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Abstract Recently, the Gravitational Decoupling through
the Minimal Geometric Deformation was applied to study a
mixture of a spherically symmetric internal solution of the
Einstein gravitational equations with a polytropic fluid, giv-
ing interesting results of the energetic interchanges in the
special case of the Tolman IV solution. In this work, we
extend these newly introduced methods to the case of Tolman
VII space-times that are currently considered as a convenient
exact solution of Einstein equations representing relatively
precisely realistic neutron stars.

1 Introduction

Compact objects play a crucial role in recent astrophysics,
as they directly demonstrate the most interesting effects of
general relativity. The most relevant astrophysical compact
objects are surely black holes, both stellar mass and super-
massive, at least from the point of view of the studies of
the strong gravity phenomena, related e.g. to the existence
of the unstable photon spheres. In the analysis of gravita-
tional waves detected because of merging black holes, their
mimickers, or neutron stars [1], quasinormal modes of grav-
itational waves (or related electromagnetic waves) created
during the merging are related to the unstable circular null
geodesics, as demonstrated in [2], if models based on the
Einstein gravity are assumed; however, this is not necessar-
ily true in alternative gravity theories [3] and exceptions can
occur also in the Einstein theory combined with a non-linear
electrodynamics [4–6].

Interesting phenomena could be related also to the sta-
ble photon spheres whose existence is possible in the vac-
uum Kerr naked singularity space-times, or Kerr superspinars
[7,8] related to the Kerr black holes [9,10]. Of special inter-
est are non-vacuum extremely compact objects allowing for
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the existence of stable photon spheres that could be rele-
vant for the description of extremely compact neutron stars
[11,12]. The extremely compact objects contain a region of
trapped null geodesics, allowing for trapping of gravitational
waves [13], gravitational collapse [14], or trapping of neutri-
nos [15].

Recent studies indicate that the Tolman VII space-time
with energy density radial profile of quadratic character [16],
being an exact solution of the non-vacuum Einstein gravita-
tional equations, can well represent neutron stars with real-
istic equations of state [17–22], contrary to the famous inter-
nal Schwarzschild solution governed by uniform distribution
of energy in the interior [23,24] representing the polytrope
solution with polytropic index n = 0 [12,25]. An anisotropic
version of the Tolman VII solution was presented in [26]. 1 In
the same direction, it has been studied the rotation influence
on the trapping effect in the case of linearized Hartle-Thorne
space-times based on the Tolman VII spherically symmetric
solutions, where was demonstrated enhancement (suppres-
sion) of the trapping effect in the case of counter-rotating
(co-rotating) null geodesics due to the behavior of the effec-
tive potentials and escape cones of the null geodesics [28].
Given this result, it should be interesting to explore how other
modifications of Tolman VII solution have an impact on the
trapping effect and, among all the possibilities, in this work
we are interested in modifications based on its interaction
with a fluid satisfying a polytropic equation of state.

In the framework of general relativity, we can always
group fluids of different nature into a single energy–

1 Modified Tolman VII solution was introduced in [18] that includes an
additional quartic term in the energy density radial profile. The modified
Tolman VII is not an exact solution as part of the Einstein equations is
solved only approximately in order to present the solution in an ana-
lytic form; its concordance with realistic models of neutron stars was
discussed and confirmed along the I-Love-C theorem [19]. Extremely
compact (modified) Tolman VII solutions were treated in [22]. The
exact version of the modified Tolman VII solution was recently found
by numerical solution of the Einstein equations in [27].
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momentum tensor

T̃μν = T 1
μν + T 2

μν + · · · (1)

However, extracting the information on which source domi-
nates over the others, and consequently rule out any equation
of state incompatible with the dominant source should be a
difficult task. However, in a recent paper [29], we found a
systematic way to explore the effect that a polytropic fluid
has on an arbitrary source regardless its nature through the
gravitational decoupling (GD) [30] in spherically symmet-
ric space-times based on the minimal geometric deformation
(MGD) [31–48] in its extended form [49] (for an incomplete
list of references, see [50–91]. See also Ref. [92], for the
axially symmetric case). In this work, we shall follow Ref.
[29] to study the effect of a polytrope on the Tolman VII
geometry.

