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Abstract We discuss the Bayesian approach to the solution
of inverse problems and apply the formalism to analyse the
closure tests performed by the NNPDF collaboration. Start-
ing from a comparison with the approach that is currently
used for the determination of parton distributions (PDFs),
we discuss some analytical results that can be obtained for
linear problems and use these results as a guidance for more
complicated non-linear problems. We show that, in the case
of Gaussian distributions, the posterior probability density of
the parametrized PDFs is fully determined by the results of
the NNPDF fitting procedure. Building on the insight that we
obtain from the analytical results, we introduce new estima-
tors to assess the statistical faithfulness of the fit results in clo-
sure tests. These estimators are defined in data space, and can
be studied analytically using the Bayesian formalism in a lin-
ear model in order to clarify their meaning. Finally we present
results from a number of closure tests performed with current
NNPDF methodologies. These further tests allow us to vali-
date the NNPDF4.0 methodology and provide a quantitative
comparison of the NNPDF4.0 and NNPDF3.1 methodolo-
gies. As PDFs determinations move into precision territory,
the need for a careful validation of the methodology becomes
increasingly important: the error bar has become the focal
point of contemporary PDFs determinations. In this perspec-
tive, theoretical assumptions and other sources of error are
best formulated and analysed in the Bayesian framework,
which provides an ideal language to address the precision
and the accuracy of current fits.

1 Introduction

Inverse problems are the typical example of inference where
a model is sought starting from a finite-dimensional set of

a e-mail: tgiani@nikhef.nl (corresponding author)

experimental observations. These problems are notoriously
difficult, and often require trying to guess a continuous func-
tion, i.e. an element of an infinite dimensional space, from
a finite amount of data. As emphasised by Hadamard a long
time ago [1], it is easy to end up in a situation where we deal
with ill-posed problems, in the sense that the solution may
not exist, may not be unique, or may be unstable under small
variations of the input data. The determination of parton dis-
tributions from experimental data, or the reconstruction of
spectral densities from lattice QCD simulations, are just two
examples where these problems arise in particle physics. In
all these cases, finding a robust solution becomes very chal-
lenging, if not impossible, making these questions all the
more urgent, especially at a time when precision studies are
the ultimate challenge in order to highlight divergences from
the Standard Model.

A Bayesian approach provides an apter tool for address-
ing inverse problems. Starting from a prior distribution for
the model, which encodes our theoretical knowledge or prej-
udice, basic statistical tools allow us to determine the pos-
terior distribution of the solution, after taking into account
a set of experimental observations. The prior and posterior
probabilities encode our knowledge about the model before
and after incorporating the experimental results. There are
multiple advantages to this formulation: the inverse problem
is well defined, and the prior distribution ensures that all the
assumptions are explicit, while regulating the likelihood dis-
tribution.

Note also that probability measures can be defined in
infinite-dimensional spaces. In cases where we are looking
to determine a continuous function, the Bayesian approach
provides, at least in principle, a formulation of the problem
directly in terms of the posterior probability measure of the
model function. It is often convenient for practical reasons
to define a parametrization of the model function in terms
of a finite, albeit large, number of parameters and reduce the
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problem to a finite dimensional one. The price to pay for
this simplification is the introduction of some bias, which
needs to be understood and possibly quantified. An expres-
sive parametrization clearly helps in this case.

A Bayesian approach to inverse problems has been
actively developed by mathematicians for a long time, and
this development has dramatically accelerated in the last
decade. In this paper we aim at summarising the existing
framework and adapt it to analyse the fits of parton distri-
bution functions obtained by the NNPDF collaboration. We
review the Bayesian formalism in Sect. 2, where we define
the notation that will be used in the rest of the paper. We report
some known examples for illustrative purposes. Even though
these are well-known results, we find it useful to summarise
them in the context of our specific problem. In Sect. 3, we
try to connect the Bayesian approach with the NNPDF fits
based on a Monte Carlo methodology, where the distribution
of the PDFs is encoded in a set of fits to artificially generated
data, called replicas. We can anticipate here that, under the
hypotheses that the data are Gaussian and the model is linear,
the NNPDF procedure does characterise completely the pos-
terior probability density. When the model is non-linear two
modifications need to be taken into account. First of all the
analytical calculation that we present in Sect. 2.1 is no longer
possible, and one needs to rely on the fact that a linearization
of the model yields an accurate prediction. Even though lin-
ear models are known to provide good approximations, the
systematic errors introduced by this approximation are not
easy to quantify. There is also a more subtle effect that needs
to be taken into account. When working with linear models,
the minimization procedure is know to have a unique min-
imum, which can be computed exactly. Non-linear models
can be plagued by multiple minima, and more importantly
by inefficiencies of the algorithm in finding them. While it
would be foolish to ignore the limitations of the analytical
calculation, it is nonetheless very useful to have an explicit
result as a template to guide the analysis of our numerical
investigations.

