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Abstract We explore the shifted f (R)(∝ R1+δ) model
with δ as a distinguishing physical parameter for the study
of constraints at local scales. The corresponding dynam-
ics confronted with different geodesics (null and non-null)
along with their conformal analog are investigated. For null
geodesics, we discuss the light deflection angle, whereas, for
non-null geodesics under the weak field limit, we investi-
gate the perihelion advance of the Mercury orbit in f (R)

Schwarzschild background, respectively. The extent of an
additional force, appearing for non-null geodesics, depends
on δ. Such phenomenological investigations allow us to
strictly constrain δ to be approximately O(10−6) with a dif-
ference of unity in orders at galactic and planetary scales and
seem to provide a unique f (R) at local scales. Our results
suggest that the present form of the model is suitable for
the alternative explanation of dark matter-like effects at local
scales.

1 Introduction

Precision cosmology is imperfect without the precise mea-
surements in physical observations of the universe at differ-
ent scales and epochs. The extent of precision in observations
decides the extent of our knowledge of the physical system.
Unfortunately, the major portion of our observable universe
is not completely known to us in Einstein’s General Relativ-
ity (GR) framework. Also, Einstein’s gravity theory with a
positive cosmological constant (�) based on GR supported
by observations still cannot be regarded as a completely sat-
isfactory gravity theory because of the recent stronger-than-
before Planck’s observation of an accelerating universe (hav-
ing the shifted w from -1) and its inability to reconcile with
the quantum theory completely and also, more importantly,
the fundamental properties of the dark sector (dark energy
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and cold dark matter) are largely unknown besides its dis-
tribution. Thus, the observational evidences at different red-
shifts nurture the concept of modified gravity theory instead
of the Einstein’s physical gravity theory of GR with � (posi-
tive) and cold dark matter (CDM) [1–16]. The investigation
of deviation in Einstein’s GR theory has become an active
area of research under the study of precision concordance
cosmology with sufficient motivation to search for an alter-
native theory of gravity.

Brans and Dicke first explored the scalar-tensor approach
of gravity theory as an alternative to the Einstein–Hilbert (E–
H) gravity theory [17] and thereafter Buchdahl, Starobinsky
and others carried out the study of higher order Lagrangian
or non-linear Lagrangian for exploring the cosmic evolution
and also for the phenomenological explanation of the major
observational issues at different cosmological redshifts of the
universe [17–46]. The main implicit strength of the modified
gravity theory can be understood in two ways. On one hand,
it can address the dark sector (dark matter and dark energy)
with the different degrees of freedom, [32] and on the other, it
can precisely address the deviation from the existing gravity
theory i.e. Einstein’s GR theory with some new dynamical
features, which at present is very exciting issue in literature
[47–53]. Such alternate gravity theory may also pave a pos-
sible approach to study the unified theory of dark matter and
dark energy [54].

Along this direction, as motivated by the dynamical mod-
elling of massive test masses in f (R) gravity model by
Böhmer et al. [55] and also by our recently investigated
power-law f (R) model at low redshifts [49–51] and by oth-
ers [56–59] for the clustered dark matter explanation, we
further analyze here the strict phenomenological constraints
on the model parameter δ in R → R1+δ . We investigate the
constraints corresponding to different geodesics (null and
non-null) along with their conformal analogue at the galactic
and planetary scales under an idealistic consideration with
the f (R) modified potential explored in [57–59]. More-
over, our recent combined analysis of light deflection profiles
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via rotation curves for typical spiral massive galaxies may,
in principle, also distinguish the present f (R) model from
other profiles in standard dark matter model of galaxy (say
Pseudo-isothermal model) in terms of lensing angle [51].
With such motivation along with work of several authors
such as [55], we look for δ as a distinguishing parameter for
the phenomenological investigation of constraints through a
study of different geodesics with the conformal analogue.
Such power-law f (R) modification was initially carried out
for study of the cosmic evolution at very early epochs, late-
time epochs and for the explanation of galactic dynamics and
[55–59] and [60–62].

From the phenomenological point of view, it seems that,
using the baryonic matter content, the f (R) formulation has
scope for explanation of the most abundant dark sector of
the energy budget of our universe. From the mathematical
point of view motivated by the earlier Jordan–Brans–Dicke
Lagrangian [17], the f (R) action formulation can be recast
into the scalar-tensor form so that one can clearly see the
appearance of an extra scalar degree of freedom (scalar field)
which replaces the dark sector, unlike some gravity theo-
ries in which we have an ad hoc scalar fields [63]. Such an
extra f (R) scalar degree of freedom has non-minimal cou-
pling with the spacetime geometry. Thus, in alternate gravity
theories, gravitational interaction can also be mediated via
the scalar degrees of freedom (scalaron) together with the
spacetime metric tensor (gμν). Further, f (R) formulation
also has two characteristic length scales, of which one is the
Schwarzschild length scale and the other is the f (R) char-
acteristic length scale which has the advantage of providing
a screening mechanism [47,48] corresponding to the extra
force in high-density environments.

For investigating the physical observable effects of such
extra f (R) scalar degrees of freedom alone (scalaron as
scalar field particle), it is preferred in the literature that the
extra scalar degree of freedom should be coupled minimally
with the Einstein–Hilbert spacetime geometry (R) in the
action integral so that we can trace its dynamical influence
via solving the second-order field equations instead of fourth-
order field equations. This can be possible through the con-
formal analysis of spacetime metric tensor [63]. Thus, we
have two f (R) gravity actions before and after the confor-
mal transformation i.e., Jordan frame (because the dynami-
cal equations resembles the Jordan–Brans–Dicke gravity the-
ory) and conformal Einstein frame (because the dynamical
equations resembles with the Einstein–Hilbert gravity the-
ory). Also, pertaining to the physical observations at different
scales, which frame one should prefer is still under debate
and several research works have been reported from the early
investigations [64–69], till recent analyses [70–76]. Hence,
the well-known issue in the literature regarding the choice
of a true physical frame is long-standing i.e. which space-
time metric tensor among the conformally related (gμν or

g̃μν ) should one may choose for representing the geometry
of spacetime pertaining to the physical observations. Some
scientists claim that both frames are equivalent whereas oth-
ers claim opposite [73–76]. The issue can only be settled
down at the classical level through the phenomenological
investigations of the different physical systems.

Several authors had explored this issue before without
any firm discussions regarding the most profound physi-
cal observations confronted with different geodesics (null
and non-null) along with its conformal analog under the
shifted (R → R1+δ) Einstein–Hilbert theory at local scales.
Therefore, together with discussions on different confor-
mally related geodesics, we also explore the nature of an
additional force in terms of f (R) model parameter δ. We
further envisage this shifted parameter (δ) as a distinguishing
tool for the study of motion at different geodesics to impose
the strict constraints on the f (R) model through observa-
tions.