The paper is organized as follows: in Sect. 2, we first
review the fundamentals of the GD approach to a spherically
symmetric system containing two generic sources; in Sect. 3,
we choose a polytropic fluid to study its effects on a generic
gravitational source, and we introduce a systematic and direct
procedure to elucidate these effects; in Sect. 4, we implement
the strategy developed in Sect. 3 for the case of a perfect fluid;
finally, we summarize our conclusions in Sect. 5.

2 Gravitational decoupling

In this section, we briefly review the GD for spherically sym-
metric gravitational systems (see [49] for details). Let us con-
sider the Einstein field equations2

Gμν ≡ Rμν − 1

2
R gμν = κ T̃μν , (2)

where,

T̃μν = Tμν + θμν , (3)

with Tμν representing the source of some known solution
and θμν being an extra source containing new fields (or a
new gravitational sector not described by general relativity).
Note that, Bianchi identities lead to conservation of the total
source, namely

∇μ T̃μν = 0 . (4)

In static and spherically symmetric space-times, we can
parameterize the line element as

ds2 = eν dt2 − eλ dr2 − r2 dΩ2 , (5)

2 We use units with c = 1 and κ = 8 π GN, where GN is Newton’s
constant.

where ν = ν(r) and λ = λ(r) are functions of the areal
radius r only and dΩ2 = dθ2 + sin2 θ dφ2. Besides,

T ν
μ = diag[ρ, −pr , −pt , −pt ] , (6)

θ ν
μ = diag[E, −Pr , −Pt , −Pt ] (7)

from where the Einstein equations (2) read

κ (ρ + E) = 1

r2 − e−λ

(
1

r2 − λ′

r

)
(8)

κ (pr + Pr ) = − 1

r2 + e−λ

(
1

r2 + ν′

r

)
(9)

κ (pt + Pt ) = e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
, (10)

where primes indicate derivation with respect to the radial
coordinate. From Eqs. (8)–(10), we identify

ρ̃ = T 0
0 + θ 0

0 = ρ + E , (11)

p̃r = −T 1
1 − θ 1

1 = pr + Pr , (12)

p̃t = −T 2
2 − θ 2

2 = pt + Pt , , (13)

as the effective energy density, and the effective radial and
tangential pressure, respectively. It is worth noticing that, in
general, the anisotropy

Π ≡ p̃t − p̃r (14)

does not vanish and the system of Eqs. (8)–(10) could be
anisotropic.

Next, let us consider a solution to the Eqs. (2) for the seed
source Tμν alone, namely,

T̃μν = Tμν + ���
0

θμν, (15)

which line element

ds2 = eξ(r) dt2 − eμ(r) dr2 − r2 dΩ2 , (16)

where

e−μ(r) ≡ 1 − κ

r

∫ r

0
x2 T 0

0 (x) dx = 1 − 2m(r)

r
(17)

is the well-known expression that contains the mass function
m = m(r). In this regard, we can interpret the consequences
of adding the source θμν as a geometric deformation of the
metric (16), namely3

ξ → ν = ξ + g (18)

e−μ → e−λ = e−μ + f , (19)

where f and g are respectively the geometric deformations
for the radial and temporal metric components. Now, replac-
ing (18) and (19) in (8)–(10), the Einstein equations can be
separated in two sets: A) the first one given by the Einstein

3 usually we write α g and α f , with α a parameter introduced to keep
track of these deformations. Here we dispense with it for simplicity.
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field equations sourced by the energy-momentum tensor Tμν

with metric (16), namely

κρ = 1

r2 − e−μ

(
1

r2 − μ′

r

)
, (20)

κpr = − 1

r2 + e−μ

(
1

r2 + ξ ′

r

)
, (21)

κ pt = e−μ

4

(
2ξ ′′ + ξ ′2 − μ′ξ ′ + 2

ξ ′ − μ′

r

)
, (22)

