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Abstract Black holes can be inserted in very rich astro-
physical environments, such as accretion disks. Although
isolated black holes are simple objects in general relativ-
ity, their accretion disks may significantly enrich the field
configurations of their surroundings. Alternative theories of
gravity can lead to novel black hole solutions, which can
be represented by small deviations in the metric due to an
effective stress-energy tensor. Among the key aspects of the
interaction of black holes with their surroundings, stand tidal
forces phenomena. We study the tidal forces of spherically
symmetric black holes in the presence of effective matter
fields, dubbed as dirty black holes. These effective fields
can generically represent usual or exotic matter associated
to a variety of gravity theories. We show that this dirtiness
leads to characteristic imprints in the tidal forces, which are
absent in the case of a black hole surrounded by vacuum.
We apply our results to particular cases, such as black holes
coupled to linear and nonlinear electrodynamics theories and
a Schwarzschild black hole surrounded by a spherical shell.

1 Introduction

General relativity (GR) introduced new objects to the scien-
tific knowledge, such as black holes (BHs). In the eletrovac-
uum, isolated BHs may be described by solely three param-
eters: mass, charge and angular momentum [1]. Although
astrophysical BHs are expected to be described by only two
of these parameters – mass and angular momentum – they
may harbor very dynamical environments, such as accretion
disks and electromagnetic fields [2]. Moreover, in alterna-
tive theories of gravity BHs are associated to slight devia-
tions from their bald counterpart, which can leave distinctive
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imprints in their phenomenology [3]. The study of how these
deviations can manifest themselves in the electromagnetic
and gravitational waves observations constitutes a current
intense research subject in the literature [4–6].

In the past years, the strong regime of gravity has finally
started to be tested, and the results are in good agreement
with the GR predictions [7,8]. The shadow recently imaged
by the international collaboration Event Horizon Telescope
(EHT) is associated to a BH with an accretion disk, which
casts an asymmetric bright emission configuration [7]. A sim-
ilar image is expected for other astrophysical BHs hosted in
galactic centers. The presence of matter and fields in the
neighborhood of BHs is of astrophysical importance, and
must be taken into account to identify BH candidates. Tidal
effects on objects near the event horizon have been proposed
to be the cause of flares [9], as optical [10], ultraviolet [11]
and X-ray radiation [12], during tidal disruption events.

It is well-known that tidal forces in BH spacetimes cause
the stretching and compressing of extensive objects. In the
case of a Schwarzschild BH, an infalling body is stretched
along the radial direction and compressed along the angu-
lar directions [13–16]. For a Reissner–Nordström (RN) BH
the tidal forces can vanish at some positions and change from
stretching to compressing, and the other way around, depend-
ing on which component of the tidal force one is analyzing
[17]. These features are also manifest in other spacetimes,
such as regular [18,19], Kiselev with radiation or dust [20],
Kottler geometry [21] and Kerr BHs [22–25]. For some of
these spacetimes, the radial coordinate where the tidal force
vanishes can be located outside the event horizon, leading, in
principle, to observable features. The change in the sign of
tidal forces can have interesting astrophysical consequences,
such as modifications of the tidal disruption radius, also
known as Roche radius [26–28].

Matt Visser introduced a way to study BHs surrounded
by some classical matter fields, dubbed as dirty BHs [29].
For instance, the RN BH may be regarded as a dirty BH,
with the static electric field surrounding the BH being asso-
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ciated to the dirtiness. Hence, the difference between the tidal
forces in Schwarzschild and RN BHs can be interpreted as
due to this dirtiness. The influence of such dirtiness in BH
physics has been investigated for the Hawking temperature
[29], quasinormal modes [30–32], absorption [33], scattering
[34], and gravitational wave astronomy [4]. Following this
idea, we investigate tidal forces for different kinds of dirty
BHs. We assume that the dirtiness around BHs may be effec-
tively described by the stress-energy tensor of an anisotropic
fluid, and study the influence of the anisotropy and the energy
density on the radial and angular tidal forces. For instance,
we show that, depending on the energy density and pres-
sure profiles of the dirtiness, tidal forces can vanish at some
points, what may influence, for instance, the Roche radius.

The remaining of this paper is organized as follows. In
Sect. 2 we start from a generic spherically symmetric space-
time, and obtain the relations between the metric functions
and the properties of the dirtiness surrounding the BH. In
Sect. 2.1 we represent the matter-energy components by a
generic anisotropic fluid compatible with spherically sym-
metric spacetimes. In Sect. 2.2 we study the radial geodesics
for such configuration. In Sect. 2.3 we introduce the geodesic
deviation equation, identify the tetrad basis attached to an
observer radially infalling toward the BH, and obtain the
tidal tensor for radially infalling bodies. In Sect. 3 we ana-
lyze some examples, and investigate the tidal forces in each
case. We present our final remarks in Sect. 4. Throughout
this paper, we use geometrical units (c = G = 1) and the
metric signature (−, +, +, +).

