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Abstract In this review, we present the ongoing develop-
ments in bridging the gap between holography and exper-
iments. To this end, we discuss information scrambling
and models of quantum teleportation via Gao–Jafferis–Wall
wormhole teleportation. We review the essential basics and
summarize some of the recent works that have so far been
obtained in quantum simulators towards a goal of realizing
analogous models of holography in a lab.

1 Introduction

Holographic correspondence has been the most surprising
and celebrated conjecture [1–4] for almost three decades
now. It connects special quantum field theories (called the
boundary theory) to gravity living in one extra dimension
(called the bulk theory). Using the holographic toolbox, sev-
eral advances have been made in the physics of strongly
coupled quantum field theories – the transport properties
in hydrodynamics [5–14], renormalization group flow [15–
28], and entanglement entropy [29–40], to name a few. At
a more microscopic level, the relations established between
the geometry and quantum entanglement through the entan-
glement entropy proposal from Ryu and Takayanagi [29],
ER=EPR [41,42] have been suggestive of the fact that the
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gravity is an emergent phenomenon [43–57].1

On the other side of the duality are gravity and black holes.
The duality has also helped to advance us to understand
the quantum nature of black holes [58] through quantum
information processing in the boundary quantum systems.
In recent years, the simplicity and analytic amenability of
the duality between Sachdev–Ye–Kitaev (SYK) model and
nearly Anti-de Sitter spacetime [59–64] has served as a guid-
ing lamppost for many developments in our understanding
of black holes. This refers to, but is not limited to, quantum
chaotic properties of black holes [65–69], and recent progress
towards the black hole information paradox [70,71].

Towards the information content of the Hawking radia-
tion, Hayden and Preskill [72] proposed a fascinating thought
experiment wherein information thrown into an old black
hole can be recovered quickly having observed only a few
quanta of Hawking radiation. This proposal was later made
concrete for generic quantum systems by providing mecha-
nisms for decoding the intended information [73]. At a first
thought, one can visualize decoding of information in a quan-
tum circuit as a form of teleportation of information from the
input to the output. Whether or when the above is true con-
stitutes some parts of this review. It has been recently argued
that the Hayden–Preskill inspired information decoding cir-
cuits for generic quantum channels are actually similar (and
same in some limits) to the circuits inspired by teleportation
through a wormhole [74–76].

1 References in all of these cases are by no means exhaustive. Readers
are encouraged to consult the references and the citations of the papers
mentioned in the main text.
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In the first part of this review we discuss these concepts
and provide a summary of recent developments on worm-
hole teleportation inspired quantum circuits. We begin with
holographic dictionary connecting eternal black holes to ther-
mofield double state (TFD) [77] where the two asymptotic
regions of left and right black holes are causally discon-
nected. What it means is that any perturbation on one side
can not travel to the other, thus such two-sided wormholes are
not traversable (see more on wormholes in [78]). Traversable
wormholes have fascinated researchers for long [79], how-
ever it is also known that we need to violate null energy
conditions, or inject negative energy, in order to achieve
traversability [80–82]. To this end, Gao et al. [83], followed
by [84], put forth a seminal work where a coupling between
the two-sided geometry was proposed, that renders the worm-
hole traversable.

Remarkably, the Hayden–Preskill and Gao–Jafferis–Wall
protocols are quite generally applicable for quantum many-
body systems, and can be realized in the lab using pro-
grammable quantum devices. This is possible due to tremen-
dous experimental advances in noisy intermediate scale
quantum (NISQ) devices [85,86], which provide a powerful
toolset for analog and universal digital quantum simulation.

In the second part of our review, we describe how these
protocols can be implemented in a lab with quantum simu-
lators. Geared towards the goal of observing quantum grav-
ity in a lab, in the holographic language, one requires ini-
tially a bridge to translate the tools of holography in terms
of many-body dynamics, see also [87] for a review of the
connection between holography and quantum many-body
dynamics. Quantum simulators provide unique opportunities
to study the time evolution of many-body systems in highly
controlled laboratory settings. In this direction, we describe
two out of many quantum simulation platforms – based on
trapped ions [88,89] and Rydberg atoms [90]. We emphasis
that while an observation of models marking dynamics dual
to black holes is still far away, the preparation and bench-
marking steps provide promising directions for future exper-
iments. For example, this refers to protocols [91–93] and
preparation of TFD states [94–97], observation of Hayden–
Preskill variant of quantum teleportation [98], and theoretical
proposals [93,99–108] and experimental observation of out-
of-time-ordered correlators (OTOC) [98,109–116] in small-
scale quantum simulators.

Overview: This review is organized as follows: in Sect. 2, we
review some basics of the holographic correspondence. To be
concrete, we present the example of duality between eternal
black holes and TFD states and discuss how the wormholes
are made traversable by introducing double trace deforma-
tion. In Sect. 3, we discuss and set up basic notations regard-
ing the information spread in quantum systems. We describe
that the spread of initial information and the measures of

it are the central mechanisms to understand teleportation in
quantum circuits. In this section we also review the Hayden–
Preskill protocol, and its variant generically applicable to
quantum dynamics. In Sect. 4, we discuss the circuits, moti-
vated from the wormhole teleportation, as teleportation cir-
cuits for many-body dynamics. We present a mechanism of
transfer based on operator size and summarize the recent
results. In Sect. 5, we describe in detail two platforms for
quantum simulation, and present realization of many-body
models in Sect. 6. We then present the measurement proto-
cols, directly accessible in experiments, to measure OTOC
and perform many-body teleportation in Sect. 7. We conclude
in Sect. 8 with some additional remarks and future prospects.

2 AdSd+1/CFTd and Wormhole

AdS/CFT correspondence can be embodied in various
avatars, but we will only briefly review some aspects of it
which will be relevant for the rest of the review. Essentially,
the AdS/CFT duality links two different theories: a confor-
mal field theory (CFT) which is strongly coupled (typically
a large N gauge theory) and a weakly coupled gravity theory
defined on the background of Anti-de Sitter (AdS) space-
time which is a spacetime with a negative curvature [1–3].
d + 1 dimensional AdS spacetime represents the maximally
symmetric solution for the Einstein field equation with a neg-
ative cosmological constant Λ = − d(d−1)

2 L2 , where L is the
AdS radius. The most well-understood example of this dual-
ity comes from the String theory. It has been demonstrated
in [1–4], that there exists an equivalence between a strongly
coupled N = 4 supersymmetric SU (N ) Yang-Mills (SYM)
theory and Type I I B String theory on AdS5 × S5 in the
large N limit, where N is the rank of the gauge group. In
this context, one first starts with a stack of N number of D3-
branes. The low energy dynamics of it is described byN = 4
SYM with a Gauge group SU (N ) with the ’t-Hooft coupling
λ = g2

YM N , where gYM denotes the Yang-Mills coupling.
We can analyze this theory perturbatively when λ � 1. On
the other hand, we can have a 10-dimensional metric solu-
tion emerging from the low energy description of Type I I B
String theory,

ds2 = α′[ r2

√
4πgs N

(−dt2 + dx2
1 + dx2

2 + dx2
3 )

+√
4πgs N

dr

r2 + √
4πgs N dΩ2

5

]
, (1)

where gs is the string coupling. We work in α′ → 0 limit
where α′ is the string tension. In this limit we can effectively
neglect any stringy effect and hence work in the supergravity
limit (which is essentially a Type I I B Supergravity theory
for this case). In the AdS/CFT duality the couplings on the
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two sides are related by

λ = g2
YM N = 2π gs N . (2)

We can identify L2 = α′
√

2 g2
YM N . After this, we can easily

see from (1) that the spacetime described by (1) is nothing
but AdS5 × S5. The supergravity limit necessarily implies,

( L

ls

)4 = 2 g2
YM N � 1, (3)

where we have used the fact that the string length ls = √
α′.

This equation simply tells us that, classical gravity descrip-
tion is valid when the AdS length scale is much bigger than
the string length and from our previous identification the ’t-
Hooft coupling becomes very large. We have classical grav-
ity (and weakly coupled) description in the bulk in the limit
described in (3) and it is equivalent to a strongly coupled
gauge theory at the boundary for which standard perturbation
theory will not work anymore. Also, the Newton’s constant
(10-dimensional) which is the coupling for the gravity theory
can be shown,

8 π G10 = (2π)7 α′4g2
s . (4)

From this, it is evident that the gravity theory is weakly cou-
pled. Then the 5-dimensional Newton’s constant G5 can be
related to G10 by simply dividing it by the volume of unit
5-sphere [117].

Although this conjecture has not been proven yet, it passes
several essential checks, such as matching the spectrum of
chiral operators and correlation functions. One obtains a pre-
cise dictionary between field theory correlators and corre-
lators of fields living inside the AdS spacetime [1–3,117–
119].2 Holography is being used to study hydrodynamic
transport coefficients, phase transitions in condensed matter
systems, some aspects of QCD, open quantum systems, quan-
tum chaos, black hole information paradox etc [13,40,120–
128].3

Although evidence supports the holographic principle, it
is still not clear how gravity emerges from field theory. In
recent times, tools of information-theoretic quantities, e.g.
entanglement, have provided a more profound insight into
the inner workings of AdS/CFT, see a recent review [129] on
bulk emergence and quantum error correction in holography.
Following holography, a plethora of interesting studies have
resulted [40,123] and several setups based on quantum infor-
mation scrambling have been proposed to test certain predic-
tions coming from holography. In the rest of this review, we

2 More details about the dictionary are given in the Appendix A.
3 We encourage interested readers to consult [117] and the references
therein for a comprehensive review of AdS/CFT and its applications.

Fig. 1 Following, Ref. [133], the figure depicts that the entanglement
product of two disconnected CFT corresponds to a connected geometry,
Penrose diagram of which is shown in the right, explained later in Fig. 2

will discuss some of them. Also, we will work in natural units
where we will set c = h̄ = kB = 1.

2.1 ER = EPR and wormholes

We know that quantum mechanics allows for Einstein–
Podolsky–Rosen (EPR) correlations [130], which basically
stem from the underlying entanglement structure of the wave-
function describing the system. On the other hand, one can
find solutions in general relativity that can connect far away
points of spacetime via wormholes [131] which are called
Einstein–Rosen bridges (ER) [132]. These two phenomena
seem to challenge the notion of locality [130]. The local-
ity plays an important role in physics, primarily because we
cannot send a signal faster than light. From the point of view
of spacetime, all points of spacetime are not causally con-
nected. Maldacena and Susskind later proposed in [41,42]
that these two effects are related. In the context of AdS/CFT
duality, two entangled copies of a conformal field theory hav-
ing EPR-type correlation have a bulk dual that connects them
through a wormhole. In particular, two black holes that are
spatially far away but have EPR correlation between their
microstates described by CFT are actually connected through
an ER bridge. To elaborate a little bit more, let us take an anal-
ogy from quantum mechanics. Let us consider two CFTs on
two spatially disconnected regions A and B, and consider the
following wavefunction,

|ψ〉 = |ψA〉 ⊗ |ψB〉, (5)

where |ψA〉 and |ψB〉 are the wavefunctions of the two non-
interacting CFTs at A and B. From (5), it is evident that |ψ〉
does not have any entanglement as it is a direct product state.
This can be confirmed by computing von-Neumann entropy
by tracing out either A or B. This state corresponds to two
disconnected geometries in the context of holography [133].

Now following [133], we can consider two CFTs placed
on Sd and let us denote the i th energy eigenstate of each CFT
by Ei . Then let us consider the following wavefunction (up
to some normalization) ,

|ψ〉 ∝
n∑

i=1

e− βEi
2 |Ei 〉 ⊗ |Ei 〉. (6)
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Fig. 2 Penrose diagram representing an eternal Schwarzschild-AdS
black hole [58]. Also shown are the left and right boundaries where the
CFT lies and which the system is dual to. The diagonal lines represent
the left and right black hole’s horizons. r = 0 corresponds to the sin-
gularity of the spacetime. The original exterior region is the right one
(R) and the new exterior is the left one (L). No radial null geodesic can
escape the future interior into one of the exterior and no null geodesic
can connect the left and right exterior

This is basically a sum of the product state |Ei 〉⊗|Ei 〉. From
(6) it is evident that this state does contain some amount of
entanglement, which can be estimated by computing von-
Neumann entropy by tracing out one of the CFTs. This is
a particular example of the so-called “thermofield double”
state. In the context of holography, this can be shown to be
dual to a Euclidean “eternal black hole” geometry [77] as
shown in the Fig. 1, which is basically a two-sided Euclidean
black hole. So the quantum superposition of two states of two
classically disconnected CFTs corresponds to a classically
connected geometry (for our case, the two sides are connected
by ER bridge). Next, we briefly discuss the geometry of this
two-sided black hole.

Eternal black holeWe consider the eternal AdS black hole
with two asymptotic regions. Its Penrose diagram is depicted
in Fig. 2. An eternal black hole consists of two causally dis-
connected black holes that share a common time [77]. The
separated spaces have non-interacting degrees of freedom,
but the two black holes are highly entangled [58], and they
form a wormhole that connects both of them [58]. To elab-
orate a little more, let us consider the example of Euclidean
non-rotating Bañados–Teitelboim–Zanelli (BTZ) metric,4

ds2 = f (r)dτ 2 + dr2

f (r)
+ r2dφ2, (7)

where f (r) = r2−r2+
L2 , L is the AdS radius, r = r+ is the hori-

zon where the f (r) vanishes. The period of the τ coordinate
β = 2π L2

r+ is identified with the inverse of the temperature T
of the black hole. The period of φ is 2π. Together τ and φ

4 For the Euclidean case, we have analytically continued the Lorentzian
time: t → i τ.

provide the coordinates for the space on which the dual CFT
is defined. The metric becomes ill-defined at r = r+ but this
is just a coordinate singularity. One can define the following
coordinate transformation,

U = −e−κ u, V = eκ v, (8)

where κ = r+
l2

is the surface gravity and u, v = i τ ± r∗,
with,

r∗ = −
∫ ∞

r

dr ′

f (r ′)
= L2

2r+
log

[ r − r+
r + r+

]
.

This is nothing but a Kruskal transformation [58]. The metric
becomes,

ds2 = −4 L2 dU dV

(1 +U V )2 + r2+ (1 −U V )2

(1 +U V )2 dφ2. (9)

U = 0 and V = 0 are the two horizons. From (9), it is evi-
dent that the metric is well defined even when either U = 0
or V = 0. While doing the coordinate transformation, we
implicitly assumed that r > r+, thereby making U negative
and V positive. Similarly, for the region r < r+ we can per-
form the same type of coordinate transformation only with
the difference that for that case, U will be positive and V
will be negative. Then we again end up with the same form
of the metric as shown in (9). Finally, the Penrose diagram
for the spacetime looks like as shown in Fig. 2.5 The space-
time now has four regions, as shown in the Fig. 2. The two
singularities occur at U V = 1 (r = 0), and the U V = −1
(r = ∞) corresponds to the two asymptotic AdS bound-
aries. Combining all four regions, we can now interpret the
full two-sided Euclidean BTZ space as a wormhole connect-
ing the two asymptotically-AdS spaces. The wormhole is
non-traversable in the sense that no signal can be sent from
the region- L to the region R as shown in the Fig. 2, but
two people, Alice and Bob, will be able to jump from these
two sides and reach the middle point (the bifurcation point
where U = 0 and V = 0 line intersect as shown in the
Fig. 2) and exchange notes. Although we have used mainly
the BTZ metric, all these analyses can be extended to higher
dimensions.

