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Abstract Wormholes are intriguing classical solutions in
General Relativity, that have fascinated theoretical physicists
for decades. In recent years, especially in Holography, gravi-
tational Wormhole geometries have found a new life in many
theoretical ideas related to quantum aspects of gravity. These
ideas primarily revolve around aspects of quantum entangle-
ment and quantum information in (semi-classical) gravity.
This is an introductory and pedagogical review of Worm-
holes and their recent applications in Gauge-Gravity duality
and related ideas.
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1 Introduction

General Relativity allows for warping of the spacetime. This
key feature widely opens up a plethora of rather interesting
geometries with curious properties. Of these, Black Holes are
an extremely interesting and ubiquitous class of geometries,
that has recently been directly detected by the Event-Horizon
Telescope experiments [1,2], as well as by the gravitational
wave based experiments [3]. From early theoretical studies
of Black Holes, specially by Einstein and Rosen in [4], it was
suggestive that a special geometric structure that connects to
asymptotic regions can exist for Black Holes, and beyond.

In [5], such geometries structures were termed as “Worm-
hole”. Since then, such geometries have been a constant
source of inspiration and imagination, both in science and
science-fiction. In particular, since Wormholes connect to
two (or more) asymptotic geometries by a “throat region”,
it has long inspired extremely fast travel across remark-
ably large distances of the Universe. However, upon further
scrutiny, distinctions can be drawn between Wormholes that
generally tend to be either unstable for such travels or need
to be supported by some exotic matter field for them to be
humanly traversable or the traversable ones that can sup-
ported by standard matter field but do not provide the short-
est path between two points. Nonetheless, these geometries
bring together foundational concepts in theoretical physics
e.g. causality, locality, chronology-protection and so on, and
helps us sharpen them further. This is a good point to refer the
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Reader to other reviews on Wormholes from complementary
and different perspectives in e.g. [6,7].

These ideas and the corresponding technical history of
the subject is rather long, which we do not intend to visit
here. Instead, in this review, we will briefly touch upon a
range of recent ideas, along with basic technical discus-
sions, where Wormholes play a crucial role. All of these
recent advancements are based on the framework of Holog-
raphy1 which posits an equivalence between a quantum-
gravitational system in (d + 1)-dimensions with a Quantum
Field Theory (QFT) in d-dimensions. Typically, at least in the
well-understood examples, thed-dimensional QFT is defined
at the asymptotic boundary of the (d + 1)-dimensional
quantum-gravitational description. In a semi-classical limit,
in which the quantum-gravitational system can be approxi-
mated by a classical geometry with quantum fields propagat-
ing inside it, a putative Wormhole can connect otherwise dis-
joint asymptotic regions of the spacetime. In the Holographic
dual description, this implies a highly non-local interaction
between two identical QFTs, which are a priori defined at
two disjoint asymptotia.

A crucial aspect of the modern perspective on quantum
gravitational dynamics comes from a (quantum) information
theoretic framework. Within AdS/CFT, this idea essentially
stems from the so-called Ryu–Takayanagi proposal [11,12],
in which a sharp statement was made connecting a geomet-
ric object in the bulk gravitational description to an inher-
ently quantum mechanical concept of entanglement in the
boundary gauge theory. Not only this idea connects quantum
entanglement with the structure (emergence) of spacetime,2

it allows us to extract fine-grained physical observables of the
strongly coupled gauge-dynamics at the boundary, by per-
forming entirely geometric computations. Wormholes play
remarkably crucial roles in Holography, specially from the
quantum information theoretic perspective.

Particularly, in the context of quantum dynamics of Black
Holes in AdS, extracting fine-grained physics is an extremely
important problem. From an entropic perspective, a radi-
ating Black Hole keeps emitting Hawking quanta which
keeps unboundedly increasing the corresponding entangle-
ment entropy of the radiation. This is in stark contrast with
an upper bound of the total entropy of the Black Hole, which
is given by the famous Bekenstein-Hawking formula[16,17].
In a nutshell, this is the essence of the (in)-famous informa-

1 Early ideas of Holography were proposed in [8,9]. This duality takes
a particularly sharp and precise form in [10], which is known as the
AdS/CFT correspondence.
2 For a recent set of such ideas, referred to as the ER=EPR conjecture,
see [13]. For more general aspect of this connection and recent progress,
see e.g. [14,15].

tion paradox3 that a consistent theory of quantum gravity is
expected to resolve.

It is expected that a fine-grained notion of entropy is able
to probe deeper into this dynamics. In fact, as argued by Page
in [19], entanglement entropy is capable of capturing such
fine-grained physics: For any unitary dynamics entanglement
entropy can increase with time only up to a point – known
as the Page time – before it begins decreasing again. A sim-
ilar physics has long been desired for the quantum dynam-
ics of Black Holes. In a Holographic context, on one hand,
this would clarify how quantum information is encoded in
the quantum regime of gravity and equivalently in the quan-
tum dynamics of the dual strong gauge-dynamics; on the
other, it will shed light on the infamous Black Hole infor-
mation paradox. Recent progress in [20–24] has precisely
extracted the desired Page-curve time-dependence of entan-
glement entropy, as a fine-grained entropy, of the Black Hole
radiation degrees of freedom.

The above-mentioned models involve two-dimensional
(quantum) gravity, in which much of the explicit calcula-
tions are under analytic control. Wormholes play an explicit
and important role in producing the Page-curve dynamics for
such models. Perhaps more broadly, these Wormholes gener-
alize the Ryu–Takayanagi prescription to include bulk quan-
tum corrections to a generic class of fine-grained entropies,
known as the Renyi-entropy. To construct a specific state
(i.e. the corresponding density matrix) in any quantum sys-
tem, one requires the knowledge of all Renyi-entropies.
Thus, Wormholes emerge as an integral aspect in such state-
construction.

In keeping with the theme, generic (Euclidean) Wormhole
geometries in AdS encode multi-partite entanglement prop-
erties in quantum gravitational states. Geometrically, such
Wormholes asymptote to multiple conformal boundaries on
which the dual CFTs are defined. Furthermore, upon care-
fully introducing a direct coupling between these copies of
CFTs, geometrically, renders the Wormholes traversable. In
turn, this traversability can be viewed as quantum teleporta-
tion protocols. For recent progress in connections between
Holography and quantum simulators, we refer the Reader to
[25].

We simply want to impress upon the fact that Wormholes
have found a wide range of interesting applications, in the
context of Holography, and deserve further attention. In this
article, we do not intend to review each such application in
detail. This is largely because it is a highly evolving field of
active research and each such topic deserves a review of its
own. Rather, we will focus on the basic features of Worm-
hole geometries as saddles of Einstein-gravity and construc-
tion of such Wormholes in both Euclidean and Lorentzian
frameworks. In parallel, we will review key aspects of var-

3 For more detailed account of this, see e.g. [18].
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ious applications of Wormhole geometries in the contexts
mentioned above. We hope that this review will serve as a
bridge between earlier literature on Wormhole geometries in
gravity and future work in quantum gravity from a quantum
information theoretic perspective. We will review technical
aspects of Wormholes in detail, as well as quantitatively moti-
vate new ideas in quantum gravity that makes explicit use of
them.

Before concluding this section let us note that there are
three broad categories of Wormholes, which we will review
in this article. First, spacetime Wormholes: these Wormholes
lead to effective non-local interaction between two asymp-
totic regions of the spacetime and affect a naive factorization
property of a quantum field theory which is dual to the geo-
metric structure. Secondly, Einstein–Rosen bridges and their
generalizations: these Wormholes appear whenever there is
a black hole in the geometry and, typically, these are asso-
ciated to the entanglement structure of the state in the dual
QFT. For example, the Thermofield Double (TFD) state is a
maximally entangled state whose entanglement is encoded
in the Einstein–Rosen bridge connecting the left and the
right boundaries of the corresponding Penrose diagram of
an AdS-Schwarzschild geometry. Such Wormholes can be
made traversable by adding a suitable matter field in the
bulk geometry, equivalently turning on a particular defor-
mation to the TFD-state in the boundary QFT. Finally, we
will also discuss Wormholes that emerge in the calculation
of fine-grained entropies in Holography. These Wormholes
are specific in the context of such fine-grained data in quan-
tum gravity and are of the traversable-Wormhole type. To
make this explicit, we will label each type of Wormhole in
the subsequent sections and discussions, as they appear.

This review is divided into the following sections: in Sect.
2, we begin with a basic discussion of Euclidean instanton
solutions in quantum mechanics and quantum field theory.
These instantons, in certain ways, are similar to Euclidean
Wormhole geometries which we review, in detail, later. In
Sect. 3, we briefly introduce the basic statement of Holog-
raphy, especially of AdS/CFT correspondence. Section 4 is
devoted to discussing Euclidean Wormhole geometries, their
role in extracting the Page-curve and multi-partite entangle-
ment structure. We provide a technical review on the con-
struction of multi-boundary Wormhole geometries which
play a foundational role in understanding the multi-partite
entanglement structure in Holography. The next section is
devoted to Wormholes in Lorentzian framework. In par-
ticular, we review the fate of energy-conditions for such
geometries, explicit and varied constructions of traversable
Wormholes and their physical significance, Wormholes on
the Brane and a phenomenon of Regenesis. Finally, in Sect.
6 we conclude with a list of broad and open directions for
future, including a list of puzzles that Wormholes raise. We

have also included a technical and supplementary discussions
in two appendices.

2 Quantum mechanics

Let us begin the discussion with a simple model in Quan-
tum Mechanics.4 Consider a particle in an unstable potential,
denoted by V (q), where q denotes the classical position co-
ordinate of the corresponding particle. A prototypical classi-
cal action is given by

S =
∫

dt L[q(t), q̇(t)] =
∫

dt

(
1

2

(
dq

dt

)2

− V (q)

)
,

V (q) = −q2

2
+ q4

4
+ 1

4
, (1)

where, for convenience, we have chosen specific coefficients
for each monomial in q in the potential. Classically, there are
two unstable maxima of the potential, which are obtained

by solving ∂qV (q)
∣∣
q0

= 0 with ∂2
q V (q)

∣∣∣
q0

> 0: q0 = ±1.

Choosing one minima will break the symmetry q → −q,
spontaneously. Note that, a linear combination of both the
minima will manifestly restore the symmetry, although, such
a configuration is not physically meaningful in the classical
regime.

To quantize the system, we consider the path integral:

Z =
∫

Dq(t)ei S[q(t)], (2)

where Dq(t) is some integration measure that we need not
specify at this point. As is well-known, the path-integral is
not a well-defined object, since the integrand is a widely
oscillating function. Instead, we perform a Wick rotation:
t → −iτ , where τ is the Euclidean time, and define the
Euclidean path integral as:

Z =
∫

Dq(τ )e−H [q(τ )],

H =
∫

dτ

(
1

2

(
dq

dτ

)2

+ V (q)

)
. (3)

It is straightforward to check that (3) follows from (2), by
simple a substitution t → −iτ .5

Now, vacuum correlation functions can be obtained by

〈q(τ1)q(τ2) . . . q(τn)〉
= 1

Z

∫
Dq(τ )q(τ1)q(τ2) . . . q(τn)e

−H [q(τ )], (4)

4 This is a standard discussion, available in many text books, e.g. [26].
5 At this point, we are not specifying the boundary conditions on the
functions q(τ ); in fact, we have not yet specified the range of τ yet.
We can choose the integration range as τ ∈ [−∞,+∞]. An alternative
choice is to compactify the τ -direction, such that τ ∈ [0, 2π ].
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Z =
∫

De−H [q(τ )]. (5)

Thus, the quantum correlation functions can now be obtained
by computing classical correlation functions of a one-
dimensional statistical mechanical system with an Euclidean
action H [q]. This classical statistical mechanical system is
described by the corresponding Euler–Lagrange equation
derived by extremizing the functional H [q]. The resulting
equations of motion are:

d2q

dτ 2 = q3 − q. (6)

The simplest solutions of the above equation of motion are
the static ones, for which q(τ ) = 0,±1. The correspond-
ing on-shell energies of these solutions are, respectively:
Hon−shell = 0,− ∫

dτ(1/4). Note that, all three solutions
yield finite action when integrated over a compact support
on τ , but the latter two diverge on an infinite/semi-infinite
line.6

There is an obvious integral of motion for the equation in
(6), corresponding to the symmetry under τ → τ + c of the
Euclidean action in (3), where c is a constant. The integral
of motion is given by

E = ∂H

∂q̇
q̇ − H =

∫
dτ

[
1

2

(
dq

dτ

)2

− V (q)

]
. (7)

The solutions q(τ ) = ±1 correspond to E = (1/4). One can
now solve for a more general q(τ ) by setting E = const, in
(3), which yields:

dq

dτ
= ±√

2V (q) + E, (8)

�⇒ q(τ ) = ± tanh

(√
1

2
(τ − τ0)

)
, with E = 0, (9)

where τ0 is an integration constant. This solution behaves as
q → 0 as τ → τ0 and q → ±1 as τ → ±∞. A pictorial
representation is provided in Fig. 1.

In summary, we have three classical saddles: (i) q(τ ) = 0,
(ii) q(τ ) = ±1 and (iii) the interpolating solution in (9). Let
us denote them by q(1), q(2) and q(3), respectively.

Suppose now, we want to evaluate the “classical” Euclidean
path integral in (3), subject to some boundary condition,
i.e. we want to compute the contribution of the classical con-
figuration satisfying the condition. Consider the boundary
condition that limτ→±∞ q(τ ) = ±1. Without the knowledge

6 If we compactify the τ -direction, the corresponding partition func-
tion in (5) becomes the thermal partition function. On a finite strip of
τ , however, the Euclidean path integral can be interpreted as the wave-
function of e.g. an excited state. In the limit of the infinite strip length,
this corresponds to the ground state wavefunction, for a system with a
mass gap.

of the interpolating solution in (9), i.e. q(3), the correspond-
ing path integral is obtained by a single saddle q(1)(τ ) = ±1.
This yields a path integral that consists of two identical con-
tributions:

Z = Z+∞ + Z−∞ = 2N , (10)

where the subscript ±∞ denotes the corresponding boundary
conditions are imposed at τ = ±∞. Here N is an unimpor-
tant numerical constant.

Subsequently, we can consider fluctuations around the
classical saddle q(2)(τ ), let us denote them by δq(2). There
are two copies of these fluctuations, associated to the two
terms in (10): Z+∞[δq(2)] and Z−∞[δq(2)]. These path
integrals define correlators of the type:

〈
δq(2) . . . δq(2)

〉
+∞

and
〈
δq(2) . . . δq(2)

〉
−∞, and no correlation between the +∞

degrees of freedom and the −∞ degrees of freedom exists.
Also, the degrees of freedom near q(1) saddles (as well as
q(3) ones) are completely absent.

On the other hand, subject to the same boundary condition
limτ→±∞ q(τ ) = ±1, once we also include the interpolating
saddles in (9), the corresponding path integral now takes the
form:

Z = Z+∞ + Z−∞ + Z inter, (11)

Z inter = exp

×
[
−1

2

∫ ∞

∞
dτ sech4

(
τ − τ0√

2

)]
. (12)

By construction, now the path integral yields a non-trivial
correlator between the +∞ degrees of freedom and the −∞
degrees of freedom. Moreover, since the interpolating part
also goes through the q(1) (near τ → τ0) saddle, the semi-
classical degrees of freedom around this saddle are also cou-
pled, in an indirect manner.

More quantitatively, suppose we semi-classical quantize
using (10). This manifestly implies the following:

Z [δq] = Z+
[
δq(2),J+

]
+ Z−

[
δq(2),J−

]
. (13)

Here we have dropped ∞ in the subscript, for simplicity.
Furthermore, J± represent the corresponding sources, con-
jugate to the fields δq(2)

± . The above follows directly from
the definition in (5), which, in this case, simply yields two
unrelated semi-classical systems respectively localized at
τ → ±∞. By construction, any correlator of the form〈
δq(2)

+ . . . δq(2)
− . . .

〉
= 0.7

7 This is easily seen by e.g. computing

δ2

δJ+δJ−
Z = δ

δJ+
δZ−
δJ−

= 0, (14)

since Z∓ is independent ofJ±. Here,J± are the corresponding sources.
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Fig. 1 A schematic diagram
for the instanton configuration.
On the left, we have the original
potential, and on the right we
have the inverted potential. The
instanton configuration of (9)
begins at τ = −∞ from
q = −1 and approaches q = +1
at τ = +∞

On the other hand, if we begin with (11), the corresponding
expectation value is given by

Z [δq] = Z+∞
[
δq(2),J+

]

+Z−∞
[
δq(2),J+

]
+ Z inter

[
δq(3),J±

]
. (15)

Since δq(3) asymptotes to δq(2)
± , in the semi-classical the-

ory above, we obtain:
〈
δq(2)

+ δq(2)
− . . .

〉
�= 0. In this sense,

including the instanton-saddle in (9) introduces additional
correlations in the quantum system that no longer factor-
izes in terms of degrees of freedom near +∞ and a −∞.
Note that, one way to obtain a non-vanishing correlator of

the form
〈
δq(2)

+ δq(2)
− . . .

〉
, one could begin with (13), with a

simple modification:

Z [δq] = Z+
[
δq(2),J+

]

+Z−
[
δq(2),J−

]
, J± = J

2
, (16)

whereJ is an averaged coupling. It is suggestive that by aver-
aging over the local semi-classical systems near ±∞, one can
induce a non-trivial correlation function between the + and
the − degrees of freedom, similar to what the interpolating
solution does in (15). This is not an equivalence, but a quali-
tative similarity. Later we will see this idea playing a sharper
role in the Holographic context, in which Wormholes play a
crucial role.

3 Holography basics

Before delving deeper into the physics of Wormholes, let us
collect some basic facts and features of Holography that we
will assume for the subsequent discussions in this review.
The basic idea is that quantum gravity in an asymptotically
anti de-Sitter (AdS) geometry is described by a quantum field
theory (often a conformal field theory) defined on the confor-
mal boundary of AdS. A basic idea came from holographic
proposals in [8,9], and within string theory it took a par-
ticularly sharp and precise form in terms of AdS/CFT, see

e.g. [10,27,28]. Over the years, these ideas have been gener-
alized to a much wider class of examples and are sometimes
used as a consistent definition of a theory of quantum gravity
in AdS.