B) a second set containing the source θμν which reads

κ E = − f

r2 − f ′

r
(23)

κPr − Z1 = f

(
1

r2 + ν′

r

)
(24)

κ Pt − Z2 = f

4

(
2 ν′′ + ν′2 + 2

ν′

r

)
f ′

4

(
ν′ + 2

r

)
(25)

where

Z1 = e−μ g′

r
(26)

4 Z2 = e−μ

(
2g′′ + g′2 + 2 g′

r
+ 2ξ ′ g′ − μ′g′

)
. (27)

Note that, tensor θμν vanishes when the deformations van-
ish, namely f = g = 0, as expected. For the particular case
g = 0, Eqs. (23)–(25) reduce to the simpler “quasi-Einstein”
system of the MGD of Ref. [30], in which f is only deter-
mined by θμν and the undeformed metric (16). It is worth
emphasizing that, in this case, the conservation equation (4)
can be written as[(

T 1
1

)′ − ξ ′

2

(
T 0

0 − T 1
1

)
− 2

r

(
T 2

2 − T 1
1

)]

−g′

2

(
T 0

0 − T 1
1

)
+

(
θ 1

1

)′

−ν′

2

(
θ 0

0 − θ 1
1

)
− 2

r

(
θ 2

2 − θ 1
1

)
= 0 , (28)

where the term in brackets corresponds to the divergence
of Tμν computed with the covariant derivative ∇(ξ,μ) for
the metric (16), and the last term corresponds to ∇σ θσ

ν

where the divergence is calculated with the deformed metric
in Eq. (5). Now, as the Einstein tensor G(ξ,μ)

μν for the met-
ric (16) satisfies its respective Bianchi identity, the momen-
tum tensor Tμν is conserved in this geometry,

∇(ξ,μ)
σ T σ

ν = 0 , (29)

and as a consequence (28)

∇σ θσ
ν = g′

2
(ρ + pr ) δσ

ν . (30)

At this point, a couple of comments are in order. First, note
that the two sources Tμν and θμν can be successfully decou-
pled through the GD which is particularly remarkable since
it does not require any perturbative expansion in f or g
[31]. Second, Eq. (30) encodes the information of energy-
momentum exchange Δ E between the sources, namely

Δ E = g′

2
(ρ + pr ) , (31)

which we can write in terms of pure geometric functions as
[see Eqs. (20)–(22)]

Δ E = g′

2 κ

e−μ

r

(
ξ ′ + μ′) . (32)

From the expression (31) we can see that g′ > 0 yields Δ E >

0. This indicates ∇σ θσ
ν > 0, according to the conservation

equation (30), which means that the source θμν is giving
energy to the environment. The opposite occurs when g′ < 0.

2.1 Matching conditions at the surface

The interior of the self-gravitating system of radius R is
described by the metric (5), which we can be written as

ds2 = eν−(r) dt2 −
[

1 − 2 m̃(r)

r

]−1

dr2 − r2 dΩ2 , (33)

where

m̃(r) = m(r) − r

2
f (r) . (34)

In this work, we shall describe the exterior space-time by the
Schwarzschild metric

ds2 =
(

1 − 2M
r

)
dt2 − dr2(

1 − 2M
r

) − r2 dΩ2 . (35)

Now, to ensure the smooth continuity of the manifolds,
the metrics (33) and (35) must satisfy the Israel-Darmois
matching conditions at the star surface Σ defined by r = R.
On the one hand, the continuity of the metric across r = R
implies

eν−(R) = 1 − 2M
R

, (36)

and

e−λ−(R) = 1 − 2M
R

. (37)

On the other hand, the second fundamental form leads to[
T̃μν r

ν
]
Σ

= 0 , (38)

where rμ is the unit radial vector normal to a surface of con-
stant r , from where

pR + PR = 0 , (39)
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with pR ≡ p(R) and PR ≡ P(R) . Finally, the condi-
tion (39) can be written as

p̃R ≡ pR + fR
κ

(
1

R2 + ν′
R

R

)
+ g′

R

κ R
e−μ = 0 , (40)

where ν′
R ≡ ∂rν

−|r=R . Eqs. (36), (37) and (40) are the nec-
essary and sufficient conditions for matching the interior GD
metric (33) with the outer Schwarzschild metric (35).