Thermofield double state As we know that the
AdS/CFT is a two-way street, we briefly now discuss the
dual of this geometry. Within the context of holography,
each geometry corresponds to a certain state of the dual field

5 Note that, to draw the Penrose diagram, we need to do further a
conformal compactification of the metric defined in (9). This can be done
by using a particular coordinate transformation and then throwing out
an overall conformal factor. Interested readers are referred to [58,134]
for more details. Also, we have ignored the angular coordinate. Each of
the points on Fig. 2 corresponds to a S1.
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theory. From the boundary point of view, the CFT lives on
a space described by two coordinates, both of which are
periodic. The space looks like a product of two spheres:
S1
β × Sd−1. Sβ is coming from the τ coordinate, and Sd−1

is coming from the rest of the angular coordinates. For (eter-
nal) BTZ, we have d = 2, and for a constant time slice,
the boundary will be the sum of two disconnected spheres
S1 + S1. Then the Euclidean time direction then connects
these two spheres. Then following [77], we can write down
the dual state as,

|ψ〉 = 1√
Z(β)

∑
j

e−βE j /2|E j 〉L ⊗ |E∗
j 〉R , (10)

where |Ei 〉 denotes the energy eigenstate of the CFT placed
on the sphere, L and R indicate the two asymptotic regions,
the sum over i goes over all the eigenstates6 and Z(β) is the
thermal partition function for one copy of the CFT. The star
denotes the CPT conjugation. From (10) it is evident that this
state is an entangled state defined on a Hilbert space of the
form H = HL ⊗HR . In general finite dimensional quantum
systems, TFD is a useful way to purify a given thermal state,
we discuss this aspect in the next Sect. 3.

Due to the presence of the factor e−βE j /2, one can easily
see (by computing the von-Neumann entropy by tracing one
of the subsystems, either L or R) that |ψ〉 possesses non-
vanishing entanglement. From the wavefunction |ψ〉 in (10),
we can compute the thermal expectation value of any operator
in the following way,

〈ψ |OL |ψ〉 = Tr(ρβ
L OL), (11)

where, OL
7 is an operator which acts on the left asymptotic

boundary. Then one can trace over the right region, and effec-
tively the expectation value of this operator will be given by
tracing over the reduced density matrix of the left region
(ρβ

L ) times the operator OL . The reduced density matrix ρ
β
L

comes from the fact that we have traced out the right region
entirely. The subscript β denotes the fact that it is a thermal
density matrix that arises due to the entanglement between
the two copies. Similarly, one can compute higher point cor-
relation functions also. On the dual side, one can use the
standard techniques of holography to compute these corre-
lators. Following [77,135] we will below quote the result
for two-point functions of two spinless primary operators of
scaling dimension Δ8 acting on L and R boundaries (both at

6 At this point, we are still in the field theory limit. Hence this sum goes
up to ∞ as we are dealing with infinite-dimensional Hilbert space.
7 This should be read as OL ⊗ IR, IR is the identity operator acting
on the right region.
8 In the context of AdS/CFT, this corresponds to scalar fields on AdS
with a certain mass.

Fig. 3 Alice and Bob are accelerating near the left and right boundary.
Alice sends a signal at time −t at the left boundary, (shown by yellow
dashes). Instead of reaching Bob, it will be lost into the singularity as
no light like trajectory can escape into one of exterior region from the
other, bypassing the future interior

t = 0) respectively.9

〈ψ |OR(0, φR)OL(0, φL)|ψ〉 ∼
∞∑

n=−∞

1[
1 + cosh

(
2π(φR−φL )+2π n

β

)]2Δ
.

(12)

From (12), it is evident that we indeed get non-vanishing cor-
relations between two operators acting on two disconnected
CFTs. This is because the underlying geometry and the dual
state have some entanglement, although the two boundary
regions are causally disconnected. This provides evidence to
the ER=EPR conjecture discussed previously.

2.2 Teleportation through traversable Wormholes

The rest of the review will mainly focus on quantum infor-
mation spreading and its implications for holography. Partic-
ularly, we will focus on the teleportation of quantum infor-
mation and the corresponding holographic model. This pro-
vides us with an interesting playground to test some of the
predictions from holography in the experimental setting. It is
evident from our previous discussion that wormholes provide
an ideal setting for quantum teleportation [136] because they
have EPR-like correlations. However, the wormhole that we
have discussed previously is not traversable [58,131].

As shown in the Fig. 3, Alice sends a signal from the
left boundary at some time −t. She is accelerating near the
left boundary, as shown by the hyperbolic trajectory. She
hopes that Bob, who is accelerating near the right boundary,

9 Following [135], one can compute this correlator by using the standard
holographic method. One first computes the bulk to boundary propaga-
tor using the method of image; hence one has to shift the φ coordinate
by the factor of 2πn and then sum over all the values of n.
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will receive the signal. But as evident from the diagram, as
the signal moves at the speed of light, it will always hit the
singularity and Bob will never receive it. So we cannot send
a signal through this non-traversable wormhole even if it
possesses EPR-like correlation.

For teleportation, we need a traversable wormhole [137].
The exact protocols for quantum teleportation through a
traversable wormhole will be reviewed in detail in the later
sections. In this section, we briefly discuss the argument put
forward in [83,84] to make a traversable wormhole. It is well
known that in general relativity, the traversable wormhole
only occurs when the stress tensor for the matter sector vio-
lates the null energy condition [83,138–140]. In the context
of AdS/CFT, there is a precise protocol to achieve this, and we
will discuss this in the context of the eternal AdS black hole
following Ref. [83]. We first deform the system by adding
a relevant double trace deformation. So the change in the
action (boundary CFT action) is given by,10

δS =
∫

dt dd−1x h(t, x)OR(t, x)OL(−t, x), (13)

where OL and OR are scalar operators with scaling dimen-
sion less than d

2 and acting on the left and right boundary,
respectively. For the case of the eternal BTZ black hole [134],
d + 1 = 3 and x will be the azimuthal coordinate φ. By
AdS/CFT dictionary, these two operators will be dual to a
scalar field ϕ with certain mass propagating inside the bulk
spacetime. Also, we remember that time runs in the opposite
direction in left and right wedges of this eternal geometry.
The function h(t, x) is turned on only after a certain time,
which is referred to as “turn-on” time. The integral over time
makes sure that we do not get contribution from very high
energy states. In the path-integral, this will have the contri-
bution of the form ∼ ei δS . In the subsequent section, we will
ignore this time integral following [84] then we will have the
contribution to the path integral simply as ∼ ei g̃OL (0)OR(0),

where g̃ is an overall coupling constant. OL(0) and OR(0)

are inserted at the two asymptotic boundaries at t = 0.

One can further compute the stress-energy tensor of this
scalar field ϕ in the bulk spacetime

Tμν = ∂μϕ∂νϕ − 1

2
gμν(∂ϕ)2 − 1

2
m2ϕ2, (14)

where m is the mass of the scalar field. From this, one can
compute the 1-loop expectation value of this stress tensor.
Following [83], we get,

10 Time runs in the opposite direction for two exterior wedges of Eternal
black hole geometry. Hence the OR and OL are inserted at t and−t
respectively.

〈Tμν〉 = lim
x→x ′

[
∂μ∂ ′

νG(x, x ′) − 1

2
gμν∂α∂ ′αG(x, x ′)

− 1

2
gμνm

2G(x, x ′)
]
. (15)

One uses point splitting method to compute this stress-tensor
and one has to normalize it to get a finite result. G(x, x ′) is
a two-point function of the scalar field. One such two-point
function when there is no double trace deformation is shown
in (12). But in the presence of this deformation it will get
modified. A detailed calculation of it is given in [83]. Now
as mentioned earlier to make the wormhole traversable we
need to break the null energy condition. In this case, we have
to violate the average null energy condition [83]. Let kμ be
the tangent vector of the null geodesic passing through the
wormhole and let λ be the affine parameter, then average null
energy condition (ANEC) is,

∫ ∞

−∞
〈Tμν〉 kμkνdλ ≥ 0. (16)

In our Kruskal coordinate, ∂U is the tangent vector to the
infinite null geodesic along the horizon V = 0 and we can
choose U as the affine parameter. So the violation of ANEC
implies,

∫
dU 〈TUU 〉 < 0. (17)

Now this will back react to the geometry, and for a small
spherically symmetric perturbation from the relevant com-
ponent of the linearized Einstein equation, one can find that
at V = 0 [83],

(d − 1)

4

[( (d − 2)

r2
h

+ d

L2

)(
δgUU + ∂U (UδgUU )

)

− 2

r2
h

∂2
U δgφφ

]
= 8 π GN 〈TUU 〉, (18)

where rh is the black hole horizon radius and φ denotes the
azimuthal angle. δgUU is the linearized fluctuation of the
metric. For the BTZ, d + 1 = 3 and rh = r+ which follows
from (9). Again following [83], we can argue that perturba-
tions will reach a stationary state with respect to the Killing
symmetry U∂U after the scrambling time as the deformation
is small. Also, TUU will be decaying faster than 1

U2 and all
other terms in the Eq. (18). Then we integrate (18) and drop
all the total derivative terms as at the end points as they will
vanish. Then we get,

(d − 1)

4

( (d − 2)

r2
h

+ d

L2

) ∫
dU δgUU

= 8 π GN

∫
dU 〈TUU 〉.

(19)
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(a) (b)

Fig. 4 In a, Alice sends a signal at time −t, (shown by yellow dashes)
then she measures a part of the Hawking radiation and exchanges infor-
mation with Bob at time t = 0 (shown with gray line). This helps Bob
send a negative energy shock (shown with solid black). Because of this,
the signal reaches Bob at time t due to a Shapiro time advance. This
is the essence of quantum teleportation [84,141,142]. In b, following

[84], the same scenario is depicted in terms of operators, the message
ΦL (tL ) sent by Alice from the left boundary at time tL , experiences
the negative energy shock generated due to the double trace coupling
OLOR at t = 0, and finally reaches to Bob ΦR(tR) at the right boundary
at time tR . This diagram is motivated from [83,84]

This equation relates the integral of 〈TUU 〉 to the integral of
δgUU . We also know that up to linear order in perturbation,

V (U ) = − 1

2g0
UV

∫ U

−∞
dU δgUU . (20)

Note that, g0
UV , the original UV component of met-

ric is negative on V = 0 slice. Now we can impose the
ANEC condition. If ANEC violates, then from (18) the
integral over δgUU is also negative (note that the prefactor
(d−1)

4

(
(d−2)

r2
h

+ d
L2

)
in (18) is positive for d ≥ 2.). Follow-

ing [83], we can conclude that whenever ANEC violates,
V (+∞) → 0, so that a light ray from the left boundary will
reach the right boundary after a finite time. Furthermore, one
can also calculate the deviation of this light ray from the
horizon (ΔV ) by computing the Shapiro time delay (in our
case it is actually a time advance11!) and we can show that
it is proportional to h(t, x) [83] as defined in (13). Again for
more details interested readers are referred to [83].

Before we end the section, we give an intuitive picture of
the exchange of classical information in the quantum tele-
portation protocol realized in the bulk dual through the clas-
sical coupling introduced to the system. We briefly sketch
the argument provided in [84,141,142]. As shown in Fig. 4,
Alice first sends her message into the left horizon while accel-

11 Here we have a shockwave backreacting on the geometry, thereby
generating this time advance. This has also been used in other contexts,
for example, to discuss causality constraints [143].

erating near the left boundary (in our context, this message
can be a scalar field propagating towards the black hole hori-
zon). At time t= 0, she measures a part of the Hawking radi-
ation emitted from the black hole. Remember, the Hawking
radiation is generated due to vacuum fluctuations. Suppose
that Alice measures the positive Hawking radiation energy,
which corresponds to the positively charged particle of the
Hawking pair created near the horizon. She then sends the
result of her measurement to Bob, who is accelerating near
the right horizon. So a classical communication takes place.
Based on the result of Alice’s measurement, Bob now has
a sense of what the positive energy particle is, and then he
can measure the Hawking radiation to identify the negative
energy particle. This is possible since Alice and Bob share an
entangled state (in our case, it corresponds to a thermofield
double state). Then Bob can throw a negative energy pulse
into the horizon from the right boundary as shown in the
Fig. 4. This negative energy pulse causes the singularity to
recede and help the signal from Alice to speed up. Specifi-
cally, signals (in our case, a scalar field propagating across
the bulk) get delayed ( or advanced in this case) due to the
negative energy shock. In general relativity, this well-known
effect is known as the Shapiro time delay [144]. This delay
(or the advancement) happens due to the double trace cou-
pling OLOR turned on for certain time interval results in the
ANEC violation. So finally, the signal speeds up, and instead
of hitting the singularity, it reaches Bob!

So far, in the present section, we have discussed the tele-
portation through a wormhole from the point of view of the
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bulk gravity. The coupling and the teleportation in the gravity
have a straightforward representation in the boundary theory
described by a TFD, wherein coupling the two Hamiltonians,
information is teleported from one Hilbert space to another.
In quantum simulators, which can realize very general states
and engineer interesting evolutions, one can ask the ques-
tion of the generality of such a gravity-inspired teleporta-
tion scheme. We review some recent developments in under-
standing the underlying mechanism of teleportation and their
applicability in general many-body models in Sect. 4. In the
next section, Sect. 3, we first set up some useful notations and
summarize important results on quantum information scram-
bling, which makes the basis for the following sections.

3 Quantum information spreading

Consider a Heisenberg operator W evolving under a local
Hamiltonian, H acting on a lattice, such that W (t) =
eiHt W e−i Ht . As a function of time, this operator can be
written using the Baker–Campbell–Hausdorff formula as

W (t) = W + i t[H,W ] − 1

2! t
2[H, [H,W ]]

− 1

3! i t
3[H, [H, [H,W ]]] + · · · (21)

Thus, as time grows, the operator W contains sums of many
products of local operators. For example, if we consider
a local Hamiltonian with interactions only on neighboring
sites, the operator W will spread to farther and farther sites
as the time evolves. This is referred to as quantum informa-
tion spreading, and has been a central goal in various studies
in recent years, involving the operator growth and the study
of out-of-time ordered (OTOC) correlators (more details fol-
low). Before continuing further towards operator growth and
spreading, it will be useful to introduce some notations and
diagrammatic representations which we use in several places.
For the diagrammatic notations we follow Ref. [145].

3.1 Operator-state correspondence

An operator W , in a Hilbert space, can be expressed as

W =
d∑

i, j=1

Wi j |i〉〉 j | , (22)

where |i〉, | j〉 denote the basis elements of the Hilbert
space whose regularized dimension is d, and thus i, j =
1, 2, · · · , d. The coefficients Wi j = 〈i |W | j〉 denote the ele-
ments in the matrix representation of W in this basis. In
Fig. 5a this operator is represented with an input leg i and an
output leg j .

(a) (b) (c)

(d)

Fig. 5 Operator-state correspondence in diagrammatic form. a An
operator W is represented by an ingoing and an outgoing index. b In
the state representation both the ingoing and outgoing index are treated
similarly and each of them denote a basis state in the two copies of
the Hilbert space. c The state |W 〉 is related to the EPR, by the rela-
tion Eq. (23), The dashed box denotes the EPR state (24). d The TFD
denotes finite temperature generalization of EPR, where the density
matrix ρ is the density matrix in either the left or the right Hilbert
space, ρ = e−βH /Tr(e−βH )

The operator-state correspondence relates an operator of
the above form to a state in the doubled Hilbert space,H⊗H,
given as

|W 〉 = 1√
Tr(W †W )

d∑
i, j=1

Wi j |i〉 ⊗ | j∗〉 . (23)

The basis states with a star | j∗〉 are the time reversed (or
equivalently complex conjugated) states. These are related to
| j〉 with an anti-unitary operator | j∗〉 = Θ| j〉. The prefactor
1/

√
Tr(W †W ) is the normalization constant. The above map

from an operator in a single Hilbert space to a state in a
doubled Hilbert space is also known as the ‘purification’,
since the state |W 〉 is a pure state, i.e. Tr((|W 〉〉W |)2) = 1.
We denote this state by a bent input line, as shown in Fig. 5b.