The best understood examples are in the class of SU(N )

gauge theories with an N 2 degrees of freedom at the confor-
mal boundary of the AdS-geometry. The gravitational dual is
described by Einstein-gravity in an AdS-geometry. We will
mainly use this framework and our discussion will be con-
fined within classical or semi-classical gravitational physics
in AdS. A special case appears in AdS2, where the dual QFT
is a quantum mechanical system with N Majorana Fermions
that are interacting via random coupling, see e.g. [29–32]. We
will also explicitly use this example. There are other duali-
ties as well, for example, when the boundary QFT is an O(N )

vector model in which case the holographic dual is descrip-
tion is given in terms of infinite number of higher spin fields
in the bulk, see e.g. [33–35]. We will, however, not review
the latter case in this article.

Qualitatively, the essential premise in the following clas-
sical gravity action:

Stotal = Sgravity + Smatter, (17)

where Sgravity is the standard Einstein-gravity action, with a
negative cosmological constant and Smatter is a generic matter
contribution. Inverse Newton’s constant plays the role for
the gravitational action Sgravity, and we work in the limit
GN → 0. From the perspective of the boundary QFT, this
sets the number of degrees of freedom N 2 ∼ G−1

N → ∞.
In this limit, gravity is purely classical8 and by introducing a
quantum matter field in the matter action Smatter, we explore
a semi-classical description.

The basic gravitational ingredient is an AdSd+1-BH
geometry, which extremizes the action (17), in the absence of
any matter source. The most familiar metric for this solution

8 Note that, in general arbitrary higher derivative terms can be included
in the gravitational action. However, these are parametrically suppressed
by inverse string length or Planck length. Thus, as long as we discuss
physics well below such scales, it is consistent to turn all of them off.
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is given by

ds2 = L2

z2

(
− f (z)dt2 + dz2

f (z)
+

d−1∑
i=1

dx2
i

)
,

f (z) = 1 −
(
zH

z

)d

, (18)

where L is the curvature of the geometry, zH is the location
of an event-horizon. The dual QFT is defined on the R

1,d

along {t, xi }-directions. The presence of the horizon assigns
a temperature to the QFT-state, with T = d/(4π zH). The
conformal boundary is located at z → 0; this radial coordi-
nate is related to the corresponding energy-scale in the dual
QFT.

Given the geometry, a generic bulk field corresponds to a
gauge-invariant operator in the boundary. For example, the
boundary QFT stress-tensor is dual to the metric, a conserved
current is dual to a bulk gauge field, a scalar deformation of
the boundary QFT is dual to a bulk scalar field, etc. Thus, one
can use the gravitational description to compute correlation
functions of such gauge-invariant operators in the boundary
QFT.

Furthermore, a precise notion of quantum information in
the boundary QFT is realized in the bulk description as well.
For example, given a density matrix ρ of a particular state in
the boundary QFT, one can bi-partition the Hilbert space by
looking at a spacelike sub-region A:H = HA⊗H Ā, where Ā
is the complement of the region A. Subsequently, one defines
a reduced density matrix: ρA = Tr Ā (ρ), and a correspond-
ing von Neumann entropy: SA = −TrA (ρA log ρA).9 These
entropies encode quantum entanglement, and therefore quan-
tum information, structure of the given QFT. Gravitationally,
the von Neumann entropy can be calculated by the Ryu–
Takayanagi prescription [11,12]:

SA = Area (γA)

4GN
, (20)

where γA is a co-dimension two minimal-hypersurface in the
geometry, satisfying: (i) ∂γA = ∂A, (ii) γA is homologous to
A, (iii) γA is defined on the same time-slice as A. While the
above prescription holds for static states, it is further gener-
alized to arbitrary time-dependent state in [36]. For further
extensive review on this, we refer the reader to [37].

Before leaving this section, let us note that it will be impor-
tant to go beyond the classical limit and therefore consider
a correction to (20): a quantum corrected RT-formula. This
can be obtained by computing entanglement between quan-
tum fields in the bulk region, separated by the classical RT-

9 More generally, one defines a class of entropies, called Renyi entropy:

S(n)
A = 1

1 − n
log [TrA (ρA)] . (19)

surface. The relevant quantity to compute is the so-called
generalized entanglement entropy, using the prescription of
[38]:

SA = min

[
Area (γA)

4GN
+ Sbulk

]
, (21)

where Sbulk is the entanglement between quantum fields par-
titioned by the surface γA.

One needs to carry out an extremization of the above
functional and subsequently choose the minimum of the
extrema. For each given γA, Sbulk contributes to the general-
ized entropy functional and therefore alters the correspond-
ing extrema. One needs to therefore analyze all possible γA,
subject to the homology condition, and subsequently carry
out the extremization. This is a technically difficult problem
and only a few cases are hitherto analytically tractable. We
will not make any explicit technical use of this functional,
but it will play an important conceptual role.

4 Euclidean quantum gravity

We will now discuss instantons in Euclidean (Quantum)
Gravity, specifically solutions that are categorized as worm-
holes. Before discussing that, it is incumbent that we define,
at least operationally, the Euclidean Quantum Gravity action.
As usual, the naive Lorentzian path integral is ill-defined
and we can Wick rotate to define an Euclidean path integral
accordingly. This is defined as[39]:

Z =
∫

Dge−S[g], (22)

S[g] = − 1

16πG

∫
M

dDx
√
g (R − 2�)

− 1

8πG

∫
∂M

KdD−1	 + C, (23)

where G is the D-dimensional Newton’s constant, R is the
Ricci-scalar, � is the cosmological constant, K is the trace
of the second fundamental form on the boundary and C is a
constant that can be tuned to achieve a convenient on-shell
configuration, e.g. in flat space S[g] = 0. The boundary term
in (23), known as the Gibbons–Hawking term, renders the
variational problem well-defined and only contributes when
∂M �= ∅. Because this action is linear in the curvature which
has no lower bound,10 the Euclidean action is not bounded

10 For example, Ricci-scalar transforms non-trivially under a conformal
transformation, under g̃μν = �2gμν :

R̃ = �−2R−(D−4) (D−1) �−4∂μ∂μ�−2 (D−1) �−3gμν∇μ∂ν�,

(24)

and by choosing a rapidly oscillating conformal factor, �, the Ricci-
scalar can be made as large as one wants.
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Fig. 2 A schematic cartoon of
a baby Universe popping out of
a parent Universe

from below, unlike in ordinary QFT. One way to get around
this issue is to define the Euclidean path integral by first sep-
arating the space of metrics into different conformal classes
and integrating over a finite Ricci-scalar metric in each class,
for more details see e.g. [40,41].

In this article, however, we will not delve into these issues.
Rather, we will focus on the saddles of the Euclidean action,
in particular the wormhole configurations. In a theory of
quantum gravity, it is expected that topology-changing pro-
cess take place, by simple quantum tunnelling. In partic-
ular, such topology-changing processes have been exten-
sively investigated in the literature, within the context of
potential loss of quantum coherence in quantum gravity, see
e.g. [42–46]. The prototype of such topology changing pro-
cess involves a Planck-scale baby Universe branching out
from a parent Universe, see Fig. 2, for a representative pro-
cesses.

In Lorentzian signature, the total spacetime is connected11

and therefore the corresponding Cauchy surface is also con-
nected, and thus the baby Universe is not causally indepen-
dent from the parent Universe. However, in Euclidean signa-
ture there is obstacle in having the baby Universe configu-
ration. Therefore, one can now explore the solution space of
Euclidean Gravity (equivalently, the saddles of the Euclidean
Quantum Gravity path integral), for such configurations.
From now on, we will refer to these configurations as Worm-
holes, motivated by the picture in Fig. 2.

The simplest of all is, of course, pure Einstein-gravity.
Hawking showed in [43] that there exists no such Worm-
hole saddle in pure gravity. However, Giddings–Strominger
showed in [47] that one-parameter family worth of Euclidean
Wormhole solutions indeed exist if we add a generic

11 It is important to note, however, that the Lorentzian continuation
of the corresponding geometry are expected to be either complex or
singular. We thank an anonymous Referee for emphasizing this point.

massless-spinless axion field as a matter sector. We will
momentarily review how this construction works, for now, let
us assume they exist and ponder over the physical meaning
of these configurations.

From the definition of the Euclidean path integral, and the
prescription of integrating over the conformal class of metrics
(reviewed above), it is clear that the full quantum gravity
calculation must take these Wormhole saddles into account.
While it is not completely understood how this may work in
detail, we can already make qualitative statements, following
the suggestion by [48]. We draw the basic motivation from
Fig. 3, in which the Euclidean Wormhole has two asymptotic
regions, on which two classes of (gauge-invariant) operators
are defined, denoted by OI (x) and OJ (y).

These two asymptotic regions are separated by a length
�WH. Now, physics at length-scales � �WH will receive a
non-trivial contribution from the Wormholes, in that they
will introduce an effective coupling of the form:

SWH = −1

2

∑
I,J

∫
dDxdD yOI (x)OJ (y), (25)

which is an inherently non-local interaction. Thus, the
Euclidean path integral receives a non-trivial contribution,
which we rewrite as follows:

ZWH = e−SWH = exp

⎛
⎝−1

2

∑
I,J

∫
dDxdD yC−1

I J OI (x)OJ (y)

⎞
⎠

=
√

detC√
2π

∫
[dα]exp

(
−1

2
αI CI JαJ

)

×exp

(
−

∫
dDx

∑
I

αIOI (x)

)
, (26)
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Fig. 3 A schematic cartoon of
how Wormholes configurations
may exist. On the left, the
Wormhole begins and ends on
the same asymptotic Universe,
on the right, the Wormhole
connects two asymptotic
Universes. In the first case, an
effective non-local description
emerges within the same
Universe, while in the latter,
operators living on the two
Universes couple through the
Wormhole connecting them

where {αI } are auxiliary parameters, and CI J is a symmetric
matrix.12

Let us pause and take stalk of how the physical interpreta-
tion has changed in going from (25) to (26). Clearly, in (26),
(i) the resulting action is local, (ii) there are additional param-
eters {αI } with each αiOI term, which are then integrated out
with a Gaussian distribution, (iii) the additional parameters
{αI } are spacetime independent and therefore does not break
the Poincaré symmetry.13 The integral over a distribution of
the couplings {αI } suggests that there is an “ensemble aver-
aging” over a class of quantum systems, each member of
which is characterized by a specific choice of αI .

4.1 General framework for wormhole solutions: Euclidean

In this section we will review the basic ingredients required
to construct a gravitational Wormhole solution. These are
spacetime Wormholes that connect two asymptotic regions
and introduce an effective coupling between them. In the
dual CFT perspective, these geometries cause a factorization
problem, which we will mention at the end of this section.

12 In deriving this identity, we have used the Gaussian integration result:

∫
dα exp

(
−1

2
Cα2

)
exp (−αA) = exp

(
A2

2C

)√
2π

C
, (27)

where A and C are constants. The above result is valid for a single
variable α. This readily generalizes to an array of αI , in which case
CI J becomes a symmetric matrix and the number C on the RHS, under
the square root, is replaced by det[C]. The C−1 in the exponential
argument is replaced by C−1

I J matrix.
13 Note that this is not necessarily true for a global symmetry. For
example, action in (25) is invariant under OI → −OI , however (26) is
not, unless we also demand that αI → −αI simultaneously.

To find Wormhole solutions, we need axion matter field:14

S = 1

2κ2

∫
dDx

√
g

(
−R + 1

2
∂μφ∂μφ

+ 1

2(D − 1)!e
βφFμν...F

μν...

)
, (28)

where φ is a scalar field, β is a constant coupling and Fμν...

is a (D − 1)-form, which can be dualized to a scalar:

Fμ...λ = εμ...νλe
−βφ∂λA, (29)

where A is the corresponding scalar. This is known as the
axion-field and since it is defined as a dual to a (D − 1)-
form, the corresponding kinetic sign has a wrong signature.
In general, from an Euclidean compactification of a super-
gravity (or stringy) system, one obtains the following action:

SA = 1

2κ2

∫
dDx

√
g

[
−R + 1

2
GI J ∂μφ I ∂μφ J

]
, (30)

where GI J is the metric in the space of scalars. There is no
constraint on the sign of GI J , and this is crucial to allow us
Wormhole solutions in the Euclidean signature, as we will
see momentarily.

Consider that the Euclidean Wormhole connects two max-
imally symmetric geometries in d = (D − 1)-dimensions,
denoted by	d . Clearly,	d can be eitherRd (i.e. an Euclidean
plane), an S

d (i.e. a round sphere) or a H
d (i.e. a hyperbolic

plane). Let us assume that the full Wormhole geometry obeys
a “left-right” symmetry, and hence it admits a natural slic-
ing in terms of the transverse direction, which we denote by
r . The corresponding geometric data can be written in the
following manner:

ds2 = N (r)dr2 + a(r)2d	2
d , (31)

φI = φI (r). (32)

14 See e.g. the discussion in [49]. See also [50–52] for a further thorough
analyses of the model. See [53] for a recent account of stability of
Wormholes in such models.
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Here we can further gauge-fix to choose N (r) = 1. The
geometry above can be interpreted as a homogeneous and
isotropic Euclidean cosmology, with a Euclidean time r . Ein-
stein equations now yield:

a′2

a2 − k

a2 − GI J (φ
I )′(φ J )′

2(D − 1)(D − 2)
− s

L2 = 0, (33)

(
aD−1GI J (φ

J )′
)′ − 1

2
GJK ,I (φ

J )′(φK )′ = 0, (34)

where, k = 1, 0,−1 for 	d ≡ S
d ,Rd ,Hd , respectively; the

′ ≡ d
dr , s = 0, 1 for asymptotically flat or anti de-Sitter

geometry, and L is the corresponding curvature scale.
One can rewrite the equations of motion, in the following

form:

a′2 = k + s

L2 a
2 + C

2(D − 1)(D − 2)a2D−4

�⇒ a′2 + Veff(a) = 0, (35)
C

a2D−2 = GI J (φ
I )′(φ J )′, (36)

where C is a constant of motion.15 The nature of the solution
now depends crucially on C ; we sketch various possibilities
below:

(i) C > 0: In this case, Veff(a) → −∞, as a → 0, and
therefore a′ → ∞. This clearly is a singular limit and
we do not expect any physical solution to exist in this
case.

(ii) C = 0: This can be exactly solved readily to obtain:

a(r) = ±
(
a0e

−r
√
s
L − kL2

2a0
er

√
s
L

)
, (37)

where a0 is an integration constant. Clearly, as r → ∞,
a(r) → ±∞, which is consistent with having an asymp-
totically flat, as well as an AdS-geometry. For an asymp-
totically flat spacetime, we want a(r) → r2 as r →
∞, while for an asymptotically AdS-geometry we need
a(r) → er/L as r → ∞.

However, if we want a Wormhole solution connecting the
asymptotia, there must exist a point r = r∗ such that a′(r∗) =
0. We observe that setting k + s

L2 a(r∗)2 = 0, this condition
can be achieved. For asymptotically flat geometry, i.e. with
s = 0, this occurs only for the trivial case of k = 0; but for
an AdS-geometry, i.e. with s = 1, this can be achieved for
k = −1. On the other hand, if k = 0, then an exact solution

15 This integral of motion comes from the fact that the effective action,
obtained by substituting the geometric ansatz in (31), and (32) in (30),
is independent of r , it only depends on functions of r . Therefore, there
is a conserved Hamiltonian.

can also be found:

a(r) = e±r
√
s
L , (38)

which also satisfies a′(r∗) = 0 at a(r∗) = 0. In this case, a
Wormhole may be constructed by gluing the two branches
of the solutions at a(r∗) = 0, see the discussion in [54].

(iii) C < 0: This is the most interesting case. Let us write
C = −2(D−1)(D−2)a2D−4

0 < 0, which yields an equation
of the form:

a′(r)2 = k + s

L2 a(r)2 − a2D−4
0

a(r)2D−4 , (39)

which can be solved in terms of hypergeometric functions.
For our purposes, it is enough to notice that, as r → ∞, we
get:

a(r) = ±√
kr, s = 0 & k = 0, 1, (40)

a(r) = e± r
L , s = 1 & k = 1, 0,−1, (41)

where s = 0 corresponds to asymptotically flat and s = 1
corresponds to asymptotically AdS spacetime.

Now, the conditiona′(r∗) = 0 can be satisfied for all cases,
provided the RHS of (39) has a vanishing point. This appears
to hold generically since the RHS has one positive term,
one definitely negative term and one term that can take both
positive as well as negative values.16 However, the following
choices are not allowed: (i) k = 0 and s = 0, i.e. between
asymptotically flat geometry with planar boundaries, (ii) k =
−1 and s = 0, i.e. between asymptotically flat geometry with
hyperbolic boundaries.

Before concluding this section, a few comments are in
order. Wormhole configurations lead to various conceptual
issues, that become sharp contradictions in the context of
AdS/CFT correspondence. In this context, the main concep-
tual problem Wormhole configurations lead to can be sum-
marized in the following way:

(i) Wormholes can be arbitrarily separated, and therefore the
bulk amplitudes will not factorize. In terms of the dual
gauge theory this implies that the corresponding correla-
tors do not satisfy cluster decomposition.

(ii) In standard AdS/CFT, the dual gauge theory is local and
therefore it should obey cluster decomposition.

Clearly, (i) and (ii) are in direct contradiction with each other.
This contradiction can be stated in a more quantitative way

[49]: Consider the dual gauge theory on a compact Euclidean

16 It appears that for k = 0 and s = 1, an arbitrarily small value
of a0 can also satisfy the equation a′(r∗) = 0, and thus a Wormhole
geometry can be obtained for an arbitrarily small value of the matter
field contribution [54].
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time, with a long period β. This corresponds to the low tem-
perature regime of the theory. In this limit, a generic two-
point function in the gauge theory, between two generic local
gauge-invariant operators O1 and O2 are given by

〈O1O2〉QFT =
∑
i, j

e−βEi
〈
Ei |O1|E j

〉 〈
E j |O2|Ei

〉

≈ 〈0|O1|0〉 〈0|O2|0〉 + O
(
e−β�E

)
, (42)

where �E is the mass gap.17 On the other hand, the Worm-
hole effective action will yield a contribution of the following
form:

〈O1O2〉WH =
∫

[dα]e− 1
2 αI CI JαJ 〈0|O1|0〉α

×〈0|O2|0〉α + O
(
e−β�Eα

)
. (43)

Clearly, (42) and (43) will yield different answers for the
same physical question. This is essentially the factorization
problem.

