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Abstract It is shown that the initial compression in central
heavy ion collisions at beam energies of Ejyp, = 1 —10A GeV
depends dominantly on the underlying equation of state and
only marginally on the model used for the dynamical descrip-
tion. To do so, a procedure to incorporate any equation of state
in the UrQMD transport model is introduced. In particular
we compare the baryon density, temperature and pressure
evolution as well as produced entropy in a relativistic ideal
hydrodynamics approach and the UrQMD transport model,
where the same equation of state is used in both approaches.
Not only is the compression similar if the same equation of
state is used in either dynamical model, but it also strongly
depends on the actual equation of state. These results indi-
cate that the equation of state can be studied with observables
which are sensitive to the initial compression phase and max-
imum compression achieved in heavy ion collisions at these
beam energies.

1 Introduction

The theory of the strong interaction, Quantum Chromody-
namics (QCD), has a plethora of unknown properties and
may offer a rich phase diagram that can only be revealed
in the study of physical systems of very high baryon den-
sity and temperature. The details of the possible chiral and
deconfinement QCD transitions are known, from first prin-
ciple calculations, only in a narrow region close to vanish-
ing baryon density [1-3] where both transitions appear as a
smooth crossover.

4 e-mail: steinheimer @fias.uni-frankfurt.de (corresponding author)

To pin down the properties of hot and dense QCD mat-
ter has become the focus of various experimental programs
ranging from laboratory experiments on earth to astrophys-
ical data obtained from neutron star radii and binary neu-
tron star mergers. Heavy ion collider programs at the BES at
RHIC, NA61/Shine at CERN, CBM at GSI/FAIR, NICA in
Russia and HIAF in China, and J-PARC-HI in Japan aim at
studying the phase diagram of nearly isospin symmetric QCD
matter at baryon densities of several times the nuclear matter
ground state density and temperatures between 50 and more
than 250 MeV. Here, the emphasis is mostly on the explo-
ration of the phase transition of QCD matter from a confined
hadronic phase to a phase where chiral symmetry is restored
and quarks are eventually deconfined.

At the same time, complementary astrophysical observa-
tions of binary neutron star mergers and supernova explo-
sions can also create (iso-spin asymmetric) matter of com-
parable density and temperatures up to 50 MeV [4]. Simi-
larly, to the heavy ion collisions, cold neutron star matter is
dynamically compressed and heated in binary neutron star
mergers (BNSM) which were experimentally detected by
measuring gravitational waves [5-8].

While the systems created in such different scenarios vary
in size over many orders of magnitude, they share a common
unknown and defining property, the equation of state (EoS) of
dense nuclear matter. Extracting the equation of state and its
properties, like phase transitions or softest points, has been
a defining challenge to many experimental and theoretical
programs over the last decade.

To do so, model simulations that can incorporate differ-
ent possible equations of state are compared to experimen-
tal observables. The challenge in such an approach is that
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many features not related to the EoS, such as microscopic
properties, unknown transport parameters or boundary con-
ditions, are not well constrained. In the current ‘state-of-
the-art’ of ultra-relativistic heavy ion collisions, the dynam-
ical evolution of the collisions is divided into roughly three
phases [9-20]. In this so-called ‘standard model of ultra-
relativistic heavy ion collisions’, the reaction starts with an
initial non-equilibrium phase where the kinetic energy of
the two incoming nuclei lose a fraction of their longitudi-
nal momentum and create a pre-equilibrium fireball. This
phase is usually described by string models or QCD inspired
non-equilibrium approaches, e.g. via a color glass conden-
sate model or quantum kinetic theory [21-28]. Due to its
violent non-equilibrium nature this phase of the reaction
does generally not depend on the equation of state. After
this energy deposition and a sufficient equilibration time,
the near-equilibrium evolution can be described by (viscous)
hydrodynamic or transport theoretical approaches. Here, an
equation of state and transport properties of the medium can
be included in the simulations. Finally once the system has
hadronized, hadronic rescattering and the final freeze-out
phase occurs [11,29]. As described above in this approach the
EoS enters in the well defined equilibrium phase. Of course
the applicable degrees of freedom vary with the collision
energy.

However, this ‘standard picture’ is only well justified at
very high beam energies, i.e. when the initial interpenetra-
tion time of the incoming nuclei is very short and can be well
separated from the subsequent expansion. This is generally
found to be the case of heavy ion collisions above /sNN & 15
GeV (corresponding to Ejyp £ 100AGeV), where mainly the
energy of the incoming nuclei is stopped while the baryon
number of the participant nuclei is observed far from mid-
rapidity. At significantly lower beam energies, the interpene-
tration time can last as long or even longer than the expansion
phase. In such a scenario a large amount of the baryon num-
ber is stopped in the central collision region and a system of
high baryon density is created around mid-rapidity.