3 Polytropic equation of state

To explore the effects of θμν on another generic source Tμν

described by Einstein’s equations (20)–(22) we need to pro-
vide some extra information to close the system. In this work,
a first requirement is that the radial pressure satisfies the poly-
tropic equation of state,

Pr = K (E)Γ �= Pt , (41)

with Γ = 1 + 1/n, where n is the polytropic index.
The parameter K > 0 has dimensions of a length to the
power of 2/n and contains the temperature implicitly and
is governed by the thermal characteristics of a given poly-
trope. (For all details regarding basic concepts of poly-
tropes, see for instance Ref. [93], also see references Refs.
[12,14,22,24,25,94]).

Let us start by using Eqs. (23) and (24) in the expres-
sion (41), which yields a first order non-linear differential
equation for the deformation f ,

f ′

r
+ f

r2 = −
(

κΓ −1

K

)1/Γ [
e−μ g′

r
+ f

(
1

r2 + ν′

r

)]1/Γ

(42)

Therefore, given a seed solution {ξ, μ} to Einstein equa-
tions (20)–(22), we end with a non-linear differential expres-
sion in Eq. (42) to determinate the deformations {g, f }.

As a second requirement, we can impose the so-called
mimic constraint for the pressure, namely, Pr ∼ pr , which
can be formally written as

Pr (r) = α(K , Γ )pr (r) , (43)

where α(K , Γ ) is a characteristic dimensionless function
for each polytrope. The simplest form for α(K , Γ ) consis-
tent with the polytropic equation of state (41) and with the
condition

f (r)
∣∣
K=0 = 0 (44)

is given by

α(K , Γ ) = χKΓ , (45)

whereχ is a constant with dimensions of a length to the power
of −2Γ/n. Indeed, χ could be written in terms of constants

related to the seed sector. However, for future calculations,
we shall assume χ = 1 without loss of generality. Hence,
the expression (43) becomes

Pr (r) = KΓ pr (r) , (46)

from where (42) and (46) read

f ′

r
+ f

r2 = − (κ K )
Γ −1
Γ

[
e−μ

(
1

r2 + ξ ′

r

)
− 1

r2

]1/Γ

, (47)

g′ =
(

1

e−μ + f

) [(
KΓ e−μ − f

) (
ξ ′ + 1

r

)
− KΓ

r

]
.

(48)

In summary, note that for a given seed solution {ξ, μ} to Ein-
stein equations (20)–(22), we can determinate {g, f } for any
polytrope {K , Γ } by Eqs. (47) and (48) so that this approach
allows to determinate the effects of polytropes on any generic
fluid satisfying Einstein equations (20)–(22), independent of
its nature.

Another possibility is to consider the mimic-constrain for
the density. In this case, we impose

E(r) = α(K , Γ )ρ = χKΓ ρ(r) , (49)

which yields,

f ′

r
+ f

r2 = −α

[
1

r2 − e−μ

(
1

r2 − μ′

r

)]
, (50)

g′ =
(

r

e−μ + f

) [
κ K

(
α

κ

[
1

r2 − e−μ

(
1

r2 − μ′

r

)])Γ

− f

(
1

r2 + ξ ′

r

)]
, (51)

where we have assumed χ = 1 as in the previous case.
In what follows, we shall take the well-known Tolman

VII models as a seed solution of Eqs. (20)–(22). Then, we
shall consider a polytropic fluid, characterized by the con-
stant K and index n in the equation of state (41). Finally,
we shall consider the mimic constraint for both the pressure
and density given by (46) and (49), respectively, to ensure a
polytropic fluid with acceptable physical behavior.