2 Dirty black hole spacetimes

2.1 Spacetime

We consider a generic spherically symmetric spacetime,
described by the following line element:

ds2 = − f (r) dt2 + dr2

h(r)
+ r2 d�2, (1)

where we have used Schwarzschild-like coordinates, with
d�2 being the 2-sphere solid angle element. We assume f (r)
and h(r) to be two strictly positive functions outside the event
horizon, satisfying asymptotically flatness conditions, with
f (r) → 1 and h(r) → 1, as r → ∞. We assume the
existence of an event horizon, obeying

h(r+) = 0, (2)

h′(r+) ≥ 0. (3)

We refer to spacetimes in which the equality in Eq. (3) holds
as extreme dirty BHs. We shall write the function h(r) as

h(r) ≡ 1 − 2b(r)

r
, (4)

where b(r) is the so-called Misner–Sharp energy within a
sphere of radius r [51]. At the radial coordinate of the event
horizon, we have

b(r+) = r+
2

, (5)

2b′(r+) ≤ 1. (6)

We assume that the line element (1) is a solution of a gravity
theory with equations of motion which can be written in the
form

Gμ
ν = 8 πTμ

ν, (7)

where Gμ
ν are the components of the Einstein tensor [35]

and Tμ
ν is an effective stress-energy tensor. Note that in

this scenario the stress-energy tensor Tμν may collectively
account for matter sources and possible modified gravity
terms.1 We also assume, for simplicity, that the dirtiness can
be described by an effective anisotropic fluid [37], with the
stress-energy tensor being

Tμ
ν = diag(−ρ, p, q, q), (8)

where ρ is the energy density, p the radial pressure and q
the tangential pressure. We note, in passing, that scalar and
electromagnetic fields sourcing gravity can be represented
by anisotropic fluids [37]. Due to the spherical symmetry,
the stress-energy tensor components Tμ

ν are functions only
of the radial coordinate r , and the angular stresses are equal
(i.e., T θ

θ = T φ
φ).

By computing Gμ
ν for the line element (1) and inserting

it into the field equations (7), we find that

2 b′ = 8 π r2 ρ, (9)(
r f ′

f
− 2 b

r − 2 b

) (
1 − 2 b

r

)
= 8 π r2 p, (10)

b

r
− b′ − r (r − 2 b) f ′2

4 f 2

+ r f ′′ (r − 2 b) − f ′ [b + r
(
b′ − 1

)]
2 f

= 8 π r2 q,

(11)

where the primes denote differentiation with respect to the
radial coordinate r . From the conservation of the stress-

1 We emphasize that, although not all extended theories of gravity can
be described by an effective stress-energy tensor, we assume that this
is true at least perturbatively, in the sense that we recover GR as a
particular case [36].
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energy tensor, i.e. ∇μ Tμν = 0, we obtain

r f ′ (ρ + p) + 2 f
(
2 σ + r p′) = 0, (12)

where σ ≡ p − q gives a measure of the anisotropy in the
stress-energy tensor. It is useful to write f ′, f ′′, b′ and p′ in
terms of (r , b, f , ρ, p, q). Using Eqs. (9)–(12), we find that

b′ = 4 π r2 ρ, (13)

f ′ = 2 f
(
4 π r3 p + b

)
r (r − 2 b)

, (14)

p′ = − 1

r (r − 2 b)

[
4 π r3 p2 − 2 q (r − 2 b) + b ρ

+ p
(

2 r + 4 π r3 ρ − 3 b
)]

, (15)

and the equation for f ′′ can be obtained by taking the deriva-
tive of Eq. (14) with respect to r . Eqs. (13)–(15) will be used
to write the tidal tensor in terms of the components of the
metric and of the stress-energy tensor.

2.2 Radial geodesics

In this section, we study the radial timelike geodesics in
dirty BH spacetimes with line element (1). We note that
our formalism does not apply to the case of spinning par-
ticles, which are described by the Mathisson–Papapetrou–
Dixon equations [38]. Radial timelike geodesics are such
that θ̇ = φ̇ = 0. The Lagrangian associated to the radial
motion is [35] 2

L = 1

2
gμν ẋ

μ ẋν = −1

2
, (16)

where the overdots indicate derivative with respect to the
proper time. From the Lagrangian (16), we obtain the fol-
lowing conserved quantities:

E = −∂L
∂ ṫ

= f ṫ, (17)

L = ∂L
∂φ̇

= r2 sin2 θ φ̇ = 0. (18)

E and L are interpreted as the total energy and angular
momentum of a test particle per unit mass, respectively. Since
the particle is following a radial geodesic, we have L = 0.
Substituting Eq. (17) into Eq. (16), we find that the radial
motion is described by

ṙ2 =
(
E2

f
− 1

) (
1 − 2 b

r

)
. (19)

2 We note that the Lagrangian for test particles in some alternative
theories of gravity can differ from the one presented in Eq. (16) [39].
We are not going to consider these particular cases in this paper.