The lower beam energies are exactly what is needed to
study the EoS at the highest baryon densities. This also means
that here the initial compression phase can not be separated
from the expansion stage and the observables will therefore
also be dependent on the equation of state in the initial com-
pression phase. In particular this will be true in the presence
of a phase transition.

It is therefore necessary to study the effects of the EoS on
the initial compression at lower beam energies and also to
devise new methods on how the dynamical evolution of such
a system can be described. To achieve both of the above, a
consistent treatment of the equation of state throughout the
entire collision is necessary.

The challenges for the present paper are twofold:

@ Springer

— First, a new method is introduced on how a realistic
chiral mean field equation of state (CMF-EoS) can be
incorporated in a non-equilibrium Quantum-Molecular-
Dynamics transport approach (UrQMD).

— Second, the densities and temperatures achieved in this
new approach (UrQMD-CMF) are compared with the
evolution modeled with a relativistic (3+1) dimensional
ideal fluid dynamical approach, where both approaches
incorporate the same equation of state.

Then we ask (I) how sensitive is the initial compression on
the equation of state to the different assumptions made in
both approaches (i.e. full local thermalization in contrast to
(non-)equilibrium transport dynamics) and (II) up to which
beam energy is a simple modeling of the systems evolution
within a one-fluid hydrodynamic model equivalent to that of
a full microscopic transport simulation.

2 Methods

In the following section the models used in the paper are
described. These include the hydrodynamic model with its
initialization routine, and the microscopic transport model
UrQMD. Finally, the equations of state employed in these
models are introduced alongside with the formalism for their
consistent implementation in the dynamical models.

2.1 Hydrodynamic approach

The full 3+1D evolution of a heavy ion collision can be simu-
lated by (ideal) relativistic hydrodynamics.! These equations
describe the conservation of energy and momentum given by

0, T =0, ()
as well as the conservation of the baryon four current
9t =0. 2)

In the following, the SHASTA algorithm [30,31] is used
for the flux-corrected relativistic numerical solution of the
above equations. The equations are solved on a Cartesian
200 x 200 x 200 grid with a cell size 0.2 x 0.2 x 0.2 fm 3
and the time-step is fixed to §t = 0.4 x 0.2 = 0.08 fm/c. To
close this set of hydrodynamical equations an equation of
state is necessary. The EoS can be treated as a free input
to the equations, which is provided by a table, using only
the constraints of strangeness neutral ng = 0 matter with a
charge to baryon fraction of ng/np = 0.4.

The hydrodynamic initial state is given by two counter
streaming Lorenz-contracted Wood-Saxon distributions of

! Currently we neglect viscous and dissipative effects since we are
mainly interested in the bulk evolution of the system
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baryon charge ny s (and corresponding energy density) rep-
resenting the two colliding (cold) nuclei:

no
nws = YCM ———— 51—+ - 3)
1 +exp (—A’a R)

Here, yc s is defined by the collision energy in the center of
mass (C M) frame. Ar is the distance from the nucleus center
and is Lorentz contracted along the z-axis. The parameters
of the WS distribution are the nuclear saturation density n
as well as the nuclei radius R and the surface thickness a.
The values of R = 6.6 fm and a = 0.5 fm correspond to
the known properties of Au nuclei. This initialization proce-
dure, contrary to the ‘standard’ hybrid model, allows for a
hydrodynamic treatment, with inclusion of the EoS, of both
the early entropy production and of the expansion stages,
which is important for low collision energies where the inter-
penetration times are of the same magnitude as the systems
lifetimes.

2.2 Microscopic Transport approach

The non-equilibrium microscopic description of the heavy
ion collisions is done with the UrQMD transport approach
[32,33]. UrQMD is based on the covariant propagation of
hadrons on classical trajectories in combination with stochas-
tic binary scatterings, color string formation and resonance
excitation and decays. The hadrons interaction criteria are
based on a geometric interpretation of their scattering cross
section. The cross sections for these scatterings are taken
either from experimental measurements where available
[34], or are calculated e.g. from the principle of detailed bal-
ance. In its default setup the model corresponds to a hadronic
cascade and can be readily used to describe the final state
spectra of hadrons over a wide range of beam energies. It
was shown that the effective equation of state of the UrQMD
‘cascade model’ corresponds to a Hadron Resonance Gas
(HRG) with the respective degrees of freedom [35].