In the NNPDF fitting framework, the posterior probability
of the parton distribution functions, is encoded in an ensem-
ble of fits to replicas of the data, where the data replicas
have been generated in order to reproduce the fluctuations
described by the experimental central values and uncertain-
ties. This bootstrap procedure propagates the data fluctua-
tions in the space of fitted PDFs. A successful fit should yield
robust confidence intervals for observables, in particular for
those that are more relevant for phenomenology.

The idea of closure tests is to test this procedure in a fit
to artificial data that have been generated from a known set
of input PDFs. In this case the underlying law is known and
we can check how the posterior distribution compares to the
underlying law. This is the basis of a closure test, which is
summarised at the end of Sect. 3. Closure tests have already

been used to test to validity of previous iterations of the
NNPDF methodology. Here we aim to refine some of the
pre-existing closure test estimators and with the help of fast
fitting methodology perform a more extensive study of how
faithful our uncertainties are. For this purpose we introduce in
Sect. 4 new estimators that allow us to quantify the quality of
our fits. These estimators are defined in the space of data and
need to be understood as stochastic variables that are charac-
terised by a probability density. Where possible, we use the
Bayesian formalism in order to compute analytically these
probability densities and compare with numerical results. In
order to perform analytical calculations we often need to
make some simplifying assumptions. While it is incorrect to
use the analytical results for making quantitative predictions
for the results of the realistic case of a non-linear fit, the
analytical results provide a guide to the interpretation of the
observed patterns. It is important to stress that what we test
in a closure test in terms of faithfulness, despite important
and non-trivial, does not fully validate the uncertainties of a
global fit: the artificial data used in a closure test are by con-
struction compatible between each other, because generated
starting from the same underlying law; this is not always the
case when considering global fits, where tensions between
different datasets can be present.

The results of our numerical studies are summarised in
Sect. 5, where we also compare the NNPDF4.0 methodology
introduced in the latest NNPDF fit [2] to the methodology
used by the collaboration in previous fits.

The Bayesian formalism, by providing posterior probabil-
ity distributions, paves the way to explore a number of issues.
We highlight in our conclusions some possible questions that
we defer to future studies.

2 Inverse problems

The problem of determining PDFs from a set of experimental
data falls under the general category of inverse problems, i.e.
the problem of finding the input to a given model knowing a
set of observations, which are often finite and noisy. In this
section we are going to review the Bayesian formulation of
inverse problems. It is impossible to do justice to this vast
subject here. Instead we try to emphasise the aspects that
are relevant for quantifying uncertainties on PDF determina-
tions.

2.1 Statement of the problem

The space of inputs is denoted by X , while R denotes the
space of responses. The model is specified by a forward map

G : X → R

u �→ r = G(u), (1)
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which associates a response r ∈ R to the input u ∈ X , where
we assume that X and R are Banach spaces.1 As an example
we can think of u as being a PDF, i.e. a function defined
on the interval [0, 1], and r a DIS structure function. The
structure function is related to the PDF by a factorization
formula involving perturbative coefficient functions:

r(x, Q2) =
∫ 1

x

dz

z
C(z, Q2)u(x/z, Q2). (2)