An example of a pure state in the doubled Hilbert state is
the EPR state. In its most simple form it can be understood
as the product of N Bell pairs, |EPR〉 = (|Φ+〉)⊗N , where
|Φ+〉 = (|00〉 + |11〉)/√2 is a maximally entangled state
between a pair consisting of one qubit from each Hilbert
space, here (0, 1) are the computational basis or the qubit
basis. This definition can be rewritten using the basis ele-
ments of each Hilbert space as

|EPR〉 = 1√
d

∑
j

| j〉 ⊗ | j∗〉 . (24)

Comparing with Eq. (23), we note that the EPR state is a
purification of the identity operator bm1, which is also the
density matrix for a state at infinite temperature ρ∞ = 1/d.
Therefore, the EPR state denotes an infinite-temperature
state. In what follows we denote the EPR state with a notation
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shown in the dashed box in Fig. 5c. Using this definition, we
can further write the state |W 〉 in Eq. (23) as

|W 〉 =
√

d

Tr(W †W )
(W ⊗ 1)|EPR〉 . (25)

The EPR state has a special property, often termed as operator
shifting, i.e., an operator acting on the left is the same as the
operator transpose acting on the right,

(OL ⊗ 1)|EPR〉 = (1 ⊗ OT
R )|EPR〉 , (26)

where the subscripts L and R denote the two copies, as in the
case of the asymptotic region of holography. These subscripts
label the side an operator O acts on. This identity is a direct
consequence of the definition Eq. (22), which implies WT =∑

i, j Wi j | j∗〉〈i∗|, combined with the definition of EPR. We
can now revisit the finite temperature generalization of the
EPR, i.e., the thermofield double states (TFD).
Thermofield Double States (TFD) In the context of CFTs,
we listed the TFD state, in the previous section, as the holo-
graphic dual to an eternal black hole. On the doubled Hilbert
space HL ⊗HR , with finite dimensional Hilbert spaces, the
TFD state at temperature T ≡ 1/(kBβ) is an entangled state
on 2N qubits, defined as

|TFD〉 = 1√
Z

d∑
i=1

e−βEi /2|Ei 〉L ⊗ |E∗
i 〉R, (27)

where Z = Tr[exp(−βH)]. The sum in the TFD runs over
the eigenstates |E〉 of H , labeled by i , with respective eigen-
values E , i.e., H |E〉 = E |E〉. The time reversed state E∗

i
satisfy, H∗|E∗〉 = E |E∗〉. There have been many interest-
ing works using the TFD state, in particular, in black holes
[146], quantum field theory [147], and more recently in con-
nections with holography [77,84,148] and others. Some of
the main properties that make it a valuable subject are:

– It is a pure state. Constructing a density matrix ρTFD =
|TFD〉〉TFD|, one notes that Tr(ρ2

TFD) = 1.
– By tracing one part of the system, we obtain,

TrR(|TFD〉〉TFD|) = ρL where ρL is a the thermal den-
sity matrix on the left system with Hamiltonian HL ,
ρL = exp(−βHL)/Z .

– Since the state is defined on a product Hilbert space,
expectation values of operators on one Hilbert space stay
as thermal expectation values in that system. For exam-
ple, for an operator in the left system, 〈TFD|OL |TFD〉 =
Tr(ρL OL), as already mentioned in the previous section
Eq. (11).

In Fig. 5d, the TFD is written in terms of the EPR state such
that,

|TFD〉 = √
d
√

ρL |EPR〉 = √
d
√

ρ∗
R |EPR〉 . (28)

Similar to the relation (26), for the TFD state we find,

(OL ⊗ 1)|TFD〉 = (OL ⊗ 1)
√
d
√

ρ∗
R |EPR〉 ,

= √
d
√

ρ∗
R(1 ⊗ OT

R )|EPR〉 ,

and (1 ⊗ OR)|TFD〉 = √
d
√

ρL(OT
L ⊗ 1)|EPR〉 . (29)

These relations will be useful in next sections where we dis-
cuss the measures of the information scrambling and the
many-body teleportation circuit. For this purpose, in the next
subsection we return to quantifying information scrambling
using the out-of-time-ordered correlators.

3.2 Out of time ordered correlators

To quantify the spread of information in a quantum system
we can ask the question in terms of commutators representing
the information and a probe. The effects of an initial perturba-
tion, sayW , on a later measurement of another operatorV can
be understood by computing the commutator [W (0), V (t)].
Even if the operators W and V at t = 0 commute, after the
time-evolution following (21) the operators need not com-
mute. As an observable, it is meaningful to consider

C(t) = 〈[W (0), V (t)]†[W (0), V (t)]〉 , (30)

where the angle brackets denote expectation value in a state
ρ, 〈C(t)〉 = Tr(ρC(t)). Thus, C(t) for initially commuting
operators grows in magnitude with time. When expanded,
C(t) contains time-ordered and out-of-time-ordered correla-
tors (OTOCs). One of the four terms in the expansion consists
of the composite operator

O(t) = W †(0)V †(t)W (0)V (t). (31)

The expectation value of this operator in some state, 〈O(t)〉,
denotes a correlation function between two operators W and
V , where the times appear out of order.

Lately in connection with quantum chaos, OTOC has
acquired a lot of interest in condensed matter systems, black
holes, SYK, many-body quantum systems [65,67,101,120,
145,149–153] to cite a few. Some intuition for this connec-
tion is often given as follows. In a classical system charac-
terized by position (x) and momentum (p), the change in the
position due to changes in initial conditions can be denoted
by δx(t)/δx(0). The classically chaotic systems are known
to display butterfly effect, wherein δx(t)/δx(0) ∼ exp(λt),
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i.e., nearby trajectories differ exponentially at a later time–
the exponent λ is known as the Lyapunov exponent. Quan-
tum mechanically, such deterministic information about the
coordinates of a system or particle is not possible and there-
fore effects of initial perturbations are studied through the
real observable C(t). A quantum butterfly effect is often
stated as the scenario when the C(t) becomes as large as
2〈W †W 〉〈VV †〉 at late times [67,149], which implies that at
these times, the OTOC decay to zero. This time is known
as the scrambling time tscr, which is when the initial local
information is spread to all the degrees of freedom.

Writing analytically an expression for OTOC depends on
the underlying evolution operator U and may not always be
possible. However for systems evolving under Haar random
unitaries,12 it can be shown that after long time t > tscr, and
for large systems, the OTOC between general operators takes
the following form,

〈W (t)Y (0)Z(t)X (0)〉 ≈
〈WZ〉〈Y 〉〈X〉 + 〈W 〉〈Z〉〈Y X〉 − 〈Z〉〈W 〉〈Y 〉〈X〉 (32)

This result has been obtained and used in Ref. [73] to derive
important bounds on the success fidelities in the teleportation
protocol, which we will quote in this review.

3.2.1 Thermal OTOC

We represent the operator O(t) in Eq. (31) in the state rep-
resentation, following Eq. (23), as

|O(t)〉 = (O(t) ⊗ 1)|EPR〉, (33)

up to a normalization constant. Projecting this into the EPR
state will give us the OTOC in the infinite temperature state,

(34)

An operator acting on one side of the EPR can be shifted
to another following Eq. (26), using this property we can
rewrite,

(35)

Of particular interest is the spread of information in a thermal
background. Therefore, we proceed to generalize the above

12 We assume familiarity with Haar measure.

definition to include finite temperatures by considering TFD
instead of the EPR, which leads to

(36)

where Z = Tr(exp(−βH)) is the thermal partition function,
and we have used Eq. (29) in the last line. As should be noted,
the OTOC here also depends on the parameter β besides time,
where β is the inverse temperature of one half of the TFD
state (27).

We remark that, the above definition of the thermal
OTOC is one of the different regularizations13 often con-
sidered to introduce finite temperatures [154]. In particu-
lar, in the seminal work proposing bound on the growth
of C(t) [67] the finite temperature OTOC is of the form of
W †ρ1/4V †(t)ρ1/4Wρ1/4V (t)ρ1/4. However, we work with
the form (36) of the thermal OTOC for two reasons. Firstly
because of its accessibility in the experiments [93,116],
where one only needs to perform local measurements of
operator V † and V T on a prepared state in the two copies,
for detailed measurement protocol see Sect. 7. And secondly
because, as we will see in Sect. 4, we note that an averaged
form of this thermal OTOC is related to the operator size
which is central in the teleportation mechanism in many-
body systems.

3.2.2 Illustration in many-body dynamics

To gain intuition about the properties of the OTOC and its
dependence on the temperature, let us take an example. We

13 For example, following the traditional definition, the expec-
tation value of an operator O in a thermal state is given by

which
corresponds to a different thermal OTOC.
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(a)

(b) (c)

Fig. 6 Thermal OTOC in a many-body model given by Eq. (37) for
a system of size N = 10 qubits. a The W and V are chosen to be
Pauli operators at adjacent sites. b The decay of the normalized OTOC
Õth(t) = Oth(t)/Oth(0), is shown for different temperatures T . c The
temperature dependence can be studied by inferring the slope when
Õth(t) = 0.5. We see that the rate of decay increases with temperature,
settling at a constant for large temperatures

consider the transverse field Ising Hamiltonian in presence
of longitudinal fields, on a lattice of N spin-1/2s,

H = J
N−1∑
i=1

σ x
i σ x

i+1 +
N∑
i=1

(bσ z
i + hσ x

i ), (37)

where σ a, a ∈ (x, y, z) is the Pauli operator. The coefficient
J denotes the interaction strength between neighboring spins,
andb, h are transverse and longitudinal field strengths respec-
tively. For concreteness, we choose b = J and h = J/2.

In Fig. 6 we plot the numerically calculated OTOC in
this model. As shown in Fig. 6a we chose the operators V
and W as the Pauli operators σ x on adjacent qubits. The
initial time dependence of the OTOC depends on the spa-
tial positioning of the operators, here we have chosen the
operators in the middle of the 1D lattice chain separated by
unit lattice distance, as seen in panel (a). For generic oper-
ators we can chose to normalize such that Õth(t = 0) = 1.
We plot Õth(t) = Oth(t)/Oth(t = 0) in Fig. 6b, and note
that it decays from an initial value 1. Upon subsequent time-
evolution the correlations between W and V decay finally
reaching late time thermal expectation value. The late-time
(J t/h̄ ∼ 4) behavior for the OTOCs in Fig. 6b are also
affected by finite size effects.

We have also presented the behavior at different tempera-
tures. It is best seen by plotting the slope of the OTOC when it
becomes half of its initial value, i.e., the slope when Õth(t) =
0.5. The numerically computed slope, (d Õth(t)/dt)

∣∣
Õth=0.5,

is presented as a function of temperature in Fig. 6c.
The decay of the OTOC as discussed above with an exam-

ple of a local Hamiltonian with N = 10 sites, is a generic fea-
ture of OTOC, expected to hold in all systems which scramble
information. In Sect. 5, we discuss in detail the experimental
platforms, which can realize the Hamiltonian (37) as well as
measure the OTOC, protocols discussed in Sect. 7.

Quantum information scrambling has been central in the
studies of the quantum nature of black holes. In this direction,
we next briefly recapitulate the Hayden–Preskill recovery
protocol [72] for information sent into the black holes and
its generalization [73] to general quantum channels.

3.3 Hayden–Preskill recovery protocol

According to the original calculation using Schwarzschild
black hole, the Hawking radiation contains information only
about the macroscopic details, like the mass (equivalently
temperature) of the black hole. Since then the questions
about the information content of the black hole interior have
been explored in many directions [71], in particular revolv-
ing around the question of how can the thermal radiation
reveal any information about the formation of a black hole?
While this can be a difficult problem, the black hole thermo-
dynamics suggests that, on average, black holes show similar
thermodynamic properties as generally expected in unitary
quantum mechanics. For example, they have a finite entropy
S, proportional to the horizon area, using which a Hilbert
space with dimension d = exp(S) is associated with the
black holes. Page considered black holes as quantum objects
whose dynamics in the long time limit can be mimicked by
Haar random unitaries [155,156].

Let us denote the initial state of the black hole by a ran-
dom pure state |Ψ 〉, and consider it evaporating with time. In
Fig. 7a such a set up is schematically drawn, whereU denotes
Haar random unitary describing black hole internal dynam-
ics. At initial time we have a pure black hole which with
time evaporates into radiation R, here the upward direction
denotes time, which should be thought of as the growing size
of the radiation subspace. Associating dimensions dR, dC to
the Hilbert spaces of emitted radiation (R) and remaining
black hole C, it holds that, dRdC = d. The density matrix
describing the radiation should be

ρrad = TrC(|Ψ 〉〉Ψ |). (38)

For a small amount of radiation, dR � dC , Page showed that
ρrad = 1/dR . Thus, the radiation remains maximally mixed
and one can not access information of the black hole just
by looking at the radiation itself. However as the black hole
evaporates half of its entropy away, and a point of dR = dC
is reached, the radiation is maximally entangled with the
remaining black hole. After this point we have dR > dC
and the correlations between remaining black hole and the
radiation are sufficient to learn about the information from
the black hole. However, in Page’s setting, to reach this half
way point, one has to wait a time which scales as the cube
of the black hole mass (∼ M3), which is impractical for all
purposes.

The problem that Hayden and Preskill discussed [72] in
the context of the information in a black hole is as follows.
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(a) (b)

(c)

Fig. 7 Information recovery from a black hole. a In Page’s calcula-
tions, an initial black hole B is evaporating radiation R with time. The
growing size of the radiation should be compared to the forward time,
here denoted with up arrow. Assuming the Haar random dynamics to
model black hole, Page showed that to learn about the black hole from
the radiation one has to wait for the black hole to evaporate half of
its entropy, and this time is of the order ∼ M3, here M is black hole
mass. b Hayden–Preskill protocol begins with a maximally entangled
pair between BB’ (black hole B and old radiation B’). The initial input

from Alice A is maximally entangled with a system N. Bob collects
radiation R and the conditions on the recovery of Alice’s input infor-
mation are analyzed. c In a further protocol, a quantum circuit for any
quantum unitary, Yoshida-Kitaev protocol has similar settings as the
Hayden–Preskill, but the information recovery procedure is made more
concrete. Two possible ways to recover information are discussed (i) a
probabilistic protocol (denoted by PD with green oval here) and (i i) a
deterministic protocol. See text for details

They consider an old black hole which has evaporated at least
up to half of its entropy. Bob has been collecting all this radi-
ation and Hayden–Preskill protocol begins with considering
maximal entanglement between black hole B and B’ which
is the radiation collected by Bob, see schematics in Fig. 7b.
Furthermore, Bob has access to all the future radiation. Alice
(A) wants to hide her quantum information (ψ) by throwing
it into the black hole.

The information recovery problem can be further simpli-
fied by considering the black hole as a quantum object of N
qubits, such that d = 2N , and the dynamics given by a uni-
tary U (d) from the circular unitary ensemble of dimension
d, which makes a unitary group over Haar measure. We think
of Alice’s state to be composed of k qubits, then questions
that Hayden–Preskill answered are (i) How many qubits does
Bob need to collect to recover Alice’s state and (i i) how long
does he need to do so?

The analysis of the problem further reduces if one con-
siders Alice to be in maximal entanglement with N . The
information content of Alice’s diary will be entirely in the
radiation R and information theoretically it will be possible
for Bob to learn about ψ only when the black hole evaporates
to a point after which there is no entanglement between N and
the remaining black hole C. This translate to the case when the
combined density matrix of the NC system separates out as

ρNC = ρN ⊗ ρC , (39)

where we find the density matrix in a system by partial trac-
ing every other system, as also done in (38). Without going
into more details, we summarize the answers to the above

questions here, as they will be directly related to the theme
of this review.

(i) How many qubits does Bob need? To answer this we
need to find whether and when Eq. (39) holds. Ref. [72]
used the notion of L1 norm || · · · || of states, which is to say
that any states closer in the L1 norm are indistinguishable
in measurements. Assuming Haar random evolution of black
holes, they showed that,

∫
dU ||ρNC − ρN ⊗ ρC||2 ≤ 22k−2s , (40)

where dU is the Haar measure and s is the number of qubits
collected by Bob. Clearly, when s > k, the condition (39)
holds up to some tolerance. So Bob needs to only collect a
little more than the qubits thrown in by Alice.

(ii) How long does it take? The time needed was shown
to be tscr plus the time needed to radiate s qubits.