We also acquired the motivation to explore the bare effects
of f (R) modification at different scales from some pre-
existing resources. These include the analysis about the limit
to GR in f (R) theory of gravity by Olmo [77], study of
f (R) model constraints at different scale by Hu and Sawicki
[40], the early and recent investigation of the Yukawa-like
potential in f (R) theory [78,79], study of power-law f (R)

gravity theory [56–59], recent investigation of an uncertainty
in the GR prediction for the Mercury orbit under the current
(MESSENGER) and planned (the European-Japanese Bepi-
Colombo) missions [80–84], the analysis of Yukawa type
potential in the Schwarzschild-like background for perihe-
lion precession of planets to address the gauge bosons as a
possible candidate of fuzzy dark matter [85] and the rela-
tivistic effects and dark matter in the Solar system through
the observations of planets and spacecraft [86].

In the present work, we study the deviations in GR in the
form R1+δ (δ being the dimensionless physical observable
quantity). Instead of investigating the Yukawa-like correc-
tion potential as done by other authors [78,79], we explore
the bare f (R) effects in the form of δ for various observa-
tions without including any versions of the dark sector. Such
form can be modelled in the f (R) gravity framework. Also,
since physical observations of the system are confronted with
different geodesics, we obtain its conformal analogue and
investigate the deviations at different scales. For instance,
we study the geodesics (null and non-null) along with their
conformal analogue at local scales under ideal considerations
and obtain the strict constraints on δ at galactic and planetary
scales. Such constraints are strict in the sense that for orbital
motions at local scales, δ can be physically represented as
v2
orbital/c

2 with known vorbital [55]. Further, we explore the
extent and nature of an additional force on the test mass due
to the shifted f (R) modification parameterized by δ. The
present paper is organized in different sections as follows.
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In Sect. 2, we discuss dynamical f (R) field equations with
reference to the Jordan and Einstein frames. In Sect. 3, we
discuss the parametrization for geodesics and investigate the
null geodesics for the conformally consistent light deflection
angles with δ � 1 due to massive spiral galaxies as a lens.
In Sect. 4, we discuss the non-null geodesics and investigate
its Newtonian limit for the explanation of additional force
in f (R) theory. Further, we explore it for the conformally
related orbital precession of planet (Mercury) at the solar
system scale and analyse and diagnose the tight constraint
via specifying δ as v2

orbital/c
2. We end with the discussion

and concluding remarks on results about the constraints in
Sect. 5.

Throughout the paper, we follow the signature of the
spacetime metric as (−, +, +, +) and indices μ (or ν) = (0, 1,
2, 3).

2 f (R) gravity and conformally related field equations

Lovelock’s theorem suggests a possible modification to the
gravity theory. Accordingly, Einstein’s gravity theory of GR
is unique theory of gravity, if we demand [87]: (i) the metric
tensor (gμν) is the only field, (ii) invariance under diffeomor-
phism, (iii) the equation of motion is second order, and (iv)
to work with four dimensions.

Any violation of one of these assumptions will provide an
alternative or modified gravity theory. f (R) gravity theory
focuses on the metric tensor and equations of motion. The
metric tensor (gμν) is not the only field (but also scalar field)
and also the equations of motions are not second order (but
becomes forth-order) in f (R) gravity theory [36,37].

We consider the 4-dimensional action integral having the
gravity Lagrangian density of some general function f (R)

of the Ricci scalar with the usual standard matter action in
units of c = h̄ = 1 as

A = 1

2

∫ √−g

[
1

8πGN
f (R)

]
d4x + Am(gμν,�m), (1)

where g is the determinant of the metric tensor gμν , 8πGN is
the Einstein’s gravitational constant with GN the Newtonian
gravitational constant, and Am is the action of the standard
matter part with matter field �m .

Varying the action (1) with respect to gμν , we obtain the
generalized Einstein field equations given by

F(R)Rμν − 1

2
f (R)gμν − ∇μ∇νF(R)

+gμν�F(R) = κ2Tμν, (2)

where F(R) ≡ fR = ∂ f
∂R , Tμν is the energy-momentum

tensor for the standard matter and κ2 = 8πG = M−2
pl with

Mpl as the Planck mass.

We can also write the gravity Lagrangian density of Eq. (1)
similar to the Jordan–Brans–Dicke gravity theory [17] whose
action is given as

AJ =
∫ √−g

[
1

2κ2 RF(R) −U

]
d4x, (3)

where U = RF(R)− f (R)

2κ2 .
From the action written in the form of Eq. (3), we can

see that the extra scalar degrees of freedom in the form
of F(R) are non-minimally coupled with the geometry (R)
and have the similar form as observed in the Jordan–Brans–
Dicke gravity action [17]. One can also explore Eq. (1) in
Helmholtz-Jordan frame and obtain the same f (R) action
which have non-vanishing second derivative of f (R) w.r.t. R
[19,20]. We can perform conformal re-scaling of the space-
time metric tensor to explore further the dynamics contained
in the extra scalar degrees of freedom.

Therefore, following the well established procedure of
conformal transformation of the scalar-tensor theory [63],
the conformal map from the 4-dimensional spacetime mani-
fold MJ with Jordan frame metric gμν to the 4-dimensional
spacetime manifold ME but with Einstein frame metric g̃μν ,

g̃μν = 	2gμν = F(R)gμν, (4)

along with

R = 	2[R̃ + 6�̃ω − 6g̃μν∂μω∂νω], (5)

whose second term (within square bracket) vanishes when
Eq. (5) is used in the action (3) by following the Gauss’
theorem of total derivative which transforms the action (3)
in Einstein frame as

AE =
∫

d4x
√−g̃

[
1

2κ2 R̃ − 6g̃μν∂μω∂νω − V (ω)

]
, (6)

where

V (ω) = U

2F2 = RF − f

2κ2F2 (7)

is the scalar potential term written in parametric form for gen-
eral f (R) model which has non-vanishing second derivative
and ω ≡ ln 	, 	 being the conformal factor.

Here, in this section, instead of considering a new para-
metric scalar field1 (φ), we work out with the action (6) in
its simplest form and explore its field equations.