4.2 Euclidean wormholes and black hole information

In this section we will heavily discuss Euclidean Wormhole
geometries and several physical questions in quantum aspects
of gravity where these play a crucial role. We will discuss the
relevance of these Wormhole geometries before we elaborate
more on their technical constructions in later sections. The
Euclidean Wormholes also yield a precise version of the fac-
torization problem, which will momentarily become crucial
in the context of the black hole information problem. For a
working intuition, such Wormholes are essentially very sim-
ilar to the Einstein–Rosen bridges which can also be made
traversable by turning on an appropriate matter field. We will
elaborate on the details of these constructions later in this
review.

As the first application of Euclidean Wormholes, we will
briefly review its role in addressing the Black Hole informa-
tion paradox. To do so, let us recall the basic issues related
to an information paradox in Black Hole physics. This is an
incredibly rich and subtle subject and there is a wide variety
of perspectives on this. We will not attempt to elaborate on
them. Instead we refer the interested Reader to e.g. [55,56]
for a review on recent progress. Our discussion here will be
based on the premise of [55].

The core issue is to understand precisely how the infor-
mation inside of an event horizon comes out of it. This is a
dynamical question that requires us to address this issue in a
completely time-dependent framework. However, a version
of the information paradox and what it implies to resolve the
same can be provided in a completely static set up, follow-

17 The ground state can also be degenerate, but with a finite degeneracy.

ing the pioneering work in [57]. Based on this, we will now
review this idea.

4.2.1 Eternal black holes and thermofield-double state

We begin with a discussion of the eternal AdS-BH and the
corresponding thermo-field double (TFD) state in the dual
CFT. Standard AdS/CFT states a duality between an asymp-
totically AdS gravitational background and a corresponding
state in the boundary CFT. Specifically, an AdS-BH geometry
is dual to a thermal state in the CFT. This description natu-
rally generalizes for the corresponding thermo-field double
(TFD) state as well.

Given two copies of the same quantum mechanical system,
for which the individual Hilbert spaces,HL,R, are spanned by
the Hamiltonian eigenbasis |n〉L,R, the TFD state is defined
as:

|TFD〉 = 1√
Z

∑
n

e−(βEn)/2|n〉L ⊗ |n〉R, (44)

where En is the corresponding energy of the |n〉L,R state and
β is a real-valued parameter.18 This state can be prepared
as the ground state of a suitably chosen Hamiltonian, see
e.g. [58] for an explicit Hamiltonian interaction in (0 + 1)-
dimension and [59] for a generalization in higher dimensions.
In particular, we will review the basic construction of [58]
later.

It is now easy to check a few basic features of the TFD-
state. These are:

(i) TFD is a pure state. This is easily seen, since ρ2
TFD =

ρTFD, where ρTFD = |TFD〉〈TFD|.
(ii) Upon partial tracing over, e.g. the left degrees of freedom,

one is left with a reduced density matrix which is mixed:
ρβ = TrL (ρTFD) = e−βHR . Clearly, ρ2

β �= ρβ .
(iii) There is a choice in the total Hamiltonian with which the

TFD-state can evolve. We can either choose to evolve
the TFD state with H = HL − HR, or H̃ = HL + HR.
Under these two Hamiltonian time-evolution, the TFD
state behaves qualitatively differently. For example:

|TFD(t)〉 = e−i Ht |TFD(0)〉
= 1√

Z

∑
n

e−βEn/2e−i(HL−HR)t |n〉L|n〉R =|TFD(0)〉,

18 More precisely, the TFD state is given by

|TFD〉 = 1√
Z

∑
n

e−(βEn)/2|n〉L ⊗ |n∗〉R, (45)

|n∗〉R = �|n〉R, (46)

where � is an anti-unitary operator, such as the CPT-transformation.
However, for our purposes, this aspect will have no consequences and
hence we ignore this feature.
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|TFD(t)〉 = e−i H̃ t |TFD(0)〉
= 1√

Z

∑
n

e−βEn/2e−i(HL+HR)t |n〉L|n〉R �= |TFD(0)〉.

(47)

Thus, TFD is a ground state for H , but not for H̃ . In later
sections, we will make explicit use of the TFD-state.

The discussion above applies for any quantum mechanical
system, including quantum field theories as pointed out by
[60]. For a large N Holographic CFT, specifically in the con-
text of AdS/CFT, the CFT TFD-state is dual to the eternal
black hole in AdS, as proposed in [57],19 see also [62] for
earlier ideas along similar directions.

An information paradox can now be phrased in this frame-
wowork [57]. Suppose, we perturb the TFD-state by inserting
a hermitian operatorOR in CFTR, supported by a real-valued
perturbative coupling ε � 1. In this deformed TFD-state,
suppose we measure the expectation value of an operator OL

in CFTL. This is given by

〈TFD| (1 + εOR)OL (1 + εOR) |TFD〉
= 〈OL〉TFD + 2ε 〈OLOR〉TFD + O(ε2), (48)

where we have used [OL,OR] = 0, since there is no explicit
coupling between the left and the right CFTs.

Let us pause for a few comments. Note that, we arrived
at the above conclusion by considering how the TFD state
is prepared. For example, in the Euclidean description this
state can be formally prepared by

|TFD〉 = e− β
4 (HR+HL) 1√

Z

∑
n

|n〉L|n〉R

→ e− β
4 (HR+HL)+εOR

1√
Z

∑
n

|n〉L|n〉R

= (1 + εOR) |TFD〉, (49)

if the deformation OR commutes with HR, and at leading
order in ε. Since the Euclidean evolution is non-unitary, a
non-trivial effect appears already at the leading order in ε

in computing the one point function of an operator OL in
this deformed TFD-state. This is captured by the RHS of
Eq. (48). Alternatively, one can ask a similar question in the
Lorentzian description. Suppose we choose the Hamiltonian
H = HL + HR that determines the evolution of the TFD-
state. Furthermore, we deform HR by an operator OR. In the
Lorentzian description, this yields:

|TFD(ε)〉 → e−i(HR+HL+OR)ε |TFD〉 ≈ (1 − iεOR) |TFD〉,
(50)

19 For a different perspective on the gravitational dual of the TFD-state,
see [61].

at the leading order in ε. Clearly, this is a unitary evolution
that preserves the inner product 〈TFD|TFD〉. Thus, in the
Lorentzian picture, at leading order one does not obtain a non-
trivial correlator between OL and OR.20 In this description,
one can either consider a higher point function between OL

and OR, e.g. a four-point function, or consider a one-sided
two-point function, e.g. 〈OROR〉TFD or 〈OLOL〉TFD.

Let us go back to Eq. (48). The O(ε)-term in (48) can be
obtained from Holography, using basic AdS/CFT dictionary,
by computing geodesic distances between the points where
OR,L are inserted. This geodesic distance grows linearly with
time, as e.g. one holds OR at a fixed time and sends OL to
very late times t � β. Therefore we obtain: 〈OLOR〉TFD ∼
exp [−At/β], where A is an order one constant. Clearly, this
correlator decays exponentially at late times and all initial
data are lost to a final thermal state. From the dual CFT
perspective, however, this is not expected to happen since we
begin with a pure state and the evolution is unitary. Instead,
the late time behaviour is expected to be: 〈OLOR〉TFD ∼
exp [−BS], where B is an unimportant numerical constant
and S is the entropy of the thermal state to which the late time
CFT state approaches. However, they are not arbitrarily close
to each other, once S is fixed. In particular, at times t � βS,
the gravity calculation yields an answer infinitesimally close
to the thermal answer, but the CFT calculation does not.

An equivalent way to restate the same phenomenon is to
notice the following, with reference to Fig. 4. This is essen-
tially based on the work in [63,64], see also [65]. Suppose
an observer, denoted by the green dot on Fig. 4, measures the
Hawking quanta emitted from the eternal AdS black hole.
To design an evaporating black hole in AdS, a transparent
boundary condition is imposed on such quanta at the confor-
mal boundary. This is denoted by gluing a Minkowski patch
to the AdS-BH patch in the Penrose diagram in Fig. 4. These
radiation quanta are denoted by the arrows in Fig. 4.

At a constant time-slice, the observer is in contact with
a constant time-slice of the Minkowski patch that acts as a
thermal bath to the observer. Effectively, counting Hawk-
ing quanta for such an observer is equivalent to comput-
ing the corresponding entanglement entropy of the bound-
ary sub-region, with the thermal bath. This is a well-defined
calculation that can be addressed explicitly using the Ryu–
Takayanagi formula, briefly reviewed in Sect. 3. Qualita-
tively, this boils down to an intuitive understanding of what
we have described above for the 2-point correlator. Picto-
rially, at t = 0, both the pink quanta are accounted for by
the bath, and none of the green quanta are observed. At a
later time, when the bath is denoted by the green curved
lines in Fig. 4, only the pink quanta on the left and the green

20 Explicitly, one obtains the expectation value 〈TFD|[OL,OR]|TFD〉,
which vanishes identically since left and right degrees of freedom are
non-interacting.
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Fig. 4 A pictorial representation of how an information paradox is
realized within the framework of eternal black holes. The green and the
red quanta are the Hawking pairs that can be detected by a measurement
carried out at the boundary. These observations are made at regions
denoted by green solid lines on the figures

quanta on the right are detected. Therefore, entanglement
entropy increases, as time increases. A detailed calculation
yields an ever-increasing entanglement entropy without any
bound. However, the eternal AdS-BH has a finite entropy
2SBH, which should upper bound the entanglement entropy.
This is a precise form of the information/entropy paradox in
the eternal framework.

A resolution of the paradox above has been solved by gen-
eralizing the entanglement entropy prescription in (20), to a
quantum-corrected version of the Ryu–Takayanagi proposal.
See [38,66]. Although the physical description is Lorentzian,
all relevant calculations can be done in the Euclidean frame-
work. In particular, the Euclidean Wormholes play a salient
role in eventually upper bounding the growth of the entan-
glement entropy and thereby resolve the paradox. We will
not discuss formal aspects of the quantum-corrected RT-
prescription, instead we will demonstrate with an example
how Euclidean Wormholes achieve this upper bound in the
entanglement entropy computations.

This is a good place to take a few steps back and re-asses
the current status of the field. An essential assumption in
the above construction is that the Minkowski patch glued to
the AdS-BH geometry is non-gravitational. In several known
explicit examples, and also on general grounds, this fact alone
leads to massive gravitons, see e.g. [67], and subsequent stud-
ies in [68,69]. It is also argued that a massive graviton facili-
tates a Hilbert space factorization, which does not happen in
the limit of the vanishing graviton mass, and therefore one
can obtain the physics of a Page curve only when the gravi-
ton is massive. The perspective in e.g. [70] (see also [71])
draws upon this technical point of gravitons acquiring a mass
and advocates an alternative interpretation of the black hole
information paradox and its possible resolution. For further
discussion, we refer the interested Reader to [56].

4.2.2 Fine-grained entropy and information resolution

The basic ideas were proposed and explored in detail in
[22–24]. We will heavily draw on the subsequent works
in [63,64]. The prototypical model in which these aspects
are best demonstrated is the so-called Jackiw–Teitelboim
(JT) gravity, coupled to an End-of-the-World (EOW) Brane.
Spacetime is demanded to end on the EOW Brane, which
will only provide certain boundary conditions on the bulk
classical fields. The combined action is given by

S = SJT + SBrane, (51)

SJT = − S0

2π

(
1

2

∫
M

√
gR +

∫
∂M

√
hK

)

−
[

1

2

∫
M

√
gφ (R + 2) +

∫
∂M

√
hφK

]
,

SBrane = T
∫

ds, (52)

where S0 is a constant that measures the extremal entropy
of the extremal geometry, M is the manifold on which the
JT-theory is defined, with a boundary ∂M, T is the tension of
the Brane, h is the induced metric at this boundary and K is
the corresponding extrinsic curvature. This JT-action can be
obtained by dimensional reduction of a higher dimensional
gravitational theory, near the extremal limit of a charged
black hole, see e.g. [72].

Note that the term proportional to S0 is purely topological
and therefore has no dynamics. The second term in the JT-
action yields a rather simple dynamics. Variation of the scalar
φ yields: R + 2 = 0, i.e. two-dimensional geometries with
a constant negative curvature. The complete set of equations
obtained by varying the action in (51) is given by

R + 2 = 0,
(
Rab + gab∇2 − ∇a∇b

)
φ = 0, (53)

with na∂aφ = T, K = 0 at EOW. (54)

The second line above simply provides a set of boundary
conditions for the fields φ and the geometry gab, at the loca-
tion of the EOW Brane. Furthermore, the asymptotic AdS
boundary conditions are also needed:

ds2
∣∣∣
∂M = 1

ε2 dτ 2, φ|∂M = 1

ε
, ε → 0. (55)

It is simpler and more illuminating to understand the
solutions pictorially. Without the Brane, i.e. when μ = 0,
only (55) boundary conditions apply. The bulk equations of
motion can be solved to obtain:

ds2 = 1

r2

(
dτ 2 + dr2

)
, φ = τ 2 + r2

r
. (56)

The scalar field can have a more general solution in the bulk,
see e.g.[32,73]. The metric describes the Upper Half Plane
(UHP), and can be rewritten as ds2 = (1/r2)dzdz̄, where
z = ir + τ . The UHP can subsequently be mapped to the
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unit disk, by the Cayley transformation: w = f (z) = (z −
i)/(z + i). Therefore, the Euclidean AdS2 geometry can be
simply drawn as a disk, as shown in Fig. 5, where the dual
quantum system lives on the boundary-circle of the disk.21

For the sake of completeness, we have also explicitly pre-
sented how the geodesics on the UHP map to geodesics on
the Disk. These geodesics are probes in the geometry. There
are two kinds of geodesics in the complex z-plane: (i) semi-
circles, described by r2 + τ 2 = R2

1, where R1 is a constant;
(ii) vertical lines, described by τ = R2, where R2 is also a
constant. Under the Cayley map, these geodesics map to:

(i) Re[ω]= R2
1 − 1

R2
1 + 1 + 2r

, Im[ω]=
−2

√
R2

1 − r2

R2
1 + 1 + 2r

,

(57)

(i i) Re[ω]= r2 + R2
2 − 1

(r + 1)2 + R2
2

, Im[ω]=− 2R2

(r + 1)2 + R2
2

.

(58)

The corresponding geodesics are shown in Fig. 5, for R1 =
1 = R2. We do not want the EOW-branes to be described by
τ = const, since these analytically continue to a space-like
brane in the Lorentzian picture.

The EOW Brane itself is a back-reacting geodesic in the
geometry which intersects with the boundary of the disk at
two points in the geometry, as demonstrated in Fig. 6. The
EOW Brane is obtained as a solution to the equation K = 0.
In the coordinate patch of (56), this equation takes the form:

1 + r ′(τ )2 + r(τ )r ′′(τ ) = 0

�⇒ r(τ ) = ±
(
C1 − (τ + C2)

2
)1/2

, (59)

in the gauge where worldvolume coordinate is identified with
τ , and C1,2 are two constants of integration corresponding
to the location of the origin and the radius of the circle. The
EOW-brane is described by circles intersecting the Disk, as
demonstrated in figure 6.

To model the basic features of Black Holes information
paradox, let us consider the following ingredients:

(i) We can assign a quantum number, denoted by an index
i , which captures all information about the quantum
microstructure of the Black Hole. In string theory, it is
standard to consider a stack of k D-branes, on which open
strings can end. The corresponding Chan-Paton factors
can play the role of such quantum numbers.

(ii) Assign a range i = 1, 2, . . . k, with k ∼ eSBH , where SBH

is the Bekenstein-Hawking entropy of the Black Hole.
This assignment clearly implies that the EOW branes
cannot be treated in a probe limit.

21 It is straightforward to see, using the Cayley map, that r = 0 maps
to |ω|2 = 1.

(iii) Declare that the outgoing Hawking radiation quanta are
entangled with the EOW brane degrees of freedom.

With the above ingredients, let us consider the following
state:

|�〉 = 1√
k

k∑
i=1

|ψi 〉BH ⊗ |i〉R, (60)

where |ψi 〉BH is the microstate of the Black Hole and |i〉R

is a reference state which will be accessed by an asymp-
totic observer. For our purposes, we assume |i〉R form an
orthogonal basis of the reference Hilbert space. The state
|�〉 is a maximally entangled state between the Black Hole
degrees of freedom and the reference degrees of freedom.
The asymptotic observer, who resides at the time-like con-
formal boundary of the AdS-geometry, can now calculate the
entanglement entropy of the reference state.

This entanglement entropy calculation can be explicitly
performed, by using the Holographic prescription of com-
puting generalized entropy functional [38]. The computation
consists of two parts: The area of the Ryu–Takayanagi sur-
face, and the bulk entanglement entropy between degrees
of freedom across this surface. Since the RT-surface is a co-
dimension two surface, in 2d-geometry we have two options:
(i) RT-surface is an empty set, (ii) RT-surface is just a point in
the bulk. In the latter case of (ii), this bulk point is located at
the bifurcation point of the Lorentzian Black Hole geometry,
see Fig. 7.

In the first case, the RT-surface area yields a vanishing
result and the only contribution comes from the bulk entan-
glement between the EOW degrees of freedom and the ref-
erence state and thus behaves as ∼ log k. In the second case,
one calculated the “area” of the RT-point in the bulk, which
is given by the dilaton field at the bifurcation point. This is
easily seen from the JT-action which has an explicit φR-term,
and the value of φbifurcation sets the value of the correspond-
ing Newton’s constant. The resulting contribution equates
the Black Hole entropy SBH. The so-called Island rule then
dictates that the correct entanglement entropy is given by:
min (log k, SBH). Therefore, potentially, there can be a com-
petition between the log k behaviour, which monotonically
increases as a function of k, and SBH which remains con-
stant. If k < eSBH , this transition never happens since log k
is always the minimum of the two. This justifies the choice
of k > eSBH .

