → d � ν� transition at quark level for D0 →
ρ−(b−

1 , a−
1 , a−

0 ) � ν�, D+
s → K0(K 0

1A, K 0
1B) � ν� decays

while the semileptonic decays D0 → K ∗−(K−
1A, K−

1B, K−
0 )

� ν� and D+ → K̄0(K̄ 0
1A, K̄ 0

1B) � ν� proceed by c → s � ν�

transition. The masses and decay constants of scalar mesons
as well as the form factors and the branching ratios of afore-
mentioned decays are calculated in our model, and a compar-
ison is also made between our results and predictions of other
theoretical methods and the existing experimental values.

1 Introduction

Charm mesons are the lightest particles involve a c quark
therefore, their decays are good tools for the study of the
weak interactions. In recent years, experimental develop-
ment has been achieved in considering semileptonic decays
of these groups of mesons. The most valuable measurements
are reported from BES III. In this collaboration analysis are
presented for D+ → K̄ 0 e+ νe, D+ → π0 e+ νe, D0(+) →
π−(0) μ+ νμ, D+

s → φ e+(μ+) νe(μ), D+
s → η(η′) μ+ νμ,

D+ → η(η′) e+ νe, D0 → K− μ+ νμ, D+
s → K 0(∗0) e+ νe,

D0 → K̄ 0 π− e+ νe, D+ → f0(500) e+ νe and D →
ρ e+ νe decays [1–9]. In addition, the data extracted from
Belle II collaboration are used to evaluate important observ-
able for D∗+

s → D+
s γ , D+

s → μ+(τ+) νμ(τ), D∗+ →
D0 π+, D0 → K−(π−) �+ν� and D0 → ν�ν̄� decays [10–
12]. On the other hand, Theoretical Studies of D mesons
semileptonic decays are helpful tools to:
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• Consider non-perturbative aspects of hadronic physics,
since charmed mesons masses O(2 GeV) are small
enough to apply our studies in this region.

• Estimate elements of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix.

• Analysis leptonic decay constants of the initial and final
meson states.

• Check the standard model (SM) implying the lattice QCD
simulations to the charmed hadron data.

• Probe the new physics (NP) beyond the SM considering
background-free low-energy signals provided in charmed
meson transitions.

The first step in studying hadronic decays is to evaluate form
factors, which can give an overview from distribution of
hadronic matter and the strong interaction between parti-
cles involved in the transition. The form factors are func-
tions of q2 where q is the transfer momentum. Having form
factors, theoretical predictions for many observable such as
branching fraction, CP asymmetry, Isospin asymmetry and
Forward–Backward asymmetry can be done. D meson tran-
sitions are studied via different approaches. The covariant
confined quark model (CCQM) framework is utilized to
evaluate form factors of D+ → (D0, ρ0, ω, η, η′)�+ν and
D+
s → (D0, φ, K 0, K ∗0, η, η′)�+ν decays in [13,14]. The

form factors of D → π(K , ρ) � ν decays are estimated via
Light-Cone QCD Sum Rules (LCSR) approach in [15–18].
In the LCSR method, operator product expansions (OPE)
on the light-cone are combined with QCD sum rule tech-
niques in the region where q2 is near zero. In [19], the exper-
imental measurements are used to determine the form fac-
tors of D → K�ν transition. The semileptonic processes
D → π, ρ, K and K ∗ have been investigated by the heavy
quark effective theory (HQET) in Ref. [20], and the form
factors of the D → π(K , K ∗)� ν decays have been calcu-
lated by the lattice QCD (LQCD) approach in Refs. [21–23].
The LQCD can be used to determine the form factors in
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a limited range of q2 (q2 → q2
max ). The three-point QCD

sum rules (3PSR) framework have been used to consider the
semileptonic decays D(s) → f0(K ∗

0 ) � ν, D(s) → π(K ) � ν,
D(s) → K ∗(ρ, φ) � ν Dq → K1 � ν (q = u, d, s) and
D → a1, f1(1285), f1(1420) in [24–34]. The gauge/gravity
correspondence approach, which is inspired from the relation
between a type IIB string theory and super Yang–Mills the-
ory in the large Nc limit with N = 4 [35–37], has been
used to study both gravitational and gauge parts in recent
years. The anti-de Sitter space/quantum chromodynamics
correspondence is developed in 2 ways:

• (AdS/LF QCD): In this approach, the QCD theory is writ-
ten in light-front (LF) coordinate and the Schrödinger-
like wave function equation for a hadron in this coor-
dinate, can be mapped to the equation of motion that
describes the hadrons in the AdS space. The light-front
distribution amplitudes (DAs) are derived from the holo-
graphic light-front wave functions (LFWFs); more infor-
mation is given in [38–43]). This model is utilized to eval-
uate DAs of vector, axial vector and pseudoscalar mesons
and study B meson decays, Electro magnetic form factors
and parton distribution functions (TDMs) in [44–55].

• (AdS/QCD): In this model, used in this paper, corre-
sponding to every field in the gravitational AdS5 space,
an operator is defined in 4-dimensional gauge theory.
The hadronic form factors and strong coupling can be
obtained via a connection between the correlation func-
tions involving n currents and the functional differentia-
tion from the 5D action with respect to their n sources.
The masses, electromagnetic and gravitational form fac-
tors of mesons, K�3 transition form factors, the strong
couplings gρnρρ , gρn K K , gρn K ∗K ∗ , gρn DD and gρn D∗D∗
are estimated via this framework in [56–62,64? –67].
Moreover, (D(∗), D, A), (D(∗), D(∗), V ), (D1, D1, P),
(ψ, D, D(∗), P) and (ψ, D, D(∗), A) vertices are ana-
lyzed using this model in [68].

The main purpose of this paper is the form factor
investigation for the semileptonic D → (V, A, S) � ν�

decays with D = (D0, D+, D+
s ), V = (ρ−, K ∗−), A =

(a−
1 , b−

1 , K−
1 , K 0

1 , K̄ 0
1 ), S = (a−

0 , K−
0 , K0, K̄0) and � =

e, μ, in a Hard-Wall AdS/QCD model with N f = 4. In the
model that is used in this study, we can predict the form fac-
tors of charm meson decays in all of the physical range of
q2, which is an advantage of the AdS/QCD model in study-
ing charm meson decays. This paper is organized as follows:
the presented model, including scalar, pseudoscalar, vector
and axial vector mesons, is introduced in Sect. 2. The wave
functions and the decay constant of aforementioned mesons
are also extracted from the model in this section. The form
factors for the semileptonic decays of D → (V, A, S) � ν�

are derived in Sect. 3., and the numerical analysis for the

masses and wave functions of mesons as well as the form fac-
tors and branching ratios for considered semileptonic decays
are described in Sect. 4. For a better analysis, a compari-
son is made between our estimations and the results of other
methods and existing experimental values. Finally, Sect. 5 is
reserved for our conclusion and discussions.