The field equations in this frame are obtained by varying
Eq. (6) w.r.t the metric tensor (g̃μν) and the scalar field (ω)
which are given as [88]

G̃μν = 6

[
∇̃μω∇̃νω − 1

2
g̃μν(∇̃ω)2

]
− g̃μνV (ω), (8)

1 The linear canonical action with minimally coupled scalar field is

obtained by defining a new scalar fieldκφ(≡
√

3
2 ln F)withω = κφ

√
1
6

[49].
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and

�̃ω = 1

6
V ′(ω). (9)

Now, one can obtain the field equations by transforming
Eqs. (8) and (9) back to notation (without tilde) in the Jordan
frame as [88]

Gμν = [−2∇μ∇νω + 4∇μω∇νω
] − gμνW (ω), (10)

where

W (ω) = f + RF

6F
V ′(ω). (11)

and

�ω = e2ω

6
V ′(ω) + 2(∇ω)2. (12)

Hence, we obtain the conformally related equations.
Thus, one can mathematically transform set of equations

between the two versions of frame with gμν or g̃μν . But their
physical equivalence is still under debate [65–67,70–76] and
can be settled down through the phenomenological investiga-
tions. We wish to obtain the precise constraints through con-
formal analysis of the f (R) theory with the physical obser-
vations corresponding to different geodesics.

Therefore, we investigate the null and non-null geodesic
equations at the local scales. We then explore the light deflec-
tion angle due to typical massive galaxies and also the perihe-
lion advance of the planet like Mercury’s orbit in the shifted
f (R) model with parameter δ.

3 f (R) conformal investigation of geodesics and
phenomenology for null geodesics

The conformal transformation generalizes the spacetime
metric according to the form of f (R) (see Eq. 4). Here,
we investigate the geodesic equations in different ways i.e.,
under the re-parametrization and under the conformal analy-
sis for addressing the null and non null dynamics. We express
its conformally shifted parameter with new parameter (ρ)
instead of using tilde notations. The statement can be under-
stood as the action is re-parametrization invariant, so it is pos-
sible to express the geodesics (which is a geometrical entity)
with different parameter, say λ. For instance, the geodesics
equations in terms of proper time can be written for the mate-
rial particle following the curve (xγ (τ )) as,

d2xγ

dτ 2 + �γ
μν

dxμ

dτ

dxν

dτ
= 0, (13)

In terms of new parameter λ, we can express (13) as,

d2xγ

dλ2 + �γ
μν

dxμ

dλ

dxν

dλ
+ dxγ

dλ

d2λ

dτ 2

dτ

dλ
= 0, (14)

Thus, we obtain the generalized equation for geodesics
(xγ (λ)).

The affine or non-affine nature of the newly assigned
parameter can be traced if it is expressible in terms of the
old parameter (τ ) as τ → τ(λ) (or possibly vice-versa). So,
on switching from xγ (τ ) to xγ (λ), if τ and λ has a linear rela-
tion, then only we can recover the original geodesics equa-
tions (13). Such parameters in GR literature can be assigned
as affine parameters.

Now, if xγ (λ) represents the curves in gμν , then under
Eq. (4), the Levi-Civita connections in g̃μν have the following
relation with the Levi-Civita connections in gμν as,

�γ
μν(g̃μν) = �γ

μν(gμν) + δγ
ν ∂μ(ln 	) + δγμ∂ν(ln 	)

− gμν∂
γ (ln 	).

(15)

Thus, the geodesic equation now gets conformally trans-
formed under Eq. (4) and is given as,

d2xγ

dλ2 + �γ
μν

dxμ

dλ

dxν

dλ
+ 2

d

dλ
(ln 	)

dxγ

dλ

− ∂γ (ln 	)gμν

dxμ

dλ

dxν

dλ
= 0.

(16)

From this equation, it becomes clear that if xγ (λ) repre-
sents the geodesics in gμν , then it may not be a geodesic in
g̃μν . Therefore, for the curve xγ (λ) in g̃μν , the parameter λ

must also be conformally shifted.
It is interesting that Eq. (16) resembles the generalized

geodesic equation (14) but under the f (R) conformal trans-
formation and hence it represents conformally modified
geodesics in f (R) theory. The nature of its parameter λ in
terms of conformal shifting or affine (non-affine) as argued
for Eq. (14) can be traced for the null and non-null cases. For
the null case, the last term of conformally modified geodesic
equation (16) vanishes because gμνuμuν = 0. So, Eq. (16)
gets reduced to

d2xγ

dλ2 + �γ
μν

dxμ

dλ

dxν

dλ
+ 2

d

dλ
(ln 	)

dxγ

dλ
= 0. (17)

Further, to trace the conformal shift (or affine nature) of
parameter λ, we reduce the Eq. (17) as argued for Eq. (14).

Therefore, we re-parameterize the Eq. (17) under λ → ρ,
with ρ as a new parameter (conformally shifted), and then it
is given as,

d

dρ

(
dxγ

dρ

dρ

dλ

)
dρ

dλ
+ �γ

μν

dxμ

dρ

dxν

dρ

(
dρ

dλ

)2

+ 2
dxγ

dρ

dρ

dλ

d

dρ
(ln 	)

dρ

dλ
= 0.

(18)

We find that, if the parameter ρ has a conformal relation
with λ as,

dρ

dλ
= 	−2, (19)
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then under such conformal relation, Eq. (18) becomes,

d2xγ

dρ2 + �γ
μν

dxμ

dρ

dxν

dρ
= 0. (20)

Thus, the geodesics of particles having zero rest mass remain
unaffected for the conformally related spacetime equation (4)
in f (R) theory. Hence, ρ can be regarded as a conformally
shifted (or an affine) parameter. Therefore, the conformally
transformed spacetime metric exhibits the same causal struc-
ture.

Now, for the phenomenological study of null geodesics,
we explore the light deflection angle due to a typical spiral
massive galaxies. Following [57–59], let us consider a static
Schwarzschild-like metric element outside the source under
the 4-dimensional spacetime with c = 1 as

ds2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2 θdϕ2), (21)

where the quantities A(r) and B(r) act like the functions of
weak gravitational potential (�). The actual form of poten-
tials can be determined via solving the vacuum f (R) field
equations (2) for the specific function of Ricci scalar, f (R)

entering in the generalized Einstein–Hilbert gravity action
integral (1).

Under the conformal transformation (4), Eq. (21) becomes

ds̃2 = − Ãdt2 + B̃dr̃2 + r̃2(dθ2 + sin2 θdϕ2). (22)

Now, to calculate the deflection angle in f (R) gravity
theory, we must know the complete form of metric elements
(Eqs. (21) or (22)) or the form of the effective potential. For
the investigation of light deflection angle, we closely follow
the references [57,58]. It becomes clear from the discussions
of [57] that the formal expression for the total deflection
angle of light ray (following null geodesics) in f (R) gravity
theory must remain the same under the weak field limit of
Schwarzschild-like metric. The components of such metric
critically depend upon the expression chosen for f (R).