Depending on the spacetime, if a test particle is released from
rest at a radial coordinate ri outside the event horizon, with
energy per unit mass equal to E = √

f (r = ri ) [cf. Eq. (19)],
there is a point where the particle shall stop, at some radial
coordinate Rstop, and bounces back. The coordinate Rstop can
be found using Eq. (19), through the equality (E2/ f −1) = 0.

In the next section, we investigate the geodesic deviation
equation, and obtain its dependence with the energy E . The
bouncing point given by Rstop should be taken into consider-
ation to integrate the equation describing the geodesic devia-
tion. We note, however, that for the dirty BHs explored here,
f (r) is a monotonic function outside the event horizon. This
implies that Rstop is always located inside the event horizon
of the BH. Being interested in the tidal forces in regions out-
side the event horizon, we will not explore the bounce radius
in this paper.

2.3 Tidal forces

Our main goal is to understand how the dirtiness of the BH
spacetime influences the tidal forces. It is well-known that
the relative acceleration between two infinitesimally nearby
particles is described by the geodesic deviation equation [13–
16]:

D2 ζμ

Dτ 2 = Kμ
ν ζ ν, (20)

where ζμ is the infinitesimal displacement vector between
two nearby geodesics, and Kμ

ν is the tidal tensor, given in
terms of the Riemann tensor as

Kμ
ν = Rμ

α β ν u
α uβ, (21)

and uμ is the unit vector tangent to the geodesic.
We can project the geodesic deviation vector and the tidal

tensor components in an orthonormal tetrad basis. The pro-
jection is useful to analyze the tidal force felt by a body in
the neighborhood of a BH. We choose a tetrad basis attached
to an observer in radial free fall in a dirty BH spacetime 3,
which is given by [17]:

λ0̂
μ =

⎛
⎝ E

f
, −

(
1 − 2 b

r

) 1
2

√
E2

f
− 1, 0, 0

⎞
⎠ , (22)

λ1̂
μ =

(
−

√
E2 − f

f
, E f − 1

2

(
1 − 2 b

r

) 1
2

, 0, 0

)
, (23)

λ2̂
μ =

(
0, 0, r−1, 0

)
, (24)

3 We can also study observers with non-zero angular momentum. In
the case of circular motion, a particular choice of tetrads can be found
in Ref. [40]. Moreover, the effects of the angular momentum of a test
particle on the tidal forces was recently studied in Ref. [41].
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λ3̂
μ =

(
0, 0, 0, r−1 sin−1 θ

)
. (25)

The indices with hat are tetrad basis indices. The vector λ0̂
μ

of the tetrad basis is timelike and it is equal to the four-
velocity vector of the observer. The vectors (λ1̂

μ, λ2̂
μ, λ3̂

μ)
are the three orthogonal spatial directions of the reference
frame attached to the observer. The orthonormality condition
of the tetrad basis is given by [42]:

λ
μ

â λν

b̂
gμν = ηâ b̂, (26)

where ηâ b̂ = diag(−1 , 1, 1, 1) are the components of the
Minkowski metric in Cartesian coordinates. The deviation
vector ημ and the tidal tensor Kμ

ν can be expanded in terms
of the orthonormal tetrad basis as [42]

ημ = λ
μ

â ηâ, (27)

Kμ
ν = λ

μ

â λ b̂
ν K â

b̂
, (28)

respectively, where we have used the dual basis, given by

λ b̂
μ ≡ λν

â gμν ηâ b̂. (29)

We now impose that the metric functions obey the field
equations (7). By computing the components of the Rie-
mann tensor [35] associated to the line element (1), and using
Eqs. (13)–(15), one can show that the tidal tensor, written in
the tetrad basis attached to a radially infalling observer in a
dirty BH spacetime, is given by

K â
b̂ = diag(0, k1, k2, k2), (30)

where

k1 ≡ 2b(r)

r3 − 4π(ρ + p − 2σ), (31)

k2 ≡ −b(r)

r3 + 4πρ − 4πE2

f
(ρ + p). (32)

The tidal tensor components k1 and k2 for dirty BHs,
given by Eqs. (31) and (32), respectively, present interest-
ing features. First, we point out that the well-known tidal
forces in Schwarzschild spacetime can be obtained with
b(r) = M > 0, and ρ = p = σ = 0. For the Schwarzschild
case, the tidal force in the radial direction is always posi-
tive, since k1 > 0. Besides that, the tidal forces in the angu-
lar directions are always negative, since k2 < 0. However,
due to the presence of the effective stress-energy tensor, the
tidal forces in a dirty BH can differ from the corresponding
Schwarzschild BH ones. This will depend on the equation of
state, which relates the energy density and pressures quan-
tities for a particular dirty BH. For instance, different tidal
forces results can lead to different values for the Roche radius,
so that a compact object would be tidally disrupted by a dirty

BH in a different radial coordinate, when compared to the
Schwarzschild BH case.