This transition can be derived from the gravitational path
integral [63,64], which we will briefly review in the rest
of this section. Given the state in (60), the reduced density
matrix for the reference state is obtained by

ρR = TrBH (|�〉〈�|) = 1

k

k∑
i, j=1

|i〉〈 j |R〈ψi |ψ j 〉BH, (61)
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Fig. 5 The explicit map from
the UHP to the unit Disk. With
z = ir + τ , the ∂Disk = S1 is
described by |ω|2 = 1 ⇐⇒
r = 0. There are two kinds of
geodesics on the UHP, described
by the dashed blue semi-circles
and the dashed pink vertical
lines. These map to the dashed
blue and the dashed pink
geodesics on the Disk

Fig. 6 The AdS2 geometry
with an EOW-brane, as the fully
back-reacted solution. The brane
is characterized by an index i
which captures the information
of the microstates

Fig. 7 Two candidate
RT-surfaces are shown here. On
the left, the surface is an empty
set, on the right it is a point,
located at the bifurcation point.
In both pictures, the dark shaded
regions are excluded from the
geometry

where, now, we will use AdS/CFT to compute the ampli-
tude 〈ψi |ψ j 〉BH. This is obtained by calculating the on-shell
gravity action, for the solution of (53), (54) and the bound-
ary conditions in (55). The required calculation is pictorially
summarized in Fig. 8, which yields: 〈ψi |ψ j 〉BH = δi j Z1,
where Z1 is the corresponding value of the on-shell Euclidean
gravity action.22 This yields:

22 In principle, we can denote this on-shell action by Zi , i.e. the on-
shell value can be indexed. However, this dressing will have no effect
on our subsequent discussion, since we can redefine the reference state
basis |i〉 by absorbing the overall normalization. Hence we ignore this
possibility.

ρR = Z1

k

k∑
i=1

|i〉〈i |R �⇒ SR = log k, (62)

where SR is the von Neumann entropy (or the entanglement
entropy) of the reference state. Subsequently, we can calcu-
late the n-th Renyi entropies by evaluating Tr(ρn

R) = 1
kn−1 .

Note that, if we use ρRin (62), without making any reference
to the bulk gravitational picture, then this is given by

S(n)
R = 1

1 − n
Tr

(
log ρn

R

) = nk

n − 1
log k, (63)

in which we have only kept track of the k-dependent contri-
butions. We will momentarily see that this is only a partial
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Fig. 8 To calculate purity by
setting n = 2 (63), two
candidate geometries are shown.
On the left, for the disconnected
geometry the EOW-brane index
i is enforced on all dashed lines,
which yields a single power of k,
upon summation. On the right,
for the connected/Wormhole
geometry, two different
EOW-brane indices can be
assigned, which yields a factor
of k2 upon summation

answer of what one obtains from the gravitational path inte-
gral.

On the other hand, from the bulk perspective one can
also calculate Tr(ρn

R). For n = 2, we need to evaluate:
(1/k2)

∑
i, j |〈ψi |ψ j 〉|2. There are two classes of configura-

tions that contribute to this calculation, summarized in Fig.
8.

Restoring the factors of Z1, this can be evaluated to yield:

Tr
(
ρ2

R

)
= 1

k2Z2
1

[disconnected + connected] , (64)

disconnected = kZ2
1, connected = k2Z2, (65)

where Z2 is the Euclidean on-shell contribution from the
connected Wormhole saddle. The factors of k arise by con-
tracting the EOW indices, as explained in the Fig. 8.

Let us denote the intersection point between ∂(EAdS) and
the EOW Brane by σ , which is assigned an index i . In the
disconnected diagram, in the summation above, all four σ

carry the same index; while, for the connected diagram, a
pair of σ carry the same quantum number. Thus, the former
yields a factor of k upon summing over the indices and the
latter yields a factor of k2 in the same process.

In general, Z1 and Z2 can be calculated using the explicit
solutions. For the JT-action, this is easily estimated from the
purely topological terms in the action in (51). The JT-path
integral contributes ∼ eχ S0 , where χ denoted the Euler char-
acteristic of the corresponding bulk geometry and S0 is the
constant in front of the purely topological term in the JT-
gravity. For both connected and the disconnected geometries,
χ = 1, and the corresponding ratio Z2/Z2

1 ∼ e−S0 . There-
fore, the schematic form of (64) is given by

Tr
(
ρ2

R

)
= 1

k
+ e−S0 , (66)

�⇒ Tr
(
ρ2

R

)
≈ 1

k
, k � eS0 ,

and Tr
(
ρ2

R

)
≈ e−S0 , k � eS0 .

(67)

The transition in the behaviour of purity, in the two regimes
k � eS0 and k � eS0 , captures unitarity of the underlying
quantum dynamics of the Black Hole, albeit, in this case, for
an eternal Black Hole. In particular, the Wormhole geom-
etry dominates large k regime and renders the fine-grained
information plateau at a non-vanishing value. Note that, the
result in (66) is in direct conflict with what one would obtain
by squaring the reduced density matrix in (62) – the latter
yields a contribution that one obtains only from the discon-
nected bulk geometry and this contribution becomes arbitrar-
ily small for sufficiently large k.

This feature holds generally, for Tr(ρn
R). Now, all grav-

itational saddles with n-copies of the conformal boundary
will contribute to this calculation. The qualitative similarity
can be understood by considering the contributions coming
from two extreme cases: one in which the n-boundaries are
all disconnected in the bulk, and the other in which all n-
boundaries are connected by a Euclidean Wormhole saddle.
This is pictorially demonstrated in Fig. 9, for n = 4.

The former diagram contributes 1/kn−1, while the latter
contributes Zn/Zn

1 , where Zn is the on-shell Euclidean action
for the Euclidean Wormhole connectingn-boundaries – a nat-
ural generalization of Z2. Hence, Tr(ρn

R) demarcates two dis-
tinct qualitative behaviour: for k � eS0 , Tr(ρn

R) ≈ 1/kn−1

and for k � eS0 , Tr(ρn
R) ≈ e−S0 . Subsequently, the von

Neumann entropy is obtained from ρn
R, using (63) that com-

putes Tr(log ρn
R), and then taking a limit n → 1. In this

limit, the k � eS0 and the k � eS0 behaviours are given by
log k and SBH, respectively. Thus, one obtains the expected
fine-grained entropy curve, as depicted in Fig. 8.23

23 Note that, in the limit, k � 1, eS0 � 1 such that k/eS0 is held
fixed, the entire summation over geometries can be carried out using
a resolvent technique, since the sum only consists of planar diagrams.
This result then can be analytically continued in n, which is non-trivial
because of the presence of a branch cut. This discontinuity of the branch
cut in the resolvent integral yields the correct behaviour for the von
Neumann entropy. This is discussed in detail in [63].
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Fig. 9 Pictorial representation
of two relevant saddles in the
computation of Tr(ρ4

R). On the
left, we have the completely
disconnected geometry, and on
the right, it is the completely
connected one. There are
additional saddles that also
contribute to this computation,
however, the above two are the
two extreme examples

Before concluding this section, let us allude to certain puz-
zling aspects that this computation raises. While it is remark-
able that the Euclidean Wormhole solutions are necessary
to reproduce fine-grained entropies of an underlying unitary
theory, they also imply that, from the gravitational path inte-
gral:〈

ψi |ψ j
〉 = Z1δi j , (68)

∣∣〈ψi |ψ j
〉∣∣2 = δi j + Z2

Z2
1

, (69)

The second line above cannot be obtained from the first line,
with the usual notion of an inner product between states in a
Hilbert space. The only possibilities that resolve this appear
to be the following: (i) Z2 = 0 identically for every grav-
itational theory, or, these saddles are always prohibited for
some generic reason,24 (ii) gravitational path integral com-
putes an averaged quantity. While the first possibility is easy
to understand, at present, it is not clear how to formulate a
general gravitational argument for this. The second possibil-
ity is therefore worth visiting more carefully.

The latter requires us to replace the first line in (68), by:〈
ψi |ψ j

〉 = Z1δi j + ri j e
−S0/2, (70)

where ri j are random (or, even pseudo-random) variables,
with a vanishing mean and a non-vanishing standard devia-
tion. At this point, we do not need to make any assumptions
about the higher moments of the distribution function P[ri j ]
– that, therefore, can be chosen to be a Gaussian. Suppose
we declare that the gravity Euclidean path integral computes
the following

∫ [dri j ]
〈
ψi |ψ j

〉
, with an appropriate measure

for ri j – such as the one provided by a Gaussian distribu-
tion. This yields:

∫ [dri j ]
〈
ψi |ψ j

〉 ∼ δi j , as
∫ [dri j ]ri j = 0.

However,

24 One such potential reason could be that these Wormhole solutions
are always unstable saddles, and therefore the true path integral will
never include them, instead will be dominated by stable saddles.

∫
[dri j ][dr ji ]

∣∣〈ψi |ψ j
〉∣∣2

=
∫

[dri j ][dr ji ]
(
δi jδ j i + ri j r ji e

−S0
)

= 1 + Z2

Z2
1

. (71)

Ordinarily, in the standard lore of AdS/CFT, or Hologra-
phy, there is no such notion of averaging. For example, the
celebrate duality between string theory in AdS5 × S5 (or, in
type IIB supergravity) and N = 4 super Yang–Mills theory
at the conformal boundary of the AdS5 is a statement about
the equivalence between the gravity path integral and the
gauge theory path integral, without invoking any averaging.
One may conclude therefore that this gravitational averaging
is somehow a low-dimensional effect.

At this point, let us make a qualitative similarity-check
between the discussion above and what we alluded to earlier
in Sect. 2, especially in the light of Eq. (16). First, note that the
“connected” and the “disconnected” geometries in Eq. (64)
are analogous to the q = ±1 and the instanton solution in (9),
respectively. In particular, the Euclidean Wormhole geome-
tries are similar to the instanton configurations in a classical
scalar field theory. The corresponding semi-classical quan-
tization couples the local fluctuation modes around both the
“disconnected” and the “connected” configurations. Subse-
quently, the “effective” partition function (or the path inte-
gral) in (16) can be written in terms an averaged source-terms,
which couples the local fluctuation modes at ±∞ with each
other. A qualitative similarity can be drawn between Eqs.
(16) and (70), where an averaging is introduced. It is also
important to note that, at this level, it is only an analogy
and there are several quantitative differences. For example,
instantons do not cause any factorization problem in QFT.
The Euclidean Wormholes, in the purely gravitational pic-
ture, are also not puzzling. It is only through AdS/CFT, when
the existence of the Wormholes imply a non-trivial correla-
tion between two otherwise decoupled boundary theories,
the issue of factorization problem emerges. The averaging
prescription in (70) is one way to reconcile with this issue.
On perhaps a more technical point, while the effective aver-
aging in (16) only involves a uniform distribution of the cou-
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pling constant, the averaging in (70) requires an averaging
over a Gaussian distribution. While it is not completely clear
whether this analogy has predictive powers, we will simply
note that this appears more than a coincidence. For exam-
ple, there are analogue configurations in gravity, known as
“half-Wormholes”[74], to the half-instanton configurations
in QFT. Such Wormholes do not require an averaging pre-
scription, the analogous instantons in QFT do not couple the
fluctuation modes at the two asymptotia.

Let us ponder over the issue of averaging, from a slightly
different perspective. At a mathematical level, the notion in
(70) is very similar to the celebrated Eigenstate Thermaliza-
tion Hypothesis (ETH) in the context of many-body quantum
dynamics. The idea here is the following: Given a quantum
mechanical system, with a local Hamiltonian and its corre-
sponding eigenbasis |Ei 〉, the expectation value of a simple,
q-local self-adjoint operator, OA, is given by〈
Ei |OA|E j

〉 = f A(E)δi j + e−S(E)/2GA (E, ω) Ri j , (72)

E = 1

2

(
Ei + E j

)
, ω = Ei − E j , (73)

where f A,GA are smooth functions, Ri j are pseudo-random
variables, such that

Ri j R ji = 1, (74)

Ri j R jk Rkl Rli = δik + δ jl + e−S(Ẽ)gA
(
Ẽ, ω1, ω2, ω3

)
,

(75)

Ẽ = Ei + E j + Ek + El

4
,

ω1 = Ei − E j , ω2 = E j − Ek, ω3 = Ek − El .

(76)

In the above, gA is again a smooth function and encodes the
non-Gaussianity of the pesudo-random variables Ri j . Fur-
thermore:

f A(E) = Tr (ρOA) , with ρ = e−βH , (77)

such that E = Tr (ρH) , (78)

and S(E) is the microcanonical entropy. Equation (78) is used
to find β, for a given E . It is important that one considers a
sufficiently local operator OA for ETH, the Hamiltonian H
is itself an exception to this since it contains all possible
interactions of the system and in this sense not sufficiently
local.25

The ETH is a cornerstone in understanding thermalization
of a closed isolated system, in that it also defines a precise
notion of thermalization in terms of the expectation value of a
given operator. It is generally understood that systems which
thermalize, satisfy the ETH. Note that, ETH is understood

25 Upon evaluating the expectation value of the Hamiltonian, only the
diagonal term in ETH remains, the off-diagonal terms are identically
zero.

to hold for individual systems, even though there is a notion
of an averaging over random (or, pseudo-random) variables.
From this perspective, the gravitational averaging in (70) is
similar. To push these ideas further, note that non-Gaussianity
in the ETH can be directly measured by computing three-
and-higher-point functions, e.g. 〈O1O2O3〉vac, by inserting a
complete set of energy eigenbasis between the operators and
repeatedly using the ETH. This can be directly calculated
by e.g. Tr(ρ3

R), which evaluates the third moment of ri j in
the gravitational picture, and so on. Note, however, that even
an exact Gaussian distribution would have reproduced the
expected fine-grained information.

4.3 Euclidean wormholes and entanglement

In this section we will briefly review the role of Euclidean
Wormholes in encoding the entanglement properties of the
boundary CFT. As we have mentioned earlier, these Worm-
holes are generalizations of Einstein–Rosen bridges and can
further be made traversable with appropriate ingredients.

Recall our discussion in Sect. 4.2.1. Such a TFD-state can
be prepared in the lab by designing an appropriate Hamil-
tonian of which the TFD-state is a ground state. In general
dimensions, for a quantum mechanical system that satisfied
the ETH (see e.g. Eq. (72), where, now, one takes a Gaus-
sian distribution for the Ri j -variables), the (aproximate) TFD
Hamiltonian takes a particularly simple form:

HTFD = HL + HR +
∑
k

αkA†
kAk, Ak = Ok

L − (Ok
R)†,

(79)

where HL,R are the original Hamiltonian for the left and
the right theory, OL,R are local operators in the respective
left and right systems. Note that, while the operators O are
themselves local, one needs a non-local interaction in the
Hamiltonian to directly couple the left and the right degrees
of freedom. In general, it is also possible to construct a similar
TFD Hamiltonian whose ground state is the TFD state itself,
see [59] for more details.

Generalizing this idea further, let us note that given
n-copies of a quantum mechanical system or a quantum
mechanical system partitioned into n-subsystems. One can
similarly construct an n-fold state of the combined system.
So, the full system consists of a tensor product of n Hilber
spaces: H1 ⊗ . . .Hn , where the indices are just book keep-
ing parameters for n-copies of the same system; or, they keep
track of n-partitions of a single system. The corresponding
n-fold state can be written as:

|n − fold〉 =
∑
i1...in

Ai1...in |n〉1 . . . |n〉n, (80)
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where Ai1...in are the corresponding coefficients. The entan-
glement structure of such a multi-partite system is richer than
a simpler bi-partition of it.

To better understand the differences, let us look closer at
some basic features of a bi-partition. Consider a bi-partition
of a Hilbert space: H = HA ⊗HB and a pure, arbitrary state
|ψ〉AB ∈ H. Suppose {|i〉A} and {|μ〉B} are orthonormal
basis for HA and HB , respectively. So, a general state |ψ〉AB
can be written as:

|ψ〉AB =
∑
i

|i〉A|ĩ〉B , |ĩ〉B =
∑
μ

ai,μ|μ〉B . (81)

Evidently, {|ĩ〉B} is not an orthonormal basis. Now, without
any loss of generality, we can choose {|i〉A} such that the
reduced density matrix ρA = TrB ρAB = diag(p1, . . . pD),
where D = dimHA. Starting with the state in (81), and com-
puting the reduced density matrix will yield: 〈ĩ | j̃〉B = piδi j .
Therefore, {√pi |ĩ〉B} is an orthonormal basis for HB . Thus,
the original bipartite state in (81) can be written as:

|ψ〉AB =
∑
i

p1/2
i |i〉A|i ′〉B, (82)

where {|i〉A} and {|i ′〉A} are orthonormal basis for HA and
HB , respectively. This is known as the Schmidt decomposi-
tion. With this decomposition, it is now natural to demarcate
entangled states and separable states. For example, given a bi-
partite state, if the number of non-zero eigenvalues of either
reduced density matrix ρA or ρB is larger than one, the the
corresponding bi-partite state is entangled. Similarly, if there
is only one non-vanishing eigenvalue of the reduced density
matrix, then the bi-partite state is separable. This is intuitive,
since in the Schmidt decomposition, for an entangled state,
we will have more than one terms in the RHS of (82), whereas
for a separable state, there will be only one term.

One important difference between a bi-partite state and a
multi-partite state is that a multi-partite state does not admit a
Schmidt decomposition in general,26 and therefore it is subtle
to define notions of entangled states and separable states. Let
us explore a bit more with an instructive example. Perhaps the
simplest yet richest example of a three-partite system is the
so-called Greenberger–Horne–Zeilinger (GHZ) state, which
can be written as:

|GHZ〉 = 1√
2

(|000〉 + |111〉) . (83)

If we trace out any one of the three sub-systems, the result-
ing reduced density matrix takes the form: (1/2) (|00〉 〈00|
+ |11〉 〈11|), which is a classical mixed density matrix. On
the other hand, suppose we rewrite the basis of the third
sub-system, by introducing |0〉 = 1√

2
(|+〉 + |−〉) and |1〉 =

26 In genral, the Schmidt decomposition of a muti-partite state is pos-
sible only if by tracing out any subsytem one obtains a separable state.

1√
2

(|+〉 − |−〉), and subsequently measure by projecting on
the |+〉 or the |−〉 state. This will yield a reduced density
matrix of the form: (|00〉 + |11〉) (〈00| + 〈11|), which is a
maximally entangled one. Thus, even for this simple three-
partite state it is clear that the pairwise entanglement structure
is somewhat subtle and richer.

