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Abstract Shock wave solutions in anisotropic relativis-
tic hydrodynamics are analysed. A new phenomenon of
anisotropy-related angular deflection of the incident flow
by the shock wave front is described. Patterns of velocity
and momentum transformation by the shock wave front are
described.

1 Introduction

The physics of ultrarelativistic heavy ion collisions is to a
large extent determined by that of the Little Bang – evolu-
tion of hot and dense predominantly gluon matter created at
the initial stage of these collisions, see [1] for a recent review.
One of the characteristic features of this early evolution is a
large pressure anisotropy due to formation of glasma flux
tubes [2]. A standard way of describing expansion, cooling
and subsequent transformation into final hadrons is to use the
framework of relativistic dissipative hydrodynamics, see e.g.
[3–5]. The large difference between longitudinal and trans-
verse pressure leads to a necessity of going beyond standard
viscous hydrodynamics by summing over velocity gradients
to all orders. A candidate theory of this sort is relativistic
anisotropic hydrodynamics, see e.g. [6,7] and the review
papers [8–10] covering its both theoretical and phenomeno-
logical aspects. A non-additive generalisation of relativistic
anisotorpic hydrodynamics was recently suggested in [11].
To analyse possible physical consequences of the pressure
anisotropy it is of interest to study the anisotropic versions
of specific phenomena such as sound propagation and shock
waves.

Sound propagation and Mach cone formation in anisotropic
relativistic hydrodynamics was considered in [12]. The
present paper is devoted to the analysis of shock wave solu-
tions. The shock wave solutions in ideal relativistic hydro-
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dynamics are known for a long time, see e.g. [13–15]. As
to the viscous relativistic hydrodynamics, the shock wave
solutions in its Israel-Stewart version were shown to exist
only for small Mach numbers, i.e. for weak shock waves
[16,17]. It is therefore interesting that shock wave solutions
for anisotropic relativistic hydrodynamics (i.e. for a theory
including gradients of velocity to all orders) considered in
the present paper are constructed as direct generalization of
the corresponding solutions in the ideal relativistic hydrody-
namics and are valid for arbitrarily strong shock waves.

In applications to heavy ion physics the effects of shock
waves were mostly discussed for low energy collisions [18–
20]. An important exception is the study of [21,22] of trans-
verse shock waves generated in the primordial turbulent
gluon/minijet medium in high energy heavy ion collisions.
With modern glasma type understanding of the essentially
anisotropic nature of this medium it is of interest to rethink
the results of [21,22] in terms of transverse shocks generated
in anisotropic relativistic hydrodynamics. The present paper
is a first step in this direction.

2 Shock waves in anisotropic relativistic hydrodynamics

2.1 Shock wave discontinuity in isotropic relativistic
hydrodynamics

In this section we set the framework of subsequent analysis by
reminding of the necessary information on shock wave dis-
continuity in isotropic relativistic hydrodynamics [13–15].
We focus on the shock wave solution in the ideal fluid char-
acterised by the energy-momentum tensor

Tμν = (ε + P)UμU ν − Pgμnu (1)

where ε is energy density, P is the pressure and Uμ is the
four-vector of the flow velocity satisfyingUμUμ = 1. In this
case, the shock wave is described by a discontinuous solution
of the equations of motion such that components of energy-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10337-6&domain=pdf
mailto:kovalenkoam@lebedev.ru
mailto:leonidovav@lebedev.ru


378 Page 2 of 15 Eur. Phys. J. C (2022) 82 :378

momentum tensor normal to the discontinuity hypersurface
are discontinuous across it while tangential ones remain con-
tinuous.

The energy–momentum conservation then leads to the fol-
lowing matching condition linking downstream and upstream
projections on the direction perpendicular to the discontinu-
ity surface:

TμνN
μ = T

′
μνN

μ, (2)

where Nμ - unit vector normal to the discontinuity surface
and Tμν and T

′
μν correspond to upstream and downstream

energy–momentum tensors correspondingly.
A quantitative description of a shock wave is that of a

transformation of pressure, entropy S and normal component
of velocity v across the shock wave surface:

(P, S, v) ⇒ (P ′, S′, v′). (3)

In this paper we will consider only the case of a compres-
sion shock wave for which P ′ > P , S′ > S and v′ < v

(see a detailed derivation of the expression for the velocity
drop below). The ratio σ = P ′/P will be considered as a
parameter characterising the shock wave solution.

Using the explicit expression the energy–momentum ten-
sor (1) we get

(ε + P)UμN
μUν − PNν = (ε

′ + P
′
)U

′
μN

μU
′
ν − P

′
Nν .

(4)

Taking the product of Eq. (4) withU ν andU
′ν one can obtain

the following system:

(ε + P
′
)x = (ε

′ + P
′
)Ax

′
, (5)

(ε
′ + P)x

′ = (ε + P)Ax, (6)

where we have defined x = UμNμ, x
′ = U

′
μN

μ and A =
U

′
νU

ν . We get

(ε + P
′
)(ε + P)x2 = (ε

′ + P)(ε
′ + P

′
)x

′2. (7)

The vector Nμ must be space-like, NμNμ < 0, for discon-
tinuity surface to propagate inside the light cone and thus be
subluminal [14]. After multiplying equation (4) by Nμ one
finds

NνN
ν = 1

P − P ′
[
(ε + P)x2 − (ε

′ + P
′
)x

′2
]
, (8)

and, using (7) one gets

NμN
μ = ε

′ + P
′

ε + P ′

[
1 − ε − ε

′

P − P ′

]
= ε + P

ε
′ + P

[
1 − ε − ε

′

P − P ′

]
.

(9)

The subliminality condition NμNμ < 0 is thus insured by
the following inequality

ε − ε
′

P − P ′ > 1. (10)

In ultra-relativistic case, then ε = 3P , the inequality (10) is
trivially satisfied.

