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Abstract With the complexity of information tasks, the
bipartite and tripartite entanglement can no longer meet our
needs, and we need more entangled particles to process rel-
ativistic quantum information. In this paper, we study the
genuine N-partite entanglement and distributed relationships
for Dirac fields in the background of dilaton black holes. We
present the general analytical expression including all phys-
ically accessible and inaccessible entanglement in curved
spacetime. We find that the accessible N-partite entangle-
ment exhibits irreversible decoherence as the increase of
black hole’s dilaton, and on the other hand the inaccessible
N-partite entanglement increases from zero monotonically
or non-monotonically, depending on the relative numbers of
the accessible to the inaccessible modes, which forms a sharp
contrast with the cases of bipartite and tripartite entanglement
where the inaccessible entanglement increase only mono-
tonically. We also find two distributed relationships between
accessible and inaccessible N-partite entanglement in curved
spacetime. The results give us a new understanding of the
Hawking radiation.

1 Introduction

The presence of quantum entanglement is widely consid-
ered as one of, if not the, defining property of quantum
mechanics [1]. Since the development of quantum informa-
tion theory, entanglement in quantum states has been recog-
nized as a basic resource for quantum computing, quantum
cryptography, quantum teleportation and quantum commu-
nication [2–12]. Due to the increasing complexity of quan-
tum information tasks, the bipartite and tripartite entangle-
ment cannot meet the needs. Therefore, we need N-partite
entangled state to deal with quantum information tasks.
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For example, “Jiuzhang”, a quantum computer prototype,
which requires 76 entangled photons, promotes the fron-
tier research of global quantum computing to a new level
[13]. On the other hand, a N-partite quantum state which is
not separable with respect to any bipartition is considered to
be genuine N-partite entangled [4]. Compared with bipartite
entanglement, genuine N-partite entanglement has obvious
advantages in quantum tasks, such as multiparty quantum
networks, quantum computing using cluster states, high sen-
sitivity in metrology tasks and measurement-based quantum
computation [14–23].

The general relativity predicts that black holes exist in our
universe. Recently, the first gravitational wave (GW150914)
from a binary black hole merger system, was detected by
the Advanced LIGO and Virgo detectors [24]. Moreover, the
Event Horizon Telescope revealed the first photo of the super-
massive black hole in the center of the giant elliptical galaxy
M87 [25–30]. These evidences indirectly and directly con-
firm the black hole in our universe. On the other hand, the
general theory of relativity and quantum mechanics repre-
sent two pillars of modern physics, but unification of the two
theories remains an open problem. Quantum gravity tries
to solve the contradiction between quantum mechanics and
gravity. Some progress has been made in experiments, such
as: (i) gravitational satellite testing induces quantum deco-
herence model [31]; (ii) it is experimentally shown that the
gravitational frequency shift effects remarkably influence the
precision of atomic clocks for a variation of 0.33 m in height
[32]; (iii) the experiment demonstrates direct and full-scale
verifications towards ground-satellite quantum key distribu-
tion [33]. In addition, several schemes to simulate quantum
gravity have been proposed, i.e., quantum entanglement in
analogue Hawking radiation, analogue Hawking radiation in
a Bose–Einstein Condensate, analogue Hawking radiation
and analog cosmological particle generation in a supercon-
ducting circuit [34–37]. At the same time, the bipartite and
tripartite entanglement in theory have been widely studied in
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relativistic framework, such as noninertial frames and black
holes [38–58]. Understanding how the Hawking radiation
induced by black holes affects quantum entanglement may
help us well understanding the loss of information of black
holes [59,60].