Note that in this example the forward map maps one real
function into another real function. In this case the space of
models X is the space of continuous functions defined on the
interval [0, 1], which satisfy integrability conditions. Even
though this is an infinite-dimensional space, it is possible to
define a probability measure on such a space and construct a
Bayesian solution to the inverse problem. In current determi-
nations of PDFs, the functional form of the PDF is dictated
by some kind of parametrization, with different parametriza-
tions being used by different collaborations. In all cases, the
space X is a finite-dimensional space, RNmodel , where Nmodel

is the number of parameters. In the case of the NNPDF fits
discussed below, the weights of the neural networks are the
parameters that determine the functional form of the PDFs.
Alternatively, one could think of a finite-dimensional repre-
sentation defined by the value of the PDF at selected values
of x , i.e. ui = u(xi ) for i = 1, . . . , Nmodel. Depending on
the context we will denote by u either the function u(x), or
the vector of real parameters that are used to determine the
function u(x). Disambiguation should hopefully be straight-
forward.

Experiments will not have access to the full function r but
only to a subset of Ndata observations. In order to have a for-
mal mathematical expression that takes into account the fact
that we have a finite number of measurements, we introduce
an observation operator

O : R → Y

r �→ y, (3)

where y ∈ Y is a vector in a finite-dimensional space Y of
experimental results, e.g. the value of the structure function
for some values of the kinematic variables x and Q2. In gen-
eral we will assume that y ∈ R

Ndata , i.e. we have a finite
number Ndata of real experimental values. The quantity of
interest is the composed operator

1 Banach spaces are complete normed vector spaces. We do not need
to get into a more detailed discussion here, but it is important to note
that working in Banach spaces allows us to generalise the results to
infinite-dimensional spaces of functions.

G : X → R
Ndata

G = O ◦ G, (4)

which maps the input u to the set of data. Taking into account
the fact that experimental data are subject to noise, we can
write

y = G(u) + η, (5)

where η is a random variable defined over RNdata with prob-
ability density ρ(η). We will refer to η as the observational
noise. In this setting, the inverse problem becomes finding
u given y. It is often the case that inverse problems are ill-
defined in the sense that the solution may not exist, may not
be unique, or may be unstable under small variations of the
problem.

In solving the inverse problem, we are going to adopt a
Bayesian point of view, as summarised e.g. in Ref. [3]: our
prior knowledge about u is encoded in a prior probability
measure μ0

X , where the suffix X indicates that the measure is
defined in the space of models, and the suffix 0 refers to the
fact that this is a prior distribution. We use Bayes’ theorem
to compute the posterior probability measure of u given the
data y, which we denote as μG

X . When the probability mea-
sure can be described by a probability density, we denote the
probability densities associated to μ0

X and μG
X , by π0

X and

πG
X respectively. Then, using Eq. (5), we can write the data

likelihood, i.e. the probability density of y given u,

πY (y|u) = ρ(y − G(u)), (6)

and Bayes’ theorem yields

πG
X (u) = πX (u|y) ∝ π0

X (u)ρ(y − G(u)). (7)

Even though the concepts that we have introduced so far
should sound familiar, it is worthwhile clarifying some ideas
and present an explicit case where all the probability densities
are carefully defined. This is best exemplified by considering
the case where both the observational noise and the model
prior are Gaussian. We assume that we are given a set of
central values y0 ∈ R

Ndata and their covariance matrix CY .
Then the prior probability density of the observable y is

π0
Y (y|y0,CY ) ∝ exp

(
−1

2
|y − y0|2CY

)
, (8)

where, similarly to the convention used above, the suffix
Y emphasises the fact that this is a probability density in
data space, and the notation explicitly reminds us that this
is the probability density given the central values y0 (and
the covariance matrix CY ). Similarly we can choose a Gaus-
sian distribution for the prior distribution of the input model,
characterized by a central value u0 and a covariance CX :
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π0
X (u|u0,CX ) ∝ exp

(
−1

2
|u − u0|2CX

)
. (9)

Following the convention above, we use a suffix X here to
remind the reader that we are looking at a probability density
in the space of models. Note that in the expressions above we
used the norms in X and R

Ndata respectively, and introduced
the short-hand notation

|a|2M =
∣∣∣M−1/2a

∣∣∣2
, (10)

where a denotes a generic element of X , R or RNdata . For the
case where a ∈ R

Ndata , we use the Euclidean norm and

|a|2M =
∑
i, j

ai M
−1
i j a j , (11)

where the indices i, j run from 1 to Ndata, which eventually
yields the usual expression for the χ2 of correlated data. Up
to this point data and models are completely independent,
and the joint distribution is simply the product of π0

Y and π0
X .