For the discussion below it is useful to remind an expres-
sion for the upstream and downstream velocities [15] in the
ultrarelativistic case. Choosing Nμ = (0, 1, 0, 0) and 4-
velocity vector of the form Uμ = (U 0,Ux , 0, 0) we get:

4PUxU0 = 4P
′
U

′
xU

′
0, (11)

−4PU 2
x − P = −4P

′
U

′2
x − P

′
. (12)

so that in terms in terms of the velocity components vi =
Ui/U0

vx =
√

3σ + 1

3(σ + 3)
, v

′
x =

√
σ + 3

3(3σ + 1)
. (13)

A compact characterisation of the velocity transformation
(13) across the shock wave front is given by relative differ-
ence between upstream and downstream velocities

δiso = v′
x − vx

vx
= − 2

3σ + 1
(σ − 1) (14)

For the considered case of a compression shock wave P ′ >

P one has σ > 1 and, therefore, it follows from (14) that
δiso < 0 so that the flow velocity indeed drops across the
compression shock wave front. Let us also note that

ρiso = vxv
′
x = 1

3
= c2

s (15)

where cs is a speed of sound.
One of the main topics of the analysis below is the one of

the velocity transformation v → v′ in anisotropic relativistic
hydrodynamics generalising the formulae (14) and (15) for
the isotropic case.

2.2 Anisotropic relativistic hydrodynamics

Our treatment of anisotropic relativistic hydrodynamics will
follow the kinetic theory – founded approach of [6,23,24]
based on working with a specific ansatz for a distribution
function

f (x, p) = fiso

(√
pμΞμν(x)pν

Λ(x)

)
, (16)

where Λ(x) is a coordinate-dependent temperature-like
momentum scale andΞμν(x)quantifies coordinate-dependent
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momentum anisotropy. In what follows we consider one-
dimensional anisotropy so that (pμΞμν pν = p2+ξ(x)p2‖) in
the local rest frame (LRF). To obtain a transparent parametri-
sation of the energy–momentum tensor in anisotropic hydro-
dynamics it is convenient to rewrite the four-vectorUμ(x) in
terms of the longitudinal rapidity ϑ(x), the timelike velocity
u0 and transverse velocities ux , uy

Uμ = (u0 cosh ϑ, ux , uy, u0 sinh ϑ) (17)

where u2
0 = 1 + u2

x + u2
y and define a space-like unit vector

Zμ = (sinh ϑ, 0, 0, cosh ϑ) (18)

such that ZμZμ = −1 which is orthogonal to Uμ, ZμUμ =
0.

Using a standard definition for energy-momentum tensor
as the second moment of the distribution function

Tμν =
∫

d3 p

(2π)2 p0
pμ pν fiso

(√
pμΞμν(x)pν

Λ(x)

)
(19)

one can derive the following equation for the energy-
momentum tensor Tμν :

Tμν = (ε + P⊥)UμU ν − P⊥gμν + (P‖ − P⊥)ZμZν, (20)

P‖ and P⊥ is longitudinal (towards anisotropy direction) and
transverse pressure respectively. In the LRF the expression
(20) takes the form

Tμν = diag(ε, P⊥, P⊥, P‖) (21)

Let us note that in the ultra-relativistic case the condition of
the tracelessness of the energy-momentum tensor leads to the
relation ε = 2P⊥ + P‖.

The dependence on the anisotropy parameter ξ can be
factorised so that

ε =
∫

d3 p

(2π)2 p
0 fiso

(√
p2 + ξ(x)p2‖

Λ(x)

)
= R(ξ)εiso(Λ),

(22)

P⊥ =
∫

d3 p

(2π)2

p2⊥
2p0

fiso

(√
p2 + ξ(x)p2‖

Λ(x)

)
=R⊥(ξ)Piso(Λ),

(23)

P‖ =
∫

d3 p

(2π)2

p2‖
p0

fiso

(√
p2 + ξ(x)p2‖

Λ(x)

)
= R‖(ξ)Piso(Λ),

(24)

where the anisotropy-dependent factors R⊥(ξ) and R‖(ξ)

read [23,24]

R⊥(ξ) = 3

2ξ

(
1 + (ξ2 − 1)R(ξ)

1 + ξ

)
,

R‖(ξ) = 3

ξ

(
(ξ + 1)R(ξ) − 1

1 + ξ

)
, (25)

where, in turn,

R(ξ) = 1

2

(
1

1 + ξ
+ arctan

√
ξ√

ξ

)
. (26)

Let us note that the anisotropy factors (25, 26) are related by
the following useful formula:

2R⊥(ξ) + R‖(ξ) = 3R(ξ) (27)

In the preceding paper [12] we have derived the follow-
ing equation describing propagation of sound in relativistic
anisotropic hydrodynamics with longitudinal anisotropy:

∂2
t n(1) =

(
c2
s⊥ ∂2⊥ + c2

s‖ ∂2
z

)
n(1) (28)

where n(1) is a (small) density fluctuation and cs⊥ and cs‖
stand for anisotropy-dependent transverse and longitudinal
speed of sound respectively. The explicit expressions for c2

s⊥
and c2

s‖ read [12]:

c2
s⊥ = R⊥

2R⊥ + R‖
, c2

s‖ = R‖
2R⊥ + R‖

. (29)

Using Eq. (27) the expressions (29) can be rewritten in the
following simple form:

c2
s⊥ = R⊥

3R
, c2

s‖ = R‖
3R

(30)

2.3 Transverse and longitudinal shock waves

2.3.1 Transverse normal shock wave

Let us first consider a description of a transverse shock wave.
Due to the symmetry in Oxy-plane, it sufficient to consider
its propagation along the x axis and, correspondingly, choose
the following basis:

Uμ = (u0, ux , 0, 0), Zμ = (0, 0, 0, 1), (31)

U
′
μ = (u

′
0, u

′
x , 0, 0), Z

′
μ = Zμ = (0, 0, 0, 1). (32)

Similarly to the example from relativistic hydrodynamics,
consider the case when the normal vector is directed along
the Ox-axis Nμ = (0, 1, 0, 0) (solution for the case of an
arbitrary Nμ see Appendix B). In the ultrarelativistic case
The matching conditions (2) then lead to the following system
of equations:

(3P⊥ + P‖)u0ux − (3P
′
⊥ + P

′
‖)u

′
0 u

′
x = 0, (33)

(3P⊥ + P‖)u2
x + P⊥ − (3P

′
⊥ + P

′
‖)(u

′
x )

2 − P
′
⊥ = 0. (34)

From the Eqs. (33–34) we find expressions for the veloc-
ities ux , u

′
x :
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ux = vx

u0
=

√√√√ (P⊥ − P
′
⊥)(P

′
‖ + P⊥ + 2P

′
⊥)

(2P⊥ − P‖ − 2P
′
⊥ + P

′
‖)(P

′
‖ + 2P⊥ + P

′
⊥)

,

(35)

u
′
x = v′

x

u′
0

=
√√√√ (P⊥ − P

′
⊥)(P

′
‖ + 2P⊥ + P

′
⊥)

(2P⊥ − P‖ − 2P
′
⊥ + P

′
‖)(P

′
‖ + P⊥ + 2P

′
⊥)

,

(36)

It is assumed that the anisotropy parameter does not
change near the shock wave, since anisotropy is related to
the properties of the medium, thus ξ

′ = ξ . Using the for-
mulae (13)–(26) for the transverse and longitudinal pressure
and anisotropy factors one gets the following expressions for
the upstream and downstream velocities vx and v

′
x :

vx (σ, ξ) =
√

R⊥(3σ R + R⊥)

3R(R⊥σ + 3R))
,

v
′
x (σ, ξ) =

√
R⊥(R⊥σ + 3R)

3R(3σ R + R⊥)
, (37)

where, as before, σ = P
′
iso/Piso.

Using the expressions (37) we can calculate the relative
difference δ⊥(ξ |σ) and the product ρ⊥(ξ) of the upstream
and downstream velocities

δ⊥(ξ |σ) = v′
x − vx

vx
= −(σ − 1)

3R − R⊥
3σ R + R⊥

(38)

ρ⊥(ξ) = vxv
′
x = R⊥

3R
. (39)

Let us note that the dependence on σ of the velocities (37)
cancels in their product ρ⊥(ξ) in (39).

Recalling the fact that the product of upstream and down-
stream velocities in the isotropic case is equal to the speed
of sound squared, see Eq. (15), one can identify such a prod-
uct for the transverse shock wave with a transverse speed of
sound squared

ρ⊥(ξ) = c2
s⊥ (40)

Comparing Eq. (39) and the first equation in (30) we see that
this definition leads to an expression identical to that follow-
ing from the equation for sound propagation in relativistic
anisotropic hydrodynamics derived in [12].

In the isotropic limit ξ → 0

δ⊥(ξ |σ)|ξ→0 → δiso, ρ⊥(ξ)|ξ→0 → ρiso, (41)

where δiso and ρiso were defined in Eqs. (14) and (15).
In the opposite limit of ξ → ∞

δ⊥(ξ |σ)|ξ→∞ → −(σ − 1)
1

2σ + 1
, ρ⊥(ξ)|ξ→∞ → 1

2
,

(42)

The functions δ⊥(ξ |σ) and ρ⊥(ξ) are plotted in Figs. 1,
and 2.

2.3.2 Longitudinal normal shock wave

Similar calculations can be carried out for the longitudinal
shock wave propagating along the anisotropy axis. In this
case we choose

Uμ = (cosh ϑ, 0, 0, sinh ϑ), Zμ = (sinh ϑ, 0, 0, cosh ϑ).

(43)

Proceeding analogously to the previously considered case for
the transverse shock wave we get

vz(σ, ξ) =
√

R‖(3σ R + R‖)
3R(R‖σ + 3R))

,

v
′
z(σ, ξ) =

√
R‖(R‖σ + 3R)

3R(3σ R + R‖)
. (44)

The corresponding expressions for δ‖(ξ |σ) and ρ‖(ξ) read

δ‖(ξ) = v′
z − vz

vz
= −(σ − 1)

3R − R‖
3σ R + R‖

(45)

ρ‖(ξ) = vzv
′
z = R‖

3R
(46)

Defining analogously to (40)

ρ‖(ξ) = c2
s‖ (47)

and comparing Eq. (46) with the second equation in (30) we
see that like in the transverse case this definition leads to an
expression identical to that following from the equation for
sound propagation in relativistic anisotropic hydrodynamics
derived in [12].

In the isotropic limit ξ → 0

δ‖(ξ |σ)
∣∣
ξ→0 → δiso, ρ‖(ξ)

∣∣
ξ→0 → ρiso. (48)

In the opposite limit of ξ → ∞

δ‖(ξ |σ)
∣∣
ξ→∞ → −(σ − 1)

1

σ
, ρ‖(ξ)

∣∣
ξ→∞ → 0. (49)

The functions δ‖(ξ |σ) and ρ‖(ξ) are plotted, together with
their counterparts δ⊥(ξ |σ) and ρ⊥(ξ), in Figs. 1, and 2.

2.3.3 Comparison between normal transverse and
longitudinal shock waves

From Figs. 1, and 2 we see that the anisotropy dependence
of the relative rapidity drop δ⊥(ξ |σ) and velocities prod-
uct ρ⊥(ξ) and that of their longitudinal counterparts δ‖(ξ |σ)

and ρ‖(ξ) are of different character. We see in particular that
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Fig. 1 Plot of the relative velocity differences δ⊥(ξ |σ) (38) for σ = 5
(dotted line) and σ = 10 (solid line) and δ‖(ξ |σ) (45) for σ = 5 (dash-
dotted line) and σ = 10 (dashed line) as functions of the anisotropy
parameter ξ . A decrease (increase) in δ⊥,‖(ξ |σ) indicates weakening
(strengthening) of the shock wave

Fig. 2 Plots of the transverse cs⊥ (39) (solid) and longitudinal cs‖ (46)
(dashed) speed of sound as functions of the anisotropy parameter ξ in
units of the speed of light

while both δ⊥(ξ |σ) and ρ⊥(ξ) grow with ξ , their longitu-
dinal counterparts δ‖(ξ |σ) and ρ‖(ξ) decay with increasing
anisotropy.