2 The Hard-Wall AdS/QCD model involving scalar,
pseudoscalar, vector and axial vector mesons: wave
functions, decay constant and masses

The first step, in our framework, to evaluate form factors or
strong couplings is to estimate wave functions in 5 dimen-
sions for the mesons included in the model. For this aim, the
Anti-de Sitter space metric is chosen as:

ds2 = gMN dxM dxN = R2

z2 ηMNdx
M dxN , (1)

where M, N = 0, 1, 2, 3, 4 and ηMN = diag(1,−1,−1,

−1,−1). Moreover, the warp factor is shown with R, which
can be chosen as R = 1 in pure AdS [69]. In Hard-Wall
AdS/QCD, the AdS space is compactified by two different
boundary conditions on radial coordinate z. The UV bound-
ary at z = ε → 0 corresponds to the UV limit of QCD,
and the conformal symmetry of QCD is broken by locat-
ing a wall at z = zm , which also simulates the confinement
feature of QCD. According to the general philosophy of the
AdS/QCD, every operator in the 4D field theory corresponds
to a 5D source field in bulk. Here, the correspondences are:

Lμ,a ↔ Jμ,a
L = q̄L γ μ ta qL ,

Rμ,a ↔ Jμ,a
R = q̄R γ μ ta qR,

X ↔ q̄L qR, (2)

where L(R)μ,a , X and q are the N f left-handed (right-
handed) gauge, scalar and quark field, respectively. More-
over, qL/R = (1 ± γ5) q and for SU(N f ) group ta (with
a = 1, . . . N 2

f − 1) are the generators by the trace condi-

tion Tr(ta tb) = 1/2 δab. In this paper, the 5D action with
SU(N f )L⊗ SU(N f )R symmetry is considered as [69]:

S =
∫

d5x
√
g Tr

{
(DMX) (DMX)† + 3 |X |2

− 1

4g2
5

(
LMN LMN + RMN RMN

) }
, (3)

where the field strengths are defined by:

LMN = ∂MLN − ∂N LM − i [LM , LN ] ,

RMN = ∂M RN − ∂N RM − i [RM , RN ] , (4)

with LM = La
M ta and RM = Ra

M ta . Moreover, the non-
abelian gauge fields and the scalar one interact through the
covariant derivative DMX = ∂M X−i LM X+i X RM . Vector
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(V) and axial vector (A) fields can be written in terms of right-
hand gauge fields as V = (L + R)/2 and A = (L − R)/2.
In the above definitions, N f is the number of flavours, and
here we take N f = 4, which means all of the light, strange
and charmed mesons are included in our model. The scalar
field X can be expanded in exponential form as:

X = eiπ
a ta X0 e

iπa ta , (5)

where the background part is denoted by X0 and π are
(pseudoscalar) fluctuations. For the classical solution, we
turn off all fields except X0 and solve the equation of motion.
Finally, we arrive at:

2X0(z) = ζM z + �

ζ
z3, (6)

where M denotes the quark-mass matrix and � is the quark
condensates 〈q̄q〉 one. Moreover, ζ = √

Nc/2π is the nor-
malization parameter [70]. With flavour symmetry, Eq.(5)
can be written as X = e2iπa ta X0, which is used to pre-
dict masses and decay constants of ground-state and excited
light and strange mesons in [71,72]. With N f = 4, we take
M = diag(mu,md ,ms,mc) and � = diag(σu, σd , σs, σc).

To evaluate the wave functions of the particles included in
this study, the action Eq. (3) must be expanded up to second
order in vector (V), axial vector (A) and pseudoscalar field
(π) as:

S =
∫

d5x

{
15∑
a=1

−1

4g2
5z

ηMM ′
ηNN ′

(∂MVa
N − ∂NV

a
M )

×(∂M ′VN ′a − ∂N ′VM ′a) + Ma
V

2

2z3 ηMM ′
VMaV

a
M ′

× −1

4g2
5z

ηMM ′
ηNN ′

(∂M Aa
N − ∂N Aa

M )

×(∂M ′ AN ′a − ∂N ′ AM ′a)

+Ma
A

2

2z3 ηMM ′
(∂Mπa − Aa

M ) (∂M ′πb − AM ′b)

}
, (7)

where the mass combinations are defined as:

Ma
V

2
δab = −2 Tr ([ta, X0][tb, X0] ),

Ma
A

2
δab = 2 Tr ({ta, X0}{tb, X0} ). (8)

The values of Ma
V

2 and Ma
A

2 for (a = 1, . . . , 15), calculated
in [68], are collected in the Appendix. In the following sub-
section, we consider the axial sector and the vector one from
action (7) to study the wave functions, decay constant and
masses of physical particles.

2.1 Axial sector

The axial vector field (AN ) satisfies the equation of motion
as:

ηML∂M

(
1

z

(
∂L A

a
N − ∂N Aa

L

))+ βa(z)

z
Aa
N = 0, (9)

where we have defined:

βa(z) = g2
5

z2 Ma
A

2
. (10)

Now in Eq. (9), we write Aa
N = (Aa

μ, Aa
z ) and make the

decomposition Aa
μ = Aa

μ⊥ + Aa
μ‖. For the transverse part,

which describes the axial vector states, (Aa
μ⊥), we can write:

(
∂z

1

z
∂z + q2 − βa

z

)
Aa

μ⊥(q, z) = 0, (11)

in a gauge where Aa
z = 0. Here q is the Fourier variable con-

jugate to the 4-dimensional coordinates, x . We shall write
the transverse part of the axial vector field in terms of its
boundary values at UV (A0a

μ⊥) multiplying bulk-to-boundary

propagator (Aa), Aa
μ⊥(q, z) = A0a

μ⊥(q)Aa(q2, z).Aa(q2, z)
satisfies the same equation as Aa

μ⊥(q, z) with the boundary

conditions Aa(q2, ε) = 1 and ∂zAa(q2, z0) = 0. The longi-
tudinal part of the axial vector field, defined as Aa

μ‖ = ∂μφa

and πa , describe the pseudoscalar fields and satisfy the fol-
lowing equations:

−q2∂zφ
a(q2, z) + βa(z)∂zπ

a(q2, z) = 0 , (12)

∂z

(
1

z
∂zφ

a(q2, z)

)
− βa(z)

z

×
(
φa(q2, z) − πa(q2, z)

)
= 0 , (13)

with the boundary conditions, φa(q2, ε) = 0, πa(q2, ε) =
−1, and ∂zφ

a(q2, z0) = ∂zπ
a(q2, z0) = 0. In general, the

form of differential equations Eqs. (11, 12, 13), Aa(q2, z),
φa(q2, z) and πa(q2, z) can be solved numerically.

Using Green’s function formalism to solve Eqs. (11, 12,
13), the bulk-to-boundary propagator Aa , πa and φa can be
written as a sum over axial vector and pseudoscalar mesons
poles as:

Aa(q2, z) =
∑
n

−g5 f aAn ψ
a
An

(z)

q2 − ma2
An

,

φa(q2, z) =
∑
n

−g5ma2
Pn

f a
Pn

φa
n (z)

q2 − ma2
Pn

,

πa(q2, z) =
∑
n

−g5ma2
Pn

f a
Pn

πa
n (z)

q2 − ma2
Pn

, (14)

where f An and ( fPn ) are decay constants of the nth axial
vector meson and the pseudoscalar one and for the nth

axial vector meson’s wave function are ψAn (ε) = 0 and
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∂zψAn (z0) = 0 are the boundary conditions. Moreover, for
the pseudoscalar meson’s wave functions, the boundary con-
ditions are: φa

n (ε) = πa
n (ε) = 0 and ∂zφ

a
n (z0) = ∂zπ

a
n (z0) =

0 and the normalization condition for these wavefunctions is∫
(dz/z)g(z)2 = 1 for g = ψa

An
, πa

n , φa
n . The decay constants

of the nth mode of the axial vector and the pseudoscalar states
are related to their nth wave functions as [69]:

f a
An

= ∂zψ
a
An

g5 z

∣∣∣∣
z=ε

, (15)

f a
Pn

= −∂zφ
a
n

g5 z

∣∣∣∣
z=ε

. (16)

With N f = 4, the axial vector A and the pseudoscalar π

involves the light, strange and charmed states can be written
as follows:

A = Aata

= 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

a0
1+b0

1√
2

+ f1+ f ′
1√

6
+ χc1√

12
a+

1 + b+
1 K+

1A + K+
1B D̄0

1

a−
1 + b−

1 − a0
1 +b0

1√
2

+ f1+ f ′
1√

6
+ χc1√

12
K 0

1A + K 0
1B D−

1

K−
1A + K−

1B K̄ 0
1A + K̄ 0

1B −
√

2
3 ( f1 + f ′

1) + χc1√
12

D−
s1

D0
1 D+

1 D+
s1 − 3√

12
χc1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

π = πata

= 1√
2

⎛
⎜⎜⎜⎜⎜⎝

π0√
2

+ η√
6

+ ηc√
12

π+ K+ D̄0

π− − π0√
2

+ η√
6

+ ηc√
12

K 0 D−

K− K̄ 0 −
√

2
3η + ηc√

12
D−
s

D0 D+ D+
s − 3√

12
ηc

⎞
⎟⎟⎟⎟⎟⎠

.

