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Abstract We study cosmic evolution based on the fixed
points in the dynamical analysis of the degenerate higher-
order scalar-tensor (DHOST) theories. We consider the
DHOST theory in which the propagation speed of gravita-
tional waves is equal to the speed of light, the tensor per-
turbations do not decay to dark energy perturbations, and
the scaling solutions exist. The scaling fixed point associ-
ated with late-time acceleration of the universe can be either
stable or saddle depending on the parameters of the theory.
For some ranges of the parameters, this scaling fixed point
and field-dominated fixed point can be simultaneously sta-
ble. Cosmic evolution will reach either the scaling attractor
or the field-dominated attractor depending on the sign of the
time derivative of the scalar field in the theory during the mat-
ter domination. The density parameter of dark matter can be
larger than unity before reaching the scaling attractor if the
deviation from Einstein’s theory of gravity is too large. For
this DHOST theory, stabilities of φ-matter-dominated epoch
(φMDE) and field-dominated solutions are similar to the cou-
pled dark energy models in Einstein gravity even though
gravity is described by different theories. In our consider-
ation, the universe can only evolve from the φMDE regime
to the field-dominated regime. The ghost and gradient insta-
bilities up to linear order in cosmological perturbations have
been investigated. There is no gradient instability, while the
ghost instability can be avoided for some range of the model
parameters.

1 Introduction

Observed cosmic acceleration [1,2] is an important puzzle
in modern cosmology which can possibly be explained by
supposing that the physics of gravity deviates from the Ein-
stein theory on cosmic scales [3]. Deviation from the Ein-
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stein theory can be achieved if there are extra degrees of
freedom for gravity in addition to two tensor degrees of free-
dom. For the simplest case, these extra degrees of freedom
can be scalar degrees of freedom, which can be explained by
a class of theories called the scalar-tensor theories of grav-
ity [4–11]. Degenerate higher-order scalar-tensor (DHOST)
theories, which are the most general scalar-tensor theories
of gravity, are constructed by demanding that the theories
are degenerate to eliminate Ostrogradsky instability [12–16].
This class of theories consists of a single scalar and two ten-
sor degrees of freedom for gravity, similar to the usual Brans-
Dicke theory.

The important constraint on the DHOST theories comes
from the propagation speed of gravitational waves (GW),
which coincides with the speed of light to an accuracy of
10−15 [17]. The propagation speed of GW was measured
from the detection of GW and gamma-ray bursts from the
merging of a binary system of neutron stars [18–21]. If the
propagation speed of GW is required to be always equal to the
speed of light, the action for scalar-tensor theories of gravity
is tightly constrained [22–29]. For the Horndeski action, the
non-minimal coupling term that satisfies this constraint is in
the form of the generalized Brans-Dicke theory. The action
beyond Horndeski theories [11] that satisfies the GW con-
straint was discussed and cosmology in this constrained the-
ory was analyzed in [30]. The cosmic evolution and density
perturbation in the DHOST theories which satisfy the con-
straint on the propagation speed of GW have been studied in
various aspects, e.g., [31–34]. In addition to the constraint
on propagation speed, we demand that GW do not decay to
dark energy perturbations [35]. This requirement, together
with the constraint on propagation speed of GW, tightly con-
strains the form of the Lagrangian for the DHOST theories.
The Vainshtein mechanism for a class of DHOST theories
that satisfies these two constraints was studied in [36].

Scaling and tracking behaviors for the cosmic evolution
are interesting features that arise in some models of dark
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energy and modified theories of gravity, because they could
lead to attractors in the phase space of the cosmic evolution
which could satisfy the observational constraints [37–44]. A
model having scaling behavior can be obtained by assuming
interaction between dark energy and dark matter. Because of
this interaction, a ratio of the energy density of dark energy
to that of dark matter is constant with time during the scaling
regime. The scaling behavior in the interacting dark energy
models has been widely investigated in the literature [45–
48], and scaling and tracking solutions in the DHOST theory
which satisfy the above two constraints on GW have been
discussed. Demanding that the scaling and tracking solutions
exist, a suitable form of the Lagrangians has been derived
[49].

In this work, we analyze the stabilities of the fixed points
found in [49] and discuss cosmic evolution based on these
fixed points. We also explore the conditions for avoiding
ghost and gradient instabilities in the class of DHOST theo-
ries.

In Sect. 2, we review the DHOST theory that has scaling
solutions. The fixed points of the cosmic evolution and their
stabilities are analyzed in Sect. 3, and the possible cosmic
evolution associated with these fixed points is discussed. In
Sect. 4, we study the stability of linear cosmological pertur-
bations around the cosmological background. We conclude
in Sect. 5.

2 DHOST theories with scaling solutions

2.1 Review of DHOST theories

The DHOST theories are constructed by imposing the degen-
eracy conditions to the most general form of the Lagrangian
containing second-order derivatives of the scalar field in the
form

L = G2(φ, X) + G3(φ, X)�φ + G4(φ, X)R

+Cαβμν

(2) φαβφμν + Cαβμνρσ

(3) φαβφμνφρσ , (1)

where R is the Ricci scalar, X ≡ −φμφμ, φμ ≡ ∇μφ,
φμν ≡ ∇ν∇μφ, and ∇ν denotes a covariant derivative com-
patible with the metric gμν . In the following consideration,

we concentrate on the terms up to the quadratic in the second-
order derivatives of the scalar field. The possible form of the
quadratic terms can be written as [12]

Cαβμν

(2) φαβφμν = A1(φ, X)φμνφ
μν

+A2(φ, X)(�φ)2 + A3(φ, X)�φ φμφμνφ
ν

+A4(φ, X)φμφμρφρνφν

+A5(φ, X)(φμφμνφ
ν)2. (2)

Based on the degeneracy conditions, the DHOST theories
can be classified into three classes. However, the theories in
class I can be free from the gradient instability, while those in
class II cannot, because the square of the sound speed of the
tensor and scalar perturbations have opposite signs [50,51]
For class III, the tensor degrees of freedom do not propagate.
Hence, we concentrate on class I. The degeneracy conditions
for class I are

A2 = −A1, (3)

A4 = −A3 + (−4G4X − 2A1 − X A3)
(−12G4G4X − 6A1G4 − 8A2

1X + A3G4X − 16A1G4X X
)

8(G4 + X A1)2 , (4)

A5 = (−4G4X − 2A1 − X A3)
(−2A2

1 + 3X A1A3 − 4G4X A1 + 4G4A3
)

8(G4 + X A1)2 , (5)

where subscript X denotes the derivative with respect to
X . For the DHOST theories which depend quadratically on
second-order derivatives of the scalar field, the propagation
speed of the tensor perturbations is given by [52]

c2
T = G4

G4 + X A1
, (6)

where the speed of light is equal to unity in this expression.
From the Laser Interferometer Gravitational-Wave Observa-
tory (LIGO)/Virgo results [17,49,53], cT is equal to the speed
of light, so that Eq. (6) yields