Even though these are answers to some basic questions,
how the information recovery, called also the decoding, is
manifested was presented in a variation of the HP proto-
col applicable to generic quantum channels by Yoshida and
Kitaev [73], shown in Fig. 7c. The information recovery pro-
tocol assumes that the dynamics is sufficiently mixing, i.e.,
any initial local information spreads to all degrees of free-
dom, referred to as maximally mixing.

Drawn in Fig. 7c, The Yoshida–Kitaev protocol begins
with the black hole unitary U and Bob’s unitary U∗. Alice’s
input is at A, and the black hole B is in maximally mixed state
with B’ which is a subsystem of the system Bob possesses.
There is a reference system N maximally mixed with A and
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another maximally mixed pair of A’ and N’ with Bob. The
protocol has two ways of decoding the information, both the
algorithms work as long as the dimension of the D subsystem
isdD ≥ d2

A. In the derivation of this bound an averaged defini-
tion of the OTOC of the form (32) is used, we refer the readers
to the interesting and detailed calculations in Ref. [73].

Probabilistic decoding In the probabilistic decoding, after
the input of initial information both the systems ABCD and
A’B’C’D’ are forward evolved with U and U∗ respectively.
After which the probabilistic decoding is performed (labeled
with green oval with PD in the Fig. 7c). This involves project-
ing the combined system DD’ onto EPR pair, while leaving
the C’ and N’ as they are. Recall that only D, D’, C’, N’ are
in Bob’s possession, so all decoding operations can only be
performed in these subsystems. The EPR projector is taken
to be

(41)

We have used in the above definition in the subscript of P the
bracket [..] to denote the pair which is projected on EPR and
(..) for the subsystems where no operations are performed.
The projection to EPR pair succeeds with the probability
given in terms of an averaged OTOC and is ≥ 1/d2

A. From
this, it can be shown that if DD’ is projected to EPR with a
probability of 1, then the N and N’ should make an EPR pair.
And thus from N’ Bob can read the initial input state.
Deterministic decodingSuccess probability in the probabilis-
tic decoder goes down as 1/d2

A as the size of the subsystem
A increases. The success probability can be boosted with
a Grover variant. The idea is similar to that of the Grover’s
algorithm – the probability of measuring a target solution can
be improved by repeated applications of the Grover oracle
and Grover diffusion. Instead of doing EPR projective mea-
surements after initial evolutions with U and U∗, we instate
the Grover’s iterations, see Fig. 7c. One iteration involves
evolving DD’ with GD (defined below), followed by evolv-
ing D’C’ with UT , A’N’ with GA and A’B’ with U∗, where,

GD = 1 − 2P[DD′](C ′N ′) and GA = 2P[A′N ′](B′D) − 1(42)

The first operation GD is the Grover’s oracle and the second
operationUTGAU∗ is the Grover’s diffusion operator [157].
With this decoder, the probability for successfully decoding
the initial input after m Grover steps is sin2 ((m + 1/2)θ),

where θ = 2 arcsin(1/dA). The probability approaches 1
when m ∼ πdA/4 for dA � 1.14

Both the probabilistic and deterministic protocols have
been demonstrated in an experiment based on trapped ions,
we present the setup in Sect. 5 and results in Sect. 7. In the
next section we discuss the recent developments connecting
many-body quantum teleportation to wormhole teleportation
[74–76,158]. For late times and a single-qubit input bit, we
find that the Yoshida–Kitaev circuit is the same as the single-
qubit teleportation circuit.

4 Wormhole teleportation and many-body quantum
teleportation

Motivated from the gravity calculations in the Sect. 2.2
describing the negative energy shock wave in eternal black
hole, Fig. 4, we can devise a quantum circuit, designed for
a many-body system on a lattice shown in Fig. 8. We pro-
vide description of this protocol in the next subsection. Here,
we present the mechanism behind the teleportation in terms
of the growth of the initially inserted operator and identify
the criteria for a successful many-body teleportation using
this wormhole teleportation inspired circuit. In subsequent
Sect. 4.2 we illustrate teleportation of a single-qubit. We then
provide a summary of results from the existing literature in
Sect. 4.3. We end this Sect. 4.4 by discussing a different ori-
gin of the teleportation, known as the size-winding.

4.1 Description of the protocol

As first steps, we make a one-to-one map of the wormhole
teleportation as in Sect. 2.2 to obtain a circuit for many-body
dynamics, as considered in [74,75]. The circuit consists of the
following steps. The description is easier to follow when we
divide the left and right systems into message and carrier sub-
systems labeled by the subscripts M and C respectively. For
an N qubit system, the message to be teleported is inserted in
the message subsystem LM , which is composed of m qubits
on the left and received at the message subsystem RM at the
right, also of the same size m. Thus, the carrier subsystem
contains K = N − m qubits.

The circuit begins with a TFD state in the product Hilbert
state HL ⊗ HR at time t = 0. This corresponds to a non-
traversable eternal black hole (as discussed in Sect. 2). We
consider scrambling and thermalizing unitary dynamics in
the two sides of the TFD where the forward time evolution
in the left is governed by UL = U = exp(−i Ht) and that on
the right is byUR = UT = exp(−i HT t). The left side of the
TFD is evolved with the adjoint unitary U † to reach a time
−t , at which point a message, to be teleported, is inserted as

14 For dA = 2, the probability of decoding is 1 at m = 1.
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Fig. 8 Many-body generalization of the teleportation through worm-
hole: Both the left and right systems are divided into message (labeled
by a subscript M) and carrier (labeled by subscript C) subsystems.
Inspired from the gravity description, the left of an initially prepared
TFD at t = 0 is evolved backward with U† to reach −t . At −t an
information, shown with a state |ψ〉, is inserted. Then after forward
evolution of left, a momentary coupling is introduced between the car-
rier subsystems on two sides. The right side is forward evolved withUT ,
after which the teleported state can be read (see main text). The left and
right circuits are exactly the same for evolution unitary described by the
underlying one sided Hamiltonian U = exp(−i Ht), on accounts of the
identity (29)

a state |ψ〉. This can be done by performing a swap between
|ψ〉 and the state of the message subsystem. Next, this left
system is forward evolved withU , which results in the scram-
bling of the input information, to reach time t = 0. At this
state, a momentary coupling exp(igV ) is applied between
the left carrier (LC ) and the right carrier (RC ) subsystems.
This is similar to the Gao–Jafferis–Wall coupling introduced
for wormhole teleportation in Eq. (13) but now adapted for a
lattice model [74]. The right system is then forward evolved,
after which if the teleportation is successful, the initial state
should be teleported [74,75]. The coupling at t = 0 is,

G = eigV

where, V = 1

K

K∑
j=1

Oj,L(0)Oj,R(0) , (43)

where g denotes the coupling strength, and K = N − m is
the number of qubits in the carrier subsystems. The above
operation can be seen either as quantum gates between the
two sides or simply as communicating the results o j,L of the
measurement of an operator Oj,L on the left, followed by
doing a conditioned operation on the right carrier by [84],

Operator on the R system = eig
∑

j o j,L O j,R , (44)

similar to the wormhole discussion in Fig. 4. It should be
noted that the above teleportation is different than the conven-
tional quantum teleportation, where the measurement of the
initial quantum information is classically sent to a decoder.

In the above teleportation, the information is first scrambled
and then the results of the classical measurements are used to
perform quantum operations on the right carrier subsystem.

In recent works, the above circuit, though inspired from
wormholes, is found to be teleporting initial information not
only for the gravity models but also for models far from it;
high temperature SYK [158], spin models and random uni-
tary channels [75,76]. So there seems to be a unified under-
lying mechanism assisting the teleportation. As we explain
below, this mechanism is based on the growth of the opera-
tors under scrambling dynamics, see for the generic notion
of operator growth the Ref. [159].

4.1.1 Mechanism of teleportation: operator size

Let us use the Pauli basis to expand operators. The Pauli basis
for N qubits is formed by taking tensor product of N single-
qubit Pauli operators, P = ({1, σ x , σ y, σ z}⊗N ). The circuit
shows a state |ψ〉 insertion at the time −t , by removing the
qubits in the message subsystem LM . This should be viewed
as an operator QL acting on the qubits in LM such that

QL = |ψ〉〈φ| , (45)

where |φ〉 denotes the state of the subsystem LM at −t .
The coupling in the teleportation circuit acts on a state,
QL(−t)ρ1/2, at time t = 0. Since an operator applied at
−t can be related to a state insertion in the above fashion,
from here on we have used the words operator and state
synonymously to talk about the inserted message. We have
also dropped the minus sign in front of the time, for brevity.
However, we keep in mind that an operator with a subscript
L is inserted at −t , and use it explicitly whenever it is not
obvious. We begin by expanding this operator in Pauli basis,

QL(t)ρ1/2 = 1√
d

∑
P∈P

cP (t)P , (46)

where the coefficients cP are such that
∑

P |cP |2 = 1. For
a Pauli string P , the size |P| of the string is defined as the
number of non-identity operators in the string. As is evident
from the basis set P , many Pauli strings can share the same
size, and they will enter in the operator in Eq. (46), with some
coefficient cP . Thus, there will be distribution of sizes, which
is defined for a size l as,

q(l) =
∑
|P|=l

|cP (t)|2 . (47)

Summing over all possible sizes the distribution follows∑
l q(l) = 1, which is simply the sum of the probabilities to

find the operator in Eq. (46) in one of the P strings.
At this point, we take a slight detour to learn a trick used

to obtain the size of the Pauli string. We discuss it here for

123



Eur. Phys. J. C (2022) 82 :458 Page 15 of 37 458

bosonic operators and closely follow Ref. [76]. The size of
an operator can be found by considering EPR projectors in
the doubled Hilbert space. To see this, first let us consider an
EPR projector for a single-qubit in the doubled Hilbert space
of N qubits,

PEPR,i = 1 ⊗ · · · (|EPR〉〉EPR|)i ⊗ · · ·1
= 1 ⊗ · · · 1

4

∑
Pi

Pi,L P
∗
i,R ⊗ · · ·1 (48)

where Pi ∈ {1, σ x , σ y, σ z}. Next, we note that the expec-
tation value of a Pauli string P in a single-qubit EPR state

i 〈EPR|P|EPR〉i gives the trace of the Pauli Pi at this qubit
i.e. i 〈EPR|P|EPR〉i= tr(Pi )/2, which is = δPi ,1. Thus, the
above projector acts on P|EPR〉 as,

PEPR,i (P|EPR〉) = δPi ,1(P|EPR〉) . (49)

Thus, the eigenvalue of the single-qubit EPR projector at i th
qubit index is non-zero only when there is an identity at the
i th site in the string P . This property can be utilized to count
the number of identities or vice-versa to count the size of
the string by considering a sum of all such single-qubit EPR
projectors, i.e., we can define a counting operator,

Ṽ = 1

N

N∑
i=1

PEPR,i (50)

which follows [directly from Eq. (49)],

Ṽ (P|EPR〉) = N − |P|
N

(P|EPR〉) , (51)

by counting the identities in the Pauli string, and in return
giving the size |P| of the string P . For the states of the form
of (46), which are linear in P , we note that,

Ṽ (QL(t)|TFD〉) = Ṽ

(∑
P

cP (t)P

)
|EPR〉

=
∑
P

N − |P|
N

cP (t)(P|EPR〉) . (52)

which immediately leads to,

〈QL(t)TFD|Ṽ |QL(t)TFD〉 =
∑
P

(
1 − |P|

N

)
|cP (t)|2

(53)

Thereby the expectation value of Ṽ in the state, just before
the coupling is inserted in Fig. 8, gives an average of the
operator size.

We return to our discussion regarding the effect of the
coupling G in (43). From the form of the operator Ṽ , by
now, it should be clear where we are headed to with this
discussion. The coupling (43), central in the teleportation

protocol, is of the same form as the operator Ṽ and thus
measures the average size of the operators that have acted
before t = 0. The effects of this coupling can be further
simplified.

First, note that the counting operator in Eq. (50) is generic.
For a non-trivial coupling we should remove the trivial iden-
tity operation. That would result in considering, in single-
qubit EPR projector, in Eq. (48), a sum over Pi restricted
with Pi �= 1. Such that,

ṼPi �=1 = 1

N

N∑
i=1

⎛
⎝1

3

∑
(Pi ,Pi �=1)

Pi,L P
∗
i,R

⎞
⎠

= 4

3
Ṽ − 1

3
, (54)

thus, the eigenvalue of ṼPi �=1 on the state (P|EPR〉) is [(N −
4|P|/3)/N ]. Next, note that we have assumed the dynamics
to be scrambling and thermalizing, in this case, after we have
inserted QL and let the system scramble for time t , it is
sufficient to just consider 1 out of the 3 non-trivial Pi . This
assumption is justified if we have taken t ≥ tscr, since then
the initial information has spread equally to all sites, and
all 3 non-trivial Pauli operators will probe the operator size
similarly. Thus the coupling V at t = 0, without loss of
generality, becomes much simpler, written as [74],

V = 1

K

K∑
i=1

σ z
i,Lσ z

i,R , (55)

The coupling contains the operator V between K carrier
qubits only. We focus, in this work, on m � N , strictly m =
1. In this case the average size distribution

∑
P |cP |2|P|/N

in (53) which uses all N qubits can be regarded as the
same as the average size distribution

∑
Pc |cPc |2|Pc|/K for

K = N − m qubits, where Pc is the Pauli string only on the
N − m carrier qubits.

Continuing the same calculation as presented above for a
generic Ṽ , we find the expectation value of V in the state
prepared before t = 0 to be,

〈V 〉Q = 〈TFD|Q†
L(t)V QL(t)|TFD〉

=
(

1 − 4

3
|�ε−|

)
, (56)

where |�(ε−)| = ∑
Pc |cPc |2|Pc|/K ≈ ∑

P |cP |2|P|/N is
the average size over K qubits for the state that existed just
before t = 0 (hence the use of ε−), i.e, �(ε−) = QL(t)ρ1/2.

We can now ask what are the effects of the coupling G =
exp(igV )? In the large number of carrier qubits K we use the
property of factorization such that, any expectation value of
the form, 〈B|G|B〉 ≈ exp(ig〈B|V |B〉). Thus the coupling
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G acts on the state prepared at t = 0 as,

eigV QL(t)|TFD〉 = eig〈V 〉Q QL(t)|TFD〉 . (57)

To conclude, we see from Eqs. (56) and (57) that the effect of
the non-trivial coupling is to apply an operator size dependent
phase to the state QL(t)|TFD〉.

4.1.2 Criterion for a successful teleportation

We now ask the question of when is the teleportation suc-
cessful according to the circuit Fig. 8. As presented in the
circuit, having implemented the coupling G at t = 0, we
need to evolve the right circuit with UT for a time t . After
this, as shown below and also presented in Ref. [74], we get
the operator QT at the right message subsystem. We can do a
further decoding operation D to obtain the Q. We explain it
shortly. First, we redraw the circuit in Fig. 8 with this decod-
ing operation as,

(58)

It can be noted that (explained below) for the teleportation to
be successful, the following must hold [76],

(59)

where, the phase φ = g〈V 〉Q depends on the operator Q
and measures its average size. In the large K limit, this over-
all phase is justified from Eq. (57). Away from the large
K limit, for multi-qubit teleportation, this overall phase is
possible only when the effect of the coupling exp(igV ) on
P|TFD〉 is same for all Ps, such that exp(igV )(P|TFD〉) ∼
exp (iφ)(P|TFD〉). Since, the G acts on QL(t)|TFD〉, the φ

measures the size of QL(t). Thus, the overall phase as in
(59) is possible, when the size distributions (47) are tightly
peaked around the average size distribution

∑
P |cP |2|P|/N

of the operator, dubbed as peaked-size teleportation. A sit-
uation that occurs in a wide range of many-body dynamics
(see below Sect. 4.3).