The forward map induces a correlation between the input
model and the observables, so we introduce a probability den-
sity θ that describes these correlations due to the underlying
theory,

θ(y, u|G) = δ (y − G(u)) , (12)

where the Dirac delta corresponds to the case where there are
no theoretical uncertainties. Theoretical uncertainties can be
introduced by broadening the distribution of y away from the
exact prediction of the forward map, e.g. using a Gaussian
with covariance CT ,

θ(y, u|G) = exp

(
−1

2
|y − G(u)|2CT

)
. (13)

In the context of PDF fitting a similar recipe to take into
account theoretical errors has recently been advocated in
Refs. [4,5]. Note that there are no rigorous arguments favour-
ing the assumption that theoretical errors are normally dis-
tributed; it is nonetheless a useful working assumption, and
a definite improvement compared to ignoring the theoreti-
cal errors altogether. The net effect of the theory errors is a
redefinition of the covariance of the data, which has no major
impact in our discussion, and therefore will be ignored. Tak-
ing the correlation θ(y, u|G) into account, the joint distribu-
tion of y and u is

πG(y, u|y0,CY , u0,CX )

∝ π0
X (u|u0,CX )π0

Y (y|y0,CY )θ(y, u|G). (14)

We can now marginalize with respect to y, neglecting theory
errors,

π
G
X (u|y0,CY , u0,CX )

∝
∫

dy π0
X (u|u0,CX )π0

Y (y|y0,CY )θ(y, u|G)

∝ π0
X (u|u0,CX )

∫
dy π0

Y (y|y0,CY )δ (y − G(u))

∝ π0
X (u|u0,CX ) π0

Y (G(u)|y0,CY ). (15)

We see that we have recovered Eq. 7. The log-likelihood in
the Gaussian case is simply the χ2 of the data, y0, to the
theory prediction, G(u):

− log π0
Y (G(u)|y0,CY )

= 1

2

Ndata∑
i, j=1

(G(u) − y0)i

(
C−1
Y

)
i j

(G(u) − y0) j . (16)

In the notation of Eq. 7

π0
Y (G(u)|y0,CY ) = ρ (G(u) − y0) , (17)

where in this case

ρ(η) ∝ exp

(
−1

2
|η|2CY

)
. (18)

The probability density πG
X (u|y0,CY , u0,CX ) was called

πG
X (u) in Eq. 7, where the suffix G is a short-hand to denote

the posterior probability in model space, taking into account
all the conditional variables. Hence, for the Gaussian case,
the result from Bayes’ theorem reduces to

πG
X (u) ∝ exp

[
−1

2
|y0 − G(u)|2CY

− 1

2
|u − u0|2CX

]

∝ exp [−S(u)] . (19)

Note that in the argument of the likelihood function we have
the central values of the data points y0 as given by the experi-
ments. Eq. (19) is the Bayesian answer to the inverse problem,
our knowledge of the model u is encoded in the probability
measureμG

X , which is fully specified by the densityπG
X . There

are several ways to characterise a probability distribution, a
task that becomes increasingly difficult in high-dimensional
spaces. As discussed later in this study, the NNPDF approach
is focused on the determination of the Maximum A Posteri-
ori (MAP) estimator, i.e. the element u∗ ∈ X that maximises
πG
X (u):

u∗ = arg min
u∈X

(
1

2
|y0 − G(u)|2CY

+ 1

2
|u − u0|2CX

)
. (20)
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For every instance of the data y0, the MAP estimator is com-
puted by minimising a regulated χ2, where the regularization
is determined by the prior that is assumed on the model u. We
will refer to this procedure as the classical fit of experimen-
tal data to a model. Note that in the Bayesian approach, the
regulator appears naturally after having specified carefully
all the assumptions that enter in the prior. In this specific
example the regulator arises from the Gaussian prior for the
model input u, which is normally distributed around a solu-
tion u0. The MAP estimator provides the explicit connection
between the Bayesian approach and the classical fit.