Extending the equations of motion to non-trivial hadronic
interactions, and consequently to any possible equation of
state, is not straightforward. Early, a non-relativistic QMD
approach [36] was developed to incorporate a density depen-
dent Skyrme interaction [37]. In this QMD part of the UrQMD
model, the change of momenta of the baryons, due to a
density dependent potential, is calculated using the non-
relativistic equations of motion:

3(H) 3 (H)

op; P: or;

I = , (4)
where (H) is the total Hamiltonian function of the system.
The Hamiltonian of each baryon, H; = El]fin + V;, comprises
the kinetic energy and the mean field potential energy V; =
Efie1a/ A of the baryon i. The mean field potential energy per
baryon can be related to a density dependent single particle

energy:

_ - Vi(np)

Ui(np) g

(%)

In the Skyrme UrQMD approach [32,36,37] the density
dependence of the single particle energy for all baryons is
given by a simple form:

Uskyrme (nB) = a(np/no) + B(npg/no)” . (6)

Two out of the three parameters (o, 8 and y) are usu-
ally constraint by the nuclear matter saturation density and
binding energy, while the remaining unconstrained property
is the nuclear incompressibility, defining the so-called stiff-
ness of the EoS. Such a single free parameter approach to
describe the equation of state of dense QCD matter has a sig-
nificant shortcoming: the equation of state for densities above
nuclear saturation is fixed by parameters which are defined
solely at saturation density. A similar problem occurs when a
purely nuclear relativistic mean field model is implemented
in QMD [38,39], although such an approach does also allow
for the inclusion of additional degrees of freedom and thus
a more complex phase structure. Recently, another idea has
been put forward where additional terms are added in equa-
tion Eq. (6) which allow for describing non-trivial features
like a phase transition in the potential [40]. However, this
density functional approach suffers from a serious problem
characteristic to the Skyrme potential: the speed of sound
of this EoS eventually becomes superluminal at large baryon
densities, even at 7 = (. Below we introduce a different way
to replace the limited Skyrme potential by a, more realistic,
density dependent equation of state.

Once the mean field potential is known, the change of
momentum of each baryon in accord with Hamiltons equa-
tions of motion can be calculated as:

0H 3V(l’lB) 8113(1‘,‘)

'» = - = . 7
Pi 31‘,‘ 3n3 31‘,‘ ( )

Besides the derivative of the mean field potential energy,
only the local density and its gradient is required for each
baryon.? This is calculated by assuming that each particle
can be treated as a Gaussian wave packet [32,36]. With such
an assumption, the local interaction baryon density n g (r;) at
location r; of the i-th particle in the computational frame is:

an3/2 5

= (Z)" X Biew(atmi—r?).  @®
Jo J#i

where o = ﬁ, with L = \/E fm, is the effective range of

the interaction. The summation runs over all baryons, B; is
the baryon charge of the j-th baryon.

2 Ignoring a possible momentum dependence of the potential.
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In the following, the QMD implementation will assume,
for simplicity, that the mean field potential for all baryon
types is the same as for the nucleons.

2.3 Equations of state

The present paper aims at estimating the role of a realistic
and cosnsitent equation of state for the compression in heavy
ion collisions. The two approaches to simulating heavy ion
dynamics, introduced in Sects. 2.1 and 2.2, allow to incorpo-
rate the interactions via an EoS. In the following we concen-
trate on two EoSs, a simple ideal HRG, and a realistic Chiral
Mean Field (CMF) model, which incorporates all interac-
tions essential for a realistic description of nuclear matter,
neutron stars, and hot QCD matter.

The HRG model The Hadron Resonance Gas model is an
approximation to confined hadronic QCD matter [41]. It is
based on the assumption that a gas of interacting hadrons can
be described (if the width of the resonances is smaller than
the temperature) by inclusion of all hadron species and their
resonances as explicit degrees of freedom in the partition
function. This partition function then mimics the basic ther-
modynamic properties of QCD at low temperatures and small
densities. The HRG was shown to successfully describe the
properties of lattice QCD thermodynamics below the chiral
transition [42—-49]. However, due to a lack of many-body and
long-range interactions the model is not able to describe basic
features of QCD phenomenology such as a bound nuclear
ground state or deconfinement. Multiple extensions of the
model have been developed over the years (for a survey,
see [5S0-56]). However, all modifications have similar short-
comings as the few-parameter description of the EoS in the
Skyrme model. As discussed earlier the UrQMD model in the
cascade mode will have an equilibrium state that is equiva-
lent to the HRG model description of QCD matter [35]. As
in the cascade mode of UrQMD only elastic scatterings and
resonance excitations occur®, the HRG is a good approxima-
tion for the effective EoS of the model. A comparison of the
hydro simulations with a HRG equation of state and UrQMD
in cascade mode has been used as a reference to study the
effects of instant equilibration on the dynamics [17]. Note, it
is the cascade mode that is commonly used to calculate the
initial compression phase in the prevalent hybrid models of
heavy ion collisions [57].