The physical states K1(1270) and K1(1400) mesons are
related to K1A and K1B states in terms of a mixing angle θK
as the following terms:

K1(1270) = sin θK K1A + cos θK K1B, (17)

K1(1400) = cos θK K1A − sin θK , K1B . (18)

Various approaches have been utilized to estimate the mixing
angle θK by the experimental data. The result 35◦ < |θK | <

55◦ was found in Ref. [73], and two possible solutions with
|θK | ≈ 33◦ and 57◦ were reported in Ref. [74]. Moreover,
the value θK = −(34 ± 13)◦ is obtained via analyzing B →
K1(12070)γ and τ → K1(12070) ντ data in [75].

2.2 Vector sector

The equation of motion for the vector field (VN ) is similar
to Eq. (9) by replacing the VN → AN and βa → αa(z) =
(g2

5/z2) Ma
V

2. Writing V a
N = (V a

μ, V a
z ) and V a

μ = V a
μ⊥+V a

μ‖
and applying ∂μV a

μ⊥(x, z) = 0, for the transverse part of the
vector field, which represents the vector meson states, the

following result is obtained:(
∂z

1

z
∂z + q2 − αa

z

)
V a

μ⊥(q, z) = 0. (19)

Now, we consider V a
μ⊥(q, z) = V 0a

μ⊥(q)Va(q2, z), where

Va(q2, z) satisfies the same equation as (19) with the bound-
ary conditions Va(q2, ε) = 1 and ∂zVa(q2, z0) = 0. The
longitudinal parts of the vector field, defined as Va

μ‖ = ∂μξa

and V a
z = −∂zπ̃

a , describe the scalar states and are coupled
as follows:

−q2∂zφ̃
a(q2, z) + αa∂zπ̃

a(q2, z) = 0 , (20)

∂z

(
1

z
∂z φ̃

a(q2, z)

)
− αa

z

(
φ̃a(q2, z) − π̃a(q2, z)

) = 0,

(21)

where ξa = φ̃a − π̃a . The boundary conditions for φa and
πa are φ̃a(q, ε) = 0, π̃a(q, ε) = −1 and ∂zφ̃

a(q2, z0) =
∂zπ̃

a(q2, z0) = 0.
For Va , φ̃a and π̃a , the Green functions are:

Va(q2, z) =
∑
n

−g5 f aVn ψ
a
Vn (z)

q2 − ma2
Vn

,

φ̃a(q2, z) =
∑
n

−g5ma2
Sn

f a
Sn

φ̃a
n (z)

q2 − ma2
Sn

,

π̃a(q2, z) =
∑
n

−g5ma2
Sn

f a
Sn

π̃a
n (z)

q2 − ma2
Sn

. (22)

The decay constants of the nth mode of the vector meson and
the scalar one have been obtained as [69]:

f a
Vn = ∂zψ

a
Vn

g5 z

∣∣∣∣
z=ε

,

f a
Sn

= −∂zφ̃
a
n

g5 z

∣∣∣∣
z=ε

. (23)
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Finally, the SU(4) vector V and pseudoscalar π̃ meson matri-
ces in terms of the charged states are introduced as follows:

V = V ata

= 1√
2

⎛
⎜⎜⎜⎜⎜⎝

ρ0√
2

+ ω′√
6

+ ψ√
12

ρ+ K ∗+ D̄∗0

ρ− − ρ0√
2

+ ω′√
6

+ ψ√
12

K ∗0 D∗−

K ∗− K̄ ∗0 −
√

2
3ω′ + ψ√

12
D∗−
s

D∗0 D∗+ D∗+
s − 3√

12
ψ

⎞
⎟⎟⎟⎟⎟⎠

,

S = π̃ata

= 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

a0
0√
2

+ σ√
6

+ χc0√
12

a+
0 K+

0 D̄0

a−
0 − a0

0√
2

+ σ√
6

+ χc0√
12

K0 D−
0

K−
0 K̄0 −

√
2
3σ + χc0√

12
D−

0s

D0 D+
0 D+

0s − 3√
12

χc0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

3 D → (V, A, S) � ν� form factors

In this section, the form factors of D → (V, A, S)� ν�

are derived in Hard-Wall AdS/QCD model. At the quark
level, this process is induced by the semileptonic decay
of charm quark c → q � ν� with q = d, s. Consider-
ing q = d, the decays D0 → ρ−(b−

1 , a−
1 , a−

0 ) � ν� and
D+
s → K0(K 0

1A, K 0
1B) � ν� have been studied, and for

q = s, the D0 → K ∗−(K−
1A, K−

1B, K−
0 ) � ν� and D− →

K̄0(K̄ 0
1A, K̄ 0

1B) � ν� processes are considered.
In the standard model of particle physics, the semi-

leptonic decays D → M � ν� with M = (V, A, S) are
described by the following effective Hamiltonian:

He f f =α(M)
G f√

2
Vcq

(
q̄ γμ(1 − γ5) c

) (
�̄ γ μ(1 − γ5) ν�

)
,

(24)

where we take α(V, S) = 1 and for M = A, α(M) = −1.
Moreover, GF is the Fermi constant, and Vcq is the CKM
matrix elements. The decay amplitude for these decays is
obtained by inserting Eq. (24) between the initial meson D
and final state M as:

M = α(M)
G f√

2
Vcq

×〈M(p2)|q̄ γμ(1 − γ5) c|D(p)〉 (�̄ γ μ(1 − γ5) ν�

)
,

(25)

where p1 and p2 are the momentum of D and M states,
respectively. To evaluate the decay amplitude (M), we
need to calculate the matrix elements 〈M(p2)|q̄ γμ c|D(p)〉
and 〈M(p2)|q̄ γμ γ5c|D(p)〉. These matrix elements can be

parameterized in terms of the form factors. For M = V , these
matrix elements are defined as:

〈V (p2, εV )|q̄ γμ c|D(p1)〉
= ε∗

V μ mD mV

2 V (q2)

(mD + mV )
, (26)

〈V (p2, εV )|q̄ γμ γ5 c|D(p1)〉
= i ε∗

V μ (mD + mV ) A1(q
2)

−i (p1 + p2)μ (ε∗
V
.q)

A2(q2)

(mD + mV )

−i qμ (ε∗
V
.q)

2mV

q2 [A3(q
2) − A0(q

2)], (27)

where εV is the polarization vector of V meson and q =
p1 − p2 is the transport momentum. In Eqs. (26) and (27),
V (q2) and Ai (q2) with (i = 0, . . . , 3) are the transition form
factors of the D → V � ν� decay. Form factor A3(q2) can be
written as a linear combination of A1(q2) and A2(q2) as:

A3(q
2) = (mD + mV )

2mV

A1(q
2) − (mD − mV )

2mV

A2(q
2), (28)

with the condition A0(0) = A3(0).
For M = A, the transition form factors A(q2) and Vi (q2)

with (i = 0, . . . , 3) are defined as:

〈A(p2, εA )|q̄ γμ γ5 c|D(p1)〉
= ε∗

Aμ mD mA

2i A(q2)

(mD − mA)
, (29)

〈A(p2, εA )|q̄ γμ c|D(p1)〉
= ε∗

Aμ (mD − mA) V1(q
2)

− (p1 + p2)μ(ε∗
A
.q)

V2(q2)

(mD − mA)

− qμ (ε∗
A
.q)

2mA

q2 [V3(q
2) − V0(q

2)], (30)
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where εA is the polarization vector of the axial-vector meson
A, V0(0) = V3(0) and

V3(q
2) = (mD − mA)

2mA

V1(q
2) − (mD + mA)

2mA

V2(q
2). (31)

And finally, the form factors of D → S � ν� are defined as:

〈 S(p2)|q̄ γμ γ5 c|D(p1)〉 = (p1 + p2)μ f+(q2)

+ qμ

m2
D

− m2
S

q2 [ f−(q2) − f+(q2)], (32)

with f−(0) = f+(0).
To evaluate the form factors of D → (V, A, S) � ν� in
Hard-Wall AdS/QCD, we start with the correlation function,
including the currents of 3 involving particles. These 3-point
functions can be obtained by functionally differentiating the
5-D action with respect to their sources, which are taken to
be boundary values of the 5-D fields that have the correct
quantum numbers as [36,37,76,77]:

〈0|T {Jμa
V⊥(x)J νb

V⊥(y)Jαc
A‖(w) }|0〉

= − δ3S(VVP)

δV 0a⊥μ(x) δV 0b⊥ν(y) δA0c‖α(w)
, (33)

〈0|T {Jμa
V⊥(x)J νb

A⊥(y)Jαc
A‖(w) }|0〉

= − δ3S(VAP)

δV 0a⊥μ(x) δA0b⊥ν(y) δA0c‖α(w)
, (34)

〈0|T {Jμa
A⊥(x)J νb

A⊥(y)Jαc
A‖(w) }|0〉

= − δ3S(AAP)

δA0a⊥μ(x) δA0b⊥ν(y) δA0c‖α(w)
, (35)

〈0|T {Jμa
A⊥(x)J νb

V⊥(y)Jαc
A‖(w) }|0〉

= − δ3S(AVP)

δA0a⊥μ(x) δV 0b⊥ν(y) δA0c‖α(w)
, (36)

〈0|T {Jαa
V ‖(x)J

μb
A⊥(y)Jβc

A‖(w) }|0〉

= − δ3S(SAP)

δV 0a‖α (x) δA0b⊥μ(y) δA0c‖β(w)
, (37)

where S(M1 M2 M3) is the relevant parts of the 5-D action,
including (M1 M2 M3) states. Here, Eqs. (33, 34) are used
to evaluate the form factors of D → V � ν� decays while
Eqs. (35, 36) are written for the correlation functions of
D → A � ν� process, and Eq. (37) is noted as the first step
in evaluating the form factors of D → S � ν� decay in Hard-
Wall AdS/QCD.

To evaluate the form factors, we insert two complete sets
of intermediate states with the same quantum numbers as
the initial and final meson currents, and use the following
definitions:

〈0|Jσa
V⊥|V a′

(p, εV )〉 = fV εσ
V

δaa
′
, (38)

〈0|Jαd
A‖ |φd ′

(p)〉 = i f d
P
pαδdd

′
, (39)

〈0|Jσa
A⊥|Aa′

(p, ε)〉 = f A εσ
A

δaa
′
, (40)

〈0|Jαd
V ‖ |φ̃d ′

(p)〉 = i f d
S
pαδdd

′
, (41)

where fV , fP , f A and fS are the decay constants of the vector,
pseudoscalar, axial vector and scalar mesons, respectively. In
this step, the following results can be obtained:

〈V a(p2, εV )|J νb
V⊥(0)|Dc(p1)〉

= i �[(V, p2); (D, p1)] �α(p1)ε
∗
V μ Î

×
(

δ3S(VVP)

δV 0a⊥μ(x) δV 0b⊥ν(0) δA0c‖α(w)

)
, (42)

〈V a(p2, εV )|J νb
A⊥(0)|Dc(p)〉

= i �[(V, p2); (D, p1)] �α(p1) ε∗
V μ Î

×
(

δ3S(VAP)

δV 0a⊥μ(x) δA0b⊥ν(0) δA0c‖α(w)

)
, (43)

〈Aa(p2, εA )|J νb
A⊥(0)|Dc(p1)〉

= i �[(A, p2); (D, p1)] �α(p1)ε
∗
Aμ Î

×
(

δ3S(AAP)

δA0a⊥μ(x) δA0b⊥ν(0) δA0c‖α(w)

)
, (44)

〈Aa(p2, εA )|J νb
V⊥(0)|Dc(p)〉

= i �[(A, p2); (D, p1)] �α(p1) ε∗
Aμ Î

×
(

δ3S(AVP)

δA0a⊥μ(x) δV 0b⊥ν(0) δA0c‖α(w)

)
, (45)

〈Sa(p2)|Jμb
A⊥(0)|Dc(p)〉

= i �[(S, p2); (D, p1)] �α(p1)�β(p2) Î

×
(

δ3S(SAP)

δV 0a‖α (x) δA0b⊥μ(0) δA0c‖β(w)

)
, (46)

where

Î =
∫

d4x d4w eip
′x−i pw, �α(pk) = pkα

p2
k

,

�[(O2, p2); (O1, p1)] = (p2
1 − m2

O1
)

fO1

(p2
2 − m2

O2
)

fO2

,

(47)

are defined in our notations. Moreover, fOi is the decay con-
stant of the i th meson, and the limit (p2

1, p2
2) → (m2

O1
,m2

O2
)

is taken in the final result. Now, we need the relevant actions
presented in Eqs. (42, 43, 44, 45, 46 ). For example, two vec-
tor mesons and one pseudoscalar state are separated from the
total action for S(VVP). One vector meson, one axial vector
and one pseudoscalar meson are also considered for S(VAP).
These relevant actions are calculated in our recent paper as
[68]:

S(VVP) =
∫

d5x

(
kabc

z3 [V a
μ Vμb πc + V a

z V zb πc ]
)

, (48)
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S(VAP) =
∫

d5x

(
f abc

2 g2
5 z

[∂μφb Vμν Aνc ]

+habc

z3 [V aμ Ab
μπc ] + gabc

z3 [Aa
μ V bμ πc ]

)
,

(49)

S(AAP) =
∫

d5x

(
labc

z3 [Aa
μ Aμb πc ]

)
, (50)

S(SAP) =
∫

d5x

(
habc

z3 [∂μ(π̃a − φ̃a) Ab
μπc ]

+gabc

z3 [Aa
μ ∂μ(π̃b − φ̃b) πc ]

)
, (51)

where f abc is the SU (4) structure constant and the terms
containing this factor are generated from the gauge part of
the main action. The following definitions are also used in
Eqs. (48–51):

kabc = −2i Tr
([
ta, X0

] [
tb,
{
tc, X0

}])
, (52)

habc = −2i Tr
([
ta, X0

] {
tb,
{
tc, X0

}})
, (53)

gabc = −2i Tr
({

ta, X0
} [

tb,
{
tc, X0

}])
, (54)

labc = −2 i Tr
({

ta, X0
} {

tb,
{
tc, X0

}})
. (55)