However, N-partite entanglement in relativistic frame-
work has seldom been studied due to the computational
complexity. On the other hand, since information tasks are
becoming more and more complex, we need more entan-
gled particles to process relativistic quantum information.
It is necessary for us to study N-partite entanglement in
curved spacetime. For this purpose, we will discuss prop-
erties of genuine N-partite entanglement of Dirac fields in
the background of Garfinkle–Horowitz–Strominger (GHS)
dilaton black holes. The dilaton black holes derived from the
string theory are formed by gravitational systems coupled to
Maxwell and dilaton fields, and have received a lot of atten-
tion [61–65]. It is generally believed that the study of dila-
ton black holes may deepen the understanding of quantum
gravity, as it arises from fundamental theories, such as black
hole physics, string theory, and loop quantum gravity. In this
paper, we study the genuine N-partite entanglement and its
distributed relationship for Dirac fields in the background
of dilaton black holes. We will obtain the general analytical
expression that includes all genuine N-particle entanglement,
compare N-particle entanglement with bipartite and tripartite
entanglement, and obtain their similar and completely differ-
ent properties. In addition, we will look for the distributed
relationships between physically accessible and inaccessible
N-partite entanglement, which show the flow law of infor-
mation inside and outside the horizon of a black hole.

The paper is organized as follows. In Sect. 2, we discuss
the quantization of Dirac fields in the background of the dila-
ton black hole. In Sect. 3, we briefly introduce the quantifica-
tion of genuine N-partite entanglement. In Sect. 4, we study
the redistribution of genuine N-partite entanglement and the
distributed relationships in dilaton spacetime. The last sec-
tion is devoted to a brief conclusion.

2 Quantization of Dirac fields in dilaton spacetime

String theory is a promising candidate for a consistent the-
ory between the general theory of relativity and quantum
mechanics. The field according to string theory corresponds
to a dilaton with an exponential coupling to an invariant.
By choosing the invariant to be the electromagnetic field’s
Lagrangian, one can get a solution of static dilatonic black
hole, i.e., the GHS dilaton black hole [61–65]. The metric
for a GHS dilaton black hole can be written as [66,67]

ds2 = −
(
r − 2M

r − 2D

)
dt2 +

(
r − 2M

r − 2D

)−1

dr2

+ r(r − 2D)d�2, (1)

where M and D are the mass of the black hole and dilaton,
respectively. The relationship among the mass M , the charge

Q and the dilaton D is given by D = Q2

2M . For simplicity, we
take h̄,G, c and κB as unity in this paper.

In a general background spacetime, the massless Dirac
equation can be expressed as [68]

[γ aea
μ(∂μ + �μ)]� = 0, (2)

where γ a is the Dirac matrices, the four-vectors eaμ is the
inverse of the tetrad eaμ, and �μ is the spin connection coeffi-
cient. Equation (2) in the GHS black hole spacetime becomes

− γ0√
f

∂�

∂t
+ γ1

√
f

[
∂

∂r
+ r − D

rr̄
+ 1

4 f

d f

dr

]
�

+ γ2√
rr̄

(
∂

∂θ
+ cot θ

2

)
� + γ3√

rr̄ sin θ

∂�

∂ϕ
= 0, (3)

where f = r−2M
r̄ with r̄ = r − 2D. Then, by solving the

Dirac equation in the GHS dilaton black hole, we can obtain
the positive frequency outgoing solutions for the inside and
outside region of the event horizon [54,69]

�+
k,in ∼ ReiωH, (4)

�+
k,out ∼ Re−iωH, (5)

where R is a four-component Dirac spinor, H = t − r∗ is
the tortoise coordinate and k is the wave vector labeling the
modes hereafter. Equations (4) and (5) can be used to expand
the Dirac field as

� =
∑
σ

∫
dk[âσ

k�+
k,σ + b̂σ†

k �−
k,σ ], (6)

where σ = (in, out), âσ
k and b̂σ†

k are the fermion annihilation
and antifermion creation operators acting on the quantum
state, respectively. The annihilation and creation operators
satisfy the canonical anticommutation

{âin
k , âin†

k′ } = {âout
k , âout†

k′ } = {b̂in
k , b̂in†

k′ } = {b̂out
k , b̂out†

k′ } = δkk′ .