From Fig. 1 we see that starting from the same (negative)
value δiso at ξ = 0, the relative velocity drop δ⊥(ξ |σ) grows
with ξ towards its asymptotic value given in (42). This means
that the velocity gap for the transverse shock wave shrinks
with growing ξ so that the transverse shock wave weak-
ens with increasing anisotropy. On the contrary, the relative
velocity drop δ‖(ξ |σ) decays with ξ towards it asymptotic
value given in (49) with, therefore, the relative velocity gap
for the longitudinal shock wave widening with growing ξ so
that the longitudinal shock wave strengthens with increasing
anisotropy. At asymptotically large anisotropies ξ → ∞ the
gap between the transverse and longitudinal relative velocity
drop reaches

(
δ⊥(ξ |σ) − δ‖(ξ |σ)

)∣∣
ξ→∞ → (σ − 1)2

σ(2σ + 1)
(50)

Fig. 3 Transformation of flow velocity by the shock wave front.
Upstream flow moves with velocity v at an angle α to the direction
of anisotropy (beam axis) and downstream flow moves with velocity v

′

at an angle α
′

to the beam axis

As to the anisotropy behaviour of the velocities product or,
equivalently, the corresponding speed of sound squared, from
Fig. 2 we see that the transverse speed of sound cs⊥ grows
from 1/

√
3 at ξ = 0 to 1/

√
2 at ξ → ∞ while the longi-

tudinal one cs‖ decays from the same value 1/
√

3 at ξ = 0
to 0 at ξ → ∞. Since the existence of a shock wave is pos-
sible only when the flow moves with a velocity greater than
the speed of sound, a much lower flow velocity is required
for the shock wave generation in the direction of anisotropy.
Therefore, for larger anisotropies formation of longitudinal
shock waves is becomes progressively easier while that of
transverse ones is, on the contrary, becoming more difficult.

2.4 Normal shock wave at an arbitrary polar angle

In this section we develop a description of a normal shock
wave incident at an arbitrary angle with respect to the
anisotropy direction, i.e. in the considered case to the z
(beam) axis. A major new element we are going to encounter
is that, in contrast with the above-considered cases of trans-
verse and longitudinal shock waves, in this case a transfor-
mation v → v′ of the upstream velocity v to the downstream
one v′ involves changes both in the absolute value of the flow
velocity and the direction of its propagation, see Fig. 3.

To characterise the transformation v → v′ we introduce
the following variables describing changes in the absolute
value and direction of flow velocity across the shock wave
front:

δα α′(ξ) = |v′(ξ |α)| − |v(ξ |α′)|
|v(ξ |α)| , β(ξ) = α′(ξ) − α (51)
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where δαα′(ξ) generalises the variables δ⊥(ξσ ) and δ‖(ξσ )

defined in (39) and (46) correspondingly 1.

2.4.1 General equations

Let us consider a flow moving at an angle α to the direction
of the beam axis (Fig. 3). To simplify formulae due to the
symmetry in the Oxy plane one can consider flow propaga-
tion in the Oxz plane. Let us express Uμ and Zμ through
longitudinal rapidity θ

Uμ = (u0 cosh ϑ, ux , 0, u0 sinh ϑ), (52)

Zμ = (sinh ϑ, 0, 0, cosh ϑ), (53)

introduce transverse rapidities γ, γ ′ by

ux = sinh γ, u0 = cosh γ, (54)

u
′
x = sinh γ

′
, u

′
0 = cosh γ

′
(55)

and denote the difference between angles α
′
and α denote as

β. The corresponding formulae for the components of flow
velocity read

vx = ux
u0

= tanh γ

cosh ϑ
= v cos α,

vz = uz
u0

= tanh ϑ = v sin α, (56)

v
′
x = u

′
x

u
′
0

= tanh γ
′

cosh ϑ
′ = v

′
cos α

′
,

v
′
z = u

′
z

u
′
0

= tanh ϑ
′ = v

′
sin α

′
. (57)

From Eqs. (56, 57) one gets the following expressions for
ϑ, ϑ

′
:

ϑ = arctanh
[

tanh γ tan α
]
,

ϑ
′ = arctanh

[
tanh γ

′
tan α

′]
. (58)

Let us choose the following parametrisation for the com-
ponents of the vector normal to the discontinuity surface:

Nμ = (0, sin α, 0, cos α). (59)

With the parametrisation (59) the matching conditions (2)
take the following form:

− (3P⊥ + P‖) cosh γ cosh ϑ

(sinh γ cos α + cosh γ sinh ϑ sin α)

+ (3P
′
⊥ + P

′
‖) cosh γ

′
cosh ϑ

′

1 To avoid overloaded notation in this paragraph we do not explicitly
indicate the σ dependence of quantities like δαα′ (ξ).

(sinh γ
′
cos α + cosh γ

′
sinh ϑ

′
sin α)

+ (P⊥ − P‖) sinh ϑ cosh ϑ sin α

− (P
′
⊥ − P

′
‖) sinh ϑ

′
cosh ϑ

′
sin α = 0, (60)

− (3P⊥ + P‖) cosh γ sinh ϑ

(sinh γ cos α + cosh γ sinh ϑ sin α) − P⊥ sin α

+ (3P
′
⊥ + P

′
‖) cosh γ

′
sinh ϑ

′

(sinh γ
′
cos α + cosh γ

′
sinh ϑ

′
sin α) + P

′
⊥ sin α

+ (P⊥ − P‖) cosh ϑ cosh ϑ sin α

− (P
′
⊥ − P

′
‖) cosh ϑ

′
cosh ϑ

′
sin α = 0, (61)

− (3P⊥ + P‖) sinh γ (sinh γ cos α + cosh γ sinh η sin α)

− P⊥ cos α

+ (3P
′
⊥ + P

′
‖) sinh γ

′
(sinh γ

′
cos α + cosh γ

′
sinh ϑ

′
sin α)

+ P
′
⊥ cos α = 0, (62)

The Eqs. (60)–(62) constitute a system of equations for
three unknowns γ, γ

′
, α

′
that depend on three parameters

σ, ξ, α that is solved numerically. The formulae (56, 57) then
translate a solution for γ, γ

′
, α

′
into vectors of upstream and

downstream velocities.