The values of f abc are taken from [78]. Moreover, the other
values of kabc, habc and gabc, which are used in the numer-
ical part, are collected in the Appendix. Using the Fourier
transforms as [58,79]:

φa(p, z) = φa(p2, z)
i pα

p2 A0a‖α(p) ,

πa(p, z) = πa(p2, z)
i pα

p2 A0a‖α(p) , (56)

Aa⊥μ(q, z) = Aa(q2, z) A0a⊥μ(q),

V b⊥μ(q, z) = Vb(q2, z) V 0b⊥μ(q) , (57)

V b
z (q, z) = −∂zπ̃

b(q2, z)
iqα

q2 V 0b‖α (q) ,

∂μ → −i (relevant momentum)μ , (58)

the form factors of D → V � ν� can be obtained as:

V (q2) = (mD + mV ) g2
5

2mD mV

×
∫ zm

0
dz

kabc

z3 ψa
V
(z)Vb(q2, z) πc(z), (59)

A1(q
2) = g2

5 (m2
D

+ m2
V

− q2)

2 (mD + mV )

×
∫ zm

0
dz

f abc

4 z
φa(z) ψb

V
(z)Ac(q2, z)

+ g2
5

2 (mD + mV )

∫ zm

0
dz

×
[
habc

z3 ψa
V
(z)Ab(q2, z) πc

+gabc

z3 Aa(q2, z) ψb
V
(z)πc

]
, (60)

A2(q
2) = g2

5 (mD + mV )

×
∫ zm

0
dz

f abc

4 z
φa(z) ψb

V
(z)Ac(q2, z), (61)

A0(q
2) = g2

5 (3m2
V

− q2 − m2
D
)

4mV

×
∫ zm

0
dz

f abc

4 z
φa(z) ψb

V
(z)Ac(q2, z)

+ g2
5

4mV

∫ zm

0
dz

[
habc

z3 ψa
V
(z)Ab(q2, z) πc

+gabc

z3 Aa(q2, z) ψb
V
(z)πc

]
, (62)

and for D → A � ν� we have:

A(q2) = (mD − mA) g
2
5

2mD mA

∫ zm

0
dz

× labc

z3 ψa
V
(z)Ab(q2, z) πc(z), (63)

V1(q
2) = g2

5 (m2
D

+ m2
A

− q2)

2 (mD − mA)

∫ zm

0
dz

× f abc

4 z
φa(z)Vb(q2, z) ψc

A
(z)

+ g2
5

2 (mD − mA)

∫ zm

0
dz

×
[
habc

z3 ψa
A
(z)Vb(q2, z) πc

+gabc

z3 Va(q2, z) ψb
A
(z)πc

]
, (64)

V2(q
2) = g2

5 (mD − mA)

∫ zm

0
dz

× f abc

4 z
φa(z) ψb

A
(z)Vc(q2, z), (65)

V0(q
2) = g2

5 (3m2
A

− q2 − m2
D
)

4mA

×
∫ zm

0
dz

f abc

4 z
φa(z) ψb

V
(z)Ac(q2, z)

+ g2
5

4mA

∫ zm

0
dz

[
habc

z3 ψa
V
(z)Ab(q2, z) πc

+gabc

z3 Aa(q2, z) ψb
V
(z)πc

]
. (66)
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Finally, the form factors of D → S � ν� are resulted as:

f+(q2) = g2
5

2

∫ zm

0
dz

habc

z3 (π̃a(z) − φ̃a(z))

×Ab(q2, z) πc(z)

+g2
5

2

∫ zm

0
dz

gabc

z3 Aa(q2, z)

×(π̃b(z) − φ̃b(z)) πc(z), (67)

f−(q2) =
(

1 − q2

m2
D

− m2
S

)
g2

5

2

×
∫ zm

0
dz

habc

z3 (π̃a(z)

× − φ̃a(z))Ab(q2, z) πc(z)

+
(

1 − q2

m2
D

− m2
S

)
g2

5

2

×
∫ zm

0
dz

gabc

z3 Aa(q2, z)

×(π̃b(z) − φ̃b(z)) πc(z), . (68)

4 Numerical analysis

The numeric analysis for the masses, decay constants, and
the wave functions of scalar mesons are presented in this
section. Moreover, form factors and the branching ratios of
D meson decays into vector, axial vector and scalar mesons
are evaluated.

4.1 Wave functions and decay constants

First, we study the wave function of the mesons included in
our model. To evaluate the wave function, we need to know
the values of zm , (mu,md ,ms,mc) and (σu, σd , σs, σc).
These values with their uncertain regions have already been
evaluated using the experimental masses of ρ0, ρ−, a−

1 , π0,
π−, K−, K ∗− , D− and D∗− mesons in [68]. The best global
fit for zm is z−1

m = (323 ± 1) MeV, and for the masses in
MeV, the results aremu = (8.5±2.5),md = (12.36±2.45),
ms = (195.31 ± 5.89) and mc = (1590.56 ± 8.42). More-
over, for the quark condensates in MeV3 the best global fit
yields σu = (173.65 ± 2.21)3, σd = (177.42 ± 3.15)3,
σs = (226.20 ± 3.72)3 and σc = (310.35 ± 5.65)3. The
wave functions, masses, and decay constants of some vec-
tor, axial vector, and the pseudoscalar mesons are studied in
[68], and here we focus on the scalar mesons. The results
for the masses and the decay constants of the ground state
scalar mesons a−

0 , K−
0 , K0, D0 and D−

0s are listed in Table
1. In this table, the experimental values of masses as well
as the QCD Sum Rule (QCDSR) predictions for the decay
constants are also presented. The masses are taken from [80]

and the decay constants are given in [81–83]. It should be
noted that for neutral scalars a0

0 , σ and χc0, the differential
equations take the form ∂z φ̃

a(q2, z) = 0, and considering
Eq. (23), for these states, the decay constant becomes zero.
This result was predictable according to charge conjugation
invariance or conservation of vector current.

It is possible to estimate the wave functions with the
masses of physical states. The wave functions φ̃S and π̃S

for the ground states S = (a−
0 , K−

0 , K0, D0 , D
−
0s) are shown

in Fig. 1 as functions of z/zm . The dash, dotted, dash-dotted,
dash-dot-dot and short-dash lines are utilized for φ̃1 and π̃1

of a−
0 , K−

0 , K0, D0 and D−
0s , respectively.

4.2 Form factors

To estimate the obtained form factors in Sect. 3, we need to
know the masses of the initial states (D) and those of vector
(V ), axial vector (A), and scalar meson (S) as the final states.
The used masses in numerical analysis are given in Table 2.
The values for masses of ρ−, K ∗− , D+ and a−

1 are taken from
[80], while our model in [68] predicts the masses of D0 , D+

s ,
K−

1A. Moreover, for b−
1 and K−

1B the predictions of the sum
rule approach are inspired from [84].

At this point, we can estimate the form factors for each
aforementioned semileptonic decay. The obtained results of
the estimation for the form factors [V, A1, A2, A0], for D →
V � ν� decays, [A, V1, V2, V0], for D → A � ν� decays, and
f+, for D → S � ν� transitions, at q2 = 0, are presented
in Table 3. Note that for D → S � ν� decays, we consider
f+(0) = f−(0). In the predictions for the form factors, the
main uncertainty comes from the masses of the initial and
final mesons, and the quark condensates σq .