Assuming peak-size teleportation, we analyze the right
side of the above Eq. (59). To begin, for the moment, let
us set D = 1, then in the right side we get an operator
QR(t) = U∗QRUT = (UT )†QRUT . Note that when the
left side evolves with U , the right evolves with UT in Fig. 8.
Thus the above is a transfer of an operator on the left Q at
time −t to the transpose of the operator on the right, i.e, QT

at time t . This is exactly the teleportation protocol circuit
presented in Refs. [74,75], and they obtained OT in the right
side when O was inserted on the left, as would be the case
with the circuits in Fig. 8.

Now, the role of the decoder becomes clear. In order to
obtain the operator O teleported to the right, we need a
decoding operation D such that D†OT D ∝ O . The success
of the teleportation protocol for generic U , as in many-body
dynamics, then boils down to finding out when does the above
identity (59) hold? We begin by taking the inner product of
the left and right side operators in (59) as,

CQ = 〈TFD|Q̃R(t)†eigV QL(t)|TFD〉 , (60)

where, Q̃R(t) = U∗D†QRDUT , as shown in the right side
of (59). So, following Eq. (59), the first condition for the
successful teleportation is that [76],
(i) the magnitude of CQ is maximal for any operator Q.
To ensure that the teleportation succeeds for arbitrary initial
state, or equivalently arbitrary sum of operators Q. And the
second condition is that,
(i i) the coupling applies the same phase eiφ to all input
states. Such will be the case when the size distributions for
all sizes are tightly peaked around the average size of the
operator.

We summarize in Sect. 4.3, that these two conditions
are generically satisfied in many-body models, however,
the holographic models follow the wormhole teleportation
mechanism. In the next subsection we provide an illustration
of this form of teleportation in a many-body model described
by Hamiltonian (37).
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(a) (b)

Fig. 9 Illustration of teleportation protocol in Hamiltonian 37: a For
an input state at qubit 1 on the left, such that 〈σ z

1 〉 = 1, following Fig. 8
for g = π the expectation value on the right at qubit 1 is presented.
b For a time J t = 4, we present 〈σ z

i 〉R measured at the right on each
qubit. The teleportation succeeds at qubit 1, shown in black color, while
at all other qubits, 〈σi �=1〉R ≈ 0

4.2 Illustration in many-body dynamics

For illustration of the teleportation protocol in many-body
system, we consider the Hamiltonian (37) and numerically
run the left circuit in Fig. 8 in a spin-1/2 system with N = 7
qubits. We present the results for single-qubit teleportation in
infinite temperature TFD, i.e., EPR state. Preparing an EPR
at t = 0, we do backward time evolution up to −t and then
swap the first qubit with a state which has the expectation
value 〈σ z

1 〉 = 1. This can be done by inserting an up state |0〉,
denoted in the computation basis of {0, 1} by |0〉 = (1, 0)T .
Then we evolve forward, perform the coupling, and evolve
the right with UT .

In Fig. 9a on the right we observe the expectation value
〈σ z

1 〉R at qubit 1 for the coupling strength g = π . With
time, the magnitude of 〈σ z

1 〉R increases and saturates once
the information has reached to all qubits, i.e., at the scale of
tscr, this corresponds to |tL | = tR ≥ tscr. In Fig. 9b, we fix
the evolution time at J t = 4, and observe the expectation
〈σ z

i 〉R on all qubits. We note that the teleportation is success-
ful (black curve) only at the message qubit, labeled 1, while
at all other qubits, 〈σ z

i �=1〉R ≈ 0. The teleported signal has a
maximum magnitude for some values of g, and there is an
infidelity in teleportation. For more details on the dependence
on g and fidelities for spin model we refer to Ref. [75].

4.3 Summary and remarks

We derived above the requirements for a successful telepor-
tation. It has been shown by analytical calculations in high
temperature SYK [158], spin models [75], random unitary
circuits [76] and using several numerical models that the
criterion of success holds for a large class of models and
parameters. Such is summarized in Fig. 10 taken from [76]. In
this subsection we summarize their results while also adding
some remarks.
• Holographic and peak-sized teleportation: Peak-size tele-
portation means that the coupling applies the same phase
(operator size dependent) to all Pauli strings making up the

(a)

(b)

Fig. 10 Summary of the teleportation for different unitary dynamics.
These plots are taken from Ref. [76] with authors’ consent. aThe fidelity
of teleportation decreases with temperature. The channel capacity: the
number of teleported qubits, decreases at long times. b The fidelity
features distinct behavior for holographic and other scramblers for t <

t∗. For low temperature SYK, which is a model of black holes, the
fidelity has a peak at t = tscr while zero otherwise. Whereas for other
scramblers it has a ripple like behavior. After t > t∗ we see a revival of
fidelity for SYK saturating at ∝ Gβ . Thus, after t∗ all scramblers have
fidelity Gβ and follow peak-size mechanism for teleportation

operator on the left. Therefore, the two sided correlator (61)
is CQ = Gβeiφ where φ = g〈V 〉Q ∼ ∑

P |cP |2|P|/N (see
Eq. (56)) measures approximately the average size of the
operator QL(−t)

√
ρ and,

Gβ = 〈TFD|Q̃R(t)†QL(−t)|TFD〉
= Tr(Q̃∗

Lρ1/2QLρ1/2) , (61)

is the two-point function between the right and left operators.
Using the property of TFD state, in the second line, we have
rewritten it as the thermal two-point function on one side
of the TFD with notation ρ = ρL . The thermal function
decreases as the temperature decreases, thus the two-point
function

Gβ ≤ 1 , (62)
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with the limit saturating for β = 0. Since CQ measures the
overlap of the right at t > 0 and the left at t < 0, the two-
point function Gβ governs the fidelity of the teleportation,
and the fidelity decreases with decreasing temperature in the
peaked-size teleportation mechanism (presented in red-pink
in the summary Fig. 10a). It has been discussed that when
the size distribution has a width, resulting from imperfect
peaked-size distribution, the fidelity decreases further [76].

In Fig.10b, the mechanism of the peak-size teleportation
(in red) is contrasted with the holographic wormhole telepor-
tation [84] as in the low temperature SYK (depicted in blue).
The low temperature SYK teleports with perfect fidelity at
time around scrambling time tscr and zero otherwise. In con-
trast, in the peak-size teleportation the fidelity is of order Gβ

and shows certain features with time. However in the low
temperature SYK one notes a revival in the fidelity at long
times (denoted with t∗), with a decreased fidelity ∝ Gβ as
in the peak-size teleportation. Thus above this time t∗, all
scramblers teleport with peak-size mechanism. To conclude,
due to the distinct behavior of fidelity of the teleportation with
time, it is a strong signature of the holographic or peak-size
teleportation.
• Connection with the thermal OTOC: Recall from Eqs. (56)
and (57), the action of the couplingG = exp(igV ) is to apply
a size dependent phase exp(ig〈V 〉Q), where the 〈V 〉Q from
(56) can be expanded to be,

〈V 〉Q = 1

K

K∑
i=1

〈TFD|

(Q†
L(t) ⊗ 1)(Oi,L ⊗ O∗

i,R)(QL(t) ⊗ 1)|TFD〉

= 1

K

K∑
i=1

Tr[ρ1/2Q†
L(t)Oi,L QL(t)ρ1/2O†

i,L ]

= 1

K

K∑
i=1

Oth(β, t) . (63)

This is the average of the thermal OTOC defined in the pre-
vious Sect. 3, Eq. 36 for operators Q and Oi .
• Connection with the HPR protocol: In the late time, high
temperature limit, the teleportation protocol can be shown
to be the same as the Hayden–Preskill recovery (denoted by
red diamond HPR in Fig. 10a) for single-qubit teleportation.
For long times |tL | = tR = t > tscr, and infinite temperature
limit the coupling acts at t = 0 as,

eigV QL(t)|EPR〉 = eig〈V 〉QL(t)|EPR〉
= QL(t)|EPR〉 = [QR(t)]T |EPR〉 . (64)

The absence of the phase factor follows directly from the
relation of the 〈V 〉 to the averaged OTOC as in Eq. (63).
At times t > tscr, the OTOC for infinite temperature states
decays to zero, and thus the overall phase above is 1 whenever

a non-trivial QL is applied. In the case when QL = 1, then
following Eq. (63), 〈V 〉 = 1, and thus Eq. (64) holds for
generic QL , whenever g = nπ , where n ∈ Z.

The coupling V , also including identity operations will
be,

V = 1

K

K∑
i=1

PEPR,i

= 1

K

K∑
i=1

1

4

⎛
⎝∑

Pj

Pj,L P
∗
j,R

⎞
⎠

i

(65)

where the outer sum runs over all the carrier qubits, and the
inner sum represents EPR pair on i th carrier qubits on the two
sides. We have used the notation from Eq. (48), and recall that
the Pj ∈ {1, σ x , σ y, σ z}. At this point we use the property
of late times t ≥ tscr when the time evolved operator QL(t)
have evolved to all available sites. At this time the effect of
the above coupling will be the same if we replace the sum
over local EPR pairs with an EPR projector on the full carrier
subsystem. This is, in the late time, we can equally take,

V = PEPR = 1

d2
D

∑
PD

PD,LP∗
D,R (66)

here, we have changed the previous notation C for carrier
subsystem with the letter D, for comparison with the Fig. 7c.
The sum now runs over the Pauli operators on the full sub-
system D. With this, we now have,

eigV = eiπPEPR = 1 − 2PEPR (67)

We wish to show the equivalence between the Yoshida-
Kitaev Fig. 7c and the many-body teleportation circuit (58).
For this purpose, we identify, GD = 1 − 2(PEPR)DD′ , and
GA = 1 − 2(PEPR)A′N ′ . Note that for a single-qubit dA = 2
at the subsystem A, this becomes,

GA = 1 − 2(PEPR)A′N ′ = σ
y
A′(SWAP)σ

y
N ′ (68)

where the SWAP is the swap operator,

SWAP = 1

dA

∑
PA

PA,A′PA,N ′ (69)

Thus comparing with the teleportation figure, the decoder
D = σ y . With these operations, on the circuit (58), the output
for an input operator QL = O will be QR = σ yOT σ y = O ,
∀ O of the form Eq. (46). Hence, the single-qubit teleporta-
tion when we replaced D in (58) with the Grover’s oracle
for a single-qubit succeeds with fidelity 1. Using the GD and
GA in Eq. 58, for the case of infinite temperature initial state,
and sliding the left U † to the right to make U∗, we see that
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the teleportation circuit for single-qubit in A subsystem is
the same as the Fig. 7c.

4.4 The size-winding mechanism

In contrast to the size distribution Eq. (47) for the operator
QLρ1/2, Eq. (46), in Refs. [74,75] winding-size distribution
is defined as,

q̃(l) =
∑
|P|=l

cP (t)2 (70)

The important difference is that the q̃ can be complex and
the distribution is over the complex plane. For infinite tem-
peratures β = 0, the distribution q̃ = q since then, due the
properties of the EPR state, the operator O(−t) as in Eq. (45)
is Hermitian, and thus the coefficients cP in Eq. (46) are real.
By using the properties of the TFD state, as in Eq. (29), we
rewrite the action of the operator on the left at time −t as,

QL(−t)|TFD〉 = √
d QL(−t)

√
ρL |EPR〉

=
∑
P

cP (t)P|EPR〉 (71)

and on the right operator QT
R at time t as,

QT
R(t)|TFD〉 = √

d
√

ρL [U∗QTUT ]TL |EPR〉
= √

d
√

ρL QL(−t)|EPR〉
=

∑
P

c∗
P (t)P|EPR〉 (72)

The success criterion in the Sect. 4.1.2 following Ref. [76]
is developed by analyzing the overlap of the QT

R(t)|TFD〉
with exp(igV )QL(−t)|TFD〉 (here we take the decoder D =
1, which means we are interested in operator QT on the
right). The teleportation succeeds whenever the LR coupling
acts similarly on all Pauli strings, and the coupling action
generates a phase exp(iφ), and that the overlap, i.e. the two
point function is maximum for any input operator.

For holographic systems, it is shown that perfect size-
winding occurs such that the coefficients in the operator
expansion take the form [74,75],

cP (t) = eiα|P|rP (t); rP (t) ∈ R (73)

and thus the LHS of Eqs. (71), (72) differ only by a phase
linear in the operator size. The action of the operator on the
left has opposite phase winding compared to the action of
the operator on the right. As derived in the previous sections,
the operator V acts as,

V (P|EPR〉) =
(

1 − 4

3

|P|
N

)
(P|EPR〉) (74)

leading to,

eigV QL(−t)|TFD〉 =
∑
P

e
i
(
α− 4g

3N

)
|P|

rP (t)|EPR〉 (75)

up to a constant phase, which we have dropped here. For the
coupling strength g = (α±nπ)3N/2, the action of coupling
at t = 0 is the same as an operator QT on the right at t . So
the phase factor on the left unwinds under the LR coupling
to give the phase as an operator on the right would have. This
perfect operator size winding takes place for models with
holographic dual, and the teleportation can be seen as the
unwinding of the left phase in the complex plane to produce
the phase on the right. For models away from holographic
limit, the imperfect size winding is expected, in which case
the phases in the expression for operators may not be linear.
We refer the readers to Refs. [74,75] for proofs and detailed
discussion regarding size-winding in holographic and non-
holographic teleportation.

As noticed in the previous subsection, the thermal OTOC
and the two-point function encode crucial information about
the mechanism of teleportation and the success fidelity. These
are measurable in present day quantum simulators. Success-
ful measurements of infinite temperature OTOC [98,109–
115,160] finite temperature OTOC [116], and teleportation
protocol [98] has been achieved in recent years. Thus, we
now turn towards the quantum simulations to summarize the
current state-of-the-art. We first describe the platforms avail-
able and then discuss some important results which make
the initial steps towards conducting holographic studies in
the lab.

5 Quantum simulation platforms

Realizing the ideas described in this review requires quan-
tum simulators which can controllably prepare desired quan-
tum states, and realize suitable Hamiltonians. In this regard,
many-body quantum simulation platforms based on ultra-
cold gases [161,162], trapped ions [88,89], Rydberg atoms
[90,163–165], superconducting circuits [166,167], nuclear
magnetic resonators [168–170], and photonic systems [171,
172] have demonstrated tremendous potential to simulate
useful physical models and phenomena from various fields of
physics and beyond. These capabilities are enabled by rela-
tively clean systems, significant degree of control over exper-
imental parameters, strong tunable interactions between the
particles, and single-particle addressability in some cases.
In this section, we will describe two of these experimen-
tal platforms – based on Rydberg atoms and trapped ions –
that show promise to explore the physics described in this
review.
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Rydberg atoms

A Rydberg atom is an atom with a highly excited electron, i.e.
in an orbital with a large principal quantum number n. One
of the main advantages of using Rydberg atoms for quan-
tum simulation is their strong dipole moment, which leads to
strong inter-atomic interactions [90,165,173]. Due to being
in a highly excited state, the radius of the electron’s orbit in a
Rydberg atom is on the order of a few microns, which is thou-
sands of times larger than that of typical ground state atoms.
Therefore, the atom is easily polarizable and easily acquires
a strong dipole moment (relative to other energy scales in
experiments). The resulting strong dipole interactions allows
researchers to simulate e.g. quantum many-body Hamiltoni-
ans, or realize universal quantum gates that can be used to
build a quantum computing architecture. Popular candidate
species for Rydberg atoms have been 87Rb, 88Sr, and 171Yb.

An electron is typically excited to one of the atom’s Ryd-
berg states via a two-photon transition. Once excited, the
atom in the Rydberg state interacts with other atoms in that
Rydberg state via a van-der-Waals interaction,Vi j ∝ n11/r6

i j .
At typical inter-particle separations in these experiments, ∼
500–1000 nm, ground state atoms are nearly non-interacting,
and the only interactions occur between Rydberg atoms.
Advances in trapping and laser cooling [174–176], and more
recent ideas involving atom-by-atom assemblies with trap
rearrangements [177–182], have led to successful efforts in
near-deterministic creation, trapping, and loading of large
numbers of Rydberg atoms in a periodic array in space [183–
185].