2.4.2 Flow deflection by the shock wave front

In isotropic relativistic hydrodynamics, a normal shock wave
changes only the absolute value of the incident flow veloc-
ity, but not the direction of the flow passing through it. Our
analysis of transverse and longitudinal normal shock waves in
Sects. 2.3.1 and 2.3.2 has shown that in these cases deflection
of the incident flow is absent in anisotropic hydrodynamics
as well. However, it turns out that this is no longer true for
normal shock waves incident at an arbitrary polar angle. In
this case the flow is deflected by the shock wave front so that
in notations of Fig. 3 one has α

′ 	= α.
In Fig. 4 we plot the deflection angle β = α

′ − α as a
function of the incidence angle α for several values of σ and
anisotropy parameter ξ . In all the cases the function β(α)

takes negative values and has a minimum at some α∗. At
fixed ξ the depth of this minimum grows with σ . At fixed
σ with growing ξ the minimum a) gets deeper and b) its
position shifts towards smaller α. Let us note that for strong
anisotropy, large σ and incidence angles α ≤ π/4 we have
flow deviation from the initial direction by almost π/2 so that
the upstream flow tends to propagate along the shock wave
front.

Let us note that from the bottom plots of Fig. 4 we see that
for large anisotropies one observes a rapid change of regimes
indicating an existence of effective instability at small angles
α.
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Fig. 4 Plot of the deflection angle β = α
′ − α as a function of the initial angle α for σ = 2 (dashed line), σ = 5 (dotted line) and σ = 10

(dash-dotted line) for ξ = 5 (top left), ξ = 20 (top right), ξ = 100 (bottom left), ξ = 1000 (bottom right). Each plot contains the limiting curve
σ → ∞, ξ → ∞ (solid line)

2.4.3 Transformation |v(ξ)| → |v′(ξ)|

To characterise the transformation |v(ξ)| → |v′(ξ)| let us
first consider the anisotropy dependence of the absolute value
of upstream velocity vα(ξ) ≡ |v(ξ |α)| at different incidence
angles α, α ∈ [0, π/2]. The resulting curves are shown in
Fig. 5 for two different values of σ .

From Fig. 5 we see, for both values of σ , a transition from
convex decaying vα(ξ) at small incidence angles α to con-
cave growing pattern at large incidence angles. The transition
between the two patterns takes place at αcrit ∼ π/4.

Second, let us analyse the anisotropy dependence of the
absolute value of downstream velocity v′

α(ξ) ≡ |v′(ξ |α)|
at different incidence angles α, α ∈ [0, π/2]. The resulting
curves are shown in Fig. 6 for the same values of σ as in
Fig. 5.

The behaviour of v′
α(ξ) is characterised by two differ-

ent patterns. The transition between them, similarly to the
above-considered case of upstream velocity, also takes place
at αcrit ∼ π/4:

– In the interval of incidence angles α ∈ (0, π/4) a growth
at large anisotropies is preceded by the minimum at some
ξ∗(α) such that ξ∗(α) → 0 at α → αcrit and ξ∗(α) →
∞ at α → 0. A detailed illustration of this pattern is
presented in Fig. 7.

– In the interval of incidence angles α ∈ (π/4, π/2), simi-
larly to the behaviour of vα(ξ) in the same interval of
angles, the function v′

α(ξ) is a concave growing one
smoothly approaching the limiting curve for the trans-
verse shock wave at at α = π/2;
Let us note that at small angles the form of v′

α(ξ) is
extremely sensitive to the value of α, see Fig. 8, possibly
indicating an unstable velocity transformation pattern of
the “almost longitudinal” shock waves.

2.4.4 Transformation |v| → |v′|: angular dependence

Let us start our analysis of the angular dependence of velocity
transformation |v| → |v′| with studying the angular depen-
dence of the pattern of anisotropy dependence of the relative
change of the absolute value of velocity δαα′(ξ) defined in
Eq. (51) induced by a superposition of the corresponding
patterns for |v(ξ |α)| and |v′(ξ |α)| studied in the previous
paragraph 2.4.3.

As seen at Fig. 9, for each shock wave incidence angle
α ∈ (0, π/2) at some critical anisotropy ξ∗(α) the relative
velocity drop δαα′(ξ) changes its sign. This means that at suf-
ficiently large anisotropies the rarefaction shock wave pattern
with δαα′(ξ) < 0 turns into the compression shock wave one
with δαα′(ξ) > 0 corresponding to acceleration of the flow by
the shock wave so that we see a dramatic anisotropy-induced
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Fig. 5 Plots of the absolute value of upstream velocity |v(ξ |α)| as a function of the anisotropy parameter ξ for α = π/2 (solid), α = 2π/3
(dashed), α = π/4 (dotted), α = π/6 (dash-dotted) and α = 0 (long dash) for σ = 5 (left) and σ = 10 (right)

Fig. 6 Plots of the absolute value of downstream velocity |v′(ξ |α)| as a function of the anisotropy parameter ξ for α = π/2 (solid), α = 2π/3
(dashed), α = π/4 (dotted), α = π/6 (dashed-dotted) and α = 0 (long dash) for σ = 5 (left) and σ = 10 (right)

Fig. 7 Plots of the absolute value of downstream velocity |v′(ξ |α)| as a function of the anisotropy parameter ξ for α = 20◦ (solid), α = 15◦
(dashed), α = 10◦ (dotted), α = 5◦ (dash-dotted) and α = 0 (long dash) for σ = 5 (left) and σ = 10 (right)

transition in the very nature of shock waves in anisotropic
relativistic hydrodynamics.

Let us now turn to the analysis the relative change of the
absolute value of velocity δαα′(ξ) as a function of the inci-
dence angle α at fixed ξ . In Figs. 10, 11 we plot this depen-
dence for several relatively small (Fig. 10) and very large
(Fig. 11) values of the anisotropy parameter and four differ-
ent values of σ in Fig. 10 and σ = 100 in Fig. 11.