The form factors of D → (V, A, S) � ν� decays are cal-
culated with different theoretical frameworks. To compare
the different results, we rescale them according to the form
factor definitions in Eqs. (27, 30, 32). Table 4 shows the val-
ues of the rescaled form factors at q2 = 0 for D → V � ν�

decays, according to different theoretical approaches such
as the LCSR [17], the 3PSR [27], the heavy quark effec-
tive field theory (HQETF) [85,86], the relativistic harmonic
oscillator potential model (RHOPM) [87], the quark model
[88,89], the light-front quark model (LFQM) [90], the heavy
meson and chiral symmetries (HMχT) [91] and the LQCD
[92]. The experimental measurements for the form factors of
D0 → ρ− � ν�, reported in CLEO [93], are also included in
Table 4. In Table 5, a comparison is made between the esti-
mation for the form factors of D → A � ν� decays obtained
from this work and the 3PSR [34], the LCSR [18] and the
LFQM [94] predictions. It is essential to note that for the
V (q2) and A(q2) form factors, the presented parameteriza-
tions in Eqs. (26) and (29) are different from other methods,
and we can not compare these form factors.
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Table 1 Predictions for the masses and the decay constants of a−
0 , K−

0 , K0, D0 and D−
0s scalar mesons. The experimental values for messes are

reported in [80], while the QCDSR predictions for the decay constants are taken from [81–83]

Observable mS (MeV) fS (MeV)

Scalar meson This work Experimental This work QCDSR

a−
0 985.50 ± 4.52 980 ± 20 51.25 ± 8.96 47

K−
0 1402 ± 5.20 1425 ± 50 46.86 ± 3.96 42

K0 839 ± 2.16 845 ± 17 68.45 ± 3.82 65

D0 2346 ± 9.80 2343 ± 10 211 ± 16.25 239 ± 73

D−
0s 2326 ± 15.61 2317.8 ± 0.50 226 ± 17.54 283 ± 90

Fig. 1 The wave functions φ̃1
S(z) and π̃1

S (z) for S = (a−
0 , K−

0 , K0, D0 , D
−
0s) as a function of z/zm

Table 2 Masses for D → (V, A, S) � ν� decay’s initial and final states
as input parameters in presented numerical analysis. The experimental
masses of ρ−, K ∗− , a−

1 and D+ are taken from [80]. The values of D0 ,

D+
s , K−

1A are reported from Hard-Wall model [68]. mb−
1

and mK−
1B

are
chosen from the results of sum rule method [84]

Meson Mass (MeV) Meson Mass (MeV) Meson Mass (MeV)

ρ− 775.49 ± 0.34 K ∗− 891.66 ± 0.26 a−
1 1230 ± 40

D+ 1869.65 ± 0.05 D0 1861.50 ± 3.58 D+
s 1972.63 ± 2.37

K−
1A 1316.52 ± 7.50 b−

1 1229.50 ± 3.20 K−
1B 1340 ± 80

For the D → S � ν� category, only theoretical methods are
used to study D0 → a−

0 � ν�. As can be noticed from Table 3,

f
D0→a−

0+ (0) = (0.72±0.09)while, in CCQM [96] and LCSR

[97], the results are predicted as: f
D0→a−

0+ (0) = (0.55±0.02)

and f
D0→a−

0+ (0) = (1.75+0.26
−0.27), respectively.

To evaluate form factors as functions of q2, it is important
to note that q2 varies in the interval [m2

� � 0 , (mD −mM )2]
for the D → M � ν� decay, with � = e, μ. From all the
considered decays, the q2 dependence of the form factors of
D0 → K ∗− � ν�, D0 → a−

1 � ν�, D+
s → K 0

1A � ν�, D+
s →

K 0
1B � ν�, D0 → a−

0 � ν� and D+ → K̄0 � ν� is selected and

displayed in Fig. 2. In this figure, the form factors V (A),
A1(V1), A2(V2) and A0(V0) are shown with the solid, dash,
dash- dotted and dot lines, respectively. For decays to the
scalar mesons, f+ is shown with the solid line and, for f−
the dash line is utilized.

To obtain the form factors of D → K1(1270) � ν� using
Eqs. (17, 29, 30 ) the following relations are obtained:

AD→K1(1270) =
( 1 − rK1

1 − rK1A

)(rK1A

rK1

)
sin θK AD→K1A

+
( 1 − rK1

1 − rK1B

)(rK1B

rK1

)
cos θK AD→K1B ,
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Table 3 The D → (V, A, S) � ν� form factors with their uncertainty regions, at zero momentum transfer in Hard-Wall AdS/QCD. Note that for
scalar mesons as the final states, f+(0) = f−(0)

Form factor Value at q2 = 0 Form factor Value at q2 = 0 Form factor Value at q2 = 0 Form factor Value at q2 = 0

V D0→ρ−
0.29 ± 0.04 V

D0→a−
1

0 −0.32 ± 0.06 V
D+
s →K 0

1B
2 0.23 ± 0.04 V

D+→K̄ 0
1A

1 0.54 ± 0.09

AD0→ρ−
1 0.54 ± 0.10 AD0→b−

1 0.12 ± 0.03 V
D+
s →K 0

1B
0 −0.17 ± 0.04 V

D+→K̄ 0
1A

2 0.37 ± 0.07

AD0→ρ−
2 0.40 ± 0.06 V

D0→b−
1

1 0.57 ± 0.07 AD0→K−
1A 0.39 ± 0.04 V

D+→K̄ 0
1A

0 −0.33 ± 0.07

AD0→ρ−
0 0.63 ± 0.12 V

D0→b−
1

2 0.32 ± 0.05 V
D0→K−

1A
1 0.77 ± 0.12 AD+→K̄ 0

1B 0.21 ± 0.03

V D0→K ∗− 0.34 ± 0.05 V
D0→b−

1
0 −0.25 ± 0.05 V

D0→K−
1A

2 0.60 ± 0.10 V
D+→K̄ 0

1B
1 0.48 ± 0.08

AD0→K ∗−
1 0.63 ± 0.12 AD+

s →K 0
1A 0.23 ± 0.03 V

D0→K−
1A

0 −0.22 ± 0.05 V
D+→K̄ 0

1B
2 0.27 ± 0.04

AD0→K ∗−
2 0.45 ± 0.07 V

D+
s →K 0

1A
1 0.51 ± 0.08 AD0→K−

1B 0.34 ± 0.05 V
D+→K̄ 0

1B
0 −0.18 ± 0.04

AD0→K ∗−
0 0.72 ± 0.13 V

D+
s →K 0

1A
2 0.28 ± 0.03 V

D0→K−
1B

1 0.60 ± 0.11 f
D0→a−

0+ 0.72 ± 0.09

AD0→a−
1 0.13 ± 0.03 V

D+
s →K 0

1A
0 −0.21 ± 0.05 V

D0→K−
1B

2 0.42 ± 0.07 f
D+
s →K0

+ 0.95 ± 0.12

V
D0→a−

1
1 0.59 ± 0.08 AD+

s →K 0
1B 0.14 ± 0.03 V

D0→K−
1B

0 −0.38 ± 0.07 f
D0→K−

0+ 0.80 ± 0.10

V
D0→a−

1
2 0.37 ± 0.04 V

D+
s →K 0

1B
1 0.46 ± 0.07 AD+→K̄ 0

1A 0.31 ± 0.06 f D
+→K̄0+ 0.82 ± 0.10

Table 4 Transition form factors A1, A2 and A0 of the D → V � ν� at q2 = 0 in our model and other theoretical approaches

Model A1(0) A2(0) A0(0) Model A1(0) A2(0) A0(0)