4.4 Multi-boundary wormholes: explicit constructions

Motivated by this, it is natural to explore multi-partite entan-
glement structure in AdS/CFT. The simplest is the TFD
state itself, which is dual to the eternal Black Hole in AdS
[57]. The eternal Black Hole geometry is a Lorentzian back-
ground, with two asymptotic conformal boundaries in which
two copies of the same CFT are defined. For a multi-partite
state, the natural candidate is a geometry with n conformal
boundaries, corresponding to a tensor product of n copies
of the CFT Hilbert space. Though, these geometries are
inherently Lorentzian, to prepare such a state in the gravi-
tational theory, one considers the standard Hartle–Hawking
approach: Consider the Euclidean gravitational path integral
and look for Wormhole saddle solutions with the desired
boundary behaviour. Along a moment of time-symmetry,
both the Lorentzian and the Euclidean contain a hypersurface
of vanishing extrinsic curvature. The Hartle-Hawking state
can be constructed by gluing the Euclidean section with the
Lorentzian section along this hypersurface.

To be more precise with the explicit construction, let
us consider AdS3, in which the Wormholes can be explic-
itly constructed by extensive use of the symmetry of the
system. Let us begin with an elementary review of AdS3

and its isometries: It is well-known that an AdS3 geom-
etry can be described by a hypersurface embedded in a
(2 + 2)-dimensional Minkowski geometry. The hyperboloid
is defined by

− �2 = −v̄2 − ū2 + x̄2 + ȳ2, (84)

embedded inR2,2, with a curvature set by �. There are various
ways of defining a local co-ordinate on the AdS hyperboloid,
let us focus on the Poincare patch below:

ds2

�2 = −dt2 + dx2 + dy2

y2 . (85)

The t = 0 surface has an induced metricds2 = (1/y2)(dx2+
dy2), that describes a hyperbolic 2-manifold, denoted byH2.
The full AdS3 has an SO(2, 2) ≡ SL(2, R)×SL(2, R) isom-
etry, and by quotienting it with a discrete subgroup, �, one
generates non-trivial but locally AdS3 geometries. Typically,
the sub-group is chosen to belong to a diagonal SL(2, R).27

The resulting quotient H2/� is a smooth Riemann surface

27 Such discrete groups are known as Fuchsian groups.
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Fig. 10 The Riemann surface obtained by quotienting the upper half-
plane by dilatation: (t, x, y) ∼ e2πκ(t, x, y), as described in Eq. (160).
The fundamental domain is bounded by the red semicircles, while the

fixed point of the identification is the center of the semicircles. This is
the t = 0 slice of the two-sided BTZ. This figure is taken from [75]

with genus g and boundaries b, denoted by (g, b). Corre-
spondingly, the action of � on the entire AdS3 geometry is
realized by its action on the t = 0 slice. This ensures that both
the Lorentzian and the Euclidean geometries admit a similar
quotienting method. In the case of Euclidean AdS3 geometry,
the isometry group is SO(3, 1) ≡ SL(2,C) and � belongs
to a diagonal SL(2, R). This ensures that the analytic contin-
uation, after quotienting by �, remains real. In this section,
we will review how multi-boundary (Wormhole) geometries
can be constructed using this quotient procedure, following
mainly [75].

Note that, each isometry is in one-to-one relation with
a Killing vector in the geometry. The identification “by an
isometry”, or “by a Killing vector” implies that we identify
all points in the orbit of the corresponding group action. For
example, given a Killing vector ξ , we consider {eαξ }α∈R, as
the corresponding one-parameter sub-group. Each Riemann
surface (g, b) – which has (6g+3b−6) parameters, will cor-
respond to a particular Wormhole geometry. Among these,
(3g+2b−3) are lengths of minimal, non-intersecting, peri-
odic geodesics and 3g+b−3 are the so-called twist parame-
ters [76]. Among these, the Black Hole horizons correspond
to the length of the periodic geodesics, and the remaining
parameters belong to the interior degrees of freedom [76].

The structure of Riemann surfaces has been extensively
used in [76,77] to construct the (g, b) Riemann surface, then
lifting it to beyond the t = 0-slice. The simplest example
of this is the construction of a (two-sided) BTZ geometry,
as described in Fig. 10. The construction methods in [76,77]
are patchy, piece-wise. Following [75], we will now describe
a global approach of constructing the Wormhole geometries,
by explicitly constructing the Killing vectors corresponding
to that would yield a three-boundary geometry.

Towards that, we begin with a suitable basis of Killing
vectors on H

2 and subsequently lift them to the full AdS3-
geometry (therefore, defined for all values of t). Now,
geodesics on H

2 are of two kinds: straight lines and semi-
circles. To construct multi-boundary Wormholes, we will
need to carry out identification of the semi-circular geodesics.
The action of the global Killing vectors on these geodesics

can be subsequently obtained. In particular, translations sim-
ply shift the semi-circles, dilatation scale up the radius as well
as the center of the semi-circles and inversion simply flips
the orientation of the semi-circle. We now have all the ingre-
dients to construct explicitly the multi-boundary Wormhole
geometries. For example, the BTZ-geometry is obtained by
an identification shown in Fig. 10.

To construct a multi-boundary geometry, let us first gen-
eralize the BTZ identification figure, for richer Riemann sur-
faces and in particular, a three-boundary Wormhole geome-
try. See Fig. 11.

The important point here is that, in order to create a Worm-
hole geometry with a non-trivial genus and a boundary, one
needs an orientation-reversing isometry with which some
quotienting needs to be carried out. This is explicitly pre-
sented in (169).

A more elaborate and precise pictorial representation is
given in Fig. 12.

The dashed geodesics in Fig. 12, after the identification,
become periodic and subsequently imposing the minimal
(within the homotopy class) condition, these become the
Black Hole horizons. The corresponding isometry is pre-
sented in Eq. (170). Furthermore, it can also be shown that
the three minimal periodic geodesics yield three independent
horizons. For more details, we refer the reader to [75].28

It is natural to extend this construction to a Riemann sur-
face (g, b), which captures all physical parameters. We will
now describe how this works for (1, 1)-Wormhole. This has
also been explicitly constructed in [78–80], however the full
moduli space was not provided. The (1, 1)-Wormhole is also
a two-step identification process, the logical steps are similar
to the construction of the (0, 3)-Wormhole. We demonstrate
the details of this identification, at t = 0 slice, in Fig. 13.

28 As an example, the length of the minimal periodic geodesic for a
two-sided BTZ geometry, from Fig. 12, is given by

L1 = �

∫ λR0

R0

dy

y
= � log λ. (86)

Other periodic geodesic calculations are similar in nature, but alge-
braically more involved.
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Fig. 11 The three-boundary
and one-boundary, one-genus
Riemann surfaces as quotients
of the two-boundary Riemann
surface. The three-boundary
surface is obtained by
“pinching” one of the
boundaries into two, while the
one-boundary, one-genus
surface is obtained by “folding”
one of the boundaries onto the
other. This figure is taken from
[75]

Fig. 12 The fundamental domain of the three-boundary Riemann sur-
face. The color-coded dashed lines L1,2,3 are the minimal periodic
geodesics, whose lengths are the three physical parameters of the
system. The variables λ, R0, R, c1, and c2 represent parameters for the
picture. This figure is taken from [75]

Fig. 13 The fundamental domain of the (1, 1) Riemann surface. The
color-coded dashed lines L1,2 are non-intersecting periodic geodesics.
In this system, two of the physical parameters are lengths of the minimal
periodic geodesic, while the third physical parameter is a twist. This
picture is taken from [75]

Similarly, a (1, 2)-Wormhole can also be generated by
quotienting with the appropriate Killing vector, following a
similar logical sequence. For further visual appeal, we have
also demonstrated the details of this identification, at t = 0-
slice, in Fig. 14.

The astute reader will notice that the crucial difference
between the Figs. 13 and 14 is whether the identifying cir-
cles are on the same side or on the different sides of the center.
Essentially, identifying circles on the same side of the cen-

Fig. 14 The fundamental domain of the (1, 2) Riemann surface. Step
(1) is quotienting by dilatation. Step (2) is quotienting by a pinching.
Steps (3) and (4) are quotienting by foldings. This picture is taken from
[75]

ter increases number of boundaries, whereas identifying two
circles on the two sides of the center increases its genus.
Thus, by repeating this process, one can generate an arbi-
trary (g, b)-Wormhole. This strategy of using explicit Killing
vectors can also be used to generate (g, b)-Wormhole for a
stationary geometry, i.e. in rotating multi-boundary geome-
try.29 Hopefully, we have provided the reader with enough
technology, as well as enough examples based on which a
particular construction can be carried out. We will dwell no
longer on the technical details of the construction, but move
on to discussing general lessons about multi-partite entangle-
ment based on the multi-boundary Wormhole geometries.

4.5 Multi-partite entanglement from multi-boundary
wormholes

We will now review entanglement properties based on the
multi-boundary Wormhole geometries. These aspects have
been explored in detail in [77] to which we refer the interested
reader for more details. We present a broad-brush demonstra-
tion of how multi-boundary Wormhole geometries teach us
qualitative lessons about multi-partite entanglement in the
dual CFT. The primary tool for these computations is the

29 Though, in practice, the tractable examples are (0, 3)-Wormhole and
(1, 1)-Wormhole, as demonstrated in [75].
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Ryu–Takayanagi [11,12] formula and its generalization to
the Hubeny-Rangamani-Takayanagi formula [36].

Consider the three-boundary example, where L1,2,3

parametrize the lengths of three horizons denoted by H1,2,3

and B1,2,3 represent the three boundaries. As explained in
[77], the HRT minimal surfaces are given by unions of the
horizon lengths. First, it is easy to see that there is a phase
transition of the HRT-minimal surface at L3 = L1+L2. Con-
sider, for example, L3 > L1 + L2, the minimal surface for
B1 ∪B2 is given by H1 ∪H2 and thus S(B3) = S(B1 ∪B2) ∼
(L1 + L2). For L3 < L1 +L2, however, the minimal surface
is given by H3 and therefore S(B1 ∪ B2) = S(B3) ∼ L3. in
this limit, there is vanishing entanglement between B1 and
B2, since the corresponding mutual information vanishes:
I (B1 : B2) = S(B1) + S(B2) − S(B1 ∪ B2) = 0. Thus, for
L3 > L1 +L2, the entanglement is purely bi-partite,30 while
multi-partite entanglement exists for L3 < L1 + L2.

From a purely CFT-perspective, by tracing out the B3-
degrees of freedom, one obtains the following reduced den-
sity matrix:

ρ12 =
∑
i j i ′ j ′

ρi i ′ j j ′ |i〉1| j〉2〈i ′|1〈 j ′|2, ρi i ′ j j ′ =
∑
k

Ai jk A
∗
i ′ j ′k . (87)

It has been argued in [77] that in the limit L3 → ∞, the
reduced density matrix is obtained by a sphere partition func-
tion with four holes, in an anlaogue of the t-channel. The
upshot is, in this limit, ρ12 factorises: ρ12 = ρ1⊗ρ2. Thus, B1

and B2 are completely unentangled. The Holographic picture
above further promotes this unentangled behaviour for any
finite L3 > L1 + L2. This is in stark contrast to a GHZ-state,
in which no such regime exists such that the entanglement
structure becomes purely bi-partite. Thus, although multi-
boundary Wormhole geometries indeed encode multi-partite
entanglement, they are unlike the GHZ-states.

5 Lorentzian wormholes

In this section we will begin with a review of the Einstein–
Rosen bridge and subsequently review how these Worm-
holes can be made traversable by introducing more degrees
of freedom. We will now focus completely on the Lorentzian
description, in terms of specific solutions of (semi)-classical
gravity. In this context, “semi-classical” would imply the
existence of a matter stress-tensor which can arise from the
expectation value of a quantum matter, in a suitable state. This
stress-tensor is then fed into the classical Einstein-equations
which are subsequently solved to obtain an on-shell geomet-
ric data. Such examples are far too many to enlist them here,
rather we make explicit reference to some in later sections.

30 In terms of mutual information, one obtains: I (B1 : B2) = 0, I (B1 :
B3) = 2S(B1) and I (B2 : B3) = 2S(B2) in this regime.

Fig. 15 Einstein–Rosen bridge, as described by the metric in (89). The
throat is located at u = 0, where the area cross-section minimizes

The history of Lorentzian Wormholes is quite rich. Let us
begin our discussion, stepping back almost a hundred years,
with the discussion of the Einstein–Rosen bridge. Much of
what we discuss here is standard knowledge, see e.g. [81] on
which we will heavily draw. We will also begin our discus-
sion with an asymptotically flat space-time and subsequently
discuss asymptotically AdS space-times.

Let us begin with Schwarzschild geometry in an asymp-
totically flat space-time in (3 + 1)-dimensions:

ds2 =
(

1 − 2M

r

)
dt2+

(
1 − 2M

r

)−1

dr2 + r2d�2, (88)

where M is the mass of the Black Hole and d�2 is the metric
on the round unit-sphere. Here r ∈ [0,∞]. Let us rewrite the
geometry in (88), by introducing a new co-ordinate: u2 =
r − 2M , which yields:

ds2 = − u2

u2 + 2M
dt2+4(u2+2M)du2+(u2 + 2M)2d�2,

(89)

where u ∈ [−∞,+∞]. Clearly, the patch in (89) covers the
r ∈ [2M,∞] of (88) twice. Let us note the following salient
features of the patch in (89): (i) There are two asymptotia, as
u → ±∞, (ii) The metric has a symmetry under u → −u,
(iii) Given any time-slice, the u = const surface has an area
A(u) = 4π(u2 + 2M)2, which is minimized at u = 0. This
is pictorially summarized in Fig. 15.

This is what qualitatively defines a Wormhole, known as
the Einstein–Rosen bridge. Of course, we have merely intro-
duced a co-ordinate system but have not really done anything
new to the Schwarzschild geometry.

Guided by the above features, consider a static, spherically
symmetric geometry with an event-horizon:

ds2 = −e−φ(r)(1 − b(r))dt2 + dr2

1 − b(r)
+ r2d�2, (90)

where the horizon is located at b(rH ) = rH . We imagine
that an appropriate matter field sources the geometry in (98).
As before, we can introduce a new co-ordinate system u2 =
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r − rH , which yields all the Wormhole features listed above.
As above, we have also introduced a new co-ordinate system
that makes manifest two asymptotic region at u → ±∞,
which are connected by a throat at u = 0. This, however, does
not mean that an observer can travel from one asymptotic
region to another, through the Wormhole.

Before discussing the traversability aspect of Wormholes,
let us briefly review a curious feature of Einstein–Rosen
bridges in AdS-BH geometries, which plays a ubiquitous
role in many physical questions. In this part, we will closely
follow [82]. Consider an AdSd+1-BH geometry:

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2

d−1,

f (r) = 1 + r2

�2
AdS

− Md−2

rd−2 , (91)

where �AdS is the AdS-curvature scale and M is the mass of
the black hole. Consider a bulk slice, denoted by t = t (r),
whose volume functional is given by

Vold = 2VolSd−1

∫ rmax

rmin

dλrd−2
√

f (r)−1r ′(λ)2 − f (r)t ′(λ)2, ′ = d

dλ
.

(92)

Here rmin,max are hitherto unspecified.
The corresponding equations of motion are:

t ′(r)2 = E2

f (r)2

1

f (r)r2(d−1) + E2
, with r = λ, (93)

where E is an integral of motion that results from the trans-
lational invariance of the volume functional Vold , under
t → t + const. The corresponding volume is obtained as:

Vold =
∫ rmax

r∗
dr

r2(d−1)√
E2 + r2(d−1) f (r)

, (94)

where r∗ is the turning point, defined by E2 + r2(d−1) f (r)
∣∣
r∗

= 0,31 and rH is the horizon, defined by f (rH) = 0.
Note further that the combination r2(d−1)| f (r)| has a max-
imum whose location is denoted by rm. Clearly, for E2 >

r2(d−1)
m | f (rm)|, there is no solution for r∗. For very small

values of E , r∗ ≈ rH, since it approximately satisfies
r2(d−1) f (r)

∣∣
r∗ = O(E2) � 1. On the other hand, for max-

imum allowed value of E , r∗ → rm. The former limit repre-
sents close to the tL,R = 0 slices, while the latter limit yields
tL,R → ∞. Furthermore, in this limit, the integral in (94) has
a logarithmic divergence, as a function of E , and therefore
most of its contribution comes from the r∗ ≈ rm region. This
is pictorially demonstrated in Fig. 16.

31 This is also the location where dt
dr → ∞.

Fig. 16 Various bulk slices of the eternal AdS-BH geometry. These
slices are anchored at tR on the right boundary and on tL on the left
boundary. For E � 1, the turning point is located near rH and therefore
the corresponding slice is close to the tL,R = 0 one, as shown by the
dotted black horizontal line. For E � 1, the turning point asymptotes
to rm and therefore corresponds to tL,R → ∞, as shown by the orange
slice

Now, the integral in (94) can be split into two parts: one
between r∗ to rH and the other between rH to ∞. The integral
contribution coming from the latter part yields a divergent
answer due to an infinite volume of the AdS-space. Thus,
upon a suitable renormalization, this piece does not have
an interesting contribution. The former region of [r∗, rH] is
interestingly non-trivial. To quantitatively establish this, let
us introduce the Kruskal co-ordinates of [82] and rewrite the
metric in (91) as:

ds2 = − 4 f (r)

f ′(rH)2 exp
[− f ′(rH)rt (r)

]
dudv + r2d�2

d−1,

(95)

uv = exp
[− f ′(rH)rt (r)

]
,

u

v
= exp

[− f ′(rH)t
]
,

drt = dr

f (r)
. (96)

The coordinate transformation above can be used to obtain
uL as a function of E , see Fig. 16. This yields[82]:

log uL = log u∗ + f ′(rH)

2

∫ rH

r∗
dr

√
E2 + r2(d−1) f (r) − E√
E2 + r2(d−1) f (r)

,

(97)

which also has a similar log-divergence as E � 1. An iden-
tical formula holds for log vR. The denominator inside the
integrand above yields a similar logarithmic divergence in E .
Therefore, Vold is proportional to log uL and log vR. The pro-
portionality constant can also be found out, since all transfor-
mations are explicitly known. This yields: Vold ∼ |tL + tR|.