A1 = 0. (7)

It has been shown that the GW in DHOST theories can decay
to scalar perturbations. To avoid this decay, we demand [35]

A3 = 0. (8)

Inserting the conditions from Eqs. (7) and (8) into Eqs. (4)
and (5), we get

A5 = 0 , and A4 = 6G2
4X

G4
. (9)

Hence, the action for quadratic DHOST theories in which
the propagation speed of GW is equal to the speed of light
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and the GW do not decay to dark energy perturbations can
be written in the form

SG =
∫

d4x
√−g

{

G2 + G3�φ + G4R + 6G2
4X

G4
φμφμρφρνφν

}

,

(10)

where we have set the reduced Planck mass Mp ≡
1/

√
8πG = 1. The G3 term will be dropped in the follow-

ing consideration for simplicity. The above action can also be
obtained by applying a conformal transformation in which
the transformation coefficient depends on both a scalar field
and its kinetic term to the Einstein–Hilbert action [54]. We
write the total action as

S = SG + SM . (11)

Here, SM is the action for the matter in the universe includ-
ing ordinary matter and dark matter. The ordinary matter is
minimally coupled to gravity, while the dark matter is cou-
pled non-gravitationally to scalar field φ and coupled non-
minimally to gravity. The action for dark matter is denoted
by Sm in the following sections.

2.2 Evolution equations for the background universe

To study the evolution of the background universe in the
DHOST theories described by the action (11), we use
the Friedmann–Lemaître–Robertson–Walker (FLRW) met-
ric for the spatially flat universe in the form

ds2 = −n2(t)dt2 + a2(t)δi jdx
idx j , (12)

where δi j is the Kronecker delta, a(t) is the cosmic scale
factor, and n(t) is an auxiliary function which will be set to
unity after the evolution equations are obtained. Using the
above line element and homogeneity of the scalar field in the
background universe, the action (11) becomes

S =
∫

dta3n

×
{

G2−6G4φH
φ̇

n2 − 6G4

[
H

n
+ G4X

G4

φ̇

n2

d

dt

(
φ̇

n

)]2
}

+SM ,

(13)

where a dot denotes derivative with respect to time t , H ≡
ȧ/a is the Hubble parameter, and subscript φ denotes the
derivative with respect to φ.

Variations in the action (13) with respect to n and a yield

ρM = E00 ≡ 1

G2
4

[
−G4X

(
−6φ̇

(
−2G2

4X

...
φ − 6HG2

4X φ̈
)

+G4

(
12

(
2H2 + Ḣ

)
G4X + 2G2X

)
+ 6G2

4X φ̈2
)

+G2
4

(
6G4H

2 + 6H φ̇
(
2G4X φ̈ + G4φ

) + G2

)

+12X2G4X φ̈
((

G2
4X − 2G4G4XX

)
φ̈

−2G4G4φX + G4XG4φ

)]
, (14)

and

− pM = Eii ≡ 1

G4

[
G4

(
4φ̇

(
G4X

...
φ + 2HG4X φ̈ + HG4φ

)

+6G4H
2 + 4G4 Ḣ + 4G4X φ̈2 + 2G4φφ̈ + G2

)

+X
((

8G4G4XX − 6G2
4X

)
φ̈2

+8G4φ̈G4φX + 2G4G4φφ

)]
, (15)

where ρM and pM are the energy density and pressure of
the total matter, in which each of the matter components is
perfect fluid. These quantities can be obtained by varying the
action SM with respect to the metric. Equations (14) and (15)
together with Eq. (20) agree with Eqs. (2.13) and (2.14) in
[49]. These two equations can be combined to eliminate Ḣ
as

0 = 1

G2
4

[
G4X

(−6G4H
2G4X + 6H φ̇

(
2G4XG4φ − 2G2

4X φ̈
)

+6G2
4X φ̈2 + 6G4XG4φφ̈ − 2G4G2X + 3G2G4X

)

+G2
4

(
6G4H

2 + 6H φ̇
(
2G4X φ̈ + G4φ

) + G2
)

−G4ρM (G4 − 3XG4XwM )

+3X2G4X
(−2G2

4X φ̈2 + 4G4XG4φφ̈ + 2G4G4φφ

)]
. (16)

In the above equation, wM ≡ pM/ρM is the equation-of-
state parameter of the total matter, which is not necessarily
zero. Varying the action (13) with respect to the scalar field
φ, we obtain the evolution equation for the scalar field, which
can be written in the form

F(
....
φ ,

...
φ, φ̈, φ̇, φ, Ḧ , Ḣ , H) = Q, (17)

where Q is the interaction term arising from the variation in
the action Sm for dark matter with respect to the scalar field
φ. We will see in the following sections that the coupling
between the scalar field and matter is needed for shifting the
effective equation-of-state parameter weff ≡ wφ
φ during
the scaling regime at late time to a negative value as required
by observations. Here, wφ and 
φ are the effective equation-
of-state parameter and effective density parameter of scalar
degrees of freedom associated with the scalar field φ defined
below. In the following consideration, we suppose that the
interaction term Q is a consequence of an energy transfer
between the scalar field and dark matter. In principle, the
form of the interaction term Q depends on the form of Sm .
However, for simplicity, we start with the phenomenologi-
cal form of the interaction term studied in the literature. We
write the function F in the above equation in the form of the
conservation equation for the effective energy density of the
scalar field as F → ρ̇φ +3H(ρφ + pφ) = 0. Then we add the
phenomenological interaction term on the right-hand side of
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the conservation equation as

ρ̇φ + 3H(ρφ + pφ) = −Qρm φ̇, (18)

where Q is constant, and ρφ and pφ are the effective energy
density and effective pressure of the scalar field φ. Supposing
that the total energy density of the scalar field and dark matter
is conserved, we have

ρ̇m + 3Hρm = Qρm φ̇, (19)

where a subscript m denotes the quantities for dark matter.
The effective energy density and pressure of the scalar field
are defined such that Eqs. (14) and (15) take the forms of
the usual Friedmann and acceleration equations as 3H2 =
ρM + ρφ and 2Ḣ + 3H2 = −pM − pφ . The expressions for
ρφ and pφ can be read from Eqs. (14) and (15) as

ρφ ≡ 3H2 − E00, pφ ≡ Eii − 2Ḣ − 3H2. (20)

From the above expressions, the effective equation-of-state
parameter of the scalar field can be defined as wφ ≡ pφ/ρφ .
According to the definitions of pφ and ρφ , we can write

Ḣ

H2 = −3

2

(
1 + 
MwM + 
φwφ

)