D0 → ρ−

This work 0.54 ± 0.10 0.40 ± 0.06 0.63 ± 0.12 RHOPM [87] 0.78 0.92 0.67

LCSR [17] 0.580+0.065
−0.050 0.468+0.052

−0.053 QM-I [88] 0.59 0.23

CLEO (2013) [93] 0.56+0.02
−0.03 0.47 QM-II [89] 0.59 0.49

3PSR [27] 0.5 0.4 LFQM [90] 0.60 0.47 0.69

HQETF-I [85] 0.57 ± 0.08 0.52 ± 0.07 HMχT [91] 0.61 0.31 1.32

HQETF-II [86] 0.59 ± 0.03 0.37+0.02
−0.03 LQCD [92] 0.65+0.24

−0.23 0.59+0.28
−0.25 0.64+0.21

−0.21

D0 → K ∗−

This work 0.63 ± 0.12 0.45 ± 0.07 0.72 ± 0.13 RHOPM [87] 0.88 1.15 0.73

HQETF-I [85] 0.59 ± 0.10 0.55 ± 0.08 QM [89] 0.66 0.49 0.76

HQETF-II [86] 0.57 ± +0.02 0.34 ± 0.03 LFQM-I [90] 0.72 0.60 0.78

HMχT [91] 1.12 0.31 1.32 LFQM-II [94] 0.65 0.57 0.69

3PSR [95] 0.50 0.60 0.40 Lattice QCD [92] 0.83 ± 0.28 0.59+0.24
−0.23

(69)

V D→K1(1270)
1 =

(1 − rK1A

1 − rK1

)
sin θK V D→K1A

1

+
(1 − rK1B

1 − rK1

)
cos θK V D→K1B

1 , (70)

V D→K1(1270)
2 =

( 1 − rK1

1 − rK1A

)
sin θK V D→K1A

2

+
( 1 − rK1

1 − rK1B

)
cos θK V D→K1B

2 , (71)

V D→K1(1270)
0 =

(rK1A

rK1

)
sin θK V D→K1A

0

+
(rK1B

rK1

)
cos θK V D→K1B

0 , (72)

where on the right hand side of Eqs. (69–72), K1 =
K1(1270) and rM = mD/mM . To evaluate the form factors of
D → K1(1400) � ν�, the replacements of sin θK → cos θK ,
cos θK → − sin θK , and K1 → K1(1400) are required.

4.3 Branching ratios

To evaluate the branching ratio values for the D →
(V, A, S) � ν� decays, the decay amplitude in Eq. (25), and
definitions for the form factors given in Eqs. (26, 27, 29, 30,
32) are required. So, the differential decay widths are found
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Table 5 The results for the transition form factors V1, V2 and V0 of D → A � ν� decays at q2 = 0, as well as predictions of 3PSR [33,34], LFQM
[94] and LCSR [18]

D0 → a−
1 D0 → b−

1

Model V1(0) V2(0) V0(0) Model V1(0) V2(0) V0(0)

This work 0.59 ± 0.08 0.37 ± 0.04 −0.32 ± 0.06 This work 0.57 ± 0.07 0.32 ± 0.05 −0.32 ± 0.07

3PSR [34] 0.37 −0.03 0.15 LCSR [18] −0.22 0.21 −0.32

LFQM [94] 1.54 0.06 0.31 LFQM [94] 1.37 −0.10 0.49

LCSR [18] 0.37 ± 0.11 −0.03 ± 0.02 0.15 ± 0.05

D+
s → K 0

1A D+
s → K 0

1B

Model V1(0) V2(0) V0(0) Model V1(0) V2(0) V0(0)

This work 0.51 ± 0.08 0.28 ± 0.03 −0.21 ± 0.05 This work 0.46 ± 0.07 0.23 ± 0.04 −0.17 ± 0.04

3PSR [33] 0.05 −0.02 0.03 3PSR [33] −0.30 0.14 −0.26

LCSR [18] 0.28 ± 0.09 −0.01 ± 0.01 0.10 ± 0.04 LCSR [18] −0.22 ± 0.09 0.24 ± 0.10 −0.41 ± 0.12

D+ → K̄ 0
1A D+ → K̄ 0

1B

Model V1(0) V2(0) V0(0) Model V1(0) V2(0) V0(0)

This work 0.54 ± 0.09 0.37 ± 0.07 −0.33 ± 0.07 This work 0.48 ± 0.08 0.27 ± 0.04 −0.18 ± 0.04

3PSR [33] 0.02 −0.01 0.04 3PSR [33] −0.16 0.08 −0.13

LCSR [18] 0.32 ± 0.11 −0.03 ± 0.01 0.11 ± 0.03 LCSR [18] −0.26 ± 0.10 0.29 ± 0.13 −0.42 ± 0.14

Fig. 2 Predictions for theq2 dependence of six selected decays, D0 → K ∗− � ν�, D0 → a−
1 � ν�, D+

s → K 0
1A � ν�, D+

s → K 0
1B � ν�, D0 → a−

0 � ν�

and D+ → K̄0 � ν�

123
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Fig. 3 Differential branching ratios of the D0 → K ∗− � ν�, D0 → a−
1 � ν� and D0 → a−

0 � ν� as functions of q2

Fig. 4 The θK dependence of
branching ratio values of
D+
s → K 0

1 (1270) � ν� and
D+
s → K 0

1 (1400) � ν� decays

Table 6 Branching ratios of the semileptonic decays D → V � ν. For comparison, we also present the results of other predictions

Model Br (D0 → ρ−�ν) × 103 Model Br (D0 → K ∗−�ν) × 102

This work 1.82 ± 0.15 This work 2.58 ± 0.26

LCSR [17] 1.749+0.421
−0.297 ± 0.006

CLEO (2013) [93] 1.94 ± 0.39 ± 0.13 Exp 2.15 ± 0.35

CLEO (2005) [98] 1.77 ± 0.12 ± 0.10

3PSR [27] 0.5 ± 0.10 HMχT [91] 2.2

HQEFT [85] 1.40 ± 0.30

NWA [99] + HQEFT [86] 1.67 ± 0.27 HQETF-I [85] 2.0 ± 0.5

NWA [99] + LFQM [90] 1.73 ± 0.07

HMχT 2.00 HQETF-II [86] 2.12 ± 0.09

as follows:

d�

dq2 (D → M � ν�) = G2
F |Vcq ′ |2√λ

192m3
Dπ3

ν2 q2

×(H2
1M + H2

2M ), (73)

with

H1V = (mD + mV ) A1(q
2) + mD mV

2 V (q2)

(mD + mV )
, (74)

H2V = 1

2mV

√
q2

[
(m2

D − m2
V − q2)

(
(mD + mV ) A1(q

2)

+mD mV
2 V (q2)

(mD + mV )

)
− λ A2(q2)

(mD + mV )

]
, (75)
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Table 7 Branching ratio values of the semileptonic D → A � ν decays in Hard-Wall AdS/QCD, LCSR [18] and 3PSR [33,34]. For D → K1 � ν

with K1 = (K1(1270), K1(1400)), the values of branching ratios are reported at θK = −(34 ± 13)◦

Process This work LCSR [18] 3PSR [34] 3PSR [33]