4 Polytropes and a perfect fluid supporting the Tolman
VII geometry

In this section, we shall consider the Tolman VII solution as
a seed {ξ, μ, ρ, p} for perfect fluids [16], namely,

eξ = B2 sin2 log

⎛
⎜⎜⎝

√√√√exp
(
−μ(r)

2

)
+ 2r2

A2 − A2

4R2

C

⎞
⎟⎟⎠ (52)

e−μ = 1 − r2

R2 + 4r4

A4 (53)
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Fig. 1 Radial pressure
[6 p̃r (r) × 103] for K = 0.01
and three different values of n.
The pressure reach a maximum
at r = 0 (red color) and
decreases towards the surface
and vanish at r = R (violet
color)

Fig. 2 Radial pressure
[6 p̃r (r) × 103] for three
different values of K and n = 2.
Note that the pressure decreases
monotonically form the center
(red colored regions) towards
the surface (violet colored
region)

Fig. 3 Radial pressure [6 p̃r (r, K ) × 103] as a function of (r, K ) for n = 2 (left panel) and [6 p̃r (r, n) × 103] as function of (r, n) for K = 0.01
(right panel). The radial pressure decreases from the center (red color) towards the surface (violet color)

Fig. 4 Exchange of energy
[2ΔE × 104] for n = 2 and
three different values of K . The
red colored regions indicate the
location where the exchange
reach its maximum value. The
region of maximum exchange
grows as K increases
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Fig. 5 Exchange of energy
[2ΔE × 104] for K = 0.01 and
three different values of n. In
this case the region of maximum
exchange diminishes as n
increases

Fig. 6 [g′ × 102] as a function of r for different values of K (left panel, n = 2) and for different values of n (right panel, K = 0.01)

ρ0 = 1

8π

(
3

R2 − 20r2

A4

)
, (54)

p0 = 4A2R2Ξ(r) cot Ψ (r) − A4 + 4r2R2

8π A4R2 (55)

Ξ =
√

4r4

A4 − r2

R2 + 1 (56)

Ψ = 1

2
log

⎛
⎝Ξ(r) + 2r2

A2 − A2

4R2

C

⎞
⎠ (57)

where R is the radius of the stellar configuration and the con-
stants A, B andC are determined by the matching conditions
in Eqs. (36), (37) and (40) with fR = gR = 0, which leads
to

A =
(

4R5

R − 2M

)1/4

(58)

B =
√

5M2 − 4MR + R2

R(R − 2M)
(59)

C = (3R − 8M)e
−2 cot−1

(
M

R−2M

)

2
√
R(R − 2M)

, (60)

with the compactness M/R < 4/9, and M = m(R) the
total mass in Eq. (17). The expressions in Eq. (58) ensure
the geometric continuity at r = R. It is worth mentioning
that the lower value of the radius of the Tolman VII sphere

is given by [28]

RTmin = 2.589M, (61)

which is also the lowest radius of the extremely compact,
trapping Tolman VII solution. Indeed, the upper value cor-
responds to Rt = 3.202M , so that, the trapping Tolman VII
space-times exist for RTmin/M ≤ R/M ≤ Rt/M . Besides,
the spacetimes can be separated into two classes depending
on the location of unstable null geodesics. In the first class,
RTmin/M ≤ R/M ≤ 3 and null geodesics are located on
the exterior of the sphere. In contrast, for the second class,
we have 3 ≤ R/M ≤ Rt/M , and both stable and unstable
null geodesics occur in the interior of the stellar configuration
[28].

In what follows, we shall use Eqs. (52) and (53) we the
aim to obtain the geometric deformation functions, namely
{ f, g}, from either Eqs. (47) and (48) (mimic constraint for
the pressure) or Eqs. (50) and (51) (mimic constraint for the
density).

4.1 Mimic constraint for the pressure.

Replacing the metric functions in Eqs. (52) and (53) in the
differential expression (47), we obtain the geometric defor-
mation in terms of the polytropic index n, which reads

f (r) = − (8πk)
1

n+1

r
I(r, n), (62)
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where

I =
r∫

0

u2
(

4u2

A4 − 4

A2 cot Ψ (u)Ξ(u) − 1

R2

) n
n+1

du. (63)

which must be numerically solved after providing the con-
stants {A,C} through the matching conditions and an appro-
priate set of the polytropic parameters {K , n}.