We also point out the dependence on E2, present in
Eq. (32). This term is related to the difference in the strength
of the angular tidal forces as measured in a radially infalling
reference frame and in a static reference frame [44]. There-
fore, an observer infalling radially in a dirty BH spacetime
can measure different angular tidal forces, when compared
to a static observer.

Interestingly, for the Schwarzschild solution, the term con-
taining E2 in Eq. (32) vanishes, since ρ = p = 0. Moreover,
for any dirty BH with [43]

ρ = −p, (33)

the dependence on E2 is also absent, and hence the radially
infalling observer and the static observer will agree on the
measurement of the tidal forces. Equation (33) is satisfied for
dirty BHs obeying [45]:

f (r) = h(r) = 1 − 2 b(r)

r
. (34)

From Eq. (31), if ρ = −p, the radial tidal force is determined
only by b and σ . Therefore, it may be possible to note some
manifestations in the tidal forces due to the anisotropy in the
stress-energy tensor. Eq. (33) also implies that Eq. (32) is
determined only by b and ρ.

Let us now turn our attention to sign changes in the tidal
forces, which happens, for instance, in the case of RN and
Kerr BHs [17,22–25]. From Eqs. (31) and (32), we see that
the tidal forces are zero when

2 b(r rtf
0 )

(r rtf
0 )3

− 4π
(
ρ(r rtf

0 ) + p(r rtf
0 ) − 2σ(r rtf

0 )
)

= 0, (35)

− b(r atf
0 )

(r atf
0 )3

+ 4πρ(r atf
0 ) − 4πE2

f (r atf
0 )

(
ρ(r atf

0 ) + p(r atf
0 )

)
= 0,

(36)

are satisfied, where r rtf
0 and r atf

0 are the radial coordinates of
the vanishing radial and angular tidal forces, respectively.

Moreover, using Eqs. (2) and (3), together with Eq. (9),
considering cases in which ρ = −p, we find that at the event
horizon the energy density satisfies

8πr2+ρ(r+) ≤ 1, (37)

and from Eqs. (2), (32) and (37), we obtain

k2(r+) = 1

2r2+

(
8πr2+ρ(r+) − 1

)
≤ 0. (38)

Thus, dirty BHs present negative angular tidal forces at the
event horizon. The equality in Eq. (38) holds for the extreme
case, meaning that extreme dirty BHs always have null angu-
lar tidal forces at the event horizon.
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In Sect. 3, we apply our results to some particular cases.
We revisit some BH cases previously explored in the litera-
ture, but now considering them as dirty BHs, and we also ana-
lyze BH cases whose tidal forces have never been previously
investigated. We focus on GR BH cases, but we emphasize
that our analysis is also suitable to BHs in alternative theo-
ries of gravity. For instance, our general setup can be used
to reproduce the tidal forces results in the context of holo-
graphic massive gravity, obtained in Ref. [46].

3 Sample cases

3.1 Reissner–Nordström black holes

The spherically symmetric and electrically charged BH, also
known as RN BH, can be regarded as a dirty BH, with the
dirtiness being associated to the electromagnetic field [29].
In this case, we have

f (r) = 1 − 2 M

r
+ Q2

r2 , (39)

b(r) = M − Q2

2 r
, (40)

and

ρ = Q2

8πr4 , p = − Q2

8πr4 , σ = − Q2

4πr4 , (41)

where Q is the electric charge of the BH. The equations above
can be translated in the following equations of state for an
anisotropic fluid

ρ = −p, σ = 2p. (42)

Using Eqs. (31) and (32), we find the following tidal tensor
components for RN BHs:

k1 = 2M

r3 − 3Q2

r4 , (43)

k2 = −M

r3 + Q

r4 , (44)

which agree with the results found in Ref. [17]. We emphasize
that for the RN spacetime we have ρ = −p, so that the tidal
forces in the angular directions do not depend on E2. The
anisotropy contributes as −2 Q2/r4 to the radial tidal force.
The energy density contributes as Q2/2r4 to the angular tidal
forces. In Fig. 1, we plot separately the contribution from
the Misner–Sharp energy b(r) and the contribution from the
matter (which depends on σ or ρ solely) to the radial and
angular components of the tidal force.

We can see that, for each component of the tidal force,
there is a point in which these contributions have the same
absolute value. This happens at the points r rtf

0 and r atf
0 in

which Eqs. (35) and (36) are satisfied, respectively, implying
that the components of the tidal force for radially infalling
observers in RN spacetime vanish at (illustrated as a black
disk in Fig. 1)

r rtf
0 = 3 Q2

2 M
, (45)

r atf
0 = Q2

M
. (46)

If 2
√

2/3 ≤ Q/M ≤ 1 the tidal force in the radial direc-
tion can vanish outside the event horizon, being in principle
observable [17]. This case shows the importance of the con-
tribution from the anisotropy to the Eq. (43), since the radial
tidal force would not vanish outside the BH event horizon
for isotropic dirtiness.