CMF model The Chiral Mean Field model [58-60] is an
approach for the description of QCD thermodynamics for
a wide range of temperatures and densities. The effective
degrees of freedom of the CMF model include a complete
list of known hadrons as well as the three light quark flavors
plus a gluon contribution. The CMF contains the transition
between quarks and hadronic degrees of freedom, the liquid

3 Here string formation is omitted.
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vapor transition in nuclear matter, as well as chiral symmetry
restoration are driven by mean fields. Parity doubling intro-
duces heavy parity partners to the baryons of the lowest octet
[61,62]. The baryons and their parity partners interact via
mesonic mean fields (attractive scalar o, ¢ and repulsive
w, p, ¢ meson exchanges). The effective masses of the par-
ity partners depend on the chiral fields, therefore the partners
become mass-degenerate as the chiral symmetry is restored.
A detailed description of the CMF model with its parameters
can be found in [63].

The CMF model describes many aspects of QCD phe-
nomenology. It has been successfully applied in an analysis
of lattice QCD data [63], the description of cold neutron stars
[60], and has been employed as EoS in the hydrodynamic
simulations of both heavy ion collisions and binary neutron
star mergers [4,64].

The effective masses of the ground-state octet baryons and
their parity partners (assuming isospin symmetry) read [61]:

my, = \/[(gélb)a + g?b)C)z + (mo + nsms)z]

+ g((fzb)o , ©)]
where the various coupling constants gi}? are determined
by vacuum masses and by nuclear matter properties. mg
refers to a bare mass term of the baryons which is not gen-
erated by the breaking of chiral symmetry, and ngmg is
the SU(3) y-breaking mass term that generates an explicit
mass corresponding to the strangeness n of the baryon. The
single-particle energy of the baryons, therefore, becomes a
function of their momentum & and effective masses: E* =
JEE+ mZ2.

Similar to the effective mass m;* which is modified by
the scalar interactions, the vector interactions lead to a mod-
ification of the effective chemical potentials for the baryons
and their parity partners:

W)y = b — 8wb® — &¢bD — &b P - (10)

Note that the couplings of nucleons and hyperons to the
mean fields were fixed to reproduce nuclear binding energies
Eo/B =~ —15.2 MeV as well as the asymmetry energy So ~
31.9 MeV, and incompressibility Ky & 267 MeV.

The phase diagram of the CMF model includes three crit-
ical regions: the nuclear liquid-vapor phase transition, chiral
symmetry restoration, and the transition to quark matter [60].
The model predicts two first-order phase transitions. The first
one is associated with the nuclear liquid-vapor phase transi-
tion at np ~ ng. The second one appears at about four times
the normal nuclear density 4ng due to the chiral symmetry
restoration. This chiral transition however shows only a small
latent heat and the critical endpoint of this transition occurs
already at Tcp ~ 17 MeV.
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10 T T T

pressure p [g/]

Baryon density n, [n,]

Fig. 1 The CMF equation of state, represented as pressure as a func-
tion of the baryon density, for different values of constant entropy per
baryon (S/A). The black solid line corresponds to the CMF-EoS at zero
temperature, where around 4n a small kink in the pressure due to the
phase transition can be observed. The same relation for the HRG-EoS
at vanishing temperature is also shown as a grey line. The pressure in
the HRG is substantially lower than in the CMF model

The CMF-EoS along different trajectories of fixed entropy
per baryon is shown in Fig. 1. This depiction is useful since
one can see several relevant features in the CMF EoS. First,
along the curve at zero entropy per baryon (7 = 0) a small
kink in the pressure is observed which signals a very weak
phase transition around four times saturation density. This
kink disappears at higher entropies per baryon. Secondly for
values of S/ A up to 10, the pressure only very mildly depends
on the finite temperature and is dominated by the density
dependence.* Finally, we also show the T = 0 EoS in the
HRG model as a grey line compared to the corresponding
black line of the CMF. The CMF shows clearly a much larger
pressure due to the mean field interactions, which will lead
to observable effects in the dynamic simulations.