From the continuity of the first fundamental form, we
obtain

eξ(R)egR = 1 − 2M
R

(64)

e−μ(R) + fR = 1 − 2M
R

, (65)

where fR = f (R) and gR = g(R) are the deformations
evaluated at the surface of the star. Now, from the continuity
of the second fundamental form in Eq. (40), we have

C =
(
A4 − 16R4

)
4A2R2 e

2 cot−1
(

A4

8R4 − 1
2

)
. (66)

It is worth emphasizing that Eqs. (64), (65) and (66) are
the necessary and sufficient conditions for the matching of
the interior metric (5) to a spherically symmetric outer “vac-
uum” described by the Schwarzschild metric in Eq. (35).
Indeed, from Eqs. (47) and (48), the deformation functions
f and g can be formally expressed in terms of the constants
{A(K , n), B(K , n),C(K , n)}, so that, after using (66), the
problem reduces to (64) and (65) for A and B. However,
as (48) and (63) must be solved numerically, the bound-
ary values fR and gR remain unknown until we specify
{A, B,C, K , n} so that the matching conditions cannot be
straightforwardly implemented. To be more precise, the prob-
lem reduces to solve two equations with three unknowns,
namely {A, B̃, fR} where we have defined B̃ = BegR . To
solve this problem, in this work we proceed as follows. First,
note that since we want to keep the Tolman VII solution when
f = g = 0, we introduce

A(K , n) = A0 + ζ(K , n) , (67)

where A0 is the perfect fluid value in Eq. (58), and ζ(K , n) a
function with dimensions of a length encoding the polytropic
effects, which satisfies

ζ(K , n)
∣∣
K=0 = 0 . (68)

Hence, given an expression for ζ(K , n), the problem at the
stellar surface is closed. Now, as A should have dimensions
of a length, we propose

ζ(K , Γ ) = Kn/2 , (69)

where ζ > 0 is in agreement with (58), which indicates that A
increases as M increases [see Eq. (34) ]. Hence, for a given
polytrope {K , n}, we can find the effective source and the
energy exchange ΔE.

Figures 1 and 2 correspond to the effective radial pressure
showing the effects of polytropes on stellar spheres explicitly.
Here and in the rest of the work, we shall take M/R =
0.2. Note that the radial pressure decreases monotonously as
expected.

In Fig. 3 (left panel) it is shown the pressure p̃r (r, K ).
Note that the maximum decreases as K grows for a fixed
value of n. Similarly, in Fig. 3 (right panel) we show p̃r (r, n)

but this time, the maximum increases with n for some K .
Finally, the interaction between the polytrope and the per-

fect fluid which produces anisotropic consequences is shown
in Figs. 4 and 5. We see that, in contrast to what occurs in
the Tolman IV case, the exchange of energy is minimal near
both the center and the surface of the stellar configuration,
and reaches a maximum at some inner core 0 < r < R.
Besides, it should be noticed that ΔE increases a K grows
for a fixed n in contrast with what occurs in the opposite
case. In both cases, as g′ > 0 (see Fig. 6) the polytrope gives
energy to the perfect fluid.

4.2 Mimic constraint for the density

In this case, the solution is analytic for f and is given by

f = KΓ

(
4r4

A4 − r2

R2

)
(70)

Now, the matching conditions lead to

B2eg(R) = 1 − 2M
R

sin2
(

log

(√
16R4−A4

4A2CR2

)) (71)

A =
(

4R5
(
KΓ + 1

)
R(KΓ + 1) − 2M

)1/4

(72)

C = 16R4 − A4

4A2R2 exp
(
−2 cot−1 Φ(r)

)
(73)

with

Φ =
(
A4 − 4R4 − 8πR2A4h(R, K , Γ )

8R4

)
(74)

h(r, K , Γ ) =
(
KΓ + 1

Γ

κ2

(
3

R2 − 20r2

A4

))Γ

. (75)

The matter sector reads

ρ̃ =
(
K

1
n +1 + 1

)
ρ0 (76)

p̃r = h(r, K , Γ ) + p0 (77)

Clearly, there is also an analytical expression for the tangen-
tial pressure but, as it is too long, it will not be shown here.
In Figs. 7 and 8 we show the radial pressure.