One can define the dilaton vacuum âink |0〉D = âoutk |0〉D =
0. Therefore, the modes �±

k,σ and �±
k,σ are called dilaton

modes.
Making analytic continuations for Eqs. (4) and (5), accord-

ing to the suggestion of Damoar–Ruffini [70], we find a com-
plete basis for positive energy modes, i.e., the Kruskal modes.
Then we can quantize the Dirac field in Kruskal modes

� =
∑
σ

∫
dk

1√[2 cosh(4π(M − D)ω)] [ĉ
σ
k�+

k,σ

+ d̂σ†
k �−

k,σ ], (7)

where ĉσ
k and d̂σ†

k are the fermion annihilation and antifer-
mion creation operators acting on the Kruskal vacuum. Equa-
tions (6) and (7) show that the Dirac field is decomposed into
the dilaton and Kruskal modes, respectively. Now, we can
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easily obtain the Bogoliubov transformations between anni-
hilation and creation operators in Kruskal and dilaton coor-
dinates. Using the Bogoliubov transformations, the relations
between the Kruskal and dilaton operators take the forms

ĉout
k = αâout

k − βb̂out†
k ,

ĉout†
k = αâout†

k − βb̂out
k , (8)

with α = 1√
e−8π(M−D)ω+1

and β = 1√
e8π(M−D)ω+1

. Since the

dilaton black hole can be divided to the physically accessible
and inaccessible region, the ground and only excited states in
Kruskal coordinate correspond to a two-mode squeezed state
in dilaton black hole coordinate. After properly normalizing
the state vector, the Kruskal vacuum state and the only excited
state can be given by

|0〉K = α|0〉out|0〉in + β|1〉out|1〉in,

|1〉K = |1〉out|0〉in, (9)

where {|n〉out} and {|n〉in} are the number states for the
fermion outside the region and the antifermion inside the
region of the event horizon, respectively.

3 Quantification of genuine N-partite entanglement

The genuine N-partite entanglement is an essential resource
for quantum computing and quantum networks. Next, we
briefly review the measure of genuine N-partite entangle-
ment. Generally, N-partite entanglement is defined by its
opposite of biseparability. A biseparable N-partite pure state
|�〉 can be written as |�〉 = |�A〉 ⊗ |�B〉, with |�A〉 ∈
HA = Hi1 ⊗ Hi2 ⊗ · · · ⊗ Hik and |�B〉 ∈ HB = Hik+1 ⊗
Hik+2 ⊗ · · · ⊗ HiN in any bipartition of the Hilbert space. A
biseparable N-partite mixed state ρ is given by a convex com-
bination of biseparable states ρ = ∑

i pi |�i 〉〈�i |, where the
|�i 〉 can be biseparable with respect to different bipartitions.
If an N-partite entangled state is not biseparable, it is called
genuinely N-partite entangled state. In other words, the gen-
uine N-partite entanglement is not separable with respect to
any bipartition. The genuine N-partite entanglement for pure
state is defined as [71]

E(|�〉) = min
χi∈χ

√
2[1 − Tr(ρ2

Ai
)], (10)

where χ = {Ai |Bi } denotes the set of all possible bipartitions
of the whole N -partite system, and ρAi is the marginal state
for the subsystem Ai . The genuine N-partite entanglement for
mixed states can be obtained via a convex roof construction

E(ρ) = inf{pi ,|�i 〉}
∑
i

pi E(|�i 〉), (11)

where the infimum is taken over all possible decompositions
ρ = ∑

i pi |�i 〉〈�i |.

For the N-qubit systems, the Hilbert-space orthonormal
bases are usually defined as {|0, 0, . . . , 0〉, |0, 0, . . . , 1〉, . . . ,
|1, 1, . . . , 1〉}. The X-state of a N-qubit system may be writ-
ten in terms of density matrix as

ρX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 c1

a2 c2
. . . . .

.

an cn
c∗
n bn

. .
. . . .

c∗
2 b2

c∗
1 b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where n = 2N−1. The conditions
∑

i (ai + bi ) = 1 and
|ci | ≤ √

aibi are required to ensure that ρX is normalized
and positive. The genuine entanglement for a N-qubit X-state
can be expressed as

E(ρX ) = 2 max{0, |ci | − νi }, i = 1, . . . , n, (13)

where νi = ∑n
j �=i

√
a jb j [72].