= −3

2

(
1 + 1

3

γ + weff

)
. (21)

Here, 
γ is the density parameter of radiation, where 
M =

m + 
γ , and 
m is the density parameter of dark mat-
ter. The evolution of the background universe can be studied
using dynamical analysis. To compute the autonomous equa-
tions describing the evolution of the background universe,
we have to know the expression for the ratio Ḣ/H2. To com-
pute this ratio, we firstly differentiate Eq. (15) with respect
to time. Then we eliminate

....
φ from the resulting equation

using Eq. (17). The remaining
...
φ terms can be eliminated

using Eq. (15). Finally, we obtain

0 = Ẽi (φ̈, φ̇, φ, H, ρm). (22)

Differentiating the above equation with respect to time and
eliminating

...
φ terms using Eq. (15), we obtain

Ḣ

H2 = −h(φ̈, φ̇, φ, H, ρm). (23)

2.3 Scaling solutions

The gravity theories described by the action (13) can have
scaling behavior if the effective energy density and effective
pressure of the scalar field together with the energy density of
the matter obey the scaling relations ρφ ∝ pφ ∝ ρm ∝ H2.
During the scaling regime, we have

φ̇

H
= 2h

λ
= constant. (24)

Based on the analysis in [49], for constant coupling Q, the
DHOST theory in action (13) has scaling solutions if

G2 = Xg2 (Y ) G4 = 1

2
+ g4 (Y ) , (25)

where G2 and G4 are arbitrary functions of

Y = Xe
λφ
Mp

M4
p

. (26)

Here, λ is constant and Mp is restored in the above expres-
sion and some subsequent relations to avoid confusion. To
study scaling solutions in DHOST theories, we set G2 and
G4 according to Eq. (25). Since Y is a linear function of the
kinetic term X , we choose G2 and G4 as polynomial func-
tions of Y [49]:

G2 = X
(
c̃2Y

n2 − c̃6Y
n6

)
, (27)

G4 = 1

2
+ c̃4Y

n4 , (28)

where c̃2, c̃4 and c̃6 are constant, and n2, n4 and n6 are
constant integers. The above expressions for G2 and G4

are mainly motivated by demanding scaling solutions in the
model. Additional motivation for these choices of G2 and G4

are based on the requirement that G2 can reduce to a form of
the Lagrangian for the canonical scalar field if n2 = 0 and
n6 = −1, while G4 can reduce to the case of the Einstein
theory when c̃4 = 0. Since the existence of the scaling solu-
tions requires that G2 and G4 depend on the scalar field φ

through Y , shift symmetry is broken in this scaling model,
and consequently a self-accelerating solution is absent. This
implies that the field φ is required to be slowly varying with
time to drive the cosmic acceleration at late time. When the
coupling between the scalar field and dark matter is constant,
the scaling solutions can give

λ = − 2hQ

3
φwφ

. (29)

3 Stabilities of the fixed points and the corresponding
cosmic evolution

3.1 Autonomous equations

To compute the autonomous equations from the evolution
equations in the previous section, we define the dimension-
less variables as

x ≡ φ̇

MpH
, y ≡ M2

pe
−λφ
Mp

H2 , z ≡ φ̈

φ̇H
. (30)

123



Eur. Phys. J. C (2022) 82 :405 Page 5 of 14 405

For convenience, we normalize the variables x , y and z by
their values at scaling fixed point, such that

xr ≡ x

xs
, yr ≡ y

ys
, and zr ≡ z

zs
, (31)

where subscript s denotes the quantities at the scaling fixed
point. The scaling fixed point in this case is the fixed point that
x satisfies the condition in Eq. (24) and Q satisfies Eq. (29).
To compute xs and zs , we compute the derivative of x with
respect to N ≡ ln a as

x ′ = zx − x
Ḣ

H2 , (32)

which is a possible form of the autonomous equation. Here,
a prime denotes a derivative with respect to N . From the
condition in Eq. (24), we have

hs = φ̇λ

2H

∣∣∣∣
s

≡ xλ

2
, (33)

where xλ ≡ xsλ. Inserting this solution into Eq. (32), we get
zs = −hs = −xλ/2. In terms of dimensionless variables, the
constraint equations (16) and (22) are given by Eqs. (A2) and
(A3) in the appendix. We see that these constraint equations
can be solved for z and 
m in terms of x and y. Here we are
interested in the evolution of the late-time universe so that we
set 
γ = 0. Hence, the late-time dynamics of the background
universe can be described by two dynamical variables xand
y.

Using definitions of xr and yr , we can write the autonomous
equations as

x ′
r = − xλzr xr

2
− xr

Ḣ

H2 , (34)

y′
r = −xλxr yr − 2yr

Ḣ

H2 , (35)

where zr is computed from the constraint equations whose
solutions are shown in Eqs. (A5)–(A7). When the autonomous
equations are written in these forms, the coupling constant Q
in the autonomous equations is always divided by λ, so that
the dynamics of the background universe depend on Q/λ

rather than Q. In the numerical integration for the evolution
of the universe discussed below, we concentrate on the case
where zr is the first solution given in Eq. (A5) to avoid contri-
butions from the imaginary part of the solution. We note that
the solutions which give zr = xr = yr = 1 are not necessar-
ily the solution in Eq. (A5), unless n4 = ±1. Hence, in our
numerical integration for the cosmic evolution, we set n4 to
be either −1 or 1. According to Eq. (23), Ḣ/H2 also depends
on 
m . However, 
m in this expression can be eliminated
using the constraint equations Eq. (A2).

To compute the fixed points of this system, we set xr , yr
and zr in the constraint equations Eqs. (A1) and (A2) to be
unity, and then we solve for the parameters as

c2 = − 1

2 (2c4 + 1)2 (n2 − n6)
[−6c2

4

(−2 (
m s + 2n6 (xλ − 3) + xλ − 6) + 2n3
4x

2
λ

−n2
4xλ (n6xλ + xλ − 6) + 4n4 (xλ − 4)

)

+6c4 (2
m s − n4 (xλ − 4) + 2n6 (xλ − 3) + xλ − 6)

−4c3
4

(
3n3

4x
2
λ − 3n2

4xλ

(n6xλ + xλ − 6) + 6n4 (xλ − 4) − 2 (2n6 (xλ − 3)

+xλ − 6)) + 3
m s

+2n6 (xλ − 3) + xλ − 6] , (36)

c6 = − 1

2 (2c4 + 1)2 (n2 − n6)
[
6c2

4 (2 (
m s + xλ − 6)

−2n3
4x

2
λ + n2

4 (xλ − 6) xλ − 4n4 (xλ − 4)

+n2
(
n2

4x
2
λ + 4xλ − 12

))

+6c4 (2
m s − n4 (xλ − 4) + 2n2 (xλ − 3) + xλ − 6)