A qubit can be encoded in these atoms as two internal
atomic states, e.g., two long-lived hyperfine ground states
(i.e. a state with a small principle quantum number). The
qubit states can be coupled to the Rydberg state via laser
pulses.

The essential ingredient offered by Rydberg atoms is that
they have strong interactions. Using this, experimentalists
can implement a controlled-Z gate, exp(−iπ |ei e j 〉〉ei e j |),
between spatially nearby qubits i and j . A naive way to
implement this gate involves directly accruing a phase pro-
portional to the Rydberg-Rydberg interaction strength. This
naive scheme, however, is sensitive to the distance between
the atoms, and could therefore lead to large errors due to
atomic motion. An alternative scheme to realize fast high-
fidelity entangling gates between Rydberg atoms, proposed
in Ref. [186,187], uses the phenomenon called Rydberg
blockade.

Rydberg blockade arises when the van-der-Waals interac-
tion are so strong, e.g. due to large n, that having two Rydberg
atoms near each other is energetically too expensive.15 This

15 Technically, when one atom is in a Rydberg state, the energy of an
adjacent atom’s Rydberg state is shifted by an amount equal to the van-

so-called Rydberg blockaded regime has been experimen-
tally observed [188–192]. Recently, Rydberg blockade has
led to the first experimental evidence for quantum scar states
[183] and topological quantum spin liquids [193].

Essential for simulating the protocols discussed in this
review, the Rydberg blockade underpins the implementation
of the entangling gate between qubits. The entangling scheme
involves coupling ground state qubits to the Rydberg state
via laser pulses, and is described in detail in Appendix B.
Entanglement using Rydberg blockade has been widely real-
ized experimentally [188,191,194–198]. Experiments have
demonstrated gate fidelities exceeding 99% for entangling
gates, and up to 99.6% for single-qubit gates [194]. To real-
ize universal quantum computing, it is sufficient to have
controlled-Z gate, together with arbitrary single-qubit rota-
tions which can be implemented via magnetic fields or stim-
ulated Raman transitions.

5.1 Trapped ions

Trapped ion chains are one of the most promising platforms
for analog and digital quantum simulation. With currently the
best gate fidelities for digital quantum gates, they form one
of the pillars of today’s NISQ devices along with supercon-
ducting circuits. Popular candidate species for trapped ions
have been 171Yb+ and 40Ca+. Qubit states are encoded in two
long-lived electronic states of the ions which are either coher-
ently manipulated by narrow linewidth laser fields (optical
qubits) or microwave fields (hyperfine qubits). State depen-
dent interactions are mediated by laser fields that interact
with the ions’ electronic and motional degrees of freedom,
eventually providing spin-spin interactions for analog quan-
tum simulators and a universal gate set for digital quantum
computers. For simplicity, in this review, we will focus on
the optical qubit systems.

A 1D chain of ions is trapped in a Paul trap, which consists
of an oscillating quadrupole field that provides, on average,
a confining force on the ions.16 Due to being electrically
charged, the ions experience Coulomb repulsion from each
other. This repulsion, together with the confining force pro-
vided by the trap, results in a nearly periodic array of trapped
ions in space, and has yielded long chains of one dimensional
ion chains for quantum simulation and computing [199,200].

Although the ions interact via Coulomb interactions, these
interactions are independent of the ions’ internal state, and
therefore do not provide qubit interactions. That is, unlike the

der-Waals interaction. The latter atom will not be excited to the Rydberg
state when the two-photon Rabi coupling is much smaller than the laser
detuning plus van-der-Waals interaction.
16 It is known from Earnshaw’s theorem that charged particles cannot
be trapped with a static electric field; the oscillating quadrupole field is
the simplest geometry which can trap charged particles.
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Rydberg atoms where van-der-Waals interactions give qubit
interactions, the ions do not directly have qubit interactions.
Instead, effective qubit interactions are obtained by coupling
the ions to motional degrees of freedom, which are the normal
modes of the chain, by shining bichromatic laser fields over
the ion chain. The normal mode excitations can be found
classically by solving the normal mode equations in the limit
of large transverse trapping frequency [201,202].

There are two main schemes for realizing qubit interac-
tions using these normal modes. The first was developed by
Cirac and Zoller [203], which relies on having zero phonons
in the ion chain during normal operations, and exciting one
phonon during the entangling operation. This scheme there-
fore requires the system to be cooled to the motional ground
state, i.e. the state with zero phonons [204]. The second
scheme, which is more commonly adopted nowadays, was
developed by Mølmer and Sørensen [205]. This scheme does
not require cooling the ion chain to its motional ground state.
Understanding how both the schemes work requires some
understanding of the physics of the ion-laser coupling, which
is described in detail in Appendix C.

Essential for simulating the protocols in this review, the
Mølmer–Sørensen scheme implements the entangling opera-
tion exp(−iθσ x

i σ x
j ) between two qubits i and j . This scheme

can, in principle (up to caveats about ion spacing and nor-
mal mode frequency spacing), implement this gate between
any two qubits i and j in a finite time, and thus achieves all-
to-all connectivity between the qubits. Two-qubit Mølmer–
Sørensen gates have been widely realized in experiments
[206–211], with the highest current gate fidelity in the range
of 99.9% [212].

6 Quantum simulation of many-body models

The quantum simulation platforms discussed above can real-
ize a universal quantum gate set, and can therefore in princi-
ple realize any unitary quantum evolution. A powerful appli-
cation of quantum simulation, from the perspective of holog-
raphy, would be to realize holographic models. The SYK
model is a particularly simple 0+1 dimensional model which
at large N and low energy is dual to the nearly AdS2 gravity
[62]. This model can potentially be realized in quantum sim-
ulators, although requiring a large number of quantum gates
and ancillary qubits that could only be within reach of simu-
lation in the future. In this section, we will briefly review how
to simulate the SYK model with a quantum circuit. Later, in
the next section, we discuss how to prepare the |TFD〉 state.
These two ideas, preparing the TFD and realizing the model,
can be seamlessly incorporated with the quantum protocols
for measuring the OTOC and implementing HPR, and worm-
hole teleportation protocols. More details follow in Sect. 7.

The SYK model is a model of interacting Majorana par-
ticles [59–64],

Ĥ = 1

4 × 4!
N−1∑

p,q,r,s=0

Jpqrsγpγqγrγs, (76)

where γi are Majorana operators, and Jpqrs are real-valued
scalars drawn randomly from a normal distribution with vari-
ance σ 2 = 3!J 2/N 3. For simulating on a quantum cir-
cuit, one first writes the SYK model in terms of complex
fermions, and then maps it to a spin Hamiltonian via e.g.
the Jordan-Wigner transformation. Due to the Jordan-Wigner
transformation, a typical term in the Hamiltonian consists of
a four-qubit exchange interaction, multiplied by long Jordan-
Wigner strings, for example,

Ĥpqrs ∝
(

r−1∏
m=s

σ z
m

) ⎛
⎝

p−1∏
m=q

σ z
m

⎞
⎠ σ

αp
p σ

αq
q σαr

r σαs
s , (77)

where σ
αi
i is a spin raising or lowering operator on qubit i .

This term, and similarly for all the other terms in the Hamil-
tonian, can be realized utilizing local and collective Mølmer-
Sørensen gates. Time evolution with the Hamiltonian can be
implemented in a Trotterized fashion [213,214].

Apart from the SYK model, there are some recent works
on Hamiltonian simulation of certain gauge theories, which
are also based on Trotterization of the Hamiltonian [215–
224]. It is possible to construct the ground state for these
systems, and measure some observables, via a mapping to a
qubit system [215]. A detailed discussion of these is beyond
the scope of this review. We suggest interested readers refer
to these references for further details.

In Appendices B and C, we also review the simulation of
other quantum many-body spin models that naturally arise
in quantum simulation platforms based on trapped ions or
Rydberg atoms.

7 Measurement protocols

We can devise an implementation of the quantum protocols
described in this review to measure OTOCs, and realize a sim-
ulation of teleportation across wormholes, using the quan-
tum simulators described in Sect. 5. In this section, we will
describe concrete quantum circuits to realize these protocols,
and highlight a few pioneering experiments that have already
accomplished these feats.

7.1 Protocols for OTOC

First, we describe two protocols to measure OTOCs. The
first protocol measures the thermal OTOC defined in Eq. (36)
using a TFD state. The second protocol obtains the infinite-
temperature OTOC from correlating measurements on two
sets of qubits that were prepared as a product of correlated
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qubits in randomized bases. The essential idea of the latter
protocol is that an ensemble of correlated qubits initialized
in randomized bases realizes a state closely related to EPR
pairs, which is the infinite-temperature TFD.

7.1.1 Thermal OTOC from TFD

We recall the definition of the regularized thermal OTOC,
Oth(β, t), shown in Eq. (36). This OTOC can be naturally
interpreted as

Oth(β, t) = 〈ψ |V †(t) ⊗ [V (t)]T |ψ〉, (78)

where |ψ〉 = (W ⊗ 1)|TFD〉. Note that

[V (t)]T = [exp(i Ht)V (0) exp(−i Ht)]T
= [exp(−i H∗t)V T (0) exp(i H∗t)] (79)

is the Heisenberg operator for V T at time t when evolved
with −H∗. The interpretation in Eq. (78) suggests an imple-
mentation as follows:

– Prepare |TFD〉 on HL ⊗ HR .
– Apply W on, say, the left system. This is possible for

unitary W .
– Evolve the left and right systems with HL and −H∗

R . The
right system should be evolved with −H∗

R for the reason
explained above.

– Measure 〈V †
L ⊗ V T

R 〉.

Next, we describe one method to prepare |TFD〉. Realizing
the remaining steps, for example on a digital quantum com-
puter, is straightforward.

Thermofield double states have been prepared for particu-
lar models and small system sizes on a trapped-ion based digi-
tal quantum computer. The technique used to prepare the TFD
is a quantum-classical hybrid technique called the Quantum
Approximate Optimization Algorithm (QAOA) [225], which
has more recently been called the Quantum Alternating Oper-
ator Ansatz [226] (and denoted QAOA as well).

QAOA is a variational algorithm [227] originally proposed
to minimize Hamiltonians. The algorithm is schematically
drawn in Fig. 11. It produces a parameterized ansatz wave-
function,

|ψ(θ)〉 = U (θ)|ψ(0)〉,
where the unitary U is composed of a set of quantum
gates {Ui }, and these quantum gates are parameterized by
gate angles θ ≡ {θi }, i.e., U (θ) = · · ·U2(θ2)U1(θ1). The
parameters θ are chosen such that |ψ(θ)〉 minimizes the
Hamiltonian. In the most common setting, the parameters
θ are chosen in a quantum-classical feedback loop. A clas-
sical computer feeds in θ , the quantum computer returns

Fig. 11 Schematic of the QAOA algorithm to prepare the TFD for
the transverse Ising model. The algorithm consists of a parameterized
quantum circuit,U (θ) = · · ·U2(θ2)U1(θ1), implemented on a quantum
computer, where the angles θ are found by a classical computer. Usually,
one finds these angles in a classical-quantum feedback loop, where
the classical computer updates θ based on the output of the quantum
computer. Details of the gates used in the quantum circuit are in Fig. 12a

〈ψ(θ)|H |ψ(θ)〉, and the loop continues until 〈ψ(θ)|H |ψ(θ)〉
is minimized over the space of all θ . The classical computer
can use any classical optimization algorithm, e.g. gradient
descent, to optimize the necessary θ to minimize the Hamil-
tonian. For small system sizes, one can compute the opti-
mal parameters θ classically, without requiring a classical-
quantum feedback loop.

QAOA, and related variational algorithms such as the
Variational Quantum Eigensolver, have been used in sev-
eral applications to minimize target Hamiltonians [228–236].
Finding new applications of variational algorithms is an
active area of research [94–97,237–239].

Recently, QAOA has been used [94] for preparing the TFD
for the transverse Ising model. One possibility for the basic
building block of the quantum circuit for preparing the TFD
for this model is shown in Fig. 12a. Different models require
different building blocks for the variational circuit. The vari-
ational angles θ can be chosen such that the fidelity

F(θ) = |〈ψ(θ)|TFD〉|2 (80)

is maximized, i.e.

θopt = argmaxθ F(θ). (81)

Maximizing the fidelity, however, is restricted to small sys-
tems. This is because classically calculating F(θ) or measur-
ing F(θ) from the quantum computer are both exponentially
difficult tasks.

To mitigate the above challenge, there are alternative
proposals to prepare the TFD by maximizing the thermal
entropy, or as the ground state of a local parent Hamiltonian
for cases where the target Hamiltonian satisfies the eigen-
state thermalization hypothesis [92,148]. Specifically for the
transverse Ising model (h = 0 in the Hamiltonian (37)), the
parent Hamiltonian may take the form

Hparent(λ) = HA + HB + HAB(λ), (82)
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where HA and HB are the transverse Ising Hamiltonian in
the A and B chains respectively, and

HAB = λJ
N∑
i=1

(σ
y
i Aσ

y
i B − σ x

i Aσ x
i B). (83)

Here, λ must be appropriately chosen for each tempera-
ture T labeling the TFD. The above parent Hamiltonian
exactly produces the TFD at T = 0 and T = ∞. Choos-
ing λ = 0 produces the TFD at T = 0, which is the product
of the transverse Ising model’s ground states on the A and
B chains. Choosing λ = ∞ produces the TFD at T = ∞,
which is a product of EPR pairs. At intermediate tempera-
tures, the ground state of Hparent(λ) produces the TFD (at λ-
dependent temperature) to a good approximation [93], where
the approximation may be improved by adding more terms
to HAB . We note that this realization of the TFD model as
the ground state of a parent Hamiltonian is known in the
chaotic Hamiltonians [92], see [148] for SYK model. The
variational ideas to prepare the TFD state are also generic,
and can in principle be applied to prepare the TFD state for
other models, e.g. the SYK model [96].

After preparing the TFD, measuring the thermal OTOC
requires evolving one of the halves forward in time, i.e. with
+H , and the other backwards in time, i.e. with −H∗ (see
Fig. 12b). Hamiltonian evolution in a digital quantum com-
puter is possible as Trotterized evolution, with sufficiently
small Trotter step dt . Evolution with −H∗ can easily be
achieved due to the availability of a universal gate set. The
time up to which the system can be evolved is currently lim-
ited by gate errors, which restricts high-fidelity quantum sim-
ulation to a few Trotter steps.

7.1.2 Infinite-temperature OTOC from randomized initial
states

The protocol described above can be readily applied to mea-
sure the OTOC at T = ∞. In particular, |TFD〉 at T = ∞ is
equal to |EPR〉, which can be readily prepared in the lab.

However, there are also other protocols to measure OTOCs
at T = ∞. One of them, that was proposed by Ref. [101] and
implemented by Ref. [112] for measuring the OTOC at T =
∞, obtains the OTOC from randomized measurements of
qubits. This protocol can be extended to large finite T as well,
by perturbatively expanding the thermal factor exp(−βH)

in powers of β. Other experiments have used similar ideas
with randomized measurements to measure the OTOCs [160,
240].

The infinite-temperature protocol in Ref. [101,112] works
as follows:

(a)

(b)

Fig. 12 a Building block of the QAOA circuit that prepares the ther-
mofield double state for the transverse Ising model. The XX gate is the
local Mølmer–Sørensen gate discussed in the main text, the ZZ gate is
the analog of the Mølmer–Sørensen for interactions along the z direc-
tion, and Rz is a single-qubit rotation around z. The gate angles are
found classically. b Measurement protocol for the thermal OTOC. The
block U (θ) is shown in a. Depth-p QAOA repeats this block p times,
with different angles θ1, θ2, · · · θ p

– Prepare two sets of N qubits, one in |0⊗N 〉 and the other
in |x〉, where |x〉 is an N -qubit product state in the com-
putational basis. We will label the two sets of N qubits
as 1 ≤ i ≤ N and N + 1 ≤ i ≤ 2N . None of the opera-
tions performed will involve any entanglement between
the first N and the second N qubits, therefore we can per-
form experiments on these in separate experimental runs.
Then, each experimental run needs to be performed only
on N qubits at a time, which is a significant technical
advantage over having 2N qubits at one time.