From Figs. 10, 10 we see that the superposition of the
angular dependencies of |v(ξ |α)| and |v′(ξ |α)| leads to a
hump-backed pattern for δαα′(ξ) with the hump moving from
large to small angles and becoming more pronounced with
increasing anisotropy.

For large σ and ξ there appears an interval of angles in
which δαα′(ξ) changes its sign and, therefore, a shock wave
pattern changes from the rarefaction to the compression one.
The width of this interval grows with σ .
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Fig. 8 Plots of the absolute value of downstream velocity |v′(ξ |α)| as a function of the anisotropy parameter ξ for small incidence angles α = 2◦30
′

(solid), α = 2◦ (dashed), α = 1◦30
′

(dotted), α = 1◦ (dash-dotted) and α = 0◦30
′

(long dash) for σ = 5 (left) and σ = 10 (right)

Fig. 9 Plots of the relative change of the absolute value of velocity δαα′ (ξ) as a function of anisotropy parameter for α = 30◦ (solid), α = 20◦
(dashed), α = 10◦ (dotted), α = 3◦ (dash-dotted) and α = 0 (long dash) for σ = 5 (left) and σ = 10 (right)

Fig. 10 Plots of the relative change of the absolute value of velocity δαα′ (ξ) < 0 as a function of the incidence angle α for ξ = 2 (solid), ξ = 5
(dashed), ξ = 10 (dotted), ξ = 15 (dash-dotted) and ξ = 25 (long dash) for σ = 2 (top left), σ = 5 (top right), σ = 10 (bottom left) and σ = 20
(bottom right)
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Fig. 11 Plots of the relative change of the absolute value of velocity δαα′ (ξ) as a function of the incidence angle α for large values of the anisotropy
parameter ξ = 30 (solid), ξ = 70 (dashed), ξ = 100 (dotted) and ξ = 150 (dash-dotted)

Fig. 12 Plot of the location of the maximum of the relative change
of the absolute value of velocity δαα′ (ξ). Warmer tones correspond to
its positive values and colder tones to the negative ones. White color

corresponds to the values close to zero. For large anisotropies the white
band defines three types of shock waves: weak shock wave, shock wave
with deceleration of the flow, strong shock wave

Fig. 13 Left: plots of the anisotropy dependence of the transverse
momentum pT (α|ξ) for ξ = 0 (solid), ξ = 10 (dotted) and p

′
T (α|ξ) for

ξ = 0 (dashed), ξ = 10 (dashed-dotted). Right: plots of the anisotropy

dependence of the transverse momentum pT (α|ξ) for ξ = 40 (solid),
ξ = 10 (dotted) and p

′
T (α|ξ) for ξ = 40 (dashed), ξ = 10 (dashed-

dotted)
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Fig. 14 Left: plots of the anisotropy dependence of the longitudinal
momentum pL (α|ξ) for ξ = 0 (solid), ξ = 10 (dotted) and p

′
L (α|ξ) for

ξ = 0 (dashed), ξ = 10 (dashed-dotted). Right: plots of the anisotropy

dependence of the longitudinal momentum pL (α|ξ) for ξ = 40 (solid),
ξ = 10 (dotted) and p

′
L (α|ξ) for ξ = 40 (dashed), ξ = 10 (dashed-

dotted)

In Fig. 12 we plot a position of the hump in the (ξ, σ )

plane.
From Fig. 12 we see that δ(α) touches zero for two values

of σ . For small σ and ξ the dependence is nonlinear. For
anisotropy parameters ξ below a certain value, as σ grows, δ
does twice undergo a transition between negative and positive
values. Thus, for such values of ξ , there are two possible types
of shock waves with a feature typical for compression shock
waves - a deceleration of the upstream flow. The first type
of waves is characterised by small values of σ while for the
second type σ takes large values that grow almost linearly
with increasing ξ .

2.4.5 Transformation (pT , pL) → (p
′
T , p

′
L): angular

dependence

Of particular interest for describing the effects of the down-
stream and upstream flows related to shock wave formation
for heavy ion collisions are the associated transverse and lon-
gitudinal momenta that contribute to transverse momentum
and rapidity spectra. For a shock wave incident at polar angle
α the corresponding transverse and longitudinal momenta for
the upstream flow read

pT = p sin α, pL = p cos α. (63)

Analogous formulae hold for the downstream flow. The
resulting angular dependencies pT (α|ξ), p

′
T (α

′ |ξ), pL(α|ξ)

and p
′
L(α

′ |ξ) are shown, for several values of ξ , in Figs. 13
and 14 correspondingly.

We see from Fig. 13 that in comparison to isotropic pro-
duction there takes place a reversion of p

′
T at small incidence

anglesα < α∗
T (ξ) and more p

′
T is produced at large incidence

angles α∗
T (ξ) < α < π/2 where α∗

T (ξ) is an anisotropy -
dependent scale separating the regimes of transverse momen-
tum reversal at small α and its enrichment at large α.

As to the longitudinal momenta, in Fig. 13 we observe,
in comparison to the isotropic case, a pattern of depletion
of longitudinal momentum at small angles α < α∗

L(ξ) and
its enhancement at large angles α∗

L(ξ) < α < π/2 where
α∗
L(ξ) is a regime-dividing scale different from its transverse

counterpart α∗
L(ξ).

3 Conclusions

Let us summarise the main results obtained in the paper:

– General equations describing shock waves in relativistic
anisotropic hydrodynamics were derived.

– In distinction with the second order viscous relativistic
hydrodynamics these equations are valid for arbitrarily
strong shock waves.

– Solutions describing normal shock waves incident at an
arbitrary angle with respect to collision axis as well as
transverse and longitudinal shock waves were obtained
and compared with the corresponding results for the
isotropic case.

– A new phenomenon of anisotropy – related angular
deflection of the upstream flow was described.

– Transformation of velocities and momenta by the shock
wave front was analysed.