4 Genuine N-partite entanglement of Dirac fields in
GHS dilaton black hole

We initially share an N-partite entangled state in the asymp-
totically flat region of the dilaton black hole

|ψ〉1,...,N = cos θ |0〉⊗N + sin θ |1〉⊗N , (14)

where θ ∈ (0, π
2 ) and the mode i (i = 1, 2, . . . , N ) is

observed by observer Oi . We assume that n (n < N )
observers hover near the event horizon of the GHS dilaton
black hole, and the rest N − n observers stay stationarily at
the asymptotically flat region. Using Eq. (9), we can rewrite
Eq. (14) in terms of dilaton modes

|ψ〉1,...,N+n

= cos θ

⎡
⎢⎣(

|0̄〉︷ ︸︸ ︷
|0〉n+1|0〉n+2 . . . |0〉N )

n⊗
i=1

(α|0〉out,i |0〉in,i

+ β|1〉out,i |1〉in,i )

⎤
⎥⎦

+ sin θ

⎡
⎢⎣(

|1̄〉︷ ︸︸ ︷
|1〉n+1|1〉n+2 . . . |1〉N )

n⊗
i=1

(|1〉out,i |0〉in,i )

⎤
⎥⎦ ,

(15)

where |0̄〉 = |0〉n+1|0〉n+2 . . . |0〉N 〉 and |1̄〉 = |1〉n+1|
1〉n+2 . . . |1〉N 〉. Since the exterior region is causally discon-
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nected from the interior region of the black hole, we should
trace over the state of the inside region and obtain

ρout
1,...,N = α2n cos2 θ |0̄〉〈0̄|

n⊗
i=1

(|0〉out,i 〈0|)

+α2n−2β2 cos2 θ |0̄〉〈0̄|
n∑

m=1

⎡
⎣(|1〉out,m〈1|)

n⊗
i=1,i �=m

(|0〉out,i 〈0|)
⎤
⎦

+α2n−4β4 cos2 θ |0̄〉〈0̄|
n∑

m=2

m−1∑
z=1

⎡
⎣(|1〉out,z〈1|)

(|1〉out,m〈1|)
n⊗

i=1,i �=z,m

(|0〉out,i 〈0|)
⎤
⎦+ · · ·

+β2n cos2 θ |0̄〉〈0̄|
n⊗

i=1

(|1〉out,i 〈1|)

+αn cos θ sin θ

{
[|0̄〉〈1̄|

n⊗
i=1

(|0〉out,i 〈1|)] + h.c.

}

+ sin2 θ |1̄〉〈1̄|
n⊗

i=1

(|1〉out,i 〈1|), (16)

which we write in matrix form as

ρout
1,...,N =

(Aout Cout

CT
out Bout

)
, (17)

in the 2n+1 basis {|0̄0 . . . 00〉, |0̄0 . . . 01〉, . . . , |1̄1 . . . 10〉,
|1̄1 . . . 11〉}. The sub-matrixes Aout, Bout, Cout and CT

out are
2n × 2n dimensions. The basis set for sub-matrixes Aout is
{|0̄0 . . . 00〉, . . . , |0̄1 . . . 11〉}, where the base corresponding
to the element α2n−2iβ2i cos2 θ include i “1” . The sub-
matrixes can be written as

Aout = cos2 θ

⎛
⎜⎜⎜⎝
α2nI0

α2n−2β2I1
. . .

β2nIn

⎞
⎟⎟⎟⎠ , (18)

Bout =

⎛
⎜⎜⎜⎝

0
. . .

0
sin2 θ

⎞
⎟⎟⎟⎠ , (19)

Cout =

⎛
⎜⎜⎝

αn cos θ sin θ

0
. .

.

0

⎞
⎟⎟⎠ , (20)

where the Ii in (18) denotes a Ci
n × Ci

n identity matrix with
Ci
n = n!

i !(n−i)! the binomial coefficient.