Thus, for the physically motivated metric element like
Eq. (21) with f (R) obeying the power-law in Ricci cur-
vature scalar ( f (R) ∝ R(1+δ), wi thδ as the dimensionless
constant), we can conventionally write an explicit relation
among the metric components in the weak field limit as
A = 1

B = 1 + 2�e f f ective(r) and look for a solution of
f (R) field equations.

For a point-like baryonic mass M in f (R) background, we
look for a solution of vacuum f (R) field equations (2) with
the effective gravitational potential (�e f f ective) that may be
written as [58]

�e f f ective(r) ≈ −GM

2r

[
1 +

(
r

rc

)β
]

, (23)

where β and rc are the free parameters.

The main motivation to look for such solution of f (R)

field equations (2) in vacuum arises from the fact that the
fourth-order f (R) theories induce modifications to the grav-
itational potential by altering the Newtonian 1/r scaling
[58,89]. Moreover, in metric formalism, the gravity the-
ory of order 2N possesses N characteristic length scales
[47,48,90]. For instance, Einstein’s GR is a second-order
metric theory of gravity, and so it has one characteristic
length scale which is the Schwarzschild length scale. f (R)

formulation is built on a fourth-order theory and it must
have two characteristic length scales, of which one is the
Schwarzschild length scale and the other is the f (R) charac-
teristic length scale appearing generally because of the extent
of power-law modification ( f (R) ∝ R(1+δ)) in the gravity
action integral.

In order to check whether the assumed Eq. (23) is indeed
a viable solution of vacuum f (R) field equations (2), or in
order to find the unknown components of the metric element
(21), i.e., functions A(r) and B(r), we first obtain and com-
bine the 00-vacuum component with the trace of the f (R)

field equations (2) in the absence of matter (Tμν = 0) that is
3�F(R)+ RF(R)−2 f (R) = 0, to obtain a single equation
given as

g00

[
F(R)R00

g00
− F(R)R

3
− F(R);00

g00
+ f (R)

6

]
= 0. (24)

Since g00 
= 0, so for f (R) ∝ R(1+δ), the above equation
becomes

R00(r) = 2δ + 1

6(1 + δ)
A(r)R(r) − δ

2B(r)

d A(r)

dr

d

dr
ln R(r),

(25)

while the trace equation becomes

�Rδ = 1 − δ

3(1 + δ)
R1+δ. (26)

Clearly, we can recover the Schwarzschild-like solution
with δ = 0.

Now, we have two non-linear coupled differential equa-
tions (25) and (26) for the two functions A(r) and B(r) which
are both solved for Eq. (23) if [58]

δ(β − 3)[−β(1 + β)V1η
β−3]δ×

(
1 + βV1P0

P1η

)
P1η = 0,

(27)

with η ≡ r/rc, V1 ≡ GM/c2rc and

P0 ≡ 3(β − 3)2(δ̄)3−(5β2 − 31β + 48)(δ̄)2

−(3β2 − 16β + 17)δ̄−(β2 − 4β − 5), (28)

P1 ≡ 3(β − 3)2(1 − β)(δ̄)3+(5β − 7)(β − 3)2(δ̄)2

−(3β3 − 17β2 + 34β − 36)δ̄+(β2 − 3β − 4)β,

(29)
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where δ̄ ≡ 1 + δ.
Equation (27) is identically satisfied for particular values

of δ and β. However, there are some simple considerations
that allow us to exclude such values. As a consequence, we
can look for a factored solution of Eq. (27) by solving

P1(δ̄, β)η + βV1P0(δ̄, β) = 0. (30)

In the limit to local scales as we are considering, V1(≡
GM/c2rc) � 1. Therefore, Eq. (30) gets reduced to

P1(δ̄, β)η = 0. (31)

It is clear that Eq. (31) is an algebraic equation for β as a
function of δ̄ with the following three solutions:

β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3δ̄−4
δ̄−1

,

12δ̄2−7δ̄−1−
√

p(δ̄)
q(δ̄)

,

12δ̄2−7δ̄−1+
√

p(δ̄)
q(δ̄)

,

(32)

where
p(δ̄) ≡ 36δ̄4 + 12δ̄3 − 83δ̄2 + 50δ̄ + 1, and
q(δ̄) ≡ 6δ̄2 − 4δ̄ + 2.

It is easy to check that, for δ = 0, the second expression
above gives β = 0, that is, the approximate solution reduces
to the Newtonian one as expected. Therefore, we work with
the second solution, i.e., with β given as

β =

⎡
⎢⎢⎢⎣

12(δ̄)2 − 7(δ̄) − 1−√
36(δ̄)4 + 12(δ̄)3 − 83(δ̄)2 + 50(δ̄) + 1

6(δ̄)2 − 4(δ̄) + 2

⎤
⎥⎥⎥⎦, (33)

for investigating the local dynamics of effective potential
given by Eq. (23).

Furthermore, we have also recently investigated the con-
straint on the model parameter δ to be O(10−6) from the
combined study of flatness profile of rotation curves and the
corresponding deflection angle profile in the halo of scalaron
cloud (instead of dark matter) surrounding the typical mas-
sive galaxies [35,37]. Böehmer et al., investigated the small
value of the power-law f (R) model [55] valid for the discus-
sion at local scale. Therefore, it is possible to rewrite Eq. (23)
in the narrowest range of δ and β for the study of local scale
dynamics. In the extremely narrow range, the orders of δ and
β are equal (Fig. 1).

Thus, we can express Eq. (23) in terms of f (R) model
parameter δ for small values as

�e f f ective(r) ≈ −GM

2r

[
1 +

(
r

rc

)δ
]

. (34)

Clearly, for δ = 0, we recover the GR Lagrangian along with
its relevant Newtonian potential.

Fig. 1 The plot shows the mutual behaviour of small values of δ and
β. It is clear that in the very narrow range, we can consider O(δ)≈O(β)

Fig. 2 The behaviour of �e f f diverges for δ > 1 (it has an unstable
profile), whereas δ < 1 has a suitable profile for the interpretation of
galactic dynamics with r

rc
> 1

The profile of δ concerning �e f f ective can be understood
from Fig. 2.

Thus, we prefer to work with the small values of model
parameter δ. Based on our recent investigation of constraints
on δ [35,37], we have β � 1 for δ � 1, (from Fig. 1), that is,
O(δ)≈ O(β). Also, since we are interested in the significant
effect of f (R) theory in removing the requirement for the
presence of dark matter and not in the accurate modeling
of the lens system, we assume that the lens is spherically
symmetric, point-like system and study the geodesic, i.e., null
geodesics (for lensing angle investigation) in contrast to the
extended mass profile explored by Capozziello et al. This is
the main reason for distinction of the investigated constraints
on δ (or β) from the other references as in [58,59].