In the CMF model the single nucleon potential is given by
the interactions with the chiral and repulsive mean fields. At
T = 0, in the CMF model, it can be calculated from the self
energy of the nucleons as:

vac

Ucmr =my —my'“ — uy + 1w, (11)
vac

where m ' and v are the vacuum mass and chemical poten-
tial of the nucleon calculated only from the charge constraints
andmY, and Y, are the corresponding effective nucleon mass
(Eq. (9)) and effective chemical potential (Eq. (10)) gener-
ated through the interactions with the scalar and vector mean
fields.

To set the stage, the CMF potential Ucysr is shown in
panel (a) of Fig. 2 where we contrast the CMF single parti-

4 Which supports our approach of assuming a mainly density dependent
EoS in the implementation in UrQMD later.
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Fig. 2 a Nuclear potential V as a function of baryon density np in
units of the ground-state baryon density for three different potentials
(resulting in a different equations of state). b The resulting field energy
perbaryon Efejq/ A for the three different equations of state. ¢ Derivative
of the field energy per nucleon with respect to the baryon density as
a function of baryon density pp in units of the ground-state baryons
density for three different potentials We show the Chiral mean field
EoS (full orange line) in comparison to the well known hard Skyrme
potential (dotted red line) and the soft Skyrme potential (dotted green
line)

cle potential Ucpsr, as a function of baryon density np in
units of the ground-state baryon density, with two different
Skyrme potentials Ugyy (resulting in different equations of
state). We show the Chiral mean field EoS (full orange line) in
comparison to the well known hard Skyrme potential (dotted
red line) and the soft Skyrme potential (dotted green line).

2.3.1 The CMF EoS in UrQMD

To implement the CMF-EoS in the QMD part of the UrQMD
model we essentially need to calculate the effective field
energy per baryon of any particular model which can then
be used in the QMD equations of motion. In the CMF model
the nucleons interaction is described relativistically via scalar
and vector mean fields which are not present in UrQMD. In
addition, the CMF model is not only restricted to nucleons,

@ Springer
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E,,=1.23 A GeV E,,=2.0 A GeV

HRG-EoS
——CG-HRG
10 - - Hydro-HRG
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| CMF-EoS

—— CG-CMF
- - - Hydro-CMF

net baryon density n [n]
o
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0
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10 15

time t [fm/c]

Fig. 3 Time evolution of the baryon density in the central vol-
ume of the reaction for central Au+Au reactions at Ejp =
1.23,2.0,4.0, 6.0, 10.0A GeV (from left to right). The full lines show
the results of coarse grained UrQMD simulations and the dashed line
shows the results for one-fluid (3+1) dimensional hydrodynamic calcu-

thus, the single nucleon potential Ucy/r as defined in Eq.
(11) is not suitable to calculate the relevant mean field poten-
tial that is required for the equations of motion. Fortunately,
the effective field energy per baryon Efelg/ A calculated from
the CMF model can be used, i.e. the relevant quantity which
enters the equations of motion:

VemF = Efield/ A = Ecmpr/A — Eprg /A, (12)

where Ecmr/ A is the total energy per baryon at T = 0 from
the CMF model and Errg/A is the energy per baryon from a
free non-interacting Fermi-gas. The resulting effective field
energy per baryon, as a function of the baryon density, from
the CMF model is shown as a solid line in panel (b) of Fig. 2,
again compared to the known curves from the hard and soft
Skyrme EoS. Finally, panel (c) of Fig. 2 shows the derivative
of the field energy per nucleon with respect to the baryon
density as a function of baryon density np in units of the
ground-state baryon density for the three different potentials.

@ Springer

lations for the same systems and energies. The green lines in the upper
row are calculated using the hadron resonance gas EoS in hydro and for
the conversion from (g, pp) to the thermodynamic quantities, while the
red lines in the lower row show the results for the CMF-EoS

What can be observed is that the CMF-EoS shows a
behavior similar to that of the soft Skyrme potential for
sub-saturation (up to saturation) density, then becomes even
stiffer than the hard Skyrme potential and finally shows a sig-
nificant softening compared to the hard Skyrme which essen-
tially becomes superluminal at large densities. Around four
times nuclear saturation density the CMF-EoS shows a small
kink in the derivative of the field energy per baryon which is
due to the weak chiral phase transition at 7 = 0. Since this
transition is only very weak we expect no significant effects
of this transition on the dynamic evolution, in particular at
finite temperatures where the kink will be smeared out by the
thermal energy.