According to Eqs. (12) and (17), we can obtain the phys-
ically accessible genuine N-partite entanglement

E(ρout
1,...,N ) = 2 max

{
0, αn cos θ sin θ

}
. (21)

From Eq. (21), we can see that the genuine N-partite entan-
glement E(ρout

1,...,N ) depends not only on the initial parameter
θ , but also on the dilaton D of the black hole; this means that
the effect of gravitation induced by the black hole will affect
the entanglement. We can also see that the genuine N-partite
entanglement E(ρout

1,...,N ) is independent of N, but depends

on n. In addition, we obtain
∂E(ρout

1,...,N )

∂θ
= 2αn cos 2θ , which

means that, for the given dilaton D and n, the maximum of
genuine N-partite entanglement E(ρout

1,...,N ) corresponds to
θ = π

4 . This result is different from tripartite tangles, where
the maximum takes place at different initial parameters [56].

In Fig. 1, we show the genuine N-partite entanglement
E(ρout

1,...,N ) as functions of the dilaton D for different n and
θ . We find that the entanglement E(ρout

1,...,N ) decreases with
the increase of the dilaton D, meaning that the gravitational
effect degrades the physically accessible quantum entangle-
ment. For the extreme black hole (D → M), we find from
Eq. (21) that

lim
D→M

E(ρout
1,...,N ) = sin 2θ

(
1√
2

)n

.

Figure 1 also shows that, for given dilaton D, E(ρout
1,...,N )

reduces monotonically with n. This is because Hawking radi-
ation behaves like a kind of noise to the entanglement. The
larger the n is, the more the modes influenced by Hawking
radiation are, and thus the more E(ρout

1,...,N ) declines. Espe-
cially for the extreme black hole (D → M), and in the limit
of infinite n, the entanglement E(ρout

1,...,N ) vanishes.
Above, we have discussed the genuine N-partite entangle-

ment for the modes: N − n modes in the asymptotically flat
region and n modes outside the event horizon. We call this
kind of entanglement is physically inaccessible. Now we dis-
cuss another N-partite entanglement which consists of N −n
modes in the asymptotically flat region and n modes inside
the event horizon. This N-partite entanglement is called phys-
ically inaccessible. By tracing over physically accessible n
modes outside the horizon in Eq. (15), we obtain the density
operator

ρin
1,...,N = α2n cos2 θ |0̄〉〈0̄|

n⊗
i=1

(|0〉in,i 〈0|)

+α2n−2β2 cos2 θ |0̄〉〈0̄|
n∑

m=1

⎡
⎣(|1〉in,m〈1|)

n⊗
i=1,i �=m

(|0〉in,i 〈0|)
⎤
⎦
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Fig. 1 The genuine N-partite entanglement E(ρout
1,...,N ) as functions of the dilaton D of the GHS black hole for different n and θ , where M = ω = 1.

n = 5 (dashed blue line); n = 20 (dotted red line).; n = 80 (solid green line)

+α2n−4β4 cos2 θ |0̄〉〈0̄|
n∑

m=2

m−1∑
z=1

⎡
⎣(|1〉in,z〈1|)(|1〉in,m〈1|)

n⊗
i=1,i �=z,m

(|0〉in,i 〈0|)
⎤
⎦+ · · ·

+β2n cos2 θ |0̄〉〈0̄|
n⊗

i=1

(|1〉in,i 〈1|)

+βn cos θ sin θ

{
[|0̄〉〈1̄|

n⊗
i=1

(|1〉in,i 〈0|)] + h.c.

}

+ sin2 θ |1̄〉〈1̄|
n⊗

i=1

(|0〉in,i 〈0|), (22)

which we write in matrix form as

ρin
1,...,N =

(Ain Cin

CT
in Bin

)
. (23)

where Ain = Aout,

Bin =

⎛
⎜⎜⎜⎝

sin2 θ

0
. . .

0

⎞
⎟⎟⎟⎠ , (24)

and

Cin =

⎛
⎜⎜⎝

0
. .

.

0
βn cos θ sin θ

⎞
⎟⎟⎠ . (25)

In a similar way, we calculate the genuine N-partite entan-
glement for the physically inaccessible modes

E(ρin
1,...,N ) = 2 max

{
0, βn cos θ sin θ

}
. (26)

Figure 2 shows how the dilaton D of the black hole
influences the genuine N-partite entanglement E(ρin

1,...,N )

between the physically inaccessible modes. From which we

can see that the entanglement E(ρin
1,...,N ) increases with the

growth of the dilaton D, which means that the gravitational
effect produced by the black hole can generate the physi-
cally inaccessible entanglement. For the extreme black hole,
we obtain from the analytic expression of Eq. (26) that

lim
D→M

E(ρin
1,...,N ) = sin 2θ

(
1√
2

)n

.