−4c3
4

(
3n3

4x
2
λ − 3n2

4 (xλ − 6) xλ

+6n4 (xλ − 4) + n2
(−3n2

4x
2
λ − 4xλ + 12

) − 2 (xλ − 6)
)

+3
m s + 2n2 (xλ − 3) + xλ − 6] , (37)

where 
m s is 
m at the scaling fixed point, and we redefine
the coefficients as

c2 ≡ c̃2x
2
s Y

n2
s , c4 ≡ c̃4Y

n4
s , and c6 ≡ c̃6x

2
s Y

n6
s . (38)

We set hs = xλ/2 and xr = yr = 1, and substitute c2 and c6

from Eqs. (36) and (37) into Eq. (23) as

xλ

2
= h(φ̈, φ̇, φ, H, ρm)|s = h(xr , yr , zr ,
m)|s
= h(1, 1, 1,
m s). (39)

This relation yields

0= 18c4 (2c4 + 1) 4n4
m s(Qλ − 2)x13
λ (Qλxλ + xλ − 3)

λ12 ,

(40)

where Qλ = Q/λ. The interesting conditions required by
the above equation are


m s = 0, Qλxλ + xλ − 3 = 0, or c4 = 0 . (41)

We can see that Qλ−2 = 0 is the special case of the condition
Qλxλ + xλ −3 = 0. These conditions lead to three classes of
fixed point as follows: (1) Qλxλ + xλ −3 = 0 corresponding
to a scaling fixed point where Q satisfies Eq. (29), (2) 
m s =
0 corresponding to the field-dominated point where Q does
not necessarily satisfy Eq. (29), and (3) c4 = 0 yielding
yr = 0 for negative n4. These fixed points have been found
in [49]. The stabilities of these fixed points will be discussed
in the next section.
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3.2 Fixed points and stabilities

To investigate the stabilities of the fixed points, we linearize
the autonomous equations around the fixed point and check
the signs of the eigenvalues of the Jacobian matrix defined
by

Ji j = ∂x ′
i

∂x j

∣∣∣∣
fixed point

, (42)

where xi = (xr , yr ).

3.2.1 Scaling fixed point

The scaling fixed point corresponds to the condition

xλ = 3

Qλ + 1
. (43)

From hs = xλ/2, we have

weff = − Qλ

Qλ + 1
. (44)

We see that if the coupling term disappears, weff = 0,
because for the scaling solution, ρφ/ρm is constant. Using
the relation weff = 
φwφ and Eq. (44), we can compute 
φ

as well as 
m at the fixed point if wφ at the fixed point is
specified. Inserting the relations for the scaling fixed point
into the Jacobian matrix, we obtain the polynomial equation
for the eigenvalues of the fixed point. For sufficiently large
c4, the eigenvalues of the Jacobian matrix depend only on xλ

and are given by

Ea l =
{
xλ − 6

2
, 0

}
. (45)

Since one of the eigenvalues is zero, the stability of this fixed
point cannot be determined using linear stability analysis.
Nonlinear stability analysis can be performed using the center
manifold method, but we will not consider nonlinear analysis
in this work. If c4 is not too large, the eigenvalues of the
Jacobian matrix can be written as

Ea = {μ1, μ2} . (46)

To describe the accelerated expansion of the late-time uni-
verse required by observations, we demand that xλ < 1. The
eigenvalues μ1 and μ2 can be computed from the equation

a2μ
2 + a1μ + a0 = 0, (47)

where a2, a1 and a0 are complicated functions of xλ,


m s, c2, c4, c6, n2, n4 and n6. The solutions for the above
equation can be written as

μ1 = xλ − 6

4

(

1 −
√

1 + 8a0

a1(xλ − 6)

)

,

μ2 = xλ − 6

4

(

1 +
√

1 + 8a0

a1(xλ − 6)

)

. (48)

In the above expressions, the relation a1/(2a2) = (6− xλ)/4
is used. It follows from the relations for μ1 and μ2 that the
real part of μ2 is always negative for xλ < 6, while the
real part of μ1 can be either negative or positive. Hence, the
fixed point is stable when the real part of μ1 is negative and
becomes saddle when the real part of μ1 is positive. Because
of the lengthy expressions for a0, a1 and a2, we compute μ1

numerically and plot the results as a function of c4.
The real part of μ1 for some choices of the parameters is

plotted in Fig. 1. In all plots, xλ and 
m s are chosen such
that weff satisfies observational constraints. For 
m s = 0.3,
we set xλ = 0.92 and xλ = 0.69 which correspond to wφ =
−0.99 and wφ = −1.10, respectively.

From Fig. 1 and Eq. (48), we see that the stability of the
fixed point depends on xλ, which controls the value of weff

through the relation xλ = −3(1 + weff). In the plot, when
xλ decreases, the fixed point of some models, e.g., the model
with n6 = −1, can become a saddle point. According to
Fig. 1, the fixed point is stable for the wide range of c4 if n6

is positive. For n6 = −3, the fixed point can be either saddle
or stable depending on the value of c4. From the plot, we see
that the real part of μ1 reaches zero when c4 is sufficiently
large independently of n2, n4, n6 and xλ, which agrees with
Eq. (45).

3.2.2 Field-dominated point

Equation (40) indicates that 
m = 0 is a possible fixed point
of the system. To obtain Eq. (40), we set h = xλ/2 at the
fixed point according to Eq. (24). Nevertheless, the condition
h = xλ/2 can be relaxed if xr , yr and zr are not equal to
unity at a fixed point, where the condition xr = yr = zr = 1
defines the scaling fixed point. From Eqs. (34) and (35), we
see that the fixed points exist when

h = xλ

2
zr = xλ

2
xr , (49)

where the expressions for xr and zr at the fixed point can be
solved from Eqs. (A1), (A2) and (A3). For the fixed point

m = 0, the expressions for xr and zr are complicated and
strongly depend on n2, n4 and n6, because Eqs. (A1), (A2)
and (A3) contain xn2

r , xn4
r and xn6

r . However, we can substi-
tute Eq. (49) into Eq. (21) to obtain

wφ = weff = −1 + xλxr b
3

, (50)

where subscript b denotes evaluation at the field-dominated
point. We note that for this fixed point there is no requirement
for Qλ. It follows from Eqs. (18) and (19) that the effect
of the coupling Q disappears when 
m = 0. According to
this fixed point, the eigenvalues computed from the Jacobian
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Fig. 1 Plots of the real part of μ1 as a function of c4. The upper
left, upper right, lower left and lower right panels correspond to
(xλ, n4) = (0.92,−1), (0.92,−2), (0.69,−1) and (0.69,−2), respec-

tively. In the plots, lines 1, 2, 3, 4, 5, 6 and 7 represent the cases of
(n2, n6) = (0,−1), (0,−3), (0, 1), (0, 3), (1,−1), (1,−3) and (1,3)

matrix are given by

Eb = { xλxr b − 6

2
, xλxr b(Qλ + 1) − 3}. (51)