Regarding its phase structure, the CMF model has several
appealing features:

1. A nuclear incompressibility compatible with experimen-
tal observations.
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Fig. 4 Time evolution of the average Temperature in the central
volume of the reaction for central Au+Au reactions at Epp =
1.23,2.0,4.0, 6.0, 10.0A GeV (from left to right). The full lines show
the results of coarse grained UrQMD simulations and the dashed line
shows the results for one-fluid (3+1) dimensional hydrodynamic calcu-
lations for the same systems and energies. The green lines in the upper

2. A stiff super-saturation nuclear equation of state which
is required to explain astrophysical observations.

3. A “softening” of the equation of state at even higher den-
sities due to the slow approach to the high density limit
of a free gas of three quark flavors.

Having now established a method in which any equation of
state can be easily introduced in the QMD part of UrQMD,
we will first study the dynamic evolution of bulk proper-
ties and their dependence on the EoS in the two dynamical
approaches, hydrodynamics and microscopic transport.

3 Results on the bulk evolution properties

In this first work we will focus solely on bulk properties of the
fireball created in central heavy ion collisions to establish the
gross features of the CMF-EoS in the transport and hydrody-

row are calculated using the hadron resonance gas EoS in hydro and
for the conversion from (g, pp) to the thermodynamic quantities, while
the red lines in the lower row show the results for the CMF EoS. In the
coarse-graining procedure, only participants are used for the averaging,
so the Temperature appears to ‘jump’ to a finite value

namic simulations. While it is known that other observables
like radial flow and its higher moments can be very sensitive
to the equation of state, the main focus of the present work
is to establish the effect of the equation of state on the sys-
tem created in different dynamical implementations of the
same EoS. Studies of flow, cluster production as well as cor-
relations and fluctuations will be explored in detail in future
investigations.

In the hydrodynamic model the expected properties of
matter at different beam energies can be extracted in a
straightforward way. Here, only one single event per beam
energy, with impact parameter b = 2 fm, is sufficient to aver-
age the thermodynamic properties in the central volume (a
cubic volume of length/ = 2 fm) of central Au+Au collisions
at various beam energies. The local energy density and net
baryon density are explicitly propagated in the hydrodynamic
framework and quantities like the Temperature, pressure as
well as entropy density can be directly and unambiguously

@ Springer
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Expansion trajectories
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Density n; [n]

Fig. 5 Expansion trajectories (along the time evolution in the central
cell) in the temperature-baryons density plane for central Au+Au reac-
tions at Ejpp = 1.23, 2.0, 4.0, 6.0, 10.0A GeV (from left to right). The
full lines show the results of coarse grained UrQMD simulations and the
dashed line shows the results for one-fluid (3+1) dimensional hydrody-

related to these volume averaged densities via the equation
of state.

In the microscopic transport treatment, the equivalent
expectation values for the local energy and baryon number
densities can also be calculated by a coarse graining proce-
dure [65]. In this procedure, a large number of events of a
given beam energy and centrality are calculated and the total
energy and baryon density in the central volume, a cube of
length 2 fm, can be calculated as sum of the energy and net
baryon charge of participants in that volume. In this study, for
a given beam energy, we use 1000 events with impact param-
eter less than 3.4 fm to perform the coarse graining. To extract
the thermodynamic quantities like Temperature, pressure and
entropy density a mapping to the effective equation of state,
that is used, is necessary. In our simulations this mapping is
done by using either the HRG-EoS (for the UrQMD cascade
simulations) or the CMF-EoS (for the corresponding CMF-
UrQMD simulation). Note that this procedure assumes that
the system is close to local equilibrium which is not neces-
sarily the case in the UrQMD transport model, especially at
very early and late times. Thus the extracted values for the
temperature, pressure and entropy density may (and as we
later see will) vary due to deviations from equilibrium.

We begin in Fig. 3 with a comparison of the time evolution
of the baryon density in the central volume of the reaction for
central Au+Aureactions at E,p, = 1.23, 2.0, 4.0, 6.0, 10.0A
GeV (from left to right). The full lines show the results of the
coarse grained UrQMD simulations, the dashed lines show

@ Springer

namic calculations for the same systems and energies. The green lines
show the results using the hadron resonance gas EoS for the conversion
from (e, np) to the thermodynamic quantities, while the red lines show
the results for the CMF-EoS

the results for the one-fluid 3+1 dimensional hydrodynamic
calculations for the same systems and energies. The green
lines show the results using the HRG-EoS in hydro and for
the coarse-graining conversion from (e, pp) to the thermo-
dynamic quantities, while the red lines show the results for
the CMF-EoS.