We also see from Fig. 2 that, for the given dilaton D, the
E(ρin

1,...,N ) decreases monotonically with the increase of the
n. We can understand this question as follows: Hawking radi-
ation causes information traveling from the exterior to the
interior of the event horizon, leading to the generation of the
entanglement E(ρin

1,...,N ). In this process, the event horizon
of black hole plays the role of resistance. The larger the n is,
the stronger the resistance is, and thus the slower E(ρin

1,...,N )

rises.
So far, we have studied the genuine N-partite entangle-

ment for the accessible and inaccessible modes in curved
spacetime. Next, we extend it to a more general case. For this
end, we consider a general system ρN−n,p,q (p + q = n),
which consists of N − n modes in the asymptotically flat
region, physically accessible p modes outside the event hori-
zon and physically inaccessible q modes inside the event
horizon. The density operator ρN−n,p,q can be expressed as

ρN−n,p,q = α2n cos2 θ |0̄〉〈0̄|
[ p⊗
i=1

(|0〉out,i 〈0|)
]

×
⎡
⎣ q⊗

j=1

(|0〉in, j 〈0|)
⎤
⎦

+α2n−2β2 cos2 θ |0̄〉〈0̄|
{ p∑
m=1

[(|1〉out,m〈1|)
p⊗

i=1,i �=m

(|0〉out,i 〈0|)
q⊗
j=1

(|0〉in, j 〈0|)]
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Fig. 2 The genuine N-partite entanglement E(ρin
1,...,N ) as functions of the dilaton D of the GHS black hole for different n and θ , where M = ω = 1.

n = 8 (dashed blue line); n = 10 (dotted red line); n = 12 (solid green line)

+
q∑

m=1

[
p⊗

i=1

(|0〉out,i 〈0|)(|1〉in,m〈1|)

q⊗
j=1, j �=m

(|0〉in, j 〈0|)]
⎫⎬
⎭+ α2n−4β4 cos2 θ |0̄〉〈0̄|

×
{ p∑
m=2

m−1∑
z=1

[(|1〉out,z〈1|)(|1〉out,m〈1|)
p⊗

i=1,i �=z,m

(|0〉out,i 〈0|)
q⊗
j=1

(|0〉in, j 〈0|)]

+
q∑

m=2

m−1∑
z=1

[
p⊗

i=1

(|0〉out,i 〈0|)(|1〉in,z〈1|)(|1〉in,m〈1|)
q⊗

j=1, j �=z,m

(|0〉in, j 〈0|)]

+
p∑

z=1

q∑
m=1

[(|1〉out,z〈1|)
p⊗

i=1,i �=z

(|0〉out,i 〈0|)

(|1〉in,m〈1|)
q⊗

j=1, j �=m

(|0〉in, j 〈0|)]
⎫⎬
⎭+ · · ·

+β2n cos2 θ |0̄〉〈0̄|
p⊗

i=1

(|1〉out,i 〈1|)
q⊗
j=1

(|1〉in, j 〈1|)

+α pβq cos θ sin θ

{
|0̄〉〈1̄|

p⊗
i=1

(|0〉out,i 〈1|)

q⊗
j=1

(|1〉in, j 〈0|) + h.c.

⎫⎬
⎭

+ sin2 θ |1̄〉〈1̄|
p⊗

i=1

(|1〉out,i 〈1|)
q⊗
j=1

(|0〉in, j 〈0|). (27)

The density operator ρN−n,p,q has the matrix form

ρN−n,p,q =
(A C
CT B

)
, (28)

where A = Aout. The sub-matrixes A, B and C are 2n × 2n

dimensions. Here, the sub-matrixes B and C are given by

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .

0
sin2 θ

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (29)

where the element sin2 θ is fixed in the position (2p, 2p), and

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. .

.

0
α pβq cos θ sin θ

0
. .