It follows from Eq. (50) that observational data require
xλxr b < 1 so that the first eigenvalue in Eq. (51) is always
negative. We see that if Qλ does not satisfy Eq. (43), the
second eigenvalue in Eq. (51) is negative when Qλ <

3/(xλxr b)− 1 for positive xλxr b and Qλ > −3/|xλxr b| − 1
for negative xλxr b. These results are the same as those in [47],
which implies that the modification of gravity theory has no
effect on the stability of the field dominated fixed point. In
the case where Qλ satisfies Eq. (43), one of the eigenvalues
vanishes. In this case, the eigenvalues for the field-dominated
point are similar to those for the scaling fixed point in which
c4 → ∞. Since one of the eigenvalues vanishes, we cannot

use linear dynamical analysis to estimate the stability of the
fixed point. However we will not go beyond the linear anal-
ysis in this work. For a given value of xλ which could make
the field-dominated point stable, we can choose n2, n4, n6

and c4 such that the scaling fixed point is also stable. The
question is when the cosmic evolution will reach the scaling
fixed point at late time in what situation. Since it is difficult to
perform analytical analysis to answer this question, we solve
the autonomous equations numerically and plot the evolution
of 
m in Fig. 2 for some values of the model parameters.

According to Fig. 2, the cosmic evolution will reach the
scaling fixed point at late time if xr > 0 during the mat-
ter domination. For xr < 0 during the matter domination,
the cosmic evolution will evolve toward the field-dominated
point. This result is a consequence of a positive xλ of the
scaling points given by Eq. (33), and the fact that the evolu-
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Fig. 2 Plots of 
m as a function of N . The upper two panels represent
the cases xr > 0 during the matter domination, while the lower two
panels represent the cases xr < 0 during the matter domination. The

two left panels and the two right panels correspond to the model of
(n2, n4, n6) = (0,−1,−1) and (0,−1, 1), respectively

tion of x cannot cross x = 0. This implies that although one
of the eigenvalues vanishes, the field-dominated point can be
stable. Since the scaling points we consider in the plots are
stable, these points should be reached for wide ranges of ini-
tial conditions. However, if c4 is large enough and the initial
condition for yr differs significantly from its value at the fixed
point, the value of 
m can be larger than unity before reach-
ing the fixed point. This implies that 
φ can be negative, so
that the definitions in Eq. (20) may not be interpreted as the
energy density and pressure of the dark component. These
cases are shown in Fig. 2. In the top left panel of Fig. 2,
the initial values for xr and yr during the matter domina-
tion for the solid, long-dashed, dashed and dash-long-dashed
lines are (xr , yr ) = (0.55, 10−5), (0.05, 0.24), (0.1, 10−8),

and (0.79, 0.7), respectively. In the top right panel of Fig. 2,
the initial values for xr and yr during the matter domina-

tion for the solid, long-dashed, dashed and dash-long-dashed
lines are (xr , yr ) = (0.4, 0.2), (0.74, 0.8), (0.18, 0.01), and
(0.85, 0.8), respectively. For the cases where yr differs sig-
nificantly from their values at a fixed point, the maximum
value of 
m during the cosmic evolution increases when c4

increases. Since c4 quantifies the deviation from the Einstein
gravity, this suggests that the deviation from the Einstein
gravity should not be large, to avoid an unphysical value of

m during the cosmic evolution. Moreover, even though the
initial values of xr and yr during the matter domination are
in the same order of magnitude of the value at the fixed point,
the slower cosmic evolution reaches the fixed point for pos-
itive initial xr compared with the negative initial value of
xr .
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3.2.3 yr = 0 : φMDE point

According to Eq. (40), the other fixed point corresponds to
yr = 0. It follows from Eq. (35) that y′

r = 0 when yr = 0.
If we also consider Eq. (34), we see that x ′

r = 0 when zr =
2h/xλ. Here, h for this fixed point is not necessarily equal to
xλ/2, because xλ is evaluated at the scaling fixed point (fixed
point a). From the definitions of G2 and G4 in Eqs. (27) and
(28), as well as the definition of y in Eq. (30), we see that the
existence of the fixed point yr = 0 requires n2 ≤ 0, n6 < 0
and n4 < 0. Here, we demand that n2 
= n6 and n4 
= 0.
Inserting zr = 2h/xλ and 
γ = 0 into Eqs. (A1), (A2)
and (A3), and then taking the limit yr → 0, we respectively
obtain

h|c = 3 + c2x2
r c

2
, 
m c = 1 − c2x2

r c

3
and

xr c = −Qλxλ

c2
, (52)

where the subscript c denotes evaluation at the φMDE point.
Substituting the above xr c into the expression for 
m c, we
obtain


m c = 1 − Q2
λx

2
λ

3c2
. (53)

This equation shows that c2 must be positive; otherwise 
m c

is larger than unity. The eigenvalues for this fixed point are

Ec =
{

−3

2
+ Q2

λx
2
λ

2c2
, 3 + Qλ(1 + Qλ)x2

λ

c2

}

. (54)

These eigenvalues coincide with those in [47]. The first eigen-
value can be written as −3
m c/2, so that it is always nega-
tive. The second eigenvalue becomes positive when Qλ > 0
or Qλ < −1 for positive c2. Since xλ is evaluated at the scal-
ing fixed point, it follows from Eq. (43) that Qλ < 1 yields
xλ < 0 corresponding to phantom expansion. We now check
how the evolution of the universe can move from this fixed
point during matter domination to the scaling fixed point at
late time. Let us first consider xr c in Eq. (52). We can use
Eq. (43) to write xr c = (xλ − 3)/c2. The scaling fixed point
can lead to the acceleration of the universe if xλ < 2. Hence,
xr c is negative. Since xr c is the value of xr during mat-
ter domination in our consideration, the universe will evolve
toward the field-dominated point rather than the scaling fixed
point as presented in the previous section. For illustration, we
plot the evolution of 
m in Fig. 3. For given values of xλ,
Qλ and 
m c, the value of c2 can be computed from Eq. (53).
From the values of xλ, Qλ and c2, we can compute xr c from
Eq. (52) and compute c4 from Eq. (36) by setting 
m s = 0.3.
Finally, c6 can be computed from Eq. (37). The models used
in the plots are shown in the Table 1.