Under the conformal transformation r̃ = 	r (obtained
through Eqs. (21) and (22)), the effective potential (Eq. (34))
can be conformally shifted on making use of Eq. (4) in the
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weak field limit and is written as,

�e f f ective(r̃) ≈ −GM

2r̃

(
1 + φ(r̃)√

6MPl.

)[
1 +

(
r̃

r̃c

)δ
]

,

(35)

where φ(r̃) is the scalar field in the Einstein frame. Further,
with Eq. (4) under the footnote (1) for f (R) = R1+δ

Rδ
(c)

with

R(c) as a weight constant having dimension of Ricci Scalar
(R), we have

R = R(c)

⎡
⎣eκφ

√
2
3

1 + δ

⎤
⎦

1
δ

. (36)

In the weak field limit, κφ � 1 with R
R(c)

normalized to
unity, we have

δ = 2φ(r̃)√
6Mpl.

. (37)

Thus, Eq. (35) can be rewritten on using Eq. (37) as,

�e f f ective(r̃) ≈ −GM

2r̃

(
1 + δ

2

) [
1 +

(
r̃

r̃c

)δ
]

. (38)

The light deflection angle for a spherically symmetric lens
(a typical massive spiral galaxy) with the effective potential
(Eq. (34)), in f (R) background is given as [57]

α = 2GM

c2rc

(
ξ

rc

)−1
[

1 +
(

ξ

rc

)δ √
π(1 − δ)�(1 − δ

2 )

2�( 3
2 − δ

2 )

]
,

(39)

where, ξ is a two-dimensional impact parameter, G is the
Newtonian gravitational constant (= 4.3 × 10−6 kpc km2

sec−2 M −1� ), rc is fundamental scaling parameter in f (R)

theory apart from the Schwarzschild length scale [47,48] and
M is galaxy mass in solar mass unit. The famous classical
result of light deflection angle is recovered for δ = 0.

For the conformally transformed effective lens potential
(Eq. (38)), the light deflection angle will be

α̃ = 2GM(1 + δ
2 )

c2r̃c

(
ξ̃

r̃c

)−1

×
⎡
⎣1 +

(
ξ̃

r̃c

)δ √
π(1 − δ)�(1 − δ

2 )

2�( 3
2 − δ

2 )

⎤
⎦ . (40)

The profile of net deflection angles according to the
Eqs. (39) and (40) is plotted in Figs. 3 and 4.

Thus, it becomes clear by the profile of net light deflection
angles from different figures (Figs. 3, 4) to choose the nar-
row values of δ(� 1) for conformal equivalence. The small
(about 10−6) value of δ is also recently confirmed from our
study of galactic dynamics [50,51].

Fig. 3 The plot shows the behavior of the two conformally related
deflection angle profiles w.r.t δ < 1 when 2GM

c2rc
is normalized to unity

for the scaled impact parameter, ξ
rc

(> 1). The solid (Black) curve cor-
responds to α, whereas the dashed curve corresponds to α̃. Here, the left
wing of both deflection angle curves (α and α̃) seems to be conformally
consistent for δ � 1

Fig. 4 The curve is plotted for smaller values of δ(� 1) under the
convention used in Fig. 3. It is interpreted from the curve that the profile
of deflection angle seems to be observationally as well as conformally
consistent, i.e., the profile of the two deflection angles (α and α̃) are
conformally equivalent

Therefore, to provide a the physical interpretation, we
explore the small values of δ for the light deflection angles
due to the typical massive spiral galaxy system acting as a
point-like lens and trace it with the known data of physical
observations of lensing for a few galaxies culled from [91]
and references therein.

For instance, the quantitative analysis of the net modified
deflection angle can be explored by considering the case of
an object having a solar mass unit (like a typical massive
spiral galaxy) in the galactic halo (halo of scalaron cloud due
to the f (R) background) acting as a weak lens for the light
rays coming from the source star positioned in the external
galaxy, like the Magellanic Clouds.

Figure 5 shows the profile of deflection angles plotted with
smaller value of δ(� 1) for different typical massive galax-
ies acting as a point lens. The diagram for the light deflec-
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Fig. 5 The variation of the light deflection angles (Eqs. (39) and (40))
as a function of the scaled impact parameter has been plotted together
with the data from [91] with δ ≈ O(10−6). The dashed and solid
horizontal lines correspond to the minimum and maximum values of
the deflection angles observed for the considered data sample of typical
massive galaxies [91]. The plots that a galaxy with larger mass has a
bigger deflection angle. For smaller value of δ, the f (R) contribution
is more concentrated in the vicinity of baryonic mass with ξ/rc < 1,
and thus we have a decreasing profile of deflection angle in the galactic
halo of scalaron cloud background with ξ/rc > 1

tion angle consistently indicates that a galaxy with larger
mass has a larger deflection angle. The light deflection angle
decreases in the halo of scalaron cloud background (or f (R)

background) surrounding the galaxies with increasing value
of the scaled impact parameter, i.e., ξ/rc > 1. Indeed, this is
due to the fact that for small value of δ(� 1), the f (R) contri-
bution is more concentrated in the close vicinity of baryonic
mass with ξ/rc < 1. The observed profile of deflection angle
for the galaxies [91] is in agreement with the f (R) model for
δ ≈ O(10−6) explored here. Thus, the conformally related
deflection angles seem to be physically equivalent for small
values of δ [51,91].

We have also plotted in Fig. 6 the deflection angle for typ-
ical massive galaxies of mass M , as taken in Fig. 5 in GR
(with δ = 0). Of course, here, we do not intend to compute
M from the deflection angle, rather, on the other hand, for the
known typical galaxy masses (in solar mass units) with differ-
ent impact parameters, we have plotted the deflection angle
in Fig. 6. It is clear from the plot that as the impact parameter
increases, the deflection angle decreases for a known galaxy
mass.

An important point to draw attention here is that the extent
of δ can also be probed directly with the study of orbital
motion of neutral hydrogen clouds (as a test particle) in stable
orbits far from the visible extent of typical spiral galaxies with
δ = v2

orbital/c
2 taking | vorbital |≈ 220 − 300 km/s [55].

Fig. 6 The plot shows the deflection angle (in arcsec) as a function of
lens mass M in the GR theory with δ = 0 in Eq. (39). The horizontal
(dashed) gray lines correspond to the minimum and maximum values
of the deflection angles observed for the considered different typical
massive galaxies of mass M as in Fig. 5 [91]. We plot the curves for
two typical impact parameter values 6 kpc and 12 kpc, respectively.
It is seen that as the impact parameter increases, the deflection angle
decreases for a particular galactic mass

4 f (R) conformal non-null geodesics analysis and
phenomenology for perihelion shift

The uncertainty in the GR predicted results of Mercury’s orbit
[80–83] as well as the prospects of the upcoming probes [84]
motivate us to study the Mercury’s orbit in f (R) theory in
order to investigate the bare effect of deviation (δ) at the
planetary scale, i.e., R → R1+δ .