– Apply N independent single-qubit Haar-random uni-
taries ui on qubits 1 ≤ i ≤ N , and the same ui on
the qubits N + 1 ≤ i ≤ 2N .

– Apply W (assumed to be unitary) on the first N qubits.
– Evolve both sets of N qubits with the Hamiltonian +H .

Note that evolution with −H∗ is not required.
– Measure 〈V †〉 on qubits 1 ≤ i ≤ N and 〈V T 〉 on qubits

N + 1 ≤ i ≤ 2N . Denote the product of these two
measurements as fx .

– For each x , average over the single-qubit Haar-random
unitaries ui . Denote the average as fx .
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– The weighted sum, 1
2N

∑2N−1
x=0 (−2)−|x | fx , gives the

OTOC, O∞(t) ≡ Oth(β = 0, t). Here, |x | is the Ham-
ming weight of x .

The crucial step in understanding why this protocol works
comes from the realization that the initial state’s den-
sity matrix, averaged over Haar-random unitaries {ui } and
summed over bit strings x including the weight (−2)−|x |, is
[101]

1

Nu2N

∑
u,x

(−2)−|x | (u ⊗ u|0⊗N 〉|x〉
) (

〉0⊗N |〉x |u† ⊗ u†
)

∝ SWAP, (84)

where SWAP = ∑
xy |x〉|y〉〉y|〉x | swaps the state of the

two systems and u = ⊗N
i=1 ui . For brevity, we will ignore

normalization factors for the state that realizes SWAP. The
sum in Eq. (84) should be understood as averaging over the
unitaries first, and then summing over the bit strings x , as
described in the protocol above.

The SWAP state has the property that

(85)

and as a corollary,

(86)

Viewing the right hand side of Eq. (86) as a circuit, the proto-
col described above is a direct implementation of this circuit,
and was implemented in Ref. [112] for the long-ranged Ising
model with a transverse field. It is worthwhile to reempha-
size the key innovations of this method: Using randomized
measurements halved the number of qubits as compared to
that required by other measurement protocols, and eliminated

the need for evolution with −H∗. Reference [101] also pro-
posed a related alternative protocol with global Haar-random
unitaries, instead of local Haar-random unitaries, which pro-
ceeds similar to the local protocol, except that the initial states
for both sets of N qubits are |0⊗N 〉, and there are no weight-
ing factors (−2)−|x |.

7.2 Simulating teleportation across a wormhole in a
trapped ion quantum computer

There are also experiments that have implemented protocols
to simulate the teleportation of one qubit across the analog
of a wormhole [98,241]. In one such experiment by Ref.
[98], the experimentalists implemented two protocols that
simulate the teleportation of one qubit across the analog of
an infinite-temperature wormhole – on EPR states. One of
those protocols probabilistically teleports one qubit, and the
other deterministically teleports the qubit. Here, we describe
the deterministic protocol, and refer the reader to Ref. [98]
for the probabilistic protocol. The protocol is based on the
Yoshida–Kitaev version [73] of the Hayden–Preskill protocol
[72] [see Sect. 3.3].

The experiment in Ref. [98] implemented a particular
instance of Fig. 7 with seven qubits, as follows:

– The experiment begins by initializing qubit 1 in |ψ〉,
which is the state to be teleported, and qubits 2–7 as
EPR pairs, with qubits 2 and 5 forming one pair, qubits
3 and 4 forming one pair, and qubits 6 and 7 as one pair.
Qubits 2–5 are analogous to the black holes and the past
radiation, interpreted as B and B ′ in Fig. 7, and qubits
6–7 are the ancillary pair for decoding, interpreted as A′
and R′.

– Then, they evolved qubits 1–3 with a maximally scram-
bling unitary U , i.e. a unitary which evolves all single-
qubit Pauli operators into three-qubit Pauli strings. They
evolved qubits 4–6 with U∗. The probabilistic protocol
measured qubits 3 and 4 and terminated here [see Ref.
[98]]. But we will move on to the deterministic protocol.

– They apply a Grover oracle G = 1 − 2|EPR〉〉EPR| on
qubits 3 and 4. A circuit compilation trick allows G to be
implemented with a SWAP gate (performed classically
by relabeling the qubits) followed by single-qubit Y gates
[see Fig. 13].

– Then according to Fig. 13, one should evolve qubits 4-
6 (which are now interpreted as D′ and C ′) with UT ,
apply G = 1 − 2|EPR〉〉EPR| on qubits 6 and 7, and
evolve qubits 4-6 with U∗. As stated above, G can be
implemented with classical relabeling and Y gates. At
the end of this, |ψ〉 will be successfully teleported to
qubit 7 (which is interpreted as R′). This concludes the
experiment in Ref. [98]. The experiment did not need to
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Fig. 13 Simulating the many-body teleportation protocol in the lab
[98]. A qubit inserted in the left system is decoded on the right. The
quantum circuit is drawn vertically here for convenience and to relate
to the protocol in Fig. 7. A horizontal line ending in two crosses is the
Mølmer–Sørensen gate, exp(−i π

4 σ x
i σ x

j ). The single-qubit Rz gate is

defined as Rz(θ) = exp(−i θ
2 σ z), and Y is the σ y Pauli operator

implement the final Y andUT on qubits 4-6, because they
don’t affect the state of qubit 7.

Reference [98] successfully demonstrated teleportation of
various choices of |ψ〉, specifically |ψ〉 = |0〉, |ψ〉 = |1〉,
|ψ〉 = (|0〉 ± |1〉)/√2, and |ψ〉 = (|0〉 ± i |1〉)/√2, with
an average teleportation fidelity of 78%. The teleportation
fidelity is < 100% due to gate errors in the experiment. The
same protocol can teleport any single-qubit state |ψ〉.

Future experiments may use the above protocol to teleport
multiple qubits with more Grover iterations, as well as simu-
late teleportation across the analog of a finite-temperature
wormhole by appropriately generalizing the circuit, e.g.,
replacing |EPR〉 with |TFD〉 in the initial state, where |TFD〉
could for example be prepared by techniques outlined in
Sect. 7.1.

8 Conclusions and discussions

In this work, we have presented the recent advances in real-
izing analogous models of gravity in a lab, in the sense of
holography. In particular, our focus has been the wormhole
teleportation inspired protocols for teleportation in the many-
body systems. The mechanism of the teleportation is gov-
erned by the operator size that is inserted just before the
coupling is applied. We described the experimental proto-
cols and observations of OTOC and small scale teleportation
in state-of-the-art quantum simulators.

It should be noted that the exact model of gravity in a
lab, where one can not only verify the holographic princi-
ple but also learn about the gravity from a lab, is still not
available. Our summary of the recent advances should be
seen as advances in the theoretical translation of the tools
and observables in gravity and many-body models available
on a lattice, as well as advances in experimental technology.
With the proof-of-principles done for the holographic mod-
els that have a semi-classical dual, in the long run one can
hope to study the more complex bulk dual, involving stringy
corrections, in a quantum lab.

It is always crucial to study the effects of experimental
decoherence and noise sources in implementing protocols.
We have not discussed them in this review, but one should
keep in mind the limitations they pose and the rectifications
thereof, for example see [93,98,112,242,243] for possible
error sources and corrections. We discussed here that the
behavior of the teleportation fidelity with time is a strong
signature of the nature of the dynamics, namely generic
scramblers or the holographic scrambler. Even better, the
teleportation fidelity identifies the real scrambling dynamics
and decays due to decoherence [99]. Furthermore, it would
be interesting to find out the validity and corrections of the
Hayden–Preskill protocol as well as the many-body telepor-
tation protocol in presence of errors [244].

We also note that the operator size distribution is a more
refined description of the time-evolved operators than the
averaged OTOC that we have presented here. It remains a
question as to how and when the size distribution discussed
here compares with the usual notion of the operator size
[159], and to those amenable in experiments [245]. It is
argued in [246–249], that the rate of change of momentum of
the particle falling in to the bulk spacetime is dual to the com-
plexity of the dual operator at the boundary. This complexity
basically measures the growth of the size of the operator
under time evolution. Some recent progress has been made
towards understanding complexity for the dual field theory
[250–263], see [264] for a recent review. However, it is in its
early stage of development. An interesting direction will be
to develop this idea of operator growth using complexity as
a possible diagnostic. This will not only enable us to make
connection with certain predictions coming from holography
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but will also help us to compare with other diagnostics which
are measurable via experiments. Another important theoret-
ical direction is to explore the finite temperature generaliza-
tions of the many-body teleportation in the spirit similar to
[158,265,266]. In recent times, several toy models based on
tensor network construction for holography has been pro-
posed [46–52,57]. In this context, it will be interesting to
realize the thermofield double state and the teleportation pro-
tocol. Perhaps [267] will provide a good starting point. This
will pave the way forward to some of the predictions com-
ing from holography using interesting quantum many-body
systems.

At last, for the experimental prospects of connecting the-
oretical high energy physics with experiments, we conclude
by outlining directions other than the wormhole teleportation.
For example some of the open directions are the realization
of the SYK model as a simple model of holography [213],
simple models of wormholes [268–270], time-shifted worm-
holes and the teleportation therein [271] and possibilities to
use time shifted wormhole teleportation to distinguish states
with similar entanglement [272], among many others.
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Appendix A: Some details about AdS/CFT dictionary

Here we will briefly sketch out some details of the AdS/CFT
dictionary. It has two aspects: Kinematical aspects and
Dynamical aspects. We briefly review both of them below.
For more details, interested readers are referred to [4,117,
123,273] and the citations therein.
Kinematical aspect First, we begin by discussing the gen-
erators of a conformal group in d dimensions. For simplic-
ity, we will assume that the underlying CFT is defined on a
flat Minkowski background. The conformal transformations
consist of the following four transformations, and we quote
the corresponding generators below [274].

Translation(Pi ) → i ∂i ,

Rotation(Ji j ) → −i(xi∂ j − x j∂i ) ,

Dilatation(D) → −i xi∂i ,

Special Conformal Transformation

(SCT )(Ki ) → i (2xi x
j∂ j − x2∂ j ),

(A.1)

where the i, j takes value from 0 to d − 1, where 0 denotes
the time coordinate. J i j includes both the space-rotation and
boost. J i j is completely ant-symmetric in i, j indices. So it is
evident that Poincare group (consisting of Translations and
Rotations) is a subgroup of conformal group. The dilatation
generators, scales the coordinates by a constant factor and the
special conformal transformation (SCT) can be thought of a
translation preceded and followed by an inversion. Now it can
be shown that, these generators after suitable identification
satisfy a SO(d, 2) algebra.

Now the isometry generators of AdSd+1 exactly satisfy
this algebra and they are in one-to-one correspondence with
the generators (global) of conformal group in one lower
dimension [274].
Lets take a concrete example of AdS3/CFT2. For CFT2

we have 6 generators corresponding to the global confor-
mal transformations. Now let us first write AdS3 in Poincare
coordinates,17

ds2 = L2(dz2 − dt2 + dx2)

z2 , (A.2)

17 We can use other coordinates also. For a detailed review please refer
to [4,117].
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where the boundary of it is located at z = 0. t is Lorentzian
time. We below quote the isometry generators by solving the
Killing equation and we quote the result below [78,123,275,
276].

J01 = i
[( L2 + z2 + t2 + x2

2 L

)
∂t + x t

L
∂x + t z

L
∂z

]
,

J02 = i
[(−L2 + z2 + t2 + x2

2 L

)
∂t + x t

L
∂x + t z

L
∂z

]
,

J03 = i
[

− x∂t − t∂x
]
,

J12 = i
[

− z∂z − t ∂t − x∂x
]
,

J13 = i
[( L2 + z2 − t2 − x2

2 L

)
∂x − x t

L
∂t − x z

L
∂z

]
,

J23 = i
[(−L2 + z2 − t2 − x2

2 L

)
∂x − x t

L
∂t − x z∂z

L

]
.

(A.3)

We can show that they satisfy

[Jab, Jcd ] = i [ηac Jbd + ηbd Jac − ηad Jbc − ηbc Jad ],
(A.4)

SO(2, 2) algebra and a, b, c, d ∈ {0, 1, 2, 3}. This pre-
cisely matches with the algebra of the global conformal
generators in 3-dimensional Minkowski space and ηab =
Diag(−1,−1, 1, 1) a diagonal metric with two time signa-
ture [123,274].

Also, the conformal boundary of the AdS in this coor-
dinate is located at z = 0. If we take the boundary limit
on (A.3), one can easily see the one-to-one correspondence
between theses generators and that of those for the global
conformal group in one lower dimension, i.e. d=2 for this
specific case. For example, in the boundary limit J12 in (A.3)
corresponds to the Dilatation generator (D) of the bound-
ary CFT.18 One can easily generalize this result for arbitrary
dimensions.19

Dynamical aspect Now we will discuss the dynamical
aspects of the duality. It states the equivalence between CFT
and gravitational path-integral,

ZCFT ({Ji }) = ZGravi t y, (A.5)

where,

ZGravi t y ∼
∫

D(φ,Gμν, Aμ)|{Ji }z=0e
−Sgravi t y+···.

18 To take the boundary limit we basically set z = constant. Hence,
∂z term goes away and in the rest of the terms we take z → 0 limit.
19 For d=2, one can have infinite number of Virasoro generators apart
from the one mentioned in this subsection which often termed as local
generators. For details one can refer to [274].

For ZGravi t y, we have to evaluate the action Sgravi t y which
consists of bulk fields, metric, scalar field, gauge field etc on-
shell, i.e. on the solution of the equation of motion of all these
bulk fields. Also, the sources Ji of the CFT side can be iden-
tified with the boundary values of the bulk scalar field after
imposing suitable boundary condition. On the left hand side
of (A.5), we have a functional ZCFT ({Ji }) which depends on
arbitrary (off-shell) sources Ji in d dimensions, and on the
right hand side we have the (on-shell) functional ZGravi t y in
d + 1 dimensions, involving gravitational action evaluated
on the solution of the equations and the fields reduce to the
corresponding Ji ’s at the boundary of the AdS.20 One has to
be careful about imposing the boundary limit (for Poincare
AdS as shown in (A.2) it is basically z → 0 limit) as typically
the fields diverges near the AdS boundary [4,117,273]. Now
utilizing relation (A.5) one can translate all the field theory
correlation functions to the correlation functions of fields in
the bulk spacetime.

Before we end, we make a few more comments. We need
to know how the CFT operators map to fields in the bulk.
In principle, it depends on the details of the two theories
(CFT and the gravity theory). String theory provides this
map. Roughly, we can observe that the consistent coupling
between a certain field to a certain operator can be often
argued using underlying symmetries. Both Ji and the field
operator share the same quantum number under the confor-
mal group. This gives some obvious coupling.

WCFT = SCFT +
∫

dd x
[
gi j T

i j + Ai J
i + φF2

i j + · · · .
]
.

(A.6)

So the metric couples to stress tensor, gauge field (Aμ) in
bulk to current (J i ) in dual CFT, the scalar field in bulk to
some scalar operator at the boundary and so on. Now given
the effective action WCFT we can construct the ZCFT ({Ji })
in the usual way. Also, one important point is that mass of the
fields in the bulk can be related to the conformal dimensions
(Δ) of primary operator of the dual field theory. For example,
for a massive scalar field in the bulk with a mass m, we have,

m2L2 = Δ(Δ − d), (A.7)

where Δ is the conformal dimension of the dual primary
operator for the d-dimensional CFT, and L is the AdS radius.
Similar conclusions can be made for spinning fields also. For
more details, interested readers are referred to [4,117,273].