This is a very intriguing feature. The eternal AdS-BH state
is dual to a TFD-state in the boundary CFT. Any local per-
turbation will thermalize quickly with characteristic quasi-
normal modes (on the one-sided black hole patch), or stop
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evolving beyond the scrambling time. The classical Einstein–
Rosen bridge, however, will grow linearly in time, forever. In
the dual CFT-description this must correspond to some prop-
erty of a large N quantum mechanical system that grows for a
parametrically long time, even after thermalization. In recent
years, this aspect has become a field in its own right and the
essential ideas revolve around a notion called computational
complexity for generic quantum mechanical systems, that
exhibit such growth at a much longer time-scales. We will
not delve into the details of this idea, instead we will refer
the interested Reader to the early ideas in [83–85], and for a
recent review in [86] and references therein.

There are physical constraints on how difficult it is to tra-
verse a Wormhole of the kind in (98). There are two ways to
estimate this: (i) Assume that such Wormholes are solutions
of Einstein-gravity with some stress-tensor and subsequently
investigate constraints on the stress-tensor, (ii) Assume a
Wormhole geometry and analyze constraints on geodesics of
probe particles in the same. We will discuss both approaches
here.

5.1 Lorentzian wormholes: energy constraints

5.1.1 Energy conditions on the matter

Let us summarize the main point of this section, since the sub-
sequent discussion contains technical details. The main result
is that the existence of Wormhole solutions (of Einstein-
gravity) in an asymptotically AdS-space does not violate
e.g. the Null Energy Condition for the matter sector, while
for asymptotically flat space NEC is violated.

We will closely follow the discussion in [81]. Let us begin
with a static and spherically symmetric space-time of the
following form:

ds2 = −e2φ±(r)dt2 + (1 − b±(r))−1 dr2 + r2d�2, (98)

with lim
r→∞ b±(r) = b±, lim

r→∞ φ±(r) = φ±. (99)

Here b± and φ± are asymptotic data at the two asymptotic
regions. These are connected by a throat region in the interior.
Note that this Wormhole connects two Universes, but it does
not have an event-horizon. The proper radial distance can
be defined as �(r) = ± ∫ r

r0
dr/

√
1 − b±(r)/r . The Worm-

hole throat is characterized by a minimum of r(�), which
is denoted by r0. Thus, the full geometry can be viewed as
two branches of the metric data, denoted by the subscripts
±, glued at r = r0.

The minimality condition at r(�) = r0 implies:

dr

d�
= ±

√
1 − b(r0)

r0
= 0, (100)

d2r

d�2 = 1

2r0

(
b(r0)

r0
− b′(r0)

)
> 0. (101)

Suppose now, that the Wormhole in (98) solves Einstein-
equations:Gμν = (8πGN )Tμν , whereTμν = diag (ρ, pr , �p).
Here ρ is the energy-density, pr is the radial-pressure and
�p is the transverse pressure (along the S2). Corresponding
equations of motion yield:

b′ = 8πGNρr2, φ′ = b + 8πGNr3 pr
2r2

(
1 − b

r

) , (102)

−p′
r = (ρ + pr )φ

′ − 2
p − pr

r
, (103)

Combining the Einstein equations, one obtains:

8πGN (ρ + pr ) = −e2φ

r

[
e−2φ

(
1 − b

r

)]′
. (104)

Using conditions (100) and (101), at the throat, one obtains:

e−2φ

(
1 − b

r

)∣∣∣∣
r0

= 0, (105)

∀ r ≥ r0, e−2φ

(
1 − b

r

)
≥ 0. (106)

Therefore, one arrives at the following conclusion:

∃ δr0 such that ∀r ∈ [r0, r0 ± δr0] ρ + pr < 0. (107)

The condition in (107) implies that the stress-tensor Tμν vio-
lates the so-called Null Energy Condition (NEC), at least
within the range [r0 − δr0, r0 + δr0].32 The upshot is: in
order to realize a Wormhole solution of classical gravity,
one must introduce some exotic matter to support the same.
Note that, we have not yet addressed possible constraints that
may appear from demanding that a signal passes through
such a Wormhole, to reach from one asymptotic region to
another.

The equations of motion in (102), (103) generalize eas-
ily in an asymptotically AdS-background and, in units of
8πGN = 1, these are given by

b′ = r2
(
ρ + �e2φ

)
, (108)

φ′ = 1

2r2(1 − b/r)

[
b + r3

(
pr − �

1 − b

)]
, (109)

−
(
pr − �

1 − b

)′
= φ′

(
ρ + �e2φ + pr − �

1 − b

)

−2

r

(
p − �r2 − pr + �

1 − b

)
.

(110)

32 In fact, in this case, the stress-tensor violates all other classical
energy conditions: Weak Energy Condition, Strong Energy Condition
and Dominant Energy Condition.
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Proceeding as above, in this case one obtains:

(ρ + pr ) = −e2φ

r

[
e−2φ

(
1 − b

r

)]′

−�

(
e2φ(r) − 1

1 − b(r)

)
. (111)

While the first term on the RHS is always negative, the sec-
ond term can have both signs. It is therefore still possible
to fine-tune the matter sector in such a way that (ρ + pr )
remains positive and NEC is satisfied. We will see in the
next section that by analyzing null geodesics, we can rule
out this possibility completely.33

5.1.2 Energy conditions and geodesics

We have already observed that it is non-trivial to have a
static Wormhole solution in asymptotically flat-space, within
classical gravity, and one is forced to consider some exotic
matter source to support it. However, in asymptotically AdS-
geometry, no such issue arises. In this section, the main result
that we will review is that irrespective of the asymptotics,
constraints on the probe signal necessarily imposes a viola-
tion of the NEC. In fact, it necessitates a stronger violation
of the ANEC condition. The rest of the section is devoted to
a review of the technical details leading to this conclusion.

Let us further assume that such Wormholes are also
traversable, i.e. we can send null rays from one asymptotic
region to the other one through this Wormhole. Consider
a bundle of radial null geodesics that enter one mouth of
the Wormhole and exit the other. Intuitively, the area cross-
section of this null congruence should be initially decreasing
as it approaches the Wormhole throat region, subsequently, it
should then be increasing as the second mouth is approached.
For a quantitative idea, let us begin with the Raychaudhuri
equation:

d�

dλ
= −Rμνk

μkν − 2σ 2 − 1

2
�2 + 2ω2, (112)

where � is the expansion of the area of the null congruence,
σ is the shear and ω is the vorticity, kμ is a null vector and λ

is the affine parameter. For radial null geodesics, both σ =
0 = ω.

For radial null geodesics, therefore, at the throat d�/dλ =
0 implies Rμνkμkν = −1/2�2 ≤ 0. This statement can be
easily translated to a statement about the stress-tensor in the

33 It is worth noting that various energy conditions in GR are important
in proving theorems. At the same time, explicit exception-examples
are also known corresponding to such energy conditions. For example,
classical scalar fields violate strong energy condition, Casimir energies
violate NECs and can violate a weaker integrated energy condition, etc.
See [81] for a detailed account on many such examples.

Einstein equations by:(
Rμν − 1

2
gμνR = 8πGNTμν

)
kμkν

�⇒ Rμνk
μkν = (8πGN )Tμνk

μkν . (113)

Therefore, at the throat, we must have: Tμνkμkν ≤ 0, i.e. a
violation of the NEC. Thus, we arrive at a qualitatively similar
conclusion as before.

A more general constraint can be obtained by integrating
the Raychaudhuri equation in (112), for radial null inexten-
sible geodesics. This yields:
∫ λ2

λ1

Rμνk
μkνdλ = −1

2

∫ λ2

λ1

�2dλ − �|λ2
λ1

, (114)

where, for inextensible null geodesics, we can send λ1 →
−∞ and λ2 → ∞. For such geodesics, it is expected
that �(−∞) = 0 = �(+∞).34 Therefore, we obtain:∫ ∞
−∞ Rμνkμkνdλ = ∫ ∞

−∞ Tμνkμkνdλ ≤ 0. Thus, while the
existence of a minimum of the expansion of the radial null
congruence implies a violation of the NEC, geodesic com-
pleteness of the Wormhole geometry further implies the vio-
lation of the ANEC.

The ANEC violation can be further quantified [81] in
terms of two basic scales in the configuration: The length
of the throat region and the location of the throat. Starting
with the metric in (98), the ANEC integral is obtained to be:

IANEC = − 1

4πGN

∫ ∞

r0

×
[
e−φ+(r)

√
1 − b+(r)

r
+ e−φ−(r)

√
1 − b−(r)

r

]
dr

r2 .

(115)

Suppose that the ANEC violation occurs within a region
[r0, R±] of the geometry. For, r > R±, the static, spher-
ically symmetric space-time simply takes a Schwarzschild
form, due to Birkhoff’s theorem: b±(r) = 2M±, eφ±(r) =
eφ±(∞)

√
1 − 2M±/r . The integral in (115) splits into two

parts: one within [r0, R±] and the other within [R±,∞]. The
latter range always yields an overall negative contribution
to the ANEC integral. Consequently, the ANEC integral in
(115) is upper bounded by the Schwarzschild-region contri-
bution. This yields:

IANEC < − 1

4πGN

[
e−φ+(∞)

R+
+ e−φ−(∞)

R−

]
. (116)

Here, R± are scales associated with the length of the throat.
Similarly a lower bound for IANEC can be obtained in

terms of the location of the throat. Recall that, by con-
struction φ±(r) is finite-valued within [r0,∞]. Hence, ∃
34 Since these are inextensible, the expansion must vanish at the end
points. Otherwise, the geodesics will be expanding into something, and
therefore be extensible.
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Fig. 17 A schematic pictorial
representation of non-achronal
null geodesics. On the left, the
three green dots on the vertical
line are connected by the red
time-like paths (denoted by �t ),
but they are not connected by
null geodesics (denoted by �null)
emanating from any of these
points. If the spatial direction is
compactified, these green dots
can now be connected by null
geodesics �null, as shown on the
right. However, the time-like red
vertical path remains the shorter
of the two paths. Thus, �null are
not achronal

φmin± = min{φ±(r)} in the same range of r ∈ [r0,∞]. Thus,
a lower bound for the ANEC integral in (115) is obtained by
replacing the integrands by e−φmin± :

IANEC > − 1

4πGN

1

r0

[
e−φmin+ + e−φmin−

]
. (117)

Finally, note that, the same analyses will through for asymp-
totically AdS-geometry. The only use of the Einstein-
equation has been made in (113), which yields the same
answer upon contracting with null vectors.

5.2 Traversable wormholes

From what we have discussed so far, a violation of ANEC is
unavoidable to obtain a Wormhole solution. Generally, this
is a serious obstacle since ANEC-violating non-pathological
examples are unknown. Furthermore, such a potential vio-
lation raises the possibility of violating topology-censorship
theorems in GR. Moreover, ANEC is expected to hold for
QFTs in general.

Interestingly, there is a technical loophole. There exists
a corner in which ANEC violation is admissible, keeping
all the above constraints unperturbed [87]. In summary,
instead of ANEC one needs to consider SCAANEC (Self-
consistent Achronal ANEC). It is instructive to ponder over
what each letter signifies in this acronym. First of all, “Self-
consistent” simply means that the geometric data is on-shell,
and in particular, the metric and various fields satisfy Ein-
stein equations. “Achronal” implies that no two points on
the null geodesic can be connected by a time-like geodesic.
Therefore, the corresponding null geodesic is the fastest path
between the two said points. Examples of non-achronal null
geodesics are provided in Fig. 17.

Fig. 18 A schematic diagram demonstrating an ANEC-violating but
SCAANEC-preserving traversable Wormhole configuration. The red
points are connected by the Wormholes, as well as by boundary time-
like paths and the latter is shorter than the former

Finally, ANEC is what we have already encountered: this
is simply an averaged version of the classical NEC. This
averaging is expected in the quantum regime, since small
quantum violations can occur in the classical energy con-
straints.

The upshot is: traversable Wormholes can indeed be found
as solutions to Einstein-gravity with ANEC-violating, but
SCAANEC-preserving matter field. This is qualitatively rep-
resented in Fig. 18.

We will now review an explicit such construction, within
the context of AdS/CFT and discuss some of its basic rami-
fications.

5.2.1 Traversable wormholes: a UV-complete example

Recent years have seen truly interesting and fresh perspec-
tives in which Wormholes have played a key role. The explicit
example that led to precise and quantitative understanding of
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Fig. 19 Penrose diagram for the eternal Black Hole in AdS. The red
horizontal lines represent the singularity. The green arrow represents a
signal that originates at the left boundary and propagates towards the
right boundary

traversability and motivated subsequent works in this direc-
tion is the Gao–Jafferis–Wall traversable Wormhole con-
struction in [88].35 In this section, we will heavily draw on
[88] and review the GJW Wormhole.

Before discussing some of the necessary and basic details,
let us ssummarize the construction. Consider an eternal
Black Hole in AdS, e.g. the one already discussed in Sect.
4.2.1. This is dual to the thermofield-double state in the
CFTL×CFTR system. Let us now deform the TFD state, by
turning on a relevant deformation at time t = t0, of the fol-
lowing form:

δS =
∫

dd xh(t, x)OR(t, x)OL(−t, x) , (118)

where OL,R are defined in CFTL,R. It is clear from (118) that
this coupling breaks locality explicitly. In the dual gravita-
tional picture, turning on (118) turns on a scalar field with an
appropriate boundary condition, which in the bulk of the eter-
nal Black Hole, back-reacts and correspondingly deforms the
geometry. It turns out that one can tune this system such that
a traversable Wormhole geometry is created by this scalar
back-reaction.

Pictorially, consider Fig. 19.
A null ray along V = 0 will begin at t = −∞ on the left

boundary and reach at t = +∞ at the right boundary. Any
other null ray that begins at a finite time at the left boundary
will end up in the singularity. Thus, no signal can propagate
from the left to the right.

As was demonstrated earlier, a necessary condition for
creating a traversable Wormhole configuration is to arrange
for a stress-tensor such that

∫
dUTUU < 0, where TUU cor-

responds to a matter field that propagates along the U = 0

35 It is worth mentioning that Wormhole solutions in gravity are usually
constructed with exotic matter sources, e.g. in [89–95], or in higher-
derivative theories of gravity, e.g. in [96–99].

line in Fig. 19. Let us consider throwing in a small matter field
with a non-vanishing TUU ∼ O(ε), where ε bookeeps the
smallness of the matter-field. From Einstein equations, one
can easily obtain the linearized back-reaction δgμν ∼ O(ε)

as a result:

d − 2

4

[(
d − 3

r2
H

+ d − 1

L2

)
(hUU + ∂U (UδgUU ))

−2r2
H∂2

U δgφφ

]
= 8πGNTUU , (119)

which is the only non-trivial component of the equations.
Here rH denotes the location of the horizon in the unperturbed
geometry. Also, hφφ is the azimuthal component of the metric
correction.

Since the perturbation is assumed to be small, in a long
time limit (after the scrambling time), we are expected to
obtain a stationary state. This implies that, at sufficiently
long time-scale, ∂U should be identified with the asymp-
totic Killing vector U∂U = ∂t . Stationarity implies that
U∂UTUU → 0, and therefore, TUU ∼ U−2 or faster as
U → ∞. This, in turn, implies that every term in the LHS of
(119) should also have a similar fall-off behaviour. Integrat-
ing the two sides of (119), and using the above behaviour to
drop out certain boundary terms, we get:

0 > 8πGN

∫ ∞

−∞
dUTUU

= d − 2

4

[
d − 3

r2
H

+ d − 1

L2

]∫ ∞

−∞
dUδgUU . (120)

Thus, the ANEC violating matter-field will induce a partic-
ular signature in the linearized metric correction, integrated
over the null line V = constant.

Before proceeding further, let us present an explicit exam-
ple to demonstrate that explicit analytical solutions can
be obtained. Consider the AdS-Schwarzschild geometry in
(2 + 1)-dimensions:

ds2 = − 4

(1 +UV )2 dUdV + (1 −UV )2

(1 +UV )2 dx
2, (121)

where we have written the metric in the Eddington-Finkelstein
co-ordinates. Suppose now, a matter is thrown along the
U = 0 line into the geometry. This will back-react and
the back-reacted geometry, at the linearized order, can be
obtained as:

ds2 = − 4

(1 +UV )2 dUdV + (1 −UV )2

(1 +UV )2 dx
2

+4δ(U )δgUUdU
2, (122)

where δ(U ) is the delta-function and δgUU is obtained from
linearized Einstein equations. Clearly, this structure tran-
scends dimensionality of the system.
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Fig. 20 A schematic construction of the traversable wormhole. The
blue lines represent the stress-tensor inserted on both boundaries at
some time t = t0, the green arrow represent a signal that is emitted at a
sufficiently past on the left boundary and reaches, due to the shift caused
by the TUU back-reaction, the right boundary at a sufficient future

Let us now look at the null rays in this back-reacted geom-
etry. First, we focus only on x = constant null geodesics.
These rays are obtained by solving:

ds2 = 2gUV dUdV + δgUUdU
2 = 0. (123)

Clearly, the leading order solutions to (123) are simply
U = const. and V = const. lines. The back-reaction will
now deform these rays, specifically, the V = const. lines.
The shift, at order O(ε), to these null rays are obtained by
integrating (123):

�V (U )=−
∫ U

−∞
δgUUdU

2gUV
=− 1

2gUV

∫ U

−∞
δgUUdU.

(124)

This finally yields:

�V (+∞) = − 1

2gUV

∫ ∞

−∞
δgUUdU

∼ − 1

2gUV

∫ ∞

−∞
TUUdU < 0, (125)

where, in the last line, we have used gUV < 0 and that TUU

violates ANEC. This is pictorially demonstrated in Fig. 20.
Therefore, with a sufficient back-reaction, a signal origi-

nating at the left boundary can now reach the right boundary.
We need to still specify the most crucial aspect of the

construction: How one arranges
〈∫

dUTUU
〉
< 0. The per-

turbative deformation above is performed around the TFD-
state, and suppose the corresponding deformation operator
is denoted by O. Then, schematically, we obtain a deformed
state: |TFD〉 → (1 + iεO)|TFD〉. The expectation value of
the ANEC operator in this deformed state is obtained to be:
〈∫

dUTUU

〉
≈ iε

〈[∫
dUTUU ,O

]〉
TFD

. (126)

At this level, it appears that by tuning the sign of ε one can
easily arrange for an ANEC-violating configuration. How-
ever, this assumes that the RHS of (126) is non-vanishing.