Fig. 1 Contributions from the Misner–Sharp energy b(r) (black solid
lines) and from the matter (blue dashed lines) to the radial (left) and
angular (right) tidal forces in a RN spacetime with Q/M = 0.99. The

black disks denote the points in which the corresponding tidal force
vanishes. Note that for this value of the BH charge, the radial tidal force
vanishes outside the event horizon

123



479 Page 6 of 12 Eur. Phys. J. C (2022) 82 :479

3.2 Bardeen black holes

The Bardeen geometry is a regular BH solution, i.e., free of
singularities. It was proposed by James M. Bardeen, illus-
trating that BHs are not necessarily singular [48]. Ayón-
Beato and Garcia proposed that the Bardeen solution could
be interpreted as a solution of Einstein’s equations coupled
to a nonlinear electrodynamics, described by the following
Lagrangian [49]:

L(F) = 3

2 s g2

( √
2 g2 F

1 + √
2 g2 F

) 5
2

, (47)

where s ≡ |g|/2M , g is the magnetic monopole charge, M
is the mass, F ≡ FμνFμν and Fμν is the electromagnetic
tensor. Within our framework, the Bardeen solution can be
regarded as a dirty BH, where the dirtiness comes from the
nonlinear electromagnetic field. In this case, we have

f (r) = 1 − 2 M r2

(
r2 + g2

) 3
2

, (48)

b(r) = M r3

(
r2 + g2

) 3
2

, (49)

and

ρ = 3 M g2

4 π
(
r2 + g2

) 5
2

, (50)

p = − 3 M g2

4 π
(
r2 + g2

) 5
2

, (51)

σ = − 15 M g2 r2

8 π
(
r2 + g2

) 7
2

, (52)

The tidal tensor components for this spacetime are given by

k1 = 2 M(
r2 + g2

) 3
2

(
1 − 15 g2r2

2
(
r2 + g2

)2

)
, (53)

k2 = M(
r2 + g2

) 3
2

(
3 g2

(r2 + g2)
− 1

)
, (54)

which agree with the results found in Ref. [18]. We point
out that ρ = −p, similarly to the RN case, so that the tidal
forces as measured by a radially infalling or a static observer
in Bardeen spacetime are the same.

The radial coordinates in which the radial and angular tidal
forces vanish are given by

r±rtf
0 =

√
11 ± √

105
|g|
2

, (55)

r atf
0 = √

2 |g|, (56)

respectively. Note that, in contrast to the RN case, the radial
tidal force vanishes at two different locations. If r−rtf

0 < r <

r+rtf
0 , the anisotropy (σ ) contribution (matter contribution)

is dominant, hence the radial tidal force is negative, as we
show in the left panel of Fig. 2. In other words, in the region
r−rtf

0 < r < r+rtf
0 the body is compressed instead of being

stretched in the radial direction. For r → 0 the anisotropy
goes to zero, so that the dirtiness is isotropic in this limit, in
agreement with Ref. [50].

From the right panel of Fig. 2 we see that if r < r atf
0

the energy density (ρ) contribution (matter contribution)
becomes greater than the contribution associated to b(r),
and the angular tidal forces are positive. Hence, the body
is stretched in the angular directions for r < r atf

0 .
In Fig. 3, we plot r±rtf

0 , r atf
0 , together with the radial coor-

dinate of the Cauchy horizon (r−) and of the event horizon
(r+). We note some similar features with the RN case (cf. Ref.
[17]). For instance, the radial tidal force can vanish outside

Fig. 2 Contributions from the Misner–Sharp energy b(r) (black solid lines) and from the matter (blue dashed lines) to the radial (left) and angular
(right) tidal forces for a Bardeen BH with g/M = 0.7
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Fig. 3 Radial coordinate of the event horizon (r+), of the Cauchy hori-
zon (r−) and the radial coordinates where the radial (r±r t f

0 ) and angular

(rat f0 ) tidal forces vanish, plotted as functions of the monopole charge
g

the event horizon. The angular tidal forces vanish between
the event horizon and the Cauchy horizon, for any value of
g. The radial tidal force vanishes in two different points of
the radial coordinate, r+r t f

0 and r−r t f
0 , which are linear func-

tions of g, in contrast to the RN case where it depends on the
square of Q. For the extreme Bardeen BH case, the radial
coordinates of the event horizon (r+), of the Cauchy horizon
(r−) and of the vanishing angular tidal forces (rat f0 ) are the
same.