Earlier investigation for the present case was done with
Yukawa-like potential in f (R) theory [78,79]. Unlike deflec-
tion of light, here the case is that an object (test mass) never
gets out to infinity where the spacetime metric is asymptot-
ically Minkowskian. Hence, for the study of f (R) confor-
mal non-null geodesics, we start from Eq. (16). Under this
case, the last term of Eq. (16) does not vanish for the non-
relativistic material particles having non-zero rest mass and
so it is not further possible to reduce the Eq. (16) to the
original one (13) by using different conformal relations like
Eq. (19). Thus, Eq. (16) suggests that under the conformally
related f (R) spacetime (Eq. (4)), the non-null trajectories
experience an extra force for a unit test mass. This extra force
can be associated with a new carrier particle. In f (R) gravity
theory, this new particle will be identified as the scalar field
particle called scalaron [36,92].

Let us investigate the non-relativistic case of Eq. (16) for
the material particle (non-zero rest mass) tracing the curve
xγ (τ ). For mathematical convenience, we normalize its last
term, gμν

dxμ

dτ
dxν

dτ
= −1 [93]. Thus, Eq. (16) can be re-
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written as,

d2xγ

dτ 2 + �γ
μν

dxμ

dτ

dxν

dτ
+ 2

d

dτ
(ln 	)

dxγ

dτ

+ ∂γ (ln 	) = 0,

(41)

In the non-relativistic limit with γ = i (space coordinates)
one should get the Newtonian equation with the conventional
gravitational force [93]. Therefore, Eq. (41) has the follow-
ing form,

d2xi

dτ 2 + �i
μν

dxμ

dτ

dxν

dτ
+ 2

d

dτ
(ln 	)

dxi

dτ

+ ∂ i (ln 	) = 0,

(42)

Therefore, under the non-relativistic Newtonian limit,
Eq. (42) becomes,

d2xi

dτ 2 = −[∂ i� + ∂ i (ln 	)] = −[ �∇3D� + �∇3D(ln 	)].
(43)

Now, if −�∇3D� is the conventional (or standard) force of
gravity, then under the conformal transformation of space-
time metric (Eq. (4)), we have an additional force on the unit
test mass,

�F	 = −�∇3D(ln 	), (44)

where 	 =
(

∂ f (R)
∂R

) 1
2

is the general conformal factor of the

f (R) theory.
Clearly, the strength of such extra force will depend upon

the extent of f (R) model parameter (δ) and vanishes for
δ = 0. Also, in contrast to the Newtonian gravitational force,
it dies off in strength slowly as,

�F	 = − fRR
2 fR

Rr = δ(3 − δ)

2r
r̂ , (45)

where, fRR = ∂F
∂R , Rr = ∂R

∂r and R is the Ricci scalar cur-
vature corresponding to the metric equations (21) with (34).
It becomes clear from Eq. (45) that the suppression of such
extra force depends on the constrained values of δ which,
from the observations in high-density regions, must be very
small.

It is concluded from the non-vanishing value of R given
as,

R = δ(3 − δ)
GM

r3 , (46)

that outside the source, the value of Ricci curvature scalar R
depends on the model parameter δ and vanishes for δ = 0 in
GR theory, and hence the corresponding force also vanishes.
As it is well known that a deviation from the 1

r2 Newtonian
force is responsible for a perihelion advancement of Mer-
cury’s orbit (explained observationally by Einstein’s gravity
theory), therefore, any modification in Einstein’s GR theory

must be much smaller for a viable phenomenological inter-
pretation of the present case.

Now, for the study of f (R) conformal non-null geodesics
under an idealized consideration of system, we explore the
time-like orbit of Mercury at the Solar system scale.

We simplify the problem in f (R) theory by using the
corresponding symmetries and write the modified gravity
Lagrangian following Eq. (21) as,

2L = −(1 + 2�e f f ective)ṫ
2

+(1 + 2�e f f ective)
−1ṙ2 + r2ϕ̇2, (47)

where �e f f ective is given by Eq. (23) and the dot denotes
differentiation w.r.t the proper time (τ ).

The (ϕ) and (t) equations following from this Lagrangian
are given by using Euler’s Lagrangian formalism as,

r2ϕ̇ = l, (48)

and

(1 + 2�e f f ective)ṫ = k, (49)

where, l and k are constants. The (r) equation can be simpli-
fied for material particle, with c = 1 as,

1= − (1 + 2�e f f ective)ṫ
2 + (1 + 2�e f f ective)

−1ṙ2+r2ϕ̇2.

(50)

Dividing throughout by ϕ̇2, and using Eqs. (48) and (49),
we obtain,
(
dr

dϕ

)2

= −r2(1 + 2�e f f ective) + r4

l2

×
(
k2 + 1 + 2�e f f ective

)
. (51)

Now, defining a new variable as,

u ≡ 1

r
, (52)

and(
dr

dϕ

)
= − 1

u2

du

dϕ
. (53)

Thus, Eq. (51) can be written as,
(
du

dϕ

)2

= 1

l2

[
(k2 + 1) − 2GMu

(
1

2
+ 1

2

u−δ

r δ
c

)]

−u2
[

1 − 2GMu

(
1

2
+ 1

2

u−δ

r δ
c

)]
, (54)

where M is the mass of the Sun.
In contrast to the Newtonian classical equation of motion

[93], we have
(
du

dϕ

)2

= 2E

l2
+ 2GM

l2
u − u2, (55)
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we can rewrite the modified relativistic equation (54) as,

(
du

dϕ

)2

= 2E

l2
+

(−2GM

l2

)
u

(
1

2
+ 1

2

u−δ

r δ
c

)
− u2

+2GMu3
(

1

2
+ 1

2

u−δ

r δ
c

)
, (56)

where, 2E ≡ k2 + 1 with E as total energy of the sys-
tem. We observe that the relativistic correction factor (the
last term which is responsible for the advancement of peri-
helion motion of a planet) is also enhanced by modification.
Therefore, the δ inspired (i.e., R → R1+δ) f (R) modifica-
tion must be small enough not to violate the GR result, but
must still be large enough to probe the uncertainty, if any,
in various current or future projects to have an agreement
or disagreement with observations. Thus, such modification
may be compatible for explaining an uncertainty in the GR
prediction under the (MESSENGER) [83] and planned (the
European-Japanese BepiColombo) [84] missions.