.

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (30)

where the element α pβq cos θ sin θ is fixed in the position
(2q, 2p). Substitution of the elements of the matrix ρN−n,p,q

into Eq. (12), we obtain

E(ρN−n,p,q) = 2 max

{
0, α pβq cos θ sin θ

}
. (31)

We note that: (i) for p = n, E(ρN−n,p,q) changes to
E(ρout

1,...,N ); (ii) for q = n, we obtain E(ρN−n,p,q) =
E(ρin

1,...,N ). Therefore, E(ρN−n,p,q) is a more general expres-

sion which includes both E(ρout
1,...,N ) and E(ρin

1,...,N ) as the
special cases.

In Fig. 3, we plot the genuine N-partite entanglement
E(ρN−n,p,q) as functions of the dilaton D for differ-
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Fig. 3 The genuine N-partite entanglement E(ρN−n,p,q ) as functions of the dilaton D of the GHS black hole for different p and q, where
M = ω = 1. θ = π

12 (dashed blue line); θ = π
6 (dotted red line); θ = π

4 (solid green line)

ent p, q and θ . Different from entanglement E(ρout
1,...,N )

and E(ρin
1,...,N ) shown in Figs. 1 and 2, the entanglement

E(ρN−n,p,q) is not necessarily a monotonic function of the
dilaton D in general, since it is a combination of a decreasing
function α and an increasing function β. For p > q (means
p > n/2 and q < n/2), E(ρN−n,p,q) is non-monotonic,
such as {p = 8, q = 4} and {p = 32, q = 2} in Fig. 3.
The maximum of E(ρN−n,p,q) is exp[−8π(M − D)ω] = q

p .
Oppositely, for p < q, E(ρN−n,p,q) is monotonic, such as
{p = 4, q = 8} and {p = 2, q = 32}. It is worthwhile
to point out that if N ≤ 3, then the non-monotonic phe-
nomenon never occurs. For example, if N = 3, then we have
three possible cases: (i) p = q = 1 and N − n = 1; (ii)
p = 0, q = 2 and N − n = 1; and (iii) p = 2, q = 0 and
N − n = 1. The first two cases correspond to monotonically
increasing functions, and the last case corresponds to mono-
tonically decreasing function [which is actually the Eq. (21)].
The result is consistent with the previous one [48–57]. Note
that Eq. (31) also has the asymptotic value sin 2θ

(
√

2)n
in the limit

of D → M .
Figure 3 also shows that, under given dilaton D,

E(ρN−n,p,q) increases when θ goes up from π/12 to π/4.
This is because the initial state of Eq. (14) has its maxi-
mal entanglement for π/4, and Fig. 3 just suggests that the
dependency of entanglement on θ remains unchanged under

the Hawking radiation. The same phenomenon also exists in
Figs. 1 and 2 indeed.

In the above content, we have studied the gravitational
effect on the genuine N-partite entanglement. We have seen
that the physically accessible entanglement degrades; at
the same time, the physically inaccessible entanglement
increases monotonically or non-monotonically, as the dilaton
D of the GHS black hole rises. A question naturally rises:
are there any relationships between them? The answer is pos-
itive. Through careful observation of Eq. (31), we obtain
some relationships between accessible and inaccessible gen-
uine N-partite entanglement, which are called the distributed
relationships of quantum entanglement. The first distributed
relationship of quantum entanglement is

n∑
p=0

C p
n E

2(ρN−n,p,q) =
n∑

p=0

4C p
n α2pβ2q cos2 θ sin2 θ

= 4 cos2 θ sin2 θ(α2 + β2)n, (32)

where the binomial coefficient is defined by C p
n = n!