3.3 Generic regular magnetically charged black holes

To obtain novel results for tidal forces in BH spacetimes,
let us now turn our attention to a family of regular BHs
associated with GR coupled to nonlinear electrodynamics.
Spacetimes with a generic magnetically charged nonlinear
electrodynamics source were introduced in Ref. [52] and dis-
cussed in Refs. [53,54]. Again (as in the Bardeen case), the
dirtiness is associated to the nonlinear electromagnetic field.
Considering only generic magnetically charged regular BH
solutions, we have the following Lagrangian [52,54]:

L(F) = 4γ

α

(α F)
ν+3

4[
1 + (α F)

ν
4

]1+ γ
ν

, (57)

and the spacetime geometry is described by

f (r) = 1 − 2 M rγ−1

(rν + gν)
γ
ν

, (58)

b(r) = M rγ

(rν + gν)
γ
ν

, (59)

and

ρ(r) = γ M gν rγ−3

4 π (rν + gν)
γ
ν
+1

, (60)

p(r) = − γ M gν rγ−3

4 π (rν + gν)
γ
ν
+1

, (61)

σ(r) = γ M gν rγ−3 (gν(γ − 3) − rν(3 + ν))

8 π (rν + gν)2+ γ
ν

, (62)

where g is the magnetic charge parameter of the BH, γ ≥ 3
is related to the electrodynamics non-linearity, M = g3/α

is the mass of the BH (and is equal to the electromagneti-
cally induced mass [54]), with α being an intensity parameter
related to the charge, and ν > 0 is a dimensionless constant.
The tidal tensor components for this spacetime are given by

k1 = 2 M rγ−3

(rν + gν)
γ
ν

[
1 + γ gν (gν(γ − 3) − rν(3 + ν))

2 (rν + gν)2

]
,

(63)

k2 = M rγ−3

(rν + gν)
γ
ν

[
γ gν

(rν + gν)
− 1

]
. (64)

We point out that, for this generic regular magnetically
charged BH spacetime, we also have ρ = −p (as for the RN
and Bardeen BH cases), so that the tidal forces for a radi-
ally infalling and a static observer are the same. The second
term between the squared brackets in Eq. (63) is the contri-
bution due the anisotropy (σ ), and the first term between the
squared brackets in Eq. (64) is due to the energy density (ρ).
As particular cases, we have the Bardeen BHs, for γ = 3
and ν = 2; and the Hayward BHs, for γ = 3 and ν = 3.

The tidal forces in this generic regular magnetically
charged BH spacetime vanish at

r±rtf
0 = |g|

4
1
ν

[−4 + γ (3 + ν)

±√
γ
√−8 ν + γ (1 + ν (6 + ν))

] 1
ν
, (65)

r atf
0 = |g| (γ − 1)

1
ν . (66)

If γ 
= 3, the tidal tensor also vanishes at

r0 = r rtf
0 = r atf

0 = 0. (67)

We point out that the tidal forces in Bardeen BHs do not
vanish at r = 0 (see Sect. 3.2), since γ = 3.

Next, let us analyze regular BHs with ν = 2, other than
the Bardeen BH, which are called Bardeen-like BHs [54].
As an illustrative example, we consider the γ = 4 case [for
the Bardeen-like BHs (ν = 2)]. The contribution related to
the Misner–Sharp energy (which depend on b) and the one
related to the properties of the dirtiness (matter contribution)
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Fig. 4 Tidal tensor component k2, plotted in the inset, and the separated
contributions to it, one from the energy density ρ (blue dotted line,
dirtiness term) and the other from the Misner–Sharp energy b(r) (black
dashed line) to the angular tidal forces, for Bardeen-like BHs (ν = 2)
with γ = 4

can be obtained by substituting the values of γ and ν in the
equations (58)–(66).

In Fig. 4, we plot the k2 component of the tidal tensor
(inset), as well as the separated contributions from the energy
density ρ(r) (dirtiness term) and from the b(r) function.
There are two points for which the angular tidal forces are
equal to zero, namely r atf

0 and r = 0. The first is due to the
cancellation of the contributions from the dirtiness and the
b(r) term, while the latter occurs where the contributions
from the dirtiness and the b(r) terms vanish.

In Fig. 5, we plot the k1 component of the tidal ten-
sor (inset), and also the separated contributions from the
anisotropy σ (dirtiness term) and the b(r) function (Misner–
Sharp energy). There are three points for which the radial
tidal force vanishes. For r → 0, the radial tidal force vanishes
because the contributions from the anisotropy σ(r) (dirtiness
term) and from the b(r) function (Misner–Sharp energy) van-
ish at the center of the BH.

In Fig. 6, we show the radial coordinate of the horizons,
as well as the values of the radial coordinate where the tidal
forces vanish. Some features present in the Bardeen BH case
are also manifest here. For instance, the linear dependence of
r±r t f

0 with the monopole charge, the vanishing of the angular
tidal forces between the horizons, and the vanishing of the
radial tidal force outside the event horizon, for g > 0.567 M .
Moreover, for the extreme case, the radial coordinate of the
event horizon, of the Cauchy horizon and of the vanishing
angular tidal forces are the same.