In our view among the problems worth further stud-
ies the most interesting and pressing one is an analysis
of entropy transformation by the shock wave front in rel-
ativistic anisotropic hydrodynamics. It is well known that
anisotropy gives rise to a new source of entropy production in
anisotropic hydrodynamics so it is very interesting to see how
the standard pattern of entropy production by shock waves
in isotropic hydrodynamics changes in the anisotropic case.
We plan to address this problem in the near future.
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Appendix A: Subluminality condition for shock waves in
relativistic anisotropic hydrodynamics

In the anisotropic case the necessary subluminality condition
NμNμ < 0 for the four-vector Nμ orthogonal to the discon-
tinuity surface can be studied by writing the corresponding
equations generalising Eqs. (5, 6) for the isotropic case.

From the matching conditions (2) and the expression (20)
for the energy momentum tensor one gets the following sys-
tem of equations:

(ε + P
′
⊥)x = (ε

′ + P
′
⊥)Ax

′ − (P
′
⊥ − P

′
‖)Cy

′
, (64)

(ε
′ + P⊥)x

′ = (ε + P⊥)Ax − (P⊥ − P‖)By, (65)

(P
′
⊥ − P‖)y = (ε

′ + P
′
⊥)Bx

′ − (P
′
⊥ − P

′
‖)Dy

′
, (66)

(P⊥ − P
′
‖)y

′ = (ε + P⊥)Cx − (P⊥ − P‖)Dy, (67)

where

x = UμN
μ, x

′ = U
′
μN

μ, A = U
′
μU

μ, B = U
′
μZ

μ,

(68)

y = ZμN
μ, y

′ = Z
′
μN

μ, C = Z
′
μU

μ, D = Z
′
μZ

μ.

(69)

In ultra-relativistic case we have

(2P⊥ + P‖ + P
′
⊥)x = (3P

′
⊥ + P

′
‖)Ax

′ − (P
′
⊥ − P

′
‖)Cy

′
,

(70)

(2P
′
⊥ + P

′
‖ + P⊥)x

′ = (3P⊥ + P‖)Ax − (P⊥ − P‖)By,
(71)

(P
′
⊥ − P‖)y = (3P

′
⊥ + P

′
‖)Bx

′ − (P
′
⊥ − P

′
‖)Dy

′
,

(72)

(P⊥ − P
′
‖)y

′ = (3P⊥ + P‖)Cx − (P⊥ − P‖)Dy,

(73)

Our purpose is to evaluate the sign of NμNμ for check
subluminality condition, which is NμNμ < 0. Using the
matching conditions (2) one can find

NμN
μ = 1

P⊥ − P
′
⊥

[
(3P⊥ + P‖)x2

− (3P
′
⊥ + P

′
‖)x

′2 − (P⊥ − P‖)y2

+ (P
′
⊥ − P

′
‖)y

′2
]
. (74)

The system of Eqs. (70–73) has solutions if the condition
for the determinant is satisfied.

Det Λ =

∣∣∣∣∣∣∣∣∣

0 −(3P
′
⊥ + P

′
‖)B (P

′
⊥ − P‖) (P

′
⊥ − P

′
‖)D

−(3P⊥ + P‖)C 0 (P⊥ − P‖)D (P⊥ − P
′
‖)

(2P⊥ + P‖ + P
′
⊥) −(3P

′
⊥ + P

′
‖)A 0 (P

′
⊥ − P

′
‖)C

−(3P⊥ + P‖)A (2P
′
⊥ + P

′
‖ + P⊥) (P⊥ − P‖)B 0

∣∣∣∣∣∣∣∣∣
= 0. (75)

It is worth saying that in the borderline cases, then the flow
moves along the axes Ox and Oz, the equation Det Λ = 0
gives the correct solutions for Δ, which agree with solutions
for the velocities in anisotropic case.

Then, solving the system of equations, we can express
x

′
, y, y

′
through x , that give us

NμN
μ = 1

P⊥−P
′
⊥
Φ(P⊥, P‖, P

′
⊥, P

′
‖, A, B,C, D)x2 (76)
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Using Eqs. (52,53) and (54,55) we get the following
expressions for A, B, C and D:

A = U
′
μU

μ = cosh γ cosh γ
′
cosh(ϑ − ϑ

′
) − sinh γ sinh γ

′

(77)

B = U
′
μZ

μ = cosh γ
′
sinh(ϑ − ϑ

′
), (78)

C = Z
′
μU

μ = − cosh γ sinh(ϑ − ϑ
′
) (79)

D = Z
′
μZ

μ = − cosh(ϑ − ϑ
′
). (80)

Thus, the system of equations will explicitly depend only
on the difference ϑ − ϑ

′
, and not on the values themselves.

Let’s denote Δ = ϑ − ϑ
′
.

Due to the anisotropic hydrodynamic P⊥, P‖ are divided
into anisotropic and anisotropic parts according to the for-
mulas (13, 14). Also denote σ = P

′
iso/Piso. From the equa-

tion Det Λ = 0 we can get the value Δ. Thus, we have 4
unknowns σ, ξ, γ, γ

′
, of which σ, ξ are the parameters of

the system. Also, solving the equation Det Λ = 0 allow us to
obtain a consistent system of Eqs. (70–73), so it is possible to
choose one among the values x, x

′
, y, y

′
, and express others

through it. Let, for example, this be the value x , then, from
the expression (74), we can write

NμN
μ = 1

R⊥(ξ)(1 − σ)
Φ(σ, ξ, γ, γ

′
,Δ)x2. (81)

One can construct the following function

S(σ, ξ, γ, γ
′
) = sign

(
1

R⊥(ξ)(1 − σ)
Φ

(
σ, ξ, γ, γ

′
,Δ(σ, ξ, γ, γ

′
)
))

, (82)

that determines the sign of the norm of the vector Nμ.
Denote T = tanh γ, T

′ = tanh γ
′

and then he have

S(σ, ξ, T, T
′
) = sign

(
1

R⊥(ξ)(1 − σ)
Φ

(
σ, ξ, T, T

′
,Δ(σ, ξ, T, T

′
)
))

, (83)

It should be taken into account that the equation Det Λ = 0
may not have solutions, then it is convenient to construct the
following function:

Ω(σ, ξ, T, T
′
) =

⎧⎪⎨
⎪⎩

−1 Det Λ = 0has no solutions

0 S(σ, ξ, γ, γ
′
) = −1

1 S(σ, ξ, γ, γ
′
) = 1

(84)

As one can see on Fig. 15, it turned out that there is no
case of Ω = 1 anywhere. It can also be seen that the graphs
show as ξ increases, the region of possible solutions to the

equation Det Λ = 0 increases. This fact allows us to assume
that in an anisotropic medium, a shock wave can be formed
more often than in an isotropic case.