p!(n−p)! .
Due to α2 + β2 = 1, we obtain

n∑
p=0

C p
n E

2(ρN−n,p,q) = sin2 2θ. (33)
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The second distributed relationship of quantum entanglement
is

n
2∑

q=0

Cq
n
2
E(ρN−n,p,q) = sin 2θ, (34)

where n must be an even number. Note that sin 2θ is the ini-
tial entanglement of the state Eq. (14), thus Eqs. (33) and
(34) offer the restrictive relations between physically acces-
sible and inaccessible genuine N-partite entanglement. This
means that the distributed relationships control how quan-
tum information travels inside and outside the event hori-
zon of the black hole. When one of them increases, there
must be reduction of some other elements of them. Note that
when n increases, the entanglement ways for E(ρN−n,p,q),

i.e.,
∑n

p=0 C
p
n or

∑ n
2
q=0 C

q
n
2

increase. However, the restrictive

relations Eqs. (33) and (34) must be met. Thus every entan-
glement E(ρN−n,p,q) must decrease. This is an alternative
explanation of the observed phenomenon that the entangle-
ment decreases with n in Figs. 1 and 2.

Besides the distributed relationships, we also find that the
general genuine N-partite entanglement E(ρN−n,p,q) sat-
isfies the following Coffman–Kundu–Wootters monogamy
inequality

E2(ρN−n,p,q) −
N∑
i=2

E2(ρ1,i ) = α2pβ2q sin2 2θ > 0, (35)

where E(ρ1,i ) is the bipartite entanglement between the first
observer and the i (i > 1) observer. It should be empha-
sized that all bipartite entanglement is equal to zero in the
background of GHS dilaton black hole. This implies that
the Coffman–Kundu–Wootters monogamy inequality of N-
partite is still valid in the context of black hole.

5 Conclusions

The gravitational effect on the genuine N-partite entangle-
ment of Dirac fields in GHS dilaton spacetime has been
investigated. We assume that N observers initially hold a
N -mode entangled state of Dirac fields in the asymptotically
flat region. Then let n (n < N ) observers hover near the
event horizon of the GHS dilaton black hole, and the rest
N − n observers still stay stationarily at the asymptotically
flat region. By calculating the general analytic expression
that includes all physically accessible and inaccessible gen-
uine N-partite entanglement, we have found that the phys-
ically accessible genuine N-partite entanglement appears
irreversible decoherence phenomenon with the increase of
the dilaton, and approach to zero for n → ∞. On the
other hand, we have found that the physically inaccessible
genuine N-partite entanglement increases either monotoni-

cally or non-monotonically with the increase of the dilaton,
depending on the relative numbers between the accessible
and the inaccessible modes. This result is quite different from
the cases of the physically inaccessible bipartite and tripar-
tite entanglement, which change only monotonically with
the increase of the dilaton [48–57]. The maximum for the
non-monotonic increase of the inaccessible entanglement is
exp[−8π(M − D)ω] = q

p , i.e., equals the ratio of the num-
bers between inaccessible and accessible modes. In addi-
tion, we have found two distributed relationships between
accessible and inaccessible genuine N-partite entanglement,
and verified that the Coffman–Kundu–Wootters monogamy
inequality of N-partite entanglement is still valid in the back-
ground of dilaton black holes.

Since the notion of Hawking radiation was presented, the
black hole information paradox has been attracted and puz-
zled scientists. Recently, new developments using hologra-
phy and island paradigm have been made [73,74]. It was
shown that the construction of islands is the key to resolve the
black hole information paradox. Without island, the entangle-
ment entropy of Hawking radiation grows linearly in time and
becomes divergent at late times. While taking account of the
existence of the island outside the event horizon, the entan-
glement entropy stops growing at late times and eventually
reaches a saturation value. In our paper, we have employed
the N-partite entanglement between accessible and inacces-
sible modes to describe the characteristic of Hawking radia-
tion, which is actually equivalent to the description of entan-
glement entropy: Hawking radiation causes information trav-
eling from the exterior to the interior of the event hori-
zon, leading to the production of the N-partite entanglement
between accessible and inaccessible modes. Accordingly, the
entanglement entropy of Hawking radiation grows. Further,
the description of N-partite entanglement in our work has
a merit: The problem of information paradox never occurs.
Because the distributed relationships for the N-partite entan-
glement between accessible and inaccessible modes imply
that the entanglement is bounded by its initial value. The
N-partite entanglement never diverges. We expect that the
research can help us understand how quantum information
travels inside and outside the event horizon of the black hole,
and provide some new understanding of the Hawking radia-
tion.
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