From Fig. 3, we see that 
m evolves toward the field-
dominated point for various values of Qλ which correspond

Fig. 3 Plots of 
m as a function of N for models I–V given in the table

to various weff at late time. In the plots, we initially set
yr = 10−11 according to the φMDE point, so that the value
of 
m can be larger than unity before reaching the field-
dominated point. However, if c4 is sufficiently small, e.g.,
c4 = 5.6 × 10−3 for model IV, 
m can be less than unity
throughout the evolution of the universe. By definition, c4

quantifies the size of the deviation from the Einstein gravity.
The above results suggest that the deviation from the Einstein
gravity should not be large, to avoid the case 
m > 1 during
the cosmic evolution. From the analysis of the Vainshtein
mechanism, the bound on the difference between the gravi-
tational constant of the gravitational source and the gravita-
tional coupling for GW gives [36]

∣∣∣∣
XG4X

G4

∣∣∣∣ < O(10−3). (55)

In terms of c4, |XG4X | = |n4c4| at the scaling fixed point.
Hence, the small c4 seems to agree with the above bound.

4 Stability of the linear perturbations

In this section, we investigate the stability of the linear per-
turbations in the theory considered in the previous sections
around the FLRW background. To describe the perturbations
in the metric tensor, we use the metric tensor in the ADM
form,

ds2 = −n2dt2 + hi j (dx
i + nidt)(dx j + n jdt), (56)

and quantify the scalar perturbations in the unitary gauge by
field variables δn, ψ and ζ as

n = 1 + δn, ni = δi j∂ jψ , hi j = e2ζ δi j . (57)
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Table 1 The models used in the plots. We set 
m c = 0.95 for models I–IV and 
m c = 0.93 for model V. The column weff shows the value of
weff at the field-dominated point

Model (n2, n4, n6) Qλ xr c c4 weff

I (0,−1,−1) −10 −0.045 7.7 −0.88

II (0,−1,−1) 2 −0.075 1.7 −1.28

III (0,−1,−1) 2/3 −0.125 0.67 −1.44

IV (0,−1,−1) 1/6 −0.49 5.6 × 10−3 −1.47

V (0,−1,−2) 2 −0.075 4.0 −1.17

The perturbed action for the DHOST theories up to the second
order in perturbation is [50]

S(2) =
∫

d3x dt a3 M
2

2

[

Aζ̃
˙̃
ζ 2 − Bζ̃

(∂i ζ̃ )2

a2 + Cζ̃

(∂i
˙̃
ζ )2

a2

]

,

(58)

where the propagating scalar degree of freedom is described
by

ζ̃ ≡ ζ − β1δn. (59)

The coefficients in the action (58) are given by

Aζ̃ = 1

(1 + αB − β̇1/H)2
α, (60)

Bζ̃ = −2(1 + αT) + 2

aM2

d

dt

[
aM2

(
1 + αH + β1(1 + αT)

)

H(1 + αB) − β̇1

]
,

(61)

Cζ̃ = 4(1 + αH)β1 + 2(1 + αT)β2
1 + β3

(1 + αB − β̇1/H)2
. (62)

Here,

α ≡ αK + 6α2
B − 6

a3H2M2

d

dt

(
a3HM2αBβ1

)
. (63)

For the action in Eq. (10), the variables M2, αK, αB, αH, αL,

αT, β1, β2 and β3 defined in [11,50] are

M2 = 2G4, αT = 0, αL = 0, (64)

αB = 2β1 + φ̇
(
6G4X φ̈ + 2XG4φX + G4φ

)

2G4H
,

4HXG4X + φ̇
(
6G4X φ̈ + 2XG4φX + G4φ

)

2G4H
, (65)

αH = −2β1, β1 = XG4X

G4
, β2 = −3β2

1 ,

β3 = 6β2
1 − 4β1, (66)

and

αK = 2X (G2X + 2XG2XX )

G4H2

−6X
(
H (G4X + 2XG4XX ) + φ̇

(
2XG4φXX + 3G4φX

))

G4H

−36φ̈

φ̇H
β1 − 6φ̈2

XH2

(
4β4

1 −
(

13β1 + 10X2 G4XX

G4

)
β2

1

+15β2
1 + 2X2

(
13

G4XX

G4
+ 2X

G4XXX

G4

)
β1

+4

(
X2 G4XX

G4

)2
)

. (67)

According to Eqs. (58) and (63), the no-ghost condition is

α > 0. (68)

We now add matter into our consideration by supposing that
the matter is described by K-essence [30,50] for which the
action is

Sm =
∫

d4x
√−g̃P(Y ), Y ≡ −g̃μν∂μσ∂νσ, (69)

where σ is the scalar field, and the metric g̃μν is related to the
metric gμν in the action (10) by the conformal transformation,

g̃μν = e2Qφgμν . (70)

It can be shown that the action for the matter in the form of
Eq. (69) can lead to Eq. (19) (see, e.g., [55,56]). Including
the matter, the action (58) becomes [31,50]

S =
∫

d3x dt a3 M
2

2

{
V̇KV̇T − 1

a2 ∂iVL∂ iVT ,

}
, (71)

where V ≡ (ζ̃ , δσ ), and δσ describes the perturbations in
the field σ . The matrix K and L are defined as

K ≡
(
Ãζ̃ Bm

Bm Am

)
, L ≡

(
Bζ̃ Cm

Cm Amc2
m

)
, (72)

where c2
m ≡ PY /(PY + 2Y PYY ) is the square of the sound

speed of the matter perturbations, a subscript Y denotes
derivative with respect to Y , and

Am ≡ 2e2QφPY
M2c2

m
, (73)

Ãζ̃ = Aζ̃ + M
[
H(1 + αB) − β̇1

]2 , (74)
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Bm = e2Qφρm(1 + wm)

σ̇0M2c2
m

1 − 3c2
mβ1

H(1 + αB) − β̇1
, (75)

Cm = e2Qφρm(1 + wm)

σ̇0M2

1 + αH + β1(1 + αT)

H(1 + αB) − β̇1
, (76)

The quantity σ̇0 is the time derivative of the background field
σ0 and

M = 3
̂mH
2
[
(1 + wm)

(
6β1 − 9c2

mβ2
1

)
+ 6wmβ1

]

+e2Qφρm(1 + wm)

c2
mM

2

[
1 − 3c2

mβ1

]2
, (77)


̂m = e4Qφ (2Y PY − P)

3M2H2 . (78)

The ghost and gradient instabilities can be avoided if the
eigenvalues of the matrices K and L are positive. From
Eq. (72), the eigenvalues of these matrices can be written
in the forms

λK = 1

2

(
( Ãζ̃ + Am) ±

√
( Ãζ̃ + Am)2 − 4( Ãζ̃ Am − B2

m)

)
,

(79)

λL = 1

2

(
(Bζ̃ + Amc

2
m)

±
√

(Bζ̃ + Amc2
m)2 − 4(Bζ̃ Amc2

m − C2
m)

)
. (80)