D0 → a−
1 �ν [1.42 ± 0.35 2.85 ± 0.41 1.11+0.41

−0.34 − ] × 10−5

D0 → b−
1 �ν [1.11 ± 0.27 1.88 ± 0.30 − − ] × 10−5

D+
s → K 0

1 (1270) [1.75 ± 0.15 1.66 ± 0.05 − 1.25 ± 0.11 ] × 10−3

D+
s → K 0

1 (1400) [0.14 ± 0.02 0.16 ± 0.02 − 0.14 ± 0.01 ] × 10−3

D0 → K−
1 (1270) [5.27 ± 0.30 6.78 ± 0.12 − 5.34 ± 0.21 ] × 10−3

D0 → K−
1 (1400) [0.71 ± 0.03 0.82 ± 0.05 − 0.85 ± 0.02 ] × 10−3

D+ → K̄ 0
1 (1270) [13.96 ± 1.06 16.86 ± 0.27 − 14.07 ± 1.22 ] × 10−3

D+ → K̄ 0
1 (1400) [1.25 ± 0.12 1.28 ± 0.08 − 1.27 ± 0.10 ] × 10−3

Table 8 Branching ratios of D → S � ν decays

Process This work LCSR [97] CCQM [96]

D0 → a−
0 �ν [2.44 ± 0.30 4.08+1.37

−1.22 1.68 ± 0.15 ] × 10−4

D+
s → K0�ν [2.65 ± 0.28 − − ] × 10−3

D0 → K−
0 �ν [1.03 ± 1.15 − − ] × 10−4

D+ → K̄ 0�ν [3.88 ± 0.56 − − ] × 10−2

H1A = (mD − mA) V1(q
2) + mD mA

2 A(q2)

(mD − mA)
, (76)

H2A = 1

2mA

√
q2

[
(m2

D − m2
A − q2)

(
(mD − mA) V1(q

2)

+mD mA
2A(q2)

(mD − mA)

)
− λ V2(q2)

(mD − mA)

]
, (77)

H1S = (1 + m2
�

2 q2 )
1
2

2mD
√

λ√
q2

f+(q2), (78)

H2S = 1√
q2

(m2
D − m2

S) f−(q2), (79)

ν =
(

1 − m2
�

q2

)
,

λ = m4
D + m4

M + q4 − 2m2
D m2

M

−2m2
D q2 − 2m2

Mq2. (80)

Note that the differences in the form factors (A3 − A0) in
D → V � ν� and (V3 − V0) in D → A � ν� decays do not
give any contribution, since these terms are proportional to
m2

� and can be ignored in our calculations for � = e, μ.
To calculate the branching ratio values of the semileptonic
decays, we integrate Eq. (74) over q2 in the whole physical
region considering |Vcd(cs)| = 0.22(0.97), and using the total
mean life-times in ps as τD0 = 0.41, τD+ = 1.04, τD+

s
=

0.50 [80]. The q2 dependence of the differential branching
ratios of 3 decay modes of the studied processes are plotted
in Fig. 3. In this figure, D0 → K ∗− � ν�, D0 → a−

1 � ν�

and D0 → a−
0 � ν� are selected from D meson to vector,

axial vector and scalar mesons decays, respectively and the
uncertain regions, are also displayed. The branching ratios of
D+
s → K 0

1(1270) � ν� and D+
s → K 0

1(1400) � ν� decay and
their uncertain regions, are plotted as functions of the mixing
angle θK in Fig. 4.

Predictions for the branching ratio values of the semilep-
tonic decays D → (V, A, S)�ν are presented in Tables 6, 7
and 8. For vector mesons as the final states, the predictions of
LCSR [17], 3PSR [27], HQEFT [85], HMχT [91] and NWA
[99] plus HQEFT [86] and plus LFQM [90], as well as the
experimental measurements of CLEO Collaboration [93,98]
are reported in Table 6. The LCSR [18] and 3PSR [33,34]
predictions for D → A�ν decays are also listed in Table 7. In
this Table, the values are reported at θK = −(34 ± 13)◦ for
the decays of charm mesons to K1(1270) and K1(1400). For
decays of charm mesons to the scalar one, LCSR [97] and
CCQM [96] models are utilized to evaluate the branching
ratio of D0 → a−

0 �ν decay. The results of these calculations
are itemized in Table 8.

5 Conclusion

In summary, the form factors of the semileptonic charm
mesons decay into the light and strange vector, axial vec-
tor and scalar mesons are evaluated in Hard-Wall AdS/QCD
including 4 flavours (u, d, s, c). The wave functions of the
scalar mesons, the masses and the decay constants of this
group are studied in detail, and our predictions for the masses

123



473 Page 14 of 15 Eur. Phys. J. C (2022) 82 :473

Table 9 The values of Ma
V

2 and Ma
A

2 with vq (z) = ζmqz + 1
ζ
σq z3 for q = (u, d, s, c)

a Ma
V

2 Ma
A

2 a Ma
V

2 Ma
A

2 a Ma
V

2 Ma
A

2

(1, 2) 1
4 (vu − vd )

2 1
4 (vu + vd )

2 (6, 7) 1
4 (vd − vs)

2 1
4 (vd + vs)

2 (11, 12) 1
4 (vd − vc)

2 1
4 (vd + vc)

2

3 0 1
2 (v2

u + v2
d ) 8 0 1

6 (v2
u + v2

d + 4vs)
2 (13, 14) 1

4 (vc − vs)
2 1

4 (vc + vs)
2

(4, 5) 1
4 (vu − vs)

2 1
4 (vu + vs)

2 (9, 10) 1
4 (vu − vc)

2 1
4 (vu + vc)

2 15 0 1
12 (v2

u + v2
d + v2

s + 9v2
c )

Table 10 The values of gabc, habc, labc and kabc which are used in numerical analysis

(a, b, c) gabc habc labc kabc

(2, 9, 11) 1
2 (vu + vd )(vu + vc)

1
2 (vu − vd )(vu + vc)

1
2 (vd + vc)(vu + vc)

1
2 (vd − vu)(vd + vc)

(4, 9, 13) 1
2 (vu + vs)(vu + vc)

1
2 (vu − vs)(vu + vc)

1
2 (vs + vc)(vu + vc)

1
2 (vu − vs)(vu + vc)

(6, 11, 13) − 1
2 (vd + vs)(vs + vc) − 1

2 (vs − vd )(vd + vc)
1
2 (vd + vc)(vs + vc)

1
2 (vc − vs)(vd + vc)

are compared with the experimental data. Moreover, the
decay constants are compared with the results of the sum
rule method.

Our estimations for the form factors at q2 = 0 are com-
pared with other theoretical frameworks such as: LCSR,
3PSR, HQETF, RHOPM, QM, LFQM, HMχT and LQCD,
as well as the measurements of CLEO collaboration.

According to the presented definitions for the matrix ele-
ments in terms of form factors, the formulas for the decay
widths are obtained. The branching ratios are estimated for
the mentioned model and the results are compared with the
experimental data and the predictions of the other theoreti-
cal approaches. The prediction for the branching ratio of the
D0 → ρ−�ν decay is in good agreement with the reported
results of LCSR, HQEFT, LFQM, and the experimental val-
ues. For the semileptonic D0 → K ∗−�ν decay, the esti-
mation for the branching ratio value has a better agreement
with the experimental report. The predicted form factors in
this study can be used to evaluate the branching fraction of
nonleptonic and forward–backward asymmetry of leptonic D
meson decays. This model can also be extended to 5 flavours
with q = (u, d, s, c, b) to study the B meson decays.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: In Table 6, the
results of experimental data from CLEO(2013) [93] and CLEO(2005)
[98] are considered and compared with the obtained theoretical results
in this work.]
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Appendix: Values of Ma
V
2, Ma

A
2, gabc, habc, l abc and kabc

Table 9 [68] represents the values of Ma
V

2 and Ma
A

2, which
are used to evaluate the wave functions.

The nonzero values for gabc, habc, labc and kabc used in
numerical analysis are given in Table 10.
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