Appendix B

Let us first consider a description of a shock wave propagat-
ing perpendicular to the beam axis. Due to the symmetry in
Oxy-plane, it sufficient to consider its propagation along the
x axis and, correspondingly, choose the following basis:

Uμ = (u0, ux , 0, 0), Zμ = (0, 0, 0, 1), (85)

U
′
μ = (u

′
0, u

′
x , 0, 0), Z

′
μ = Zμ = (0, 0, 0, 1). (86)

The matching conditions (2) lead to the following system
of equations:

(ε + P⊥)U0x − P⊥N0 − (ε
′ + P

′
⊥)U

′
0x

′ + P
′
⊥N0 = 0,

(87)

(ε + P⊥)U1x − P⊥N1 − (ε
′ + P

′
⊥)U

′
1x

′ + P
′
⊥N1 = 0,

(88)

− P⊥N2 + P
′
⊥N2 = 0, (89)

− P‖N3 + P
′
‖N3 = 0. (90)

The third and fourth equations lead us to the solutions
N2 = 0 and N3 = 0. We also take into account the expression
for the ultrarelativistic case and obtain

(3P⊥ + P‖)u0 (u0N0 − ux N1) − P⊥N0 − (3P
′
⊥ + P

′
‖)u

′
0

(u
′
0N0 − u

′
x N1) + P

′
⊥N0 = 0, (91)

(3P⊥ + P‖)ux (u0N0 − ux N1) − P⊥N1 − (3P
′
⊥ + P

′
‖)u

′
x

(u
′
0N0 − u

′
x N1) + P

′
⊥N1 = 0. (92)

For the existence of solutions to the remaining two equa-
tions on N0, N1, the determinant of the coefficients of the
equation should be equal to zero. With introducing the fol-
lowing definitions

A0 = (3P⊥ + P‖)u2
0 − (3P

′
⊥ + P

′
‖)u

′2
0 − (P⊥ − P

′
⊥), (93)

B0 = −(3P⊥ + P‖)u0ux + (3P
′
⊥ + P

′
‖)u

′
0u

′
x , (94)

A1 = −B0 = (3P⊥ + P‖)u0ux − (3P
′
⊥ + P

′
‖)u

′
0u

′
x , (95)

B1 = −(3P⊥ + P‖)u2
x + (3P

′
⊥ + P

′
‖)u

′2
x − (P⊥ − P

′
⊥),

(96)

determinant will take the form∣∣∣∣
A0 B0

A1 B1

∣∣∣∣ = 0. (97)
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Fig. 15 Plot of Ω(σ, ξ, T, T
′
) as a function of ξ, T

′
. Blue color denotes Ω = −1, white color - Ω = 0

The one-dimensional formulation of the problem allows
us to write expressions for the components of the 4-velocity
vector in terms of hyperbolic functions

ux = sinh γ, u0 = cosh γ, (98)

u
′
x = sinh γ

′
, u

′
0 = cosh γ

′
. (99)

Substituting (97) and (93–96) into (97) we obtain

(3P⊥ + P‖)(3P
′
⊥ + P

′
‖) cosh(2γ − 2γ

′
) = P⊥(P

′
‖ + 4P⊥)+

+ P
′
⊥(2P

′
‖ + P⊥) + 4P

′2⊥ + P‖(P
′
‖ + 2P⊥ + P

′
⊥), (100)

or, more conveniently, as

sinh2(γ − γ
′
) = (2P⊥ − P‖ − 2P

′
⊥ + P

′
‖)(P‖ − P

′
‖)

(3P⊥ + P‖)(3P
′
⊥ + P

′
‖)

.

(101)

In the limit ξ → 0 the formula above is equal to the
solution in the isotropic case [15]. Space-like nature of the
normal vector Nμ, i.e NμNμ = −1, lead to a closed system
of equations for N0, N1, solutions of whose are

N0 = 1

2

(3P⊥ + P‖) cosh(2γ − γ
′
) − (P

′
‖ + P⊥ + 2P

′
⊥) cosh γ

′

√
(P‖ + 2P⊥ + P

′
⊥)2 sinh2(γ − γ

′
) − (P‖ − P

′
‖)2 cosh2(γ − γ

′
)

,

(102)

N1 = 1

2

(3P⊥ + P‖) sinh(2γ − γ
′
) − (P

′
‖ + P⊥ + 2P

′
⊥) sinh γ

′

√
(P‖ + 2P⊥ + P

′
⊥)2 sinh2(γ − γ

′
) − (P‖ − P

′
‖)2 cosh2(γ − γ

′
)

,

(103)

Similarly to the example from relativistic hydrodynamics,
consider the case when the normal vector is directed along

123



Eur. Phys. J. C (2022) 82 :378 Page 15 of 15 378

the Ox-axis Nμ = (0, 1, 0, 0), then from the Eqs. (91–92)
we find expressions for the velocities ux , u

′
x :

sinh γ = ux =
√√√√ (P⊥ − P

′
⊥)(P

′
‖ + P⊥ + 2P

′
⊥)

(2P⊥ − P‖ − 2P
′
⊥ + P

′
‖)(P

′
‖ + 2P⊥ + P

′
⊥)

,

(104)

sinh γ
′ = u

′
x =

√√√√ (P⊥ − P
′
⊥)(P

′
‖ + 2P⊥ + P

′
⊥)

(2P⊥ − P‖ − 2P
′
⊥ + P

′
‖)(P

′
‖ + P⊥ + 2P

′
⊥)

,

(105)
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