We see that the model can be free from ghost instability
if Ãζ̃ > 0, Am > 0 and Ãζ̃ Am > B2

m . Since Am is the
coefficient of the kinetic term for the matter, we expect that
Am > 0. The coefficient Ãζ̃ > 0 if Eq. (68) is satisfied. Using

the limit wm → 0 and c2
e → 0, the condition Ãζ̃ Am > B2

m
can be satisfied. Hence, even though the matter is included
in the consideration, the no-ghost condition is still given by
Eq. (68). Similar to the case of ghost instability, the model
can be free from gradient instability if Bζ̃ > 0, Amc2

m > 0

and Bζ̃ Amc2
m > C2

m . To check the latter condition, we write

Bζ̃ Amc
2
m − C2

m

= 2e2QφPY
M2

[

Bζ̃ − 3e2Qφ
m

M2

[
1 + αH + β1

(1 + αB) − β ′
1

]2
]

= 2e2QφPY
M2 C. (81)

Hence, the gradient instability can be avoided if Bζ̃ > 0 and

C > 0. We now estimate the factor e2Qφ in the expression
for C. It is difficult to estimate the value of φ from the results
in the previous sections, so we estimate Q from Eq. (43),
which gives Q/λ � 2.2 if xλ � 0.92. Since the background
dynamics discussed in the previous sections depend on Q/λ

rather than Q, for a given value of Q/λ, we can choose λ such
that Q is small or negative without altering the background
dynamics. Hence, for simplicity, we suppose that e2Qφ � 1.

We check the ghost and gradient instabilities at the scaling
point which corresponds to the cosmic acceleration at late
time. We choose xλ � 0.92,
m = 0.3 and c4 = 0.1. We
write α, Bζ̃ and C in terms of dimensionless variables and
compute numerical values of these quantities. We have found
that there is no gradient instability, and the ghost instability
can be avoided if n6 > n2 for n2 ≥ 0 and for a wide range
of n4. These conclusions do not depend on c4.

5 Conclusions

In this work, we have studied the cosmic evolution based
on the fixed points in the dynamical analysis of the DHOST
theory which has scaling solutions. In addition to the scaling
solutions, the DHOST theory in our consideration satisfies
the requirements that the propagation speed of GW is equal
to the speed of light and the GW do not decay to dark energy
perturbations. We concentrate on the model parameters for
which the expression of zr is given by Eq. (A5).

We have found in our analysis that the scaling fixed point
associated with the late-time accelerating universe is stable
when n2 and n6 are not negative for n4 = −1 and −2. The
stability of this scaling fixed point also depends on the expan-
sion rate of the universe at late time through the parameter
xλ. There are ranges of parameters in which the scaling fixed
point and the field-dominated point are simultaneously sta-
ble. The cosmic evolution will reach the scaling fixed point
at late time if xr when the matter domination is positive.
If xr during the matter domination is negative, the cosmic
evolution will reach the field-dominated point.

When the scaling fixed point and the field-dominated point
are stable, these points can be reached at late time for wide
ranges of xr and yr during the matter domination. However,
we have found that the density parameter of the matter can
be larger than unity during the cosmic evolution if c4 is large
enough and the initial value of yr during the matter domi-
nation is significantly different from its value at those fixed
points. By definition, c4 quantifies the size of the deviation
from the Einstein gravity. In our consideration, the allowed
values of c4 depend on the initial conditions for xr and yr
during the matter domination.

Even though the autonomous equations for the model con-
sidered here are different from coupled dark energy models
presented in [47], we have found that the eigenvalues for
the field-dominated and φMDE points in both models are
the same. In our numerical investigation, the universe can
only evolve from the φMDE to the field-dominated point.
We have also found that the eigenvalues for the scaling fixed
point reduce to those for the field-dominated point when c4 is
significantly large. However, recall that the large c4 can lead
to unphysical values of 
m during the cosmic evolution.
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We conclude that the fixed points for the DHOST the-
ory studied in [49] are similar to those in the coupled dark
energy model in [47]. We have found that the eigenvalues
for the field-dominated and φMDE points in DHOST the-
ory with scaling solutions are similar to those in the coupled
dark energy model even though the theories of gravity in
these models are different. However, for DHOST theory, the
expressions for the eigenvalues corresponding to the scaling
point are complicated, and consequently the stability of the
fixed point is evaluated numerically in this work.

We have also estimated the ghost and gradient instabilities
in this theory. We have found that this theory is free from the
gradient instability, while the ghost instability is absent when
n6 > n2 for n2 ≥ 0 and for a wide range of n4.

Acknowledgements WT was supported by the Royal Thai Govern-
ment Scholarship (Ministry of Higher Education, Science, Research
and Innovation) for his Ph.D. study. KK is supported by Fundamental
Fund from National Science, Research and Innovation Fund under the
grant ID R2565B030.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This manuscript
does not use any data in the analysis.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

AppendixA:Constraint equations in terms of dimension-
less variables

In terms of the dimensionless variables, we can write Eq. (15)
as

0 = 1

2c4 + v
n4
r

[
v−n4
r

(
v−n2−n6
r

(
2c4 + vn4

r

) (
2c4n4v

n2+n6
r

(
zr xλ

(
− Ḣ

H2 + zr xλ − 2

)
− xλz

′
r + n4x

2
λ

)

−x2
r vn4

r

(
c6v

n2
r − c2v

n6
r

)) + (
2c4 + vn4

r

)
(
c4

(
4
Ḣ

H2 + 6

)

+
(

2
Ḣ

H2 + 
γ + 3

)
vn4
r

)

+c4n4z
2
r x

2
λ (c4 (n4 − 4)

+2 (n4 − 1) vn4
r

) − 4c4n
2
4zr x

2
λ

(
2c4 + vn4

r

)

−c4n4xλ

(
2c4 + vn4

r

)
(zr xλ − 4)

)]
, (A1)

where vr ≡ yr/x2
r .