If we denote 2GM by ε as a Schwarzschild length in units

of c = 1 and ε̄ = ε
(

1
2 + 1

2
u−δ

rδ
c

)
as a modified Schwarzschild

length, then (56) can be written as,

(
du

dϕ

)2

= ε̄u3 − u2 − ε̄
u

l2
+ 2E

l2
. (57)

Clearly, for δ = 0, we recover the GR differential equation
of motion and hence, the shift in perihelion can be obtained
through the standard perturbation approach to the Newtonian
solution [93].

Now, to determine the shift in perihelion, we solve Eq. (57)
by equating it to zero, since for perihelion and aphelion ϕ

is fixed. Actually, this suggests different positions. Since
Eq. (57) is a cubic equation, so it has u1, u2 and u3 as three
different solutions or roots. But the semi-classical observed
problem has bounded solution between perihelion (u1) and
aphelion (u2). This means that among the three solutions, one
solution must be an non-physical. Therefore, if we assume
that u3 as an non-physical solution, then we must eliminate
it from Eq. (57) for the study of bounded motion.

From Eq. (57), it is possible to replace the right hand side
with the three roots, viz., u1, u2 and u3 as,
(
du

dϕ

)
= [ε̄(u − u1)(u − u2)(u − u3)] 1

2 . (58)

Under the assumption of bounded motion, u1 ≤ u ≤ u2,
Eq. (58) can be rewritten as,
(
du

dϕ

)
= [ε̄(u − u1)(u2 − u)(u3 − u)] 1

2 , (59)

To eliminate the assumed non-physical solution u3 from
Eq. (59), we must impose a boundary condition on the three
solutions.

Since u has the dimension of inverse of length, ε̄ has the
dimension of length. Because u1 and u2 are basically consid-
ered as two roots of Eq. (55), so u1+u2 represents the inverse
length of major axis [93] and if u3 is positive then u1+u2+u3

must be a large in contrast to modified Schwarzschild length
ε̄. So, the plausible boundary condition can be constructed
as,

u1 + u2 + u3 = 1

ε̄
. (60)

From Eqs. (59) and (60), for the bounded motion, the
change in the angle between u1 and u2 is,

| �ϕ | ≈
∫ u2

u1

(
1

(u − u1)(u2 − u)

) 1
2

×
(

1 + ε̄

2
(u + u1 + u2)

)
du

(61)

Let us now simplify Eq. (61) by defining two parameters
as,

α ≡ 1

2
[u1 + u2], (62)

and

β ≡ 1

2
[u2 − u1], (63)

Thus, following Eqs. (62) and (63), we have u1 = α − β,
u2 = α + β and (u − u1)(u2 − u) = [β2 − (u − α)2].

Now, Eq. (61) become,

| �ϕ |≈
∫ u2

u1

(
1 + ε̄

2u + ε̄α

[β2 − (u − α)2] 1
2

)
du. (64)

Further, Eq. (64) can be solved to give,

| �ϕ |≈
[
−1

2
ε̄(β2 − (u − α)2)

1
2 +

(
1 + 3ε̄

2
α

)
sin−1 u − α

β

]u2

u1

.

(65)

By using Eqs. (62) and (63), we get from Eq. (65),

| �ϕ |≈ π

(
1 + 3

2
ε̄α

)
. (66)

The twice of the left hand side of the Eq. (66) suggests
the angle between successive perihelion. The perihelion shift
can be computed as,

�ϕ = 2 | �ϕ | −2π. (67)

Thus, the required perihelion shift in f (R) gravity theory
is,

�ϕ = 3πε̄α = 3π(2GM)

(
1

2
+ 1

2

(
r

rc

)δ
)

×
(

1

2
(u1 + u2)

)
. (68)
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The last factor of above equation can be classically given
from the values of perihelion and aphelion in terms of semi-
major axis and eccentricity [93]. So, we can rewrite Eq. (68)
under the observed bounded motion as,

�ϕ =
6πGM

(
1
2 + 1

2

(
r
rc

)δ
)

c2a(1 − e2)
, (69)

where a is the semi-major axis, e is the eccentricity of the
orbit which for a planet like Mercury are available from the
observations and c is the speed of light. The last term in
the numerator of Eq. (69) indicates that deviation δ arising
due to modification in Einstein gravity under R → R1+δ ,
contributes to the perihelion shift within the permissible limit
and therefore, must be much small. Thus, the effect of such
modification must be able to probe the uncertainty in GR
result as suggested through various missions [80–84].

We investigate Eq. (69) for δ = 0 with the values of a ≈
58×109 m and e ≈ 0.2056 for Mercury precession about the
massive Sun, M ≈ 1.989 × 1030 kg and G = 6.672 × 10−11

m3/(kg-sec−2). The data is culled from NASA’s Solar System
Bodies [94,95]. With these values we get, �ϕ ≈ 0.5×10−6

radian per revolution or ≈ 0.10312′′ per revolution. As, the
periodic time of Mercury around the Sun is 88 Earth-days it
makes 365

88 ≈ 4.148 revolution per year, or 415 revolutions
in one century. Therefore, the advance of the perihelion of
Mercury in 1 century is 0.10312 × 415 ≈ 42.79 seconds of
arc. Thus, the GR result is fully recovered.

The relativistic conformal shift of the perihelion of Mer-
cury orbit can be written (following Eqs. (36) and (37)) as,

�ϕ̃ =
(

1 + δ

2

) 6πGM
(

1
2 + 1

2 ( r̃
r̃c

)δ
)

c2a(1 − e2)
. (70)

The profile of perihelion shift according to the Eqs. (69)
and (70) is plotted in Figs. 7 and 8 for different values of
f (R) model parameter δ.

It becomes clear from Fig. 7 that the perihelion shifts (�ϕ

and �ϕ̃) vary largely w.r.t. the small deviation in the f (R)

model parameter and also not observationally consistent with
δ < 1 . But, from Fig. 8, it is clear that for δ � 1 the
perihelion shift approximately attains an observable constant
value for �ϕ and �ϕ̃.

As a further interesting curiosity, we look for the number
of revolutions corresponding to the age of our Solar System.
For instance, for the 1 degree shift of the orbit, the time
taken will be 3600

42.98 ≈ 84 centuries. Now, for 360 degrees, the
required time is ≈ 3.028 millions of years (or 3, 028, 037
years). Of course, this is not too much at the cosmological
time scale. In about 5 billion years (during which Sun, Earth,
and other planets formed and evolved) before the present
epoch, the number of revolutions the axis of Mercury has
gone through is 5×109

3.028×106 ≈ 1651.