We will now review why the last assumption above is
non-trivial. First, recall that time runs upwards/downwards
on the right/left boundary36 of the eternal Black Hole in AdS,
see e.g. Fig. 19. The corresponding Killing symmetry, i∂t , is
generated by the Hamiltonian H = HL − HR, see e.g. the
discussion around Eq. (47). Also, recall that on V = 0 slice,
∂t = U∂U , as we have already used in arriving the result in
(120). Let us consider how the ANEC operator transforms
under ∂t .

Clearly, as U → λU , TUU → λ−2TUU and therefore∫
dUTUU → λ−1

∫
dUTUU . Therefore, the ANEC opera-

tor is an eigenoperator of the U -dilatation operator, with an
eigenvalue −1. Now consider:
[
HL − HR,

∫
dUTUU

]

=
[
−i∂t ,

∫
dUTUU

]

= −i

[
U∂U ,

∫
dUTUU

]

= i
∫

dUTUU , (127)

where, in the last line, we have used:
[
U∂U ,

∫
dUTUU

] =
− ∫

dUTUU .37 With this, let us calculate:

(HL − HR)

∫
dUTUU |TFD〉

=
[
(HL − HR) ,

∫
dUTUU

]
|TFD〉

= i
∫

dUTUU |TFD〉. (128)

Note that: HL − HR is hermitian and therefore its spectrum
only contains real eigenvalues. The equation above, there-
fore, can be satisfied only iff

∫
dUTUU |TFD〉 = 0. This

implies, using (126):
〈∫

dUTUU
〉 = 0.

Physically, this identity follows from a cancellation of the
ANEC integral between the contribution fromU > 0 branch
and the contribution fromU < 0 branch. This can be avoided
by turning on the deformation in (118) at time t = t0. As is
explicitly shown in [88], such a deformation indeed induces
an ANEC-violating matter-sector in the bulk. This is checked
by computing the energy-momentum 2-point function and
extracting the expectation value of the ANEC-operator from

36 Also true for the right/left Rindler wedges in Fig. 19.
37 This simply follows from the eigenvalue of

∫
dUTUU operator, when

acted upon by the U∂U dilatation. This relation holds for any state at
the scale of scrambling-time or higher when U∂U |state〉 = 0, for any
state.
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this. Therefore, indeed, [88] constructs a traversable Worm-
hole with the desired qualities. We will not discuss more tech-
nical details related to this, and refer the interested reader to
[88] instead. Moreover, another review article in this series
will also discuss these aspects in more detail. We will now
review other examples of traversable Wormholes in a similar
context.

5.2.2 Traversable wormholes: eternal and others

In the previous section, we have demonstrated how a
traversable Wormhole can be constructed by turning on a
non-local coupling between the left and the right boundaries
of the TFD-state and thereby inducing an ANEC-violating
matter source. In this section, we will review some recent
progress in generalizing this in various interesting direc-
tions. We will begin with the eternal Wormhole construction
in [58], in which the left-right Hamiltonian interaction is
always turned on. See also e.g. [100,101] for further studies
on such constructions. One begins with an action similar to
the one in (51) in Lorentzian signature, with SBrane replaced
by a generic matter action Smatter[χ, g], where χ denotes
the matter-field. Subsequently, the boundary conditions are
exactly the same as in (55), except now the metric is chosen in
the global Lorentzian AdS: ds2 = 1/(sin2 σ)(−dt2 + dσ 2).

As described in [58], the ++-component of Einstein equa-
tion, in the conformal gauge, yields:

−∂+
(

sin2 σ∂+φ
)

= T++ sin2 σ

�⇒ −
(

sin2 σ∂+φ
)∣∣∣∞−∞

=
∫

T++ sin2 σdx+ =
∫ ∞

−∞
dX+TX+X+ , (129)

the RHS of which is precisely the ANEC-integral introduced
in Sect. 5.1.2. The LHS, on the other hand, is negative for a
growing dilaton near the boundary. Thus, to have a non-trivial
solution to (129), we must introduce matter field violating
ANEC.

Similar to the GJW Wormhole discussed in the previous
section, this can be done by introducing an explicit inter-
action at the boundary of the form

∫
dtOL(t)OR(t), where

OL,R are operators of the left and the right boundary systems
and t is the time co-ordinate at the boundary. Note that the
corresponding coupling is time-independent, and hence this
represents an eternal set up. In [58], it is explicitly shown
that such an interaction yields an ANEC-violating matter
field with free, massless bulk fermions. Equivalently, from
the perspective of the boundary theory, this corresponds to
coupling two copies of the so-called SYK model, with a rel-
evant deformation. For more details on the phase structure of
this system, we refer the interested reader to [58]. Note that,
in dimensions higher than two, constructing eternal Worm-

holes appear subtle. In fact, there are no-go results that pro-
hibit such constructions, provided Poincaré symmetry is pre-
served [102].

We now shift gear towards a Wormhole construction
in arbitrary dimensions. Clearly, GJW-construction applies
to general dimensions, however, the underlying system is
described either by a dual CFT e.g. N = 4 SYM theory in
(3 + 1)-dimensions, or some scalar fields back-reacting on
the eternal black hole geometry. It turns out that traversable
Wormholes can also be constructed out of perhaps more
earthy systems e.g. the standard model and in asymptoti-
cally flat space-time. From an observational perspective, this
is highly relevant for constructing states in the lab, or on a
quantum computer, which are dual to a traversable Wormhole
geometry. See e.g. [103–105] for very interesting and related
discussions. We will now review the pioneering construction
in [106].

The basic ingredients are a U(1) gauge field and a
charged Dirac fermion, coupled to Einstein-gravity in (3+1)-
dimensions:

S = 1

16πGN

∫
d4x

√−gR − 1

g2
ym

∫
d4x

√−gF2

+
∫

d4x
√−giψ̄

(
/∇ − i /A

)
ψ. (130)

Note that, one can also begin with a negative cosmological
constant in the action and essentially follow all the subse-
quent steps that we will review below. For more details on this
case, see e.g. [107]. The strategy of constructing a traversable
Wormhole, starting from the action in (130) comprises of the
following steps: (i) Ignore the Dirac field and construct a
magnetically charged black hole solution. This solution has
a near-horizon AdS2 × S2 throat, whose throat size is deter-
mined by the U(1)-flux of the solution. If we begin with two
oppositely charged magnetic black holes, then their respec-
tive AdS2 throats can be glued to each other. This throat
approximates the Wormhole region. (ii) Now introduce the
Dirac fermions such that they contribute a negative energy
and back-react on the geometry. This step is essential to make
the Wormhole traversable. The negative energy is supplied
by the lowest Landau levels of massless fermions in the mag-
netic field. (iii) Finally, this entire structure can be stabilized,
at least to a desired extent, by rotating the entire system.

While the general strategy is intuitively clear, an explicit
construction can be tedious and is perhaps best obtained by
smoothly gluing various approximate geometric patches. We
will now briefly discuss various scales associated with this
construction and its subsequent generalizations. The near-
horizon magnetically charged Reissner–Nordstrom solution
is described by the metric:
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ds2 = r2
h

(
−

(
r2 − 1

)
dt2 + dr2

r2 − 1
+ d�2

2

)
,

rh = √
πGN

Q

gym
, (131)

where rh is the horizon radius, Q is the charge of the black
hole, and the AdS2 throat has been written in the Rindler
patch denoted by {t, r}. In the traversable Wormhole, the
AdS2 throat will vary in size and this can be captured by
introducing simple variations to the metric functions above,
e.g.

(
r2 − 1

) → (
1 + r2 + γ

)
, r2

hd�2 → r2
h (1 + ϕ)d�2.

Magnetic field, looping through the S1 × R, creates local-
ized Landau levels and yields Q number of effective (1 +
1)-dimensional massless fermions and a negative Casimir
energy, which makes the Wormhole traversable. In [106], it
was shown that the energy difference between such a Worm-
hole and two disconnected extremal black holes is given by

�E = r3
h

GN�2 − N f Q

6

(
π

π� + dout
− 1

4�

)
, (132)

where � sets the length of the Wormhole throat, dout sets
the separation of the Wormhole mouths, N f is the number
of fermions and Q is the magnetic charge. Given (132), it
is straightforward to extremize the energy-difference. This
becomes particularly simple in two limits: dout � � and
dout � �, both of which can be readily analytically solved to
obtain a Wormhole biding energy: Ebind ∼ −N f Q/�.

The two mouths will gravitationally attract each other.
However, if dout is large enough, instability due to this inter-
action can still yield a sufficiently stable traversable Worm-
hole geometry for long enough. In [106], this merger time is
estimated as ∼ d3/2

out , while the transit time through the Worm-
hole is ∼ dout. Furthermore, additional ingredients can fur-
ther increase stability of this construction, e.g. simply having
the two mouths rotate around each other.

The construction above can be further generalized to
a multi-boundary traversable Wormhole solution, as is
described in [108]. Qualitatively, given the two-boundary
traversable Wormhole geometry, one introduces a small
Wormhole mouth. There are numerous possibilities, dis-
cussed in detail in [108], in which this opens up a new throat
and connects to a third boundary. Perhaps the simplest is
to consider a three-flavour fermion model, with three dis-
tinct U(1)-gauge fields. Each flavour couples to one of the
U(1)’s. Suppose the large Wormhole mouths have charges
(Q1, q2, 0) and (−Q1, 0, q3) and the small mouth has the
charge (0,−q2,−q3). In the limit |Q1| � |q2|, |q3|, the
configuration is mechanically stable. The fermions, corre-
spondingly, yield the required negative energy. The basic
point is: with a standard model like ingredient, such multi-
boundary traversable Wormholes can be created, for long

enough such that traversal affects are accessible. For a more
detailed account, we refer the reader to [108].

Alternatively, one can also begin with the multi-boundary
Wormhole geometry of Sect. 4.4 and add a double-trace
deformation, as discussed in Sect. 5.2.1. This non-local
boundary interaction provides us with the required ANEC-
violating matter field in the bulk. This matter field eventually
renders the Wormhole traversable. This approach has been
explored in detail in [109], to which we refer the reader for
a detailed discussion on this. For more explicit examples
of traversable Wormholes, see e.g. [110–113], for dynami-
cal production of such geometries see e.g. [114,115]. From
the boundary CFT perspective, such geometric solutions
are understood as quantum teleportation. Several interesting
directions have been explored with this theme, see e.g. [116–
122].

5.2.3 Wormholes on the brane

Let us slightly shift gear and discuss possible Worm-
hole geometries outside Einstein-gravity. These geometries
emerge from specific probe D-brane configurations in a given
supergravity background, see e.g. [123–133] for a review. In
this section we will briefly discuss them.

The basic premise is set with probe D-branes in a given
supergravity geometry, following the pioneering work of
[134]. This adds low-energy open string degrees of freedom
in a geometry obtained from the low energy limit of the closed
string spectrum. In the dual CFT, for example for the case of
N = 4 SYM, this introduces an N = 2 hypermultiplet that
transforms in the fundamental representation of the gauge
group. Schematically, the corresponding path-integral takes
the form: ZsugraZprobe = ZAdjointZfundamental, where the LHS
is defined in the gravitational description. The probe action
is given by the Dirac–Born–Infeld (DBI) action:

SDBI = −N f τp

∫
d p+1ξe−�

√−det [ϕ∗ [G + B] + (2πα′)F],

(133)

where N f denotes the number of (p+1)-dimensional probes,
τp is the tension of each such probe, {�,G, B} represent of
the supergravity data, α′ is the tension of the open string and
F is gauge field on the D-brane and ϕ∗ denotes the pull-back
map.

Suppose the probe embedding is characterized by the clas-
sical on-shell data {θi , Fab} where a, b run over the worldvol-
ume indices of the brane and i runs over the transverse direc-
tions. Consider now the corresponding fluctuation modes:
θi + δθi and Fab + Fab. At the quadratic order, the fluctua-
tions actions are obtained to be:
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Sscalar = −κ

2

∫
d p+1ξ

(
detG

detS
)1/4 √−detSSab∂aδθi∂bδθi + · · · ,

(134)

Svector = −κ

2

∫
d p+1ξ

(
detG

detS
)1/4 √−detSSabScdFacFbd + · · · ,

(135)

S = ϕ∗G −
(
F

(
ϕ∗G

)−1
F
)

. (136)

The emergent metric S is known as the Open String Metric
(OSM).

A particularly interesting configuration consist of a probe
D-brane, embedded in an exactly AdS-background, with a
worldvolume constant electric field: F = Edt ∧ dx + · · · ,
where the . . . represent other components that need to be
turned on to satisfy the equations of motion resulting from
(133). The supergravity background here is the vacuum solu-
tion (AdS), which is dual to the ground state of the SU(N )

adjoint gauge theory. On the other hand, the open string
degrees of freedom propagates in a geometry with an event-
horizon and therefore the dual fundamental matter sector is
in a thermal state. There is a heat-flow due to this. However,
in the probe limit, this flow is parametrically suppressed. For
a detailed review on such constructions, see e.g. [132,133].

Here, we present the following observation. As discussed
in detail in [131], the scalar and vector (as well as fermion)
modes propagate in a geometry with a horizon. Correspond-
ingly, there is a two-sided Kruskal extension and a geometric
notion of the TFD-state that we have discussed earlier, for
standard black hole geometries. Subsequently, as we have
discussed before, an Einstein–Rosen bridge connects the
two sides of this maximally extended geometry. The OSM-
geometry or the conformal OSM-geometry in which such
semi-classical modes propagate have no a priori reason to
obey a null Ricci condition: nμRμνnν > 0, where nμ is the
null vector and Rμν is the Ricci-tensor. This condition is
important for traversability of the corresponding Einstein–
Rosen bridge. It is straightforward to check, using the results
in [131] that indeed nμRμνnν ≥ 0 appears to hold gener-
ally. A particularly interesting case is an AdS4-background,
where the OSM-metric yields nμRμνnν = 0. This yields,
using (112): d�/dλ = −(1/2)�2. In this case, even an
infinitesimal violation of the null Ricci-condition can make
the Einstein–Rosen bridge traversable.

At present, there are no explicit traversable Wormhole
construction on such branes. Long, traversable Wormholes
may be constructible making use of the fermionic fluctuations
(as part of the effective supersymmetric) on the D-brane, see
e.g. [135]. We note that the possibility of a traversable Worm-
holes on the Brane has been implicitly hinted in [136–138],
which predates the GJW-Wormhole construction. In these
cases, a Holographic dual description of a single EPR pair
have been constructed, in terms of an open string embed-
ded in an AdS-geometry. An Einstein–Rosen bridge forms,

due to acceleration of the end-points of the open string. At
a qualitative level, this is similar to the framework above,
since a constant electric field on a D-brane will indeed accel-
erate open string end points. The non-traversable Wormholes
in these cases have been viewed as explicit examples of the
ER=EPR idea of [13]. A slightly different manifestation of
essentially the same basic physics also draws a connection
to the physics of Out-of-Time-Order correlators (OTOCs)
on such worldsheets, see e.g. [139–143]. This brings us to a
very interesting connection between OTOCs, quantum rege-
nesis and traversable Wormhole [144], which we will briefly
review now.

5.2.4 Traversable wormholes and regenesis

Traversable Wormholes can be understood as quantum tele-
portation in the dual QFT. We will not review this aspect in
detail, however, in this subsection we will briefly touch upon
a related aspect that bridges various topical ideas of current
research. This section will be based heavily on [144] to which
we refer the interested reader for a detailed account. The basic
physics follows from the entanglement between the left and
the right degrees of freedom, as well as the notion of infor-
mation scrambling in a quantum system. In what follows, we
will only review the basic and salient technical details of this
argument.

One key ingredient is the TFD-state, introduced in
(44). Consider turning on a sufficiently local operator,
denoted by JR, with a coupling φR, on the right bound-
ary at time t = −ts. The corresponding expectation value〈
TFD|JR(t)|TFD

〉 �= 0. However, since
[
JR, JL

] = 0,
for a sufficiently local operator JL on the left boundary,〈
TFD|JL(t)|TFD

〉 = 0. Suppose now a deformation is
introduced to the total Hamiltonian, similar to the GJW-
interaction:

H = HL + HR − g

k

k∑
i=1

OL
i OR

i δ(t = 0), (137)

where {OR,L
i } are sufficiently local operators on the right

and the left boundaries. Upon inserting a signal on the right
boundary at −t = ts > t∗, where t∗ is the corresponding
scrambling time, a signal re-appears on the left boundary
due to the explicit interaction in (137) [116]. The scrambling
time t∗ is defined as the time-scale when

〈
[O1(t1),O2(t2)]2〉

becomes of O(1). Here O1,2 are sufficiently local opera-
tors and the expectation value is computed in a given state.
This

〈
[O1(t1),O2(t2)]2〉 expectation value is given by a

Time-Order correlator and an Out-of-Time-Order correlator
(OTOC); the limit

〈
[O1(t1),O2(t2)]2〉 ∼ O(1) is equivalent

to setting OTOC ∼ O(0).
Let us pause for a brief discussion on the scrambling time.

Given a local QFT, Lorentzian causality implies that any
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two space-like separated operators, outside each others light-
cones, always commute.38 Conversely, any commutator is
non-trivial only inside the light-cone. For two given operators
O1(t1), O2(t2), the commutator-squared evaluates to:
[O1(t1),O2(t2)

]2

= O1(t1)O2(t2)O1(t1)O2(t2) + O2(t2)O1(t1)O2(t2)O1(t1)

− [O1(t1)O2(t2)O2(t2)O1(t1) + O2(t2)O1(t1)O1(t1)O2(t2)
]
.

(138)

In the above expressions, we have suppressed the spatial
directions since our goal is to make statements related to time-
scales. One can consider the operators are spatially located
at given points, but are not exactly co-incident. The latter
condition eliminates contact singularities.