Equation (16) can be written in terms of the dimensionless
variables as

0 = 1
(
2c4 + v

n4
r

)2 [v−n2−n4−n6
r (−c2

4v
n4
r

(−4c6 (3n4 − 2n6 − 1) x2
r vn2

r − 4c2 (2n2 − 3n4 + 1) x2
r vn6

r

+3vn2+n6
r (4n3

4x
2
r x

2
λ + 4n4(2xr xλ

−2zr xλ + 
γ − 2) + n2
4xλ(xr (8 − 2zr xλ)

+zr (zr xλ + 4)) + 12)) − 2c4v
2n4
r

(−c6 (3n4 − 4n6 − 2) x2
r vn2

r − c2 (4n2 − 3n4 + 2) x2
r vn6

r

+3vn2+n6
r

(
n4

(
xr xλ − zr xλ + 
γ − 1

) + 3
)
)

−6c3
4v

n2+n6
r (n3

4x
2
λ

(−4xr zr + 4x2
r − z2

r

)

+n2
4xλ(xr (8 − 2zr xλ)

+zr (zr xλ + 4)) + 4n4 (xλ (xr − zr ) − 1) + 4)

+v3n4
r (−c6 (2n6 + 1) x2

r vn2
r + c2 (2n2 + 1) x2

r vn6
r

−3vn2+n6
r ))] + 3

(

m + 
γ

)
. (A2)

This equation can be used to express 
m in terms of the
other dimensionless variables. Equation (22) can be written
in terms of the dimensionless variables as

0 = v−n2−4n4−n6
r

(
c3

4

(−6n4
4

(
8x3

r − 18zr x
2
r + 9z2

r xr + z3
r

)
x3
λvn2+n6

r

+3n3
4x

2
λ

(
8xλx

3
r − 96x2

r − 3zr

(zr xλ − 24) xr + z2
r (zr xλ + 12)

)
vn2+n6
r

+12n4
(
c6x

2
r ((2n6 − 1) xr xλ − (2n6zr + zr ) xλ + 8) vn2

r

−c2x
2
r ((2n2 − 1) xr xλ

− (2n2zr + zr ) xλ + 8) vn6
r + (xr − zr )

(

γ − 3

)
xλv

n2+n6
r

)

−12n2
4xλ

(
c6x

2
r

(2xr + zr ) vn2
r

−c2x
2
r (2xr + zr ) vn6

r + (xλ (zr xλ − 4)

x2
r − 2

(

γ + 2zr xλ − 7

)
xr

+zr
(−
γ + 2zr xλ + 4

))
vn2+n6
r

) + 8xr
(
3vn2+n6

r
(

m + 
γ

)
Qλxλ

−xr
(
c6v

n2
r

(
2 (xr −zr ) xλn

2
6+(xr xλ−3zr xλ+6) n6−zr xλ+6

)

−c2v
n6
r

(
2 (xr − zr ) xλn

2
2

+ (xr xλ − 3zr xλ + 6) n2 − zr xλ + 6))))

vn4
r − 3c2

4

(
8n4

4x
2
r (xr − zr ) x

3
λvn2+n6

r

−2n3
4x

2
λ

(
xλx

3
r + (zr xλ − 16) x2

r + 8zr xr + 2z2
r

)
vn2+n6
r

+n4
(−4c6x

2
r ((2n6 − 1) xr xλ

− (2n6zr + zr ) xλ + 8) vn2
r + 4c2x

2
r ((2n2 − 1) xr xλ

− (2n2zr + zr ) xλ + 8) vn6
r

−2 (xr − zr )
(
2
γ − 3

)
xλv

n2+n6
r

)

+n2
4xλ

(
6c6x

2
r zrv

n2
r − 6c2x

2
r zrv

n6
r + (

xλ (zr xλ − 4) x2
r

+ (8 − 4zr xλ) xr + 2zr
(−3
γ + zr xλ + 5

))
vn2+n6
r

)

−4xr
(
3vn2+n6

r

(

m + 
γ

)
Qλxλ

−xr
(
c6v

n2
r

(
2 (xr −zr ) xλn

2
6+(xr xλ −3zr xλ+6) n6−zr xλ+6

)

−c2v
n6
r

(
2 (xr − zr ) xλn

2
2

+ (xr xλ − 3zr xλ + 6) n2 − zr xλ + 6)))) v2n4
r
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−3c4
(
2 (xr − zr )

(−c6x
2
r vn2

r + c2x
2
r vn6

r + (

γ − 1

)
vn2+n6
r

)
xλn

2
4

+ (−c6x
2
r ((2n6 − 1) xr xλ

− (2n6zr + zr ) xλ + 8) vn2
r + c2x

2
r ((2n2 − 1) xr xλ

− (2n2zr + zr ) xλ + 8) vn6
r

− (xr − zr )
(

γ − 1

)
xλv

n2+n6
r

)
n4 − 2xr

(
3vn2+n6

r
(

m + 
γ

)
Qλxλ

−xr
(
c6v

n2
r

(
2 (xr − zr ) xλn

2
6 + (xr xλ − 3zr xλ + 6) n6 − zr xλ + 6

)

−c2v
n6
r

(
2 (xr − zr ) xλn

2
2

+ (xr xλ − 3zr xλ + 6) n2 − zr xλ + 6)))) v3n4
r + xr

(
3vn2+n6

r
(

m + 
γ

)
Qλxλ

−xr
(
c6v

n2
r

(
2 (xr − zr ) xλn

2
6 + (xr xλ − 3zr xλ + 6) n6 − zr xλ + 6

)

−c2v
n6
r

(
2 (xr − zr ) xλn

2
2

+ (xr xλ − 3zr xλ + 6) n2 − zr xλ + 6))) v4n4
r

+6c4
4n4xλ

(
4n2

4x
2
λx

3
r +2n4xλ

(
2zr xλn

2
4−2 (zr xλ+8) n4 − zr xλ+4

)
x2
r

− (
12z2

r x
2
λn

3
4 + zr xλ (3zr xλ − 40) n2

4 − 8 (zr xλ − 4) n4 + 4
)
xr

− (n4 − 1) zr (n4zr xλ − 2) 2) vn2+n6
r

)
. (A3)

To compute the equation for zr , we substitute 
m solved
from Eq. (A2) into the above equation. The resulting equation
can be written in the form

b3z
3
r + b2z

2
r + b1zr + b0 = 0 , (A4)

where b0, b1, b2 and b3 are complicated functions of the
dimensionless variables of
γ , xr , yr and xλ. Using Eq. (A4),
we can compute the expression for zr in the form

zr 1 = −
3
√

2
(
3b1b3 − b2

2

)

3b3
3
√

�
+

3
√

�

3 3
√

2b3
− b2

3b3
, (A5)

zr 2 =
(

1 + i
√

3
) (

3b1b3 − b2
2

)

3(22/3b3
3
√

�)
−

(
1 − i

√
3
)

3
√

�

6 3
√

2b3
− b2

3b3
,

(A6)

zr 3 =
(

1 − i
√

3
) (

3b1b3 − b2
2

)

3(22/3b3
3
√

�)

−
(

1 + i
√

3
)

3
√

�

6 3
√

2b3
− b2

3b3
, (A7)

where � = −2b3
2 + 9b1b3b2 − 27b0b2

3 +√
4

(
3b1b3 − b2

2

)
3 + (−2b3

2 + 9b1b3b2 − 27b0b2
3

)2
.

The physically relevant solution is selected from the above
solutions by the requirement that zr becomes unity when
xr = yr = 1,
γ = 0, and c2 and c6 are given by Eqs. (36)
and (37).
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