20 In fact, for every source Ji (xi ), where xi are the boundary coordi-
nates, we can extend it uniquely inside the bulk after imposing suitable
boundary conditions inside the bulk (usually at the center of AdS).
Hence for every source configuration, there exists a corresponding bulk
field φa(xi , z), where z is the extra bulk radial coordinate [4,273].
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Fig. 14 Qubit encodings for Rydberg atoms. a Ground and Rydberg
state as qubit states. Atoms are excited from the ground to the Rydberg
state via a two-photon transition. Rydberg atoms interact with a van-
der-Waals interaction. b Two ground states as qubit states. Interactions
are induced by exciting |e〉 to or dressing |e〉 with a Rydberg state. c
Two Rydberg states as qubit states. They undergo flip-flop interactions
due to their dipole moments

Appendix B: Rydberg atoms

In the main text, we stated that Rydberg atoms are one of the
platforms for analog and digital quantum simulation. Here,
we discuss the physics that can be explored with Rydberg
atoms, in more detail.in each of these qubit encodings.

There are several possible ways to encode a qubit in these
atoms using any two internal atomic states. These two states
could be a long-lived hyperfine ground state (i.e. a state with a
small principle quantum number) and a Rydberg state. Or the
two qubit states could be two hyperfine ground states, with
the Rydberg state acting as an auxiliary state, into which
atoms are transferred when strong interactions are needed,
or which is admixed to one of the ground states via Rydberg
dressing. Or they could even be two Rydberg states. Each of
these choices of the qubit states allows different capabilities,
and has been used to realize digital quantum computation
or analog quantum simulation. Let us now understand the
physics that can be explored in each of these qubit encodings.

Let us first consider the case that the qubit states are a
ground state and a Rydberg state, as illustrated in Fig. 14a.
Any two atoms in the Rydberg state and separated by a dis-
tance r interact with each other with strength V/r6, where
V ∝ n11. Additionally, one could drive the atoms from the
ground state to the Rydberg state via external lasers and effec-
tively realize, for example, the long-ranged quantum Ising
model,

H =
∑
i

Ωσ x
i − Δσ z

i + 1

2

∑
i j

V

r6
i j

(1 − σ z
i )(1 − σ z

j ). (B.8)

Here, σα are Pauli operators acting on the two qubit states,
Ω is the amplitude of the two-photon transition that excites
the atom from the ground to the Rydberg state, and Δ is the
detuning of the two-photon transition from the atomic tran-
sition. This is a paradigmatic model in quantum mechanics,

Fig. 15 Entangling gate using the Rydberg blockade and three laser
pulses. The first pulse transfers the population in |gi 〉 to a Rydberg state
|ri 〉. The second pulse gives |g j 〉 a phase equal to π if |ri 〉 is unoccupied,
and a phase close to π if |ri is occupied. The third pulse transfers the
population in |ri 〉 to |gi 〉. In this whole sequence, |ei e j 〉 is unaffected,
and the other three orthogonal states are (approximately) multiplied by
−1, which realizes a controlled-Z gate

and has been realized with Rydberg atoms by various groups
[277–283]. Further, the ability to arrange the atoms in arbi-
trary geometries of tweezers, and the ability to quench var-
ious parameters in the above Hamiltonian, leads to a rich
playground of physics that is open for exploration.

In the case the qubit states are two hyperfine ground states,
as illustrated in Fig. 14b, it is possible to make one of the
ground states interacting by dressing it with a Rydberg state.
Interactions are induced due to the ad-mixture with the Ryd-
berg state, and obtains a similar model to Eq. (B.8). The
advantage to this method is that the atomic lifetimes are
longer, and not limited by spontaneous decay from the Ryd-
berg state. This case has also been experimentally realized
by various groups [284–288].

In the case that the qubit states are two different Ryd-
berg states, as illustrated in Fig. 14c, the atomic interactions
are slightly different. This is because the dipole-dipole inter-
actions now have a matrix element that resembles a flip-
flop interaction, di · d j ∝ σ+

i σ−
j + h.c. Additional single-

particle terms could be added, via coupling to microwaves
that excite atoms from one Rydberg state to the other. This
qubit encoding has been used [289], for example, to real-
ize the Su-Schriefer-Heeger model [290,291], which is the
simplest model presenting topological behavior.

Appendix B.1: Entangling gates on Rydberg atoms

The scheme to implement an entangling gate is shown in
Fig. 15. It consists of two hyperfine ground states |g〉 and |e〉
encoding the qubit, and one of the ground state, |g〉 being cou-
pled to a Rydberg state |r〉 via a laser(s). The whole scheme
involves three individually addressed laser pulses. First, a
laser pulse of duration tπ = π/Ω is shone on one atom,
then a pulse of duration 2tπ is shone on the second atom,
and finally another laser pulse of duration tπ is shone on the
first atom. The effect of this sequence can be understood by
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Fig. 16 The Cirac–Zoller scheme. We shine three laser pulses. The
first pulse transfers the population in |gi , 0〉 to |ei , 1〉, creating one
phonon in the process. The second pulse gives a (−1) sign to |g j , 1〉,
thus realizing a controlled-Z gate between the ion and the phonon. The
third pulse is identical to the first pulse, destroying the phonon and
returning the system to its motional ground state

considering the four initial states, |ee〉, |ge〉, |eg〉, and |gg〉,
of the two qubits. Since only |g〉 is coupled to the Rydberg
state, the whole sequence has no effect on |ee〉. Moreover,
for the initial states |ge〉 and |eg〉, the three-pulse sequence
is equivalent to applying a single pulse of 2tπ on |g〉, which
only multiplies the state by −1. Non-trivial physics happens
for the initial state |gg〉. For this case, the first and third laser
pulses together multiply the state by −1, and the second laser
pulse, which is effectively off-resonant due to the |rr〉 being
blockaded, gives an additional small phase φ � π . In total,
the only one of four states that does not acquire a sign is |ee〉.
This is equivalent to applying a controlled-phase gate. The
controlled-phase gate, together with arbitrary single-qubit
rotations which can be implemented via magnetic fields or
stimulated Raman transitions, are sufficient to realize uni-
versal quantum computing. Gate fidelities exceeding 99%
for entangling gates, and up to 99.6% for single-qubit gates,
have been demonstrated [194].

Appendix C: Trapped ions

In the main text, we stated that there are two schemes to
implement entanglement between trapped ion qubits. Here,
we describe these two schemes, as well as other physics that
can be explored.

Appendix C.1: The Cirac–Zoller scheme

The Cirac–Zoller scheme [203], illustrated in Fig. 16, is a
three-step process that realized the controlled-Z gate and
requires individual qubit addressability. In the first step, one
shines a laser at frequency ω = ω0 + ωt on a specific ion,
where ω0 is the energy spacing between the qubit states |g〉
and |e〉, and ωt is the frequency of the center-of-mass mode.

The Hamiltonian for a single ion coupled to the laser is

H = h̄ω0

2
σ z + h̄ωt

(
a†a + 1

2

)

+ h̄Ω cos(ωt)(a† + a)(σ+ + σ−), (C.9)

where a(a†) annihilates (creates) a mode excitation, and Ω

is the ion-laser coupling strength. For ω0, ωt � Ω , which
is typically the case, we apply the rotating wave approxima-
tion, i.e. go to a rotating frame and neglect terms rotating at
frequency O(ω0) or O(ωt ) in this frame, and obtain

H = h̄Ω

2
(a†σ+ + h.c.). (C.10)

where a(a†) destroys (creates) a phonon excitation. Assum-
ing the initial state has no phonons, the effect of the above
Hamiltonian is that it transfers the qubit’s state to the
phonons. Concretely, when one shines a laser pulse of dura-
tion t = π/Ω on an ion labeled i in the state (α|g〉+β|e〉)i |0〉,
where |0〉 refers to having zero phonons, the system’s state
after the pulse is |e〉i (iα|1〉+β|0〉). The second step involves
shining a second laser pulse, with a similar form to Eq. (C.10),
but couples |g〉 j on ion j to a different excited state |e′〉 j , for a
duration 2π/Ω . The effect of this second step is to selectively
give a (−1) sign to |g〉 j |1〉, i.e. accomplishes a controlled-
Z gate between the phonon and the qubit. The third step is
identical to the first step, and decouples the phonon from the
qubit i . The net effect of the sequence is to selectively give
a (−1) sign to |g〉i |g〉 j |1〉, and do nothing to all other states,
which is a controlled-Z gate.

The Cirac–Zoller gate was first experimentally realized to
demonstrate entanglement between an ion and a phonon in
Ref. [292], and later between two ions in Ref. [293–295].

Appendix C.2: The Mølmer–Sørensen scheme

In the Mølmer–Sørensen scheme, a laser beam containing
two frequency components ω1 and ω2, as shown in Fig. 17a
is shone on the ions. The two frequencies are chosen close to
the upper and lower motional sidebands, i.e. ω0±ωt±Δt+δ,
where ω0 is the energy spacing between the qubit states |g〉
and |e〉, and ωt is the normal mode frequency of the ions, typ-
ically the frequency of the center-of-mass mode. Depending
on the laser frequencies and strengths, this scheme can real-
ize a variety of qubit interactions, including controlled-phase
gate between a given pair of qubits, or various long-range
Hamiltonians with pairwise interactions between the qubits.

The Hamiltonian for a single ion interacting with two fre-
quency laser field is given as

H = h̄ω0

2
σ z + h̄ωt

(
a†a + 1

2

)
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Fig. 17 The Mølmer–Sørensen scheme. a We shine two lasers at fre-
quencies ω1 and ω2 close to the red and blue motional sidebands at
ω0 ± ωt . Different detuning of the laser frequencies from the motional
sidebands give rise to different qubit interactions, as described in the
text. b Physical picture for the emergent Mølmer–Sørensen interaction.
Ions scatter from |gg, n〉 to |ee, n〉 (also from |ge, n〉 to |eg, n〉) either
by emitting and re-absorbing a virtual phonon in the weak coupling
case, Ω � Δt , or by constructive interference of four paths at special
times when the spin and motion decouple in the strong coupling case,
Δt ∼ Ω

+ h̄Ω(cos ω1t + cos ω2t)(a
† + a)(σ+ + σ−),

(C.11)

where a(a†) annihilates (creates) a mode excitation, and Ω

is the ion-laser coupling strength. For ω0, ωt � Ω , which
is typically the case, we apply the rotating wave approxima-
tion, i.e. go to a rotating frame and neglect terms rotating at
frequency O(ω0) or O(ωt ) in this frame, and obtain

H = h̄Ω

2
(a†e−iΔt t + aeiΔt )(σ+e−iδt + σ−eiδt ), (C.12)

where we denoted ω2 = ω0 + ωt + Δt + δ and ω1 = ω0 −
ωt − Δt + δ. It is to be understood that Eq. (C.12) is the
Hamiltonian for a single ion, with the ion label implicit in
the Pauli operators. To include more ions that couple to the
lasers, Eq. (C.12) should be summed over the ion labels.

There are a few cases to consider for the two laser fre-
quencies: the symmetric scheme where δ = 0, the asym-
metric scheme where δ �= 0, the case where Δt � Ω and
different strengths of δ within this case, the case where Δt

is comparable to Ω , and also the case where more than one

normal mode is involved. Each case gives rise to a different
qubit interaction, and we will consider them one by one.

Let us begin by considering the weak coupling case, Ω �
Δt . In this case, the normal modes are only virtually excited,
and can be eliminated in second order perturbation theory,
giving

H = J
∑
i j

(σ+
i σ+

j e
−2iδt + σ+

i σ−
j + h.c.), (C.13)

where J ∝ Ω2/Δt . The physical picture that explains this
emergent interaction is as follows (see also Fig. 17b). The
laser drives flip the internal state of an ion labeled i , and
the ion absorbs (or emits) a virtual normal mode phonon in
this process. Another ion labeled j emits (or absorbs) the
phonon and flips its internal state due to the laser drive. This
virtual exchange of phonons is responsible for mediating
long-ranged qubit interactions between the ions. It should
be noted that there are similarities between the coupling of
an ion’s qubit states to the phonon modes and the case of cav-
ity quantum electrodynamics where an atom’s internal states
are coupled to the electromagnetic modes in the cavity [296].

In the limit δ = 0, H reduces to

H = J
∑
i j

(σ+
i σ+

j + σ+
i σ−

j + h.c.), (C.14)

which is the global Mølmer–Sørensen interaction. In the
limit δ � J , the σ+

i σ+
j term is also rapidly rotating and

can be averaged to zero, therefore H reduces to H =
J

∑
i j (σ

+
i σ−

j + h.c.). Finally, when δ is comparable to
J , the Hamiltonian after moving to an interaction picture
is H = J

∑
i j σ

x
i σ x

j + B
∑

i σ
z
i . This scheme is widely

realized in experiments for quantum simulation (see, e.g.
[206,208,297,298]).

The disadvantage of the weak coupling case above is that
the dynamics are slow, J � Ω � Δt . The dynamics can
be made faster by making Δt comparable to Ω and setting
δ = 0. In this case, Eq. (C.12) is exactly integrable. The exact
time evolution operator under H [Eq. (C.12)] has the form

U = D(α(t)σ x
tot) exp(iΦ(t)(σ x

tot)
2), (C.15)

where D(α) = exp(αa† − α∗a), and σ x
tot = ∑

j σ
x
j . In this

case, the spin degree of freedom and motional degree of free-
dom are not decoupled in general, except at special times
when α(t) = 0. This special time occurs at multiples of
t = 2π/Δt . At these special times, the time evolution oper-
ator, U = exp(iΦ(t)(σ x

tot)
2), is the same as the one obtained

from a Mølmer–Sørensen interaction. One can obtain a physi-
cal picture behind this spin-motion decoupling at t = 2π/Δt

by visualizing the center-of-mass mode as a quantum har-
monic oscillator. The Hamiltonian [Eq. (C.12)] displaces the

123



Eur. Phys. J. C (2022) 82 :458 Page 31 of 37 458

quantum harmonic oscillator, and the oscillator undergoes
a displacement given by D(α(t)σ x

tot). It returns to its initial
state at t = 2π/Δt (i.e. when α(t) = 0), however, it picks
up a spin-dependent geometric phase during each cycle. This
spin-dependent phase is exactly equal to the phase given by
the MøZ-Sørensen gate. Figure 17b shows another intuitive
explanation for the Mølmer–Sørensen interaction. The laser
pulses scatter two ions from |gg, n〉 to |ee, n〉 (also from
|ge, n〉 to |eg, n〉) via four paths, and the total amplitude of
this process is the constructive interference of the four paths.

Local Mølmer–Sørensen interactions, e.g. between exactly
two qubits, can be obtained by shining the lasers on only two
ions so that the sum in Eq. (C.14) is restricted to those two
ions. The gates can be made fast by making Δt comparable
to Ω and applying the laser pulses for a duration that is a
multiple of 2π/Δt , as explained above. Two-qubit Mølmer–
Sørensen gates have also been widely realized in experiments
[206–211], with the highest current gate fidelity in the range
of 99.9%
[212] Together with single-qubit rotations, they form a uni-
versal gate set for digital quantum computation. A major
advantage of using trapped ions over superconducting qubits
as a quantum computing platform is the global connectiv-
ity of the interactions. All ions couple to the center-of-mass
mode, which mediates the qubit interactions, therefore one
can implement a Mølmer–Sørensen interaction between any
pair of ions in a finite time scale regardless of how far apart
they are (up to caveats about ion spacing and mode spacing).

Finally, we consider the case that there are other normal
modes nearby in frequency to the lasers. This case arises
when Δt is comparable to the mode spacing, which can for
example be accomplished by parking the lasers close to the
radial modes instead of the axial modes. Then Eq. (C.12)
should be modified to include the other modes, am , as well.
After adiabatically eliminating the normal modes for Ω �
Δt as above, one again obtains a long-ranged qubit interac-
tion, however the interaction is no longer uniform between all
the qubits. Instead, one obtains an approximately power-law
decaying interaction, Ji j ∼ J/|ri −r j |α (with an exponential
correction). In the limit of coupling only to the center-of-mass
mode, α = 0 and we recover the infinite-ranged interaction
in Eq. (C.14). In the limit that Δt is so large that all the nor-
mal modes are nearly at the same frequency relative to the
lasers, then α ≈ 3. For intermediate Δt , we have 0 < α < 3.
This case was first realized in [298–301].
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