3.4 Schwarzschild black hole with a surrounding thin
spherical shell

We consider the tidal forces in a Schwarzschild BH sur-
rounded by a thin spherical shell [33,55,56]. The shell is

Fig. 5 Tidal tensor component k1, plotted in the inset, and the separated
contributions to it, one from the anisotropy σ (blue dotted line, dirtiness
term) and the other from the Misner–Sharp energy b(r) (black dashed
line) to the radial tidal force, for Bardeen-like BHs (ν = 2) with γ = 4

Fig. 6 Radial coordinates of the horizons (r±) and the radial coordi-
nates where the tidal forces vanish (r±r t f

0 , rat f0 ), as functions of the
monopole charge g, for Bardeen-like BHs (ν = 2) with γ = 4

regarded as constituted by a perfect fluid and satisfies the
Tolman–Oppenheimer–Volkoff (TOV) equations [33,47]. In
this case, the metric functions are given by

f (r) =
{

β(1 − 2 MBH
r ), r < RS,

(1 − 2 M
r ), r > RS,

(68)

b(r) =
{
MBH, r < RS,

M, r > RS,
(69)

where β is a constant such that f (r) is continuous across
the shell, M is the Arnowitt–Deser–Misner (ADM) mass,
and MBH is the mass associated to the area of the BH event
horizon. The tidal forces for a freely falling observer have
essentially the same algebraic form as in the Schwarzschild
case, the difference being in the nature of the mass term:
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Fig. 7 Tidal tensor components k1 (left) and k2 (right) in a Schwarzschild BH surrounded by a thin spherical shell for Rs = 2.3M and MBH = 0.8M

outside the shell it is the ADM mass M , while inside the
shell it is the mass associated to the area of the event horizon
MBH, namely

k1 =

⎧⎪⎪⎨
⎪⎪⎩

2M

r3 , r > RS,

2 MBH

r3 , r < RS,

(70)

k2 =

⎧⎪⎪⎨
⎪⎪⎩

−M

r3 , r > RS,

−MBH

r3 , r < RS .

(71)

In this case the dirtiness is localized in the thin spherical
shell, allowing us to clearly illustrate an interesting effect of
matter surrounding the BH: Due to the separation of the total
mass of the system, now composed by the BH and the spheri-
cal shell, the tidal forces in the region between the BH horizon
and the position of the spherical shell are lower (in modulus)
than the tidal forces of an isolated Schwarzschild BH with the
same ADM mass. In Fig. 7, we show the components k1 and
k2 of the tidal tensor for a Schwarzschild BH surrounded by
a spherical shell for Rs = 2.3M and MBH = 0.8M , where
we note the discontinuity on the tidal forces at the spherical
shell. We can quantify how smaller the tidal forces are, com-
pared with the isolated Schwarzschild BH case, by directly
comparing MBH and M , through the ratio MBH/M < 1. The
present tidal forces analysis can be generalized to the case of
N−spherical shells [55].

3.5 Black holes surrounded by anisotropic matter

As a final example, we apply our procedure to analyze the
tidal forces in a newly presented BH solution, obtained by
considering anisotropic matter minimally coupled to gravity
[58]. For this particular case, the radial pressure is identically

zero. The matter terms are given by

ρ = M(a0 + 2MBH)(1 − 2MBH/r)

2πr(r + a0)3 , q = b(r)ρ

2(r − 2b(r))
,

(72)

where M is related to the mass of the matter, MBH the mass
associated to the BH horizon, and a0 is a length scale related
to the distribution of matter (a0 � 104M for galaxies distri-
butions [58]). The Misner–Sharp energy b(r) is given by

b(r) = MBH + Mr2

(a0 + r)2

(
1 − 2MBH

r

)2

, (73)

from which it is clear that the BH horizon is located at rh =
2MBH and that the total mass is given by M + MBH. Finally,
the metric function is given by

f (r) =
(

1 − 2MBH

r

)
eγ , (74)

where

γ = −π

√
M

ε
+ 2

√
M

ε
arctan

(
r + a0 − M√

Mε

)
, (75)

ε = 2a0 − M + 4MBH. (76)

With the above quantities, we can compute the tidal ten-
sor components (k1, k2) and compare them to the isolated
Schwarzschild BH case. Due to the lengthy form of the func-
tions, we shall not display them explicitly here, limiting our-
selves to show some particular cases.

In Fig. 8 we show the radial tidal tensor component k1

for the BH surrounded by anisotropic matter, normalized by
the Schwarzschild case. The dirty BH is asymptotically flat,
so that for large distances the ratio tends to the unity. In the
left panel of Fig. 8 we fix the value for a0 = 100M , varying
M . We can see that even for the case in which the mass
M represents 10% of the total mass, the result can deviate
notably from the Schwarzschild case, mainly near the BH
(notice that M = 0 represents the Schwarzschild case). In
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Fig. 8 Normalized tidal tensor component k1, for BHs with anisotropic
matter, as a function of the radius, for some representative cases. In the
left panel we fix a0 = 100M , considering different values for the mass

M . In the right panel we fix M = 2MBH, considering different values for
the length scale a0. In both cases, we observe considerable deviations
from the Schwarzschild BH case

Fig. 9 Normalized tidal tensor component k2, for BHs with anisotropic
matter, as a function of the radius, for some representative cases. We use
the same parameter space as the one described in Fig. 8, considering, in

addition, E = 1. We see that the deviation from Schwarzschild case is
considerable. For a fixed value of a0 (left panel) the modifications are
similar to the ones observed in Fig. 8

the right panel of Fig. 8 we turn our attention to changes in
a0, fixing M . We focus on some specific cases to show that,
within the parameter space, there is a possibility of having
repulsive tidal forces considering anisotropic matter (notice
the black solid curve).