In the time evolution of the baryon density in Fig. 3 one
can clearly observe that the full hydrodynamic simulation
and the transport simulation with the CMF-EoS give almost
identical results up to the highest beam energies. Only for the
beam energy of Ejy, = 10.0A GeV the transport simulation
yields a smaller compression due to the effect of transparency
which cannot be described in a 1-fluid simulation (although
it is known that 3-fluid models can reproduce this effect). In
the case of the HRG-EoS compared to the cascade model, the
agreement of the density evolution is not as exact, yet still
comparable. This is somewhat expected since the EoS in the
cascade mode is not explicitly introduced and enters only
implicitly by the set of degrees of freedoms. The fact that the
transport model and the hydrodynamic model agree so well
in the compression is not a trivial result but shows clearly,
that the maximally reached compression, for low beam ener-
gies where transparency can be neglected, does to first order
depend on the work that needs to be done against the pressure
of the compressed system. The compression reached varies
drastically, by almost a factor of 2, between the two equa-
tions of state used. This finding has important consequences
since it means any observable that is sensitive to the maximal
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Fig. 6 Time evolution of the pressure in units of the ground-state
energy density in the central cell of the reaction for central Au+Au
reactions at Ejyp = 1.23, 2.0, 4.0, 6.0, 10.0A GeV (from left to right).
The full lines show the results of coarse grained UrQMD simulations and
the dashed line shows the results for one-fluid (3+1) dimensional hydro-

compression reached in these collisions would be a very good
and almost model independent messenger for the equation of
state of dense QCD matter.

Figure 4 shows the time evolution of the equilibrium tem-
perature in the central volume of the same reactions. The col-
ors and line styles are the same as in Fig. 3. In the comparison
of the (equilibrium) temperature, the differences between the
hydro and transport approaches are more obvious. In partic-
ular at very early times, the temperature in the coarse grained
transport simulations is significantly larger than in the fluid
simulation. This can be understood as an effect of the non-
equilibrium state of the microscopic transport which is then
mapped on an equilibrium temperature. The effect of the non-
equilibrium is not observed in the baryon density which is
explicitly propagated and conserved in both approaches but
in the temperature which is inferred implicitly. Nevertheless,
after a few fm/c, even in the non-equilibrium approach the
temperatures reached agree within 5-10 MeV. Notably the
HRG simulations give also a systematically larger tempera-
ture, however the increase as compared to the CMF is only
on the order of 10 MeV.

Having extracted the time evolution of the baryon density
as well as the effective temperature, the expansion dynamics
of the systems studied can also be depicted in the T-n p phase
diagram.

Therefore, we explore the expansion trajectories along the
time evolution in the central cell in Fig. 5 in the temperature-
baryon density plane for central Au+Au reactions at Ejy, =
1.23,2.0,4.0,6.0, 10.0A GeV (from left to right). The full

dynamic calculations for the same systems and energies. The green lines
show the results using the hadron resonance gas EoS for the conversion
from (e, pp) to the thermodynamic quantities, while the red lines show
the results for the CMF-EoS

lines show the results of coarse grained UrQMD simulations
and the dashed line shows the results for one-fluid (3+1)
dimensional hydrodynamic calculations for the same systems
and energies. The green lines show the results using the HRG-
EoS for the conversation from (¢, ng) to the thermodynamic
quantities, while the red lines show the results for the CMF-
EoS. Note that for this comparison, we start the trajectories at
the point of largest compression after which, in the case of the
ideal hydrodynamics, they follow lines of constant entropy
per baryon.

The most significant difference is that the HRG curves
start at a much larger density. On the other hand, the trajec-
tories become very close at lower densities. This means that
at the time that the systems reach freeze out, at ng < no, the
thermodynamic conditions are very similar for the different
models and equations of state.

Much of the compression as well as consecutive expan-
sion of the system strongly depends on the pressure reached
during the initial phase. As we have seen a higher pressure in
the EoS (harder EoS) leads to smaller densities. On the other
hand the amount of radial as well as directed and elliptic
flow produced will depend on the pressure which drives the
expansion stage. Finally, we show in Fig. 6 the time evolution
of the pressure in units of the ground-state energy density in
the central cell of the reaction for central Au+Au reactions
at Epp = 1.23,2.0,4.0, 6.0, 10.0A GeV (from left to right).
The full lines show the results of coarse grained UrQMD sim-
ulations and the dashed line show the results for one-fluid
(3+1) dimensional hydrodynamic calculations for the same

@ Springer
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systems and energies. The green lines show the results using
the HRG-EoS, while the red lines show the results for the
CMF-EoS. Again, the extraction of the pressure from the
local densities (g, np) is straightforward in the hydro model
while for the coarse grained approach we assume local equi-
librium and isotropic pressure which allows us to read of the
effective pressure from the EoS table as described above.