In Fig. 9 (left panel) it is shown the pressure p̃r (r, K ).
Note that the maximum decreases as K grows for a fixed
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Fig. 7 Radial pressure
[6 p̃r (r) × 103] for K = 0.01
and three different values of n.
The pressure decreases
monotonously from the center
(red colored region) towards the
surface (violet colored region)

Fig. 8 Radial pressure
[6 p̃r (r) × 103] for n = 0.2 and
three different values of K

Fig. 9 Radial pressure [6 p̃r (r, K ) × 103] as a function of (r, K ) for n = 0.05 (left panel) and [6 p̃r (r, n) × 103] as a function of (r, n) for
K = 0.01(right panel)

Fig. 10 Exchange of energy
[2ΔE × 104] for n = 0.5 and
three different values of K . The
exchange grows as K increases
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Fig. 11 Exchange of energy
[2ΔE × 107] for K = 0.09 and
three different values of n. Note
that, he exchange of energy
grows as n increases

Fig. 12 [g′ × 104] as a function of r for different values of K (left panel, n = 0.5) and for different values of n (right pane, K = 0.09)

value of n. Similarly, in Fig. 9 (right panel) we show p̃r (r, n)

but this time, the maximum increases with n for some K .
Finally, the interaction between the polytrope and the

perfect fluid, which produces anisotropic consequences, is
shown in Figs. 10 and 11. We see that the exchange of energy
is minimal near both the center and the surface of the stel-
lar configuration, and reach a maximum at some inner core
0 < r < R as occurs in the previous case. Besides, it is
noticeable that ΔE increases as both K and n grow in con-
trast to the previous case. In both cases, as g′ > 0 (see Fig.
12) the polytrope gives energy to the perfect fluid.

5 Conclusions

In this work, we implemented the Gravitational Decou-
pling through the extended minimal geometric deformation
approach to elucidate the exchange of energy between a per-
fect fluid and a polytrope. In particular, we use the well-
known Tolman VII perfect fluid solution as a seed and use
both the mimic constraint for the pressure and the density
as complementary conditions to close the system of differ-
ential equations. In the first case, the geometric deformation
functions, namely { f, g}, were obtained numerically. As a
consequence, the matching conditions were implemented in
an alternative manner to ensure the physical acceptability of
the solution. In contrast, the mimic constraint for the density
leads to analytical results so that the application of Darmois’

condition was straightforward. In both cases, we explored the
radial pressure and the exchange of energy between the flu-
ids in terms of the polytropic parameters, (K , Γ ). The main
result of our work is that the exchange of energy is minimum
at the center, reaches a maximum at some inner core located
around, and then decreases again towards the surface in con-
trast to what occurs when the seed is Tolman IV (as reported
in [29]). Furthermore, we observed that, as occurred in [29]
the flux of energy is from the polytrope to the perfect fluid.
More precisely, the gradients of energy are positive (nega-
tive) for the polytrope (perfect fluid) which indicates that the
polytrope needs to give up energy to achieve coexistence with
the perfect fluid compatible with the exterior Schwarzschild
solution.

Before concluding this work, we would like to emphasize
that the study of polytropes in the framework of general rel-
ativity is not a trivial task. In particular, it is well-known that
the Lane–Emden equation does not have analytic solutions.
In this regard, the gravitational decoupling not only avoids
the solving of the Lane–Emden equation but it allows us to
explore how is the exchange of energy between the poly-
trope and a perfect fluid which is difficult to achieve with
other approaches.

It should be interesting to explore how the exchange of
energy between the polytrope and the perfect fluid affects
the limits for the existence of trapping Tolman VII space-
times. However, an extensive study on this and other related
topics is left for future development.
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