For the angular component of the tidal tensor we have to
fix a value for the specif energy E . For simplicity, we shall
focus on the E = 1 case, investigating the same parameter
space of Fig. 8. The result is shown in Fig. 9. We see, for
instance, that for a0 = 100M (left panel), the changes in
the normalized angular tidal tensor are very similar to the
radial one. Considering a fixed value of M and changing a0,
however, we see that the behavior is distinctive (right panel)
and we do not observe changes in the sign of the tidal tensor
component k2. We conclude that for these configurations, the
angular tidal force is always attractive.

4 Final remarks

We studied the tidal tensor for generic spherically symmet-
ric dirty BH spacetimes, and investigated the influence of
the dirtiness on the tidal forces. An important feature is the
influence of the energy (E) of the particle in the angular tidal
forces equations. For dirty BHs with ρ = −p, the energy
(E) does not contribute to the angular tidal forces, as shown
explicitly in the examples we analyzed. Moreover, we have
shown that the angular tidal forces at the event horizon are
always less or equal to zero, and the equality holds only for
extreme dirty BHs. We also noted that only the anisotropy
(σ = p−q) contributes to the radial tidal force, while for the
angular tidal forces only the energy density (ρ) contributes.
We focused on some particular cases, describing (electrically
or magnetically) charged BHs, and also a Schwarzschild BH
surrounded by a spherical shell.
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For the RN BH, the function b(r) is positive outside the
event horizon, so that the negative contribution for the radial
tidal force comes only from the anisotropy in the stress-
energy tensor associated to the electromagnetic field. On the
other hand, the energy density contributes positively to the
angular components of the tidal forces, and tidal forces in
the angular directions changes sign between the event hori-
zon and the Cauchy horizon. The RN BH has a singularity at
r = 0, hence the tidal forces grow indefinitely as the singu-
larity is approached. However, a radially infalling observer
bounces back before reaching the singularity [17].

For the Bardeen BH, the function b(r) is positive outside
the event horizon, so that the negative contribution for the
radial tidal force comes only from the anisotropy (σ ), and it
is responsible for the change from the stretching to the com-
pression of the body, similarly to the RN BH case. The radial
tidal force vanishes in two points, r±r t f

0 , which depend lin-
early on the magnetic charge. The angular tidal forces change
sign between the event horizon and the Cauchy horizon. The
occurrence of a point of vanishing angular tidal forces, rat f0 ,
is a consequence of the positive contribution from the energy
density.

For the case of more general magnetically charged reg-
ular BHs determined by additional parameters ν and γ , the
contribution from the anisotropy for the radial tidal force can
be positive [although this is not the case of the Bardeen BH,
which has (ν = 2 and) γ = 3]. We analyzed the tidal forces
in a Bardeen-like BH (ν = 2) with γ = 4. In this case: (i)
the radial tidal force vanishes at three values of the radial
coordinate, namely at r±r t f

0 and at the center of the BH; and
(ii) the angular tidal forces vanish at two points, namely at
rat f0 and also at the center of the BH.

We investigated the case of a Schwarzschild BH with a thin
spherical shell. Although the expressions of the tidal forces
are algebraically the same as in the isolated Schwarzschild
BH case, there is a discontinuity in the b(r) function. For
such configuration, in the region between the event horizon
and the spherical shell, the tidal forces are lower (in modulus)
than the tidal forces of an isolated Schwarzschild BH with
the same ADM mass. This is a consequence of the fact that
the total mass of the system is diluted around the central BH
rather than concentrated as an isolated Schwarzschild BH.

To further illustrate the effects of the matter terms, we
investigated the case in which the BH is surrounded by a
specific anisotropic distribution of matter. This solution was
recently presented in Ref. [58]. We have shown that, even
when the matter contribution is small, the deviations from
the tidal tensor components of the Schwarzschild spacetime
can be non-negligible. We have also shown that the radial
component of the tidal tensor can vanish in a position located
outside the event horizon.

We note that the description presented here is general, in
the sense that it can be extended to deal with other astrophys-

ically relevant setups. For instance, it is argued that dark mat-
ter can accumulate in the surrounding of compact stars and,
therefore, making them dirty [57]. We can straightforwardly
include the quantities describing the dark matter components
in the matter functions of Eqs. (31) and (32), obtaining their
contributions to the tidal force. Additionally, the analysis pre-
sented in this paper can be naturally extended to investigate
tidal forces modifications introduced by general accretion
disks surrounding BHs.
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