Most notably is that the maximum pressure is reached at
different times, depending on the equation of state used. This
is due to the maximum density also being reached at differ-
ent times as shown in Fig. 3. This different time dependence
of the pressure evolution is likely to have significant conse-
quences on the generated flow, which we will study in detail
in a forthcoming publication.

3.1 Entropy production

As shown in Fig. 5 the expansion in both the hydro and
transport models follows approximately the same isentropic
trajectories. However, we expect that the final entropy per
baryon will be different in the two approaches since the
microscopic transport has a finite viscosity (shear and bulk)
and the system will be only in partial chemical equilibrium at
best. To complete the comparison, Fig. 7 depicts the entropy
production per baryon as a function of beam energy for cen-
tral Au+Au reactions in the energy range from Ejpp = 1.23A
GeV to 10A GeV. The lines denote calculations using the
coarse grained UrQMD model with CMF-EoS (full red line),
the 3+1D one-fluid hydrodynamics calculation (dotted red
line) and the one-dimensional relativistic shock model, i.e.
the Taub adiabate (dashed grey line). For the hydrodynamics
as well as the UrQMD coarse grained simulations, the entropy
was extracted from the CMF model implicitly, as described
for the temperature above, knowing the local energy and
baryon densities. In the case of the hydro simulation, S/A
as a function of time is essentially a constant throughout the
expansion stage. In the transport simulation it only shows
a slight increase. Here, we compare the values of S/A at
the end of the expansion i.e. when the density drops below
np = ng. The full 3+1D ideal hydrodynamic simulation
produces almost exactly the same entropy per baryon as the
analytic 1-D shock solution (Taub adiabat). In general the
entropy per baryon in the hydrodynamic case is smaller than
in the non-equilibrium transport which is expected. The dif-
ference between these two scenarios grows with increasing
energy which is also expected from the increasing trans-
parency which leaves a smaller baryon number in the center
of the collision zone. Furthermore, it is known that the sys-
tem at late times can only be describes as being in partial
chemical equilibrium. Mapping such a system onto an equi-
librium EoS to calculate the entropy per baryon will yield
larger values of the effective (equilibrium) S/A.
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Fig. 7 Entropy production per baryon as a function of beam energy
for central Au+Au reactions in the energy range from Ejyp, = 1.23A
GeV to 10A GeV. The lines denote calculations using the coarse grained
UrQMD model with CMF EoS (full red line), a one-fluid hydrodynamics
calculation (dotted red line) and the one-dimensional shock model, i.e.
the Taub adiabate (dashed grey line)

4 Conclusion

A method was introduced that enables us to implement any
density dependent equation of state in the QMD part of
the UrQMD model. It was shown that for low beam ener-
gies Ejgp, < 6A GeV, the bulk evolution of the density
in this new description agrees very well with a relativis-
tic 1-fluid simulation with the same equation of state. The
effective temperature from the UrQMD simulation is slightly
increased compared to the ideal hydrodynamic model due to
non-equilibrium effects. Our results highlight the importance
of the equation of state for the initial compression phase in
nuclear collisions at low beam energies and, at the same time,
provide a method on how it can be introduced in a consistent
manner.

It was also shown that the expansion in both models fol-
lows closely an almost isentropic expansion as expected for
the corresponding EoS.

In the present study the CMF equation of state was used for
both the hydro and UrQMD evolution. It describes properties
of dense nuclear matter, astrophysical observables as well
lattice QCD thermodynamics and includes a transition from
hadronic to quark degrees of freedom.

The total entropy per baryon produced in both scenarios
was compared and it was found that the Ur QMD model shows
a slightly increased entropy production at low beam energies
due to the non-equilibrium nature of the transport simulation.
The entropy per baryon at the highest beam energies under
investigation are significantly higher in the transport model
due to the expected baryon transparency which transports
the net baryon number away from mid-rapidity. However,
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the application of the presented approach is questionable for
higher beam energies, where the stopping and energy depo-
sition is dominated by partonic interactions (e.g. strings) for
which the baryonic mean field QMD approach is not a suit-
able description.

Having established this new method enables us to now
study the effect of different possible equations of state within
the microscopic transport approach. The only assumptions
are that the EoS is dominated by its density dependence
i.e. fermions, and the effective potentials which govern the
interactions have only a mild explicit temperature depen-
dence. One should note that the density dependent forces that
are assumed, are independent of the degree of equilibration
reached throughout the collision.

In the future this method can readily be extended to include
also a strong first order phase transition. This consistent
description of the whole collision that does not require any
ad-hoc matching of different phases will allow us to study
possible observable signals of this transition in heavy ion
collisions.
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