Fig. 7 The plot shows the behaviour of perihelion shifts for δ < 1
with r

rc
> 1. The solid (Black) curve shows that �ϕ increases with

increasing values of δ, whereas �ϕ̃ (the dashed curve) increases more
rapidly in contrast to the solid (Black) curve w.r.t. smaller δ. The narrow
vertical strip corresponds to the allowed smaller values of δ required for
conformal equivalence, whereas the horizontal narrow strip corresponds
to the observed values [80–83,94,95]

Fig. 8 Plot for the perihelion shift with extremely small values of δ.
It becomes clear that for δ � 1, the perihelion shift of Mercury orbit
seems to explain the observed result (42.98′′ per century)

According to Fig. 8, the perihelion shift can be success-
fully explained for δ ≈ O(10−7). Such constraint can be
directly probed via specifying the model parameter δ with
the orbital velocity of Mercury (48 km/s) as δ = v2

orbital/c
2.

Contrasting with the constraints explored by Zakharov et al.,
( δ ≈ 10−13) and Clifton ( δ ≈ 10−19) [56,96], our constraint
is at variance and corresponds to the extra force which drops
off as r−1. Such relativistic effects are likely to be detected
by different probes as discussed in [84]. It is also in close
approximation to the parameterized post-Newtonian (PPN)
estimates.

Thus, with such profile of δ (with extremely small value)
(Fig. 8), the additional fifth force given by Eq. (44) can be
approximated as a small, screened-off force at the Solar sys-
tem scales [40,97].

123



400 Page 12 of 14 Eur. Phys. J. C (2022) 82 :400

5 Summary and discussions

To summarise the paper, we have studied an approach to
model the deviations in Einstein–Hilbert GR action. Devia-
tions from Einstein’s GR theory are indeed predicted mostly
in various extra-dimensional theories. Contrasting alterna-
tives to Einstein GR is useful to understand precisely which
features of the theory have been tested in a particular experi-
ment, and also to suggest new experiments probing different
features. Such a study can be modeled in the f (R) gravity
framework. Therefore, we study the deviations in GR in the
form R1+δ with δ being the dimensionless physical observ-
able quantity. We focus on null and non-null geodesics at
local scales and explore them in conformal f (R) theory.
Our discussion shows that f (R) conformal transformation of
spacetime metric (gμν) leaves the null geodesic unchanged
(Sect. 3). On the other hand, the effect of such transforma-
tion for non-null geodesics produces an additional force on
the unit test mass which can be traced under the Newtonian
limit (see Eq. (43) or (44)). We discuss the extent of this
additional force in the f (R) Schwarzschild background and
investigate its relativistic effect on the perihelion advance of
Mercury’s orbit by obtaining the expressions for the f (R)

conformally related orbital precession of Mercury. We also
explore some features of the f (R) model for small deviations
in Figs. 1, 2, and 3, whereas in Figs. 4, 5, and 8 we investigate
the physical observations of the system confronted with dif-
ferent geodesics along with its conformal analog and explore
the deviation. The main motivation to study the deviation δ

in the extremely narrow value comes from the recent unified
investigation of galactic dynamics for the power-law f (R)

model [50,51,55] as well as from [40,56].
The extra force can be screened off in the high density

environment as it directly depends on δ with δ � 1 (Eq. (45))
and the observational results can be matched with small δ

(Fig. 8). Such deviation can be envisaged as a distinguishing
factor since δ can be specified as v2

orbital/c
2.

The phenomenological study of different geodesics, light
deflection angle for null geodesics, and perihelion advance
of mercury orbit for non-null geodesics (under an ideal con-
sideration2) along with its conformal analog at local scales
imposes the strict constraints on δ to beO(10−6)with a differ-
ence of unity in order at galactic and planetary scales (Figs. 4,
5 and 8). Such constraints are strict in the sense that for orbital
motions at local scales, δ can be physically represented as
v2
orbital/c

2 with vorbital known through observations. Our
recent analysis of the light deflection angle through rota-
tional curves may also, in principle, diagnose the explored
constraint for the null geodesic [51]. Also, for the lensing in

2 It is often stated in the literature that the relativistic perihelion advance
of Mercury is only a test of the vacuum Schwarzschild solution, as the
general relativistic effects can be derived simply from such metrics.

the halo of scalaron clouds background, we do not consider
any specific kind of scalaron halo mass profile (singular or
flat-core). This is due to the fact that the rotation curve data
might lack sufficient spatial resolution near the center of the
galaxy to distinguish unambiguously between a density pro-
file with a flat-density core and one with a singular profile.
We will attempt to address it in our future studies with the
data coming from the advanced probes [9,103].

Our analysis of perihelion advance of mercury orbit in
contrast to the work by other authors [56,94–96] shows the
new constraints within bare f (R) framework to be about
O(10−7) . Here, we do not consider the frame-dragging
effect on the metric. Since, different missions (surveys) have
reported an uncertainty in the GR result for the Mercury orbit
[80–84,94,95], so f (R) gravity theory may be a potential
candidate in this regard. Thus, the present model preserves
the same form for the explanation of local-scale dynamics
including the planetary scales, and hence proposes a unique
f (R) at the local scale. Our analysis provides a powerful
tool to obtain the precise constraints on the shifted parame-
ter modeled in f (R) gravity.

It is interesting to note that such small values for δ are
also consistent with cosmological constraints coming from
primordial nucleosynthesis [40,89,98].

In future studies, we will investigate the constraint on the
deviation parameter δ to provide a null test of dark energy
corresponding to the different observations and also for test-
ing whether the H0 tension can be solved within the f (R)

theory [101,102].
In addition to it, since all present or future projects aimed at

the detection of gravitational waves, including LIGO, Virgo,
and LISA are based on geodesic deviation equation, so we
will also extend our present work in future for the study of
binary systems and gravitational wave (GW) analysis.

The present status of the clustered (DM) and unclustered
(DE) dark sectors hypothesis and the modified gravity alter-
natives, deduce that there is a lack of definitive convincing
arguments in favor of any of the two concepts or particular
theories. All gravity models have some successful predictions
but also problematic comparisons with some observations
and experiments. Therefore, it seems that new observations
are necessary, especially on the scale of stars and planetary
systems.

The investigation of precise modification in the f (R)

model at early epochs has been attempted by several authors
[99,100]. The investigated f (R) model seems to be con-
sistent with the explanation of clustered dark matter-like
dynamics at local scales and therefore would bridge the gap
among the gravitational anomalies ranging from stellar to
galactic scales. Thus, our present findings are also in close
agreement with the recent analysis carried out by us at galac-
tic scales and provide a new phenomenological constraint for
the study of the perihelion advance of Mercury orbit.
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Hence, we conclude that for δ ≈ O(10−6) with a differ-
ence of unity in order, we have a unified f (R) gravity at local
scales.
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