Now consider a thermal state with a density matrix ρ =
e−βH . In this case, the second line of the RHS of Eq.
(138) can be written as TOCs.39 The other two terms can
be written as OTOCs. At early times, the operators O1,2

are expected to commute yielding a vanishing expectation
value of the commutator-squared. At sufficiently late time,
however, when information of the operator O1 becomes
accessible to O2, and vice-versa, the commutator-squared
should approach an O(1) number. This can be restated in
terms of the OTOC: at early times, the OTOC is expected
to be an O(1) contribution, and at late times the OTOC is
expected to approach zero. Scrambling time is defined as:
OTOC(t∗) ∼ 0. Often, an exponential decay of the OTOCs
is observed for thermal states, which is subsequently identi-
fied as a signature of an “early-time quantum chaos”.40

Although the above ideas are cleanest for a thermal state,
we can take this as a working definition of scrambling time
for a wider class of systems. The essential physical under-
standing is that at the order of scrambling time, an initial local
information of the system becomes accessible at the scale of
the system size. This happens due to the Hamiltonian evolu-
tion, which couples various local physics at subsequent larger
time-scales. In particular, for systems with a large number of

38 Note that, even in the non-relativistic limit, for quantum systems
with sufficiently local interactions, there is an emergent light-cone that
is defined in terms of the so-called Lieb–Robinson bound [145].
39 For example:

〈O1(t1)O2(t2)O2(t2)O1(t1)〉β
= Tr (ρO1(t1)O2(t2)O2(t2)O1(t1))

∼ Tr (ρO1(t1)O1(t1)O2(t2)O2(t2)) , (139)

where we have used ρ = e−βH , O(t) = eiHtO(0)e−i Ht and O(t −
iβ) ∼ O(t). The last condition assumes a periodicity condition on the
operator O, with a period β.
40 Note that, this “early-time chaos” applies till t∗ ∼ log N , for a sys-
tem with N � 1 degrees of freedom. The more conventional notion
of “quantum chaos” is defined in terms of level-repulsion of the cor-
responding quantum spectrum. This effect is visible at time-scales
∼ eN � log N .

degrees of freedom, scrambling time is parametrically larger
than a local dissipation time-scale.

With this slight detour, let us come back to the main result
of [144], which they referred to as “regenesis” in the context
of generic quantum chaotic systems. We need two key fea-
tures of the TFD-state: Given a hermitian operator JR, we
get:

JR |TFD〉 = JL

(
iβ

2

)
|TFD〉 , (140)

and e−i HLt |TFD〉 = eiHR t |TFD〉 , (141)

from which it follows that:

JR(t) |TFD〉 = JL

(
iβ

2
− t

)
|TFD〉 . (142)

The last relation above entangles states on the right boundary
at time t , with states on the left boundary at time −t . This
basic property becomes very important in what follows. For
example, a two-point function of JL,R in the TFD-state is
given by〈

TFD|JL(t)JR(−t ′)|TFD
〉

=
〈
TFD|JL(t)JL

(
t ′ + iβ

2

)
|TFD

〉

=
〈
JL(t)JL

(
t ′ + iβ

2

)〉
β

∼ e− 2π
β

|t−t ′|
, (143)

where the second line above follows from standard expecta-
tion of thermal two-point correlators, in the limit |t − t ′| �
β/(2π). This two-point function is non-vanishing at when
t ∼ t ′.

Given the TFD-state, consider perturbing the CFTR with∫
dd xφR JR. At the linear order, this deformation induces a

non-vanishing expectation value for the one-point function
〈JR〉 �= 0. When g = 0 in the interacting Hamiltonian in
(137), we still have 〈JL〉 = 0. Consider now turning on g �=
0, centered around t = 0. Consider further that the source φR

is supported at a small time-window around t = −t∗. This
ensures that the non-vanishing one point function 〈JR〉 has
long decayed before g could be turned on. Now we obtain a
non-vanishing one point function for 〈JL〉, given by

〈JL(t)〉g =
〈 ˜TFD|JL(t)| ˜TFD

〉
, (144)∣∣∣ ˜TFD

〉
= eigV ei

∫
dd xφR JR |TFD〉 . (145)

Let us spell this out. From the definition of
∣∣∣ ˜TFD

〉
, it is clear

that for g = 0, 〈JL〉 = 0 since JL and JR commute. For
small values of t , we still have [V, JL] ≈ 0, since JL and
all individual terms in V are sufficiently local operators. At
sufficiently later times, t ≥ t∗, the effect of JL spreads across
the system size and therefore [V, JL] �= 0, which yields:
〈JL〉g �= 0. In light of (143), any expectation value is peaked
around tL ∼ −tR.
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Consider the limit g � 1, which means we can expand
the exponential in (145) in powers of g. At nth-order, there
are terms of the following form:

〈JL(t)〉(n)
g =

〈
TFD|e−igV JL(tL) (OL(0))n JL(tR + iβ/2)

× (OL(iβ/2))n |TFD
〉
, (146)

using the relation in (142). The RHS above is a manifest
OTOC. For tL ∼ tR ≥ t∗, 〈JL(t)〉(n)

g → 0 by definition. The
remaining contribution in (144) is obtained from terms of the
following form:〈

TFD|e−igV JL(tL)JR(−tR)|TFD
〉

≈
〈
e−igV

〉
〈JL(tL)JR(−tR)〉 , (147)

which finally yields:

〈JL(tL)〉g
≈ CφR(−tR), tR ≥ t∗, (148)

for sufficiently slowly varying field φR. Here, C is a constant
that depends on g. The bottom-line is: Physical information
contained in φR, inserted at −tR is contained in the one-point
function of JL at tL ∼ tR. Thus, a local information at suffi-
ciently early times on the right-boundary emerges as a local
information at a sufficiently late time on the left boundary.
This happens, as emphasized in [144], because of the entan-
glement structure of the TFD-state, and the direct coupling
of the left and the right boundary degrees of freedom.

6 Conclusion and outlook

In this review, we attempted to catalogue a set of recent
ideas, with simple and analytically tractable examples to
elucidate them further, based on explicit Wormhole geome-
tries in both Euclidean as well as Lorentzian frameworks.
To re-emphasize, Wormholes play an integral role in extract-
ing quantum dynamics of Black Holes, understanding prop-
erties of quantum entanglement in quantum gravity and
Holography.41 These features are most transparent in low-
dimensional systems: two-dimensional and three-dimensional
gravity.

Perhaps more interestingly, Wormholes raise rather intrigu-
ing puzzles as well. The basic conundrum arises from the
perspective in [45,48], in which one has to either sacrifice
macroscopic locality at some level, or re-interpret the defin-
ing path-integral of the system. In particular, [48] advocated
a path-integral interpretation that involves an averaging over

41 Let us emphasize that our discussion has not been, by any stretch
of imagination, inclusive of all ideas. For example, see e.g. [42,43,45–
47,146,147] for the so-called “Wormhole calculus”, which we have left
untouched.

the parameter space of the system, and restore locality. On
one hand, such an averaging procedure conflicts with an
intrinsic unitary UV-complete description of e.g. in string
theory [49].

This poses a puzzle with which we are yet to fully recon-
cile. Here we will enlist various points of view that one may
adopt, at this point: The simplest perspective is to assume
that the Wormholes by an unknownmechanism produce some
of the desired and fine-grained physics of quantum gravity.
From a Euclidean quantum gravitational perspective, this is
similar to the Gibbons–Hawking analyses of Black Hole ther-
modynamics. The Euclidean gravitational framework is ill-
defined, yet it captures salient features of Black Hole thermo-
dynamics. This necessitates an alternative and a more thor-
ough understanding of the quantum dynamics of gravity in
general. Such a framework is lacking at this point. The inter-
ested Reader may keep an eye on some recent ideas explored
in e.g. [148,149] and its subsequent developments.

A second possibility is that Wormholes capture quantum
gravitational aspects only in low-dimensional systems, and
does not necessarily play any role in higher dimensions. In
many cases, specially for explicit examples of AdS/CFT cor-
respondence, higher-dimensional cases are at a much better
control, while the lower-dimensional examples are, at least,
subtle. So, one logical possibility is that Wormholes are a part
of this subtlety in lower dimensional Holography. Nonethe-
less, it remains unclear from the bulk picture why Worm-
holes do not contribute at all (on-shell or even off-shell) and
cause the factorization problem in higher dimensions. Fur-
thermore, if we declare that by some mechanism Wormholes
never appear in higher dimensions, it remains unclear how
the information paradox is then resolved in such cases. It
appears fair to state that, despite a lot of exciting develop-
ments, these core questions remain as outstanding problems
at large.42

A third possibility is an admixture of the above two.
Depending on the physical question, Wormholes may or may
not play a role. The rules of this game is far from clear, at
present. In part, a lot of recent research is devoted into explor-
ing and understanding these issues better. Let us collect some
thoughts and advances towards one particular such aspect.

As was reviewed earlier, Wormholes naturally provide
an interpretation in terms of a path integral that also per-
forms an (ensemble) averaging. This averaging is rooted in
the non-factorizability discussed in Sect. 4.2. Most recent
works are motivated on this premise: For example, in two-
dimensional (quantum) gravity and its corresponding dual

42 We refer the interested Reader to e.g. [150–153] for more exploration
of Wormholes in general dimensions, especially correlation functions
of such Holographic states and a discussion on the corresponding QFT
models. See also [154] for a discussion on traversable Wormholes based
on force-free electrodynamics.
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one-dimensional quantum mechanical description, the role
of ensemble averaging on partition function, Rényi-entropy
and the late-time behaviour of spectral form factor is ana-
lyzed in [155,156]. The best known example of this duality
exists between the so-called Jackiw–Teitelboim (JT) gravity
and the low energy limit of the so-called Sachdev–Ye–Kitaev
(SYK) model – see e.g. [31,32] for a detailed account of this
duality – in which the ensemble averaging is explicitly real-
ized. To contrast this, we also refer to the Reader to the series
of works in [157–166] which advocate that no ensemble aver-
aging is required if the JT-gravity picture is viewed from a
non-perturbative definition of random matrix models.

Much less is explicitly understood in higher dimensions.
However, recent works in [167–170] explore the role of
Wormholes in AdS3, i.e. in one higher dimension. It has been
argued that pure gravity in AdS3, which is otherwise thought
to not posses a Holographic dual description, can be thought
as the dual of an ensemble average of two-dimensional CFTs.
Furthermore, new Wormhole solutions were also obtained
in higher dimensions, which contribute non-perturbatively
to the quantum gravity path-integral. A systematic and com-
plete understanding of higher dimensional Wormholes, along
these directions will certainly be an important progress.

Even in the best understood low-dimensional examples, it
is important to understand how stable the relevant Wormhole
solutions are. From a bottom-up approach, stable Wormhole
solutions can be constructed in low-energy models, currently
no explicit such stable solution exists in a UV-complete grav-
itational theory, i.e. in supergravity models that one obtains
in the low-energy limit of string theory. In particular, [54]
a thorough analyses have been carried out of various such
models, across various dimensions, and it was found that the
Wormhole solutions always suffer from D-brane nucleation
instabilities. This instability is similar to the classic exam-
ple of Wormhole constructed by Maldacena-Maoz in [171].
While this approach cannot rule out the possibility of a sta-
ble Wormhole solution in a particular UV-complete theory,
since it is impossible to exhaust all the possibilities, it can
provide a constructive example with some luck and educated
guesses. At present, however, an explicit example of a stable
Wormhole in a UV-complete description is lacking.

Given that Wormholes cannot be ruled out of considera-
tion, an alternative perspective is to take them seriously to
a logical extreme. The (unreasonable) effectiveness of semi-
classical (quantum) gravity can be thought of as encoding
an averaged description of the underlying microscopic quan-
tum gravitational spectrum. In particular, [148] proposes a
statistical hypothesis on the OPE coefficients of a dual two-
dimensional CFT and relates this proposal to the Wormhole
contribution in Euclidean AdS3. Furthermore, [149] com-
bines a generalized notion of this OPE-statistics in the pres-
ence of a global symmetry with Wormholes to arrive at the
desired conclusion that global symmetries cannot exist in

quantum gravity. At the very least, it appears plausible that
even though Wormholes may not be the complete story, they
certainly encode some fine-grained quantum information of
gravity.

It is worth mentioning that there are explicit examples in
which Wormholes do not imply an averaging. For example,
[74] explicit example of a Wormhole has been constructed
in terms of the dual SYK-theory with frozen coupling con-
stants. These turn out to be “half-Wormholes” in that they
do not asymptote to multiple boundaries. Therefore, these
Wormhole configurations have no non-factorizable correla-
tors between the CFTs defined on the left and the right bound-
aries.

From an observational outlook, recent work on traversable
Wormholes have brought a fresh perspective. While such
Wormholes are not designed for exotic faster-than-speed-of-
light travel, they represent a class of examples that can be
realized in a low-energy lab and explored further. In partic-
ular, a suitable configuration and dynamics in an SYK-like
system can be prepared in the lab, which, using the Holo-
graphic duality, uncovers the physics of Wormholes in an
AdS-geometry. For example, in the SYK-like description in
the lab, such traversable Wormholes can be thought of as tele-
portation protocols in the quantum mechanical model. This
aspect brings together aspects of quantum gravity within the
realm of quantum simulations on quantum computers. See
e.g. [103,116,172–176], for a theoretical account and [177]
for an experimental outlook.

Let us conclude this review with a speculative remark. It is
well-known that Euclidean instanton solution play an impor-
tant role in understanding the phenomenon of resurgence in
quantum field theories, see e.g.[178]. This is an incredibly
curious idea in which perturbative quantum physics around
one saddle encodes non-perturbative physics of some other
saddle. Whether Wormholes can be relevant in such a struc-
ture in quantum dynamics of gravity is an extremely inter-
esting question to address.
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Appendix A: Isometries of AdS3

Recall that AdS3 can be embedded in the R
2,2:

ds2 = −d v̄2 − dū2 + dx̄2 + d ȳ2, (149)

by the hyperboloid surface:

−v̄2 − ū2 + x̄2 + ȳ2 = −�2, (150)

where � is the AdS curvature scale.
Now, choose a four-vector x̄a = (v̄, ū, x̄, ȳ). AdS3 has

six linearly independent Killing vectors that correspond to
rotations and boosts in the (2+2) spacetime. These are given
by

Jab ≡ x̄b
∂

∂ x̄a
− x̄a

∂

∂ x̄b
. (151)

The Killing vectors form an so(2, 2) algebra:

[Jab, Jcd ] = ηac Jbd − ηad Jbc − ηbc Jad + ηbd Jac. (152)

In the Poincaré metric for AdS3:

ds2

�2 = −dt2 + dx2 + dy2

y2 , (153)

the Killing vectors are as follows:

J01 =
(

�2 + t2 + x2 + y2

2�

)
∂t + t x

�
∂x + t y

�
∂y, (154)

J02 =
(−�2 + t2 + x2 + y2

2�

)
∂t + t x

�
∂x + t y

�
∂y, (155)

J03 = −x∂t − t∂x , (156)

J12 = −t∂t − x∂x − y∂y, (157)

J13 =
(

�2 − t2 − x2 + y2

2�

)
∂x − t x

�
∂t − xy∂y, (158)

J23 =
(−�2 − t2 − x2 + y2

2�

)
∂x − t x

�
∂t − xy

�
∂y . (159)

Multi-boundary black holes are typically thought of as
quotients of AdS3 by a discrete set of isometries in the group
SO(2, 2). For example, consider the quotienting by the dilata-
tion generator that acts as: e−2πκ J12 ·(t, x, y) = e2πκ(t, x, y),
and hence yields the identification:

(t, x, y) ∼ e−2πκ J12 · (t, x, y) = e2πκ(t, x, y), (160)

where κ ∈ R is a parameter of the identification. Similarly,
given a Killing vector ξ , and a parameter α0, the identification
sub-group is given by {eα0ξ }.

Appendix B: Technical details of identification

In this appendix we include more details on the identification
procedure of section 4.4. We begin with the Killing vectors
in (154)–(159), at t = 0 slice, and redefine the following
basis on H

2, subsequently presenting also their lift to the full
AdS3-geometry (therefore, defined for all values of t):

JT ≡ � (∂z + ∂z̄) −→ J̃T ≡ J13 − J23, (161)

JD ≡ z∂z + z̄∂z̄ −→ J̃D ≡ −J12, (162)

JS ≡ 1

�

(
z2∂z + z̄2∂z̄

)
−→ J̃S ≡ −J13 − J23. (163)

Here, the tilde stands for the lifted Killing vectors. It is
easy to check that the tilde Killing vectors form an sl(2,R)-
algebra. To identify the precise transformation in terms of
the Killing vectors, note that eκ JT , eκ JD and eκ JS corre-
spond to translation, dilatation and special conformal trans-
formation. The inversion transformation can be constructed
as Ia = eaJT eJS/aeaJT .

To see the effect of the Killing vectors on geodesics on
H

2, let us first obtain the geodesics. These are obtained by
extremizing the functional:

I =
∫

dy

y

√
1 +

(
dx

dy

)2

, (164)

that leads to the following equations of motion:

1

y

dx

dy

1√
1 + (dx/dy)2

= α . (165)

Here α is an integral of motion. There are two distinct classes
of solutions to (165):

α = 0, x = constant, (166)

α �= 0, (x − c)2 + y2 = α−2, (167)

i.e., straight lines and semicircles. The action of the trans-
formations discussed above can be determined, on such
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geodesics, for example:

eaJT /� ·
(
x1,

√
R2 − (x1 − c)2

)

=
(
x2,

√
R2 − (x2 − a − c)2

)
, x2 ≡ x1 + a,

eaJD
(
x1,

√
R2 − (x1 − c)2

)

=
(
x2,

√
(ea R)2 − (x2 − eac)2

)
, x2 ≡ eax1,

Ia ·
(
x1,

√
R2 − x2

1

)

=
⎛
⎝x2,

√
(a�)4

R2 − x2
2

⎞
⎠ , x2 ≡ − (a�)2

R2 x1. (168)

A crucial combination is the orientation-reversing isome-
try, which is explicitly given by[75]

O = ec2 JT /�eν JDIR1/�e
−c1 JT /� , ν = R2

R1
, (169)

which maps two oppositely oriented semi-circles centered
at c1 and c2, with radii R1 and R2, into each other.43 In
view of the discussion on transformations, the Fig. 12 can be
generated with quotienting AdS3 by dilatation, followed by
orientation-reversing isometry. This is summarized by

Õ = ec2 J̃T /�eR J̃T /�e� J̃S/ReR J̃T /�e−c1 J̃T /�, (170)

which can also be written as a single exponential, using the
algebra of the generators.
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