2.2 Comparison with classical fitting

Analytical results make the connection between the two
approaches more quantitative, and therefore more transpar-
ent. We are going to summarise these results here without
proofs, referring the reader to the mathematical literature for
the missing details. Working in the finite-dimensional case,
we assume

u ∈ R
Nmodel ,

y ∈ R
Ndata ,

and we are going to review in detail two examples from
Ref. [3], which illustrate the role of the priors in the Bayesian
setting. We report here the results in Ref. [3] because their
simplicity provides a striking example of the role of priors,
which is sometimes underestimated. It is particularly useful
to distinguish the case of an underdetermined system from
the case of an overdetermined one.
Underdetermined system The first case that we are going to
analyse is the case of a linear system that is underdetermined
by the data. The linear model is completely specified by a
vector of coefficients g ∈ R

Nmodel ,

G(u) =
(
gT u

)
. (21)

Assuming that we have only one datapoint, i.e. Ndata = 1,

y = (gT u) + η, (22)

where η ∼ N (0, γ 2) is one Gaussian number, whose prob-
ability density is centred at 0 and has variance γ 2.

For simplicity we are going to assume that the prior on
u is also a multi-dimensional Gaussian, centred at 0 with
covariance matrix CX . In this case the posterior distribution
can be written as

πG
X (u) ∝ exp

[
− 1

2γ 2

∣∣∣y − (gT u)

∣∣∣2 − 1

2
|u|2CX

]
, (23)

which is still a Gaussian distribution for u. The mean and
covariance are respectively

m = (CXg)y

γ 2 + (gTCXg)
, (24)

Σ = CX − (CXg)(CXg)T

γ 2 + (gTCXg)
. (25)

Because the argument of the exponential is a quadratic form,
the mean of the distribution coincides with the MAP estima-
tor. Hence in this case a fit that minimises the χ2 of the data
to the theory prediction yields exactly the mean of the pos-
terior distribution. It is instructive to look at these quantities
in the limit of infinitely precise data, i.e. in the limit γ → 0:

m
 = lim
γ→0

m = (CXg)y

(gTCXg)
, (26)

Σ
 = lim
γ→0

Σ = CX − (CXg)(CXg)T

(gTCXg)
. (27)

These values satisfy

(gTm
) = y, (28)

(Σ
g) = 0, (29)

which shows that the mean of the distribution is such that the
data point is exactly reproduced by the model, and that the
uncertainty in the direction defined by g vanishes. It should
be noted that the uncertainty in directions perpendicular to
g does not vanish and is determined by a combination of the
prior and the model, viz. CX and g in our example. This is
a particular example of a more general feature: for underde-
termined systems the information from the prior still shapes
the probability distribution of the solution even in the limit
of vanishing statistical noise.

It is interesting to analyse what happens when the prior on
the model is removed. For this purpose we can start from a
covariance in model space that is proportional to the identity
matrix,

CX = σ1, (30)

and take the limit σ → ∞. In this limit

m
 = y
g

(gT g)
, (31)

while the posterior covariance becomes

Σ
 = σ

(
1 − ggT

(gT g)

)
. (32)

This covariance is the projector on the subspace orthogonal
to g multiplied by σ . In the simple two-dimensional example
depicted in Fig. 1, choosing the direction of g as one of the
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Fig. 1 A linear model in a two-dimensional space is constrained by
a single data point y. Once the vector g is given, the model is fully
specified by the vector u, viz. y = gT u. All models u along the vertical
red line reproduce exactly the data point. In the absence of prior knowl-
edge, every model along that one-dimensional subspace is a legitimate
solution of the inverse problem, which is clearly underdetermined

basis vector, we obtain

Σ
 =
(

0
σ

)
, (33)

which shows that the error in the g direction vanishes, while
the error in the orthogonal subspace diverges as we remove
the prior.
Overdetermined system We are now going to consider an
example of an overdetermined system and discuss again the
case of small observational noise. We consider Ndata ≥ 2
and Nmodel = 1, with a linear forward map such that

y = gu + η, (34)

where η is an Ndata-dimensional Gaussian variable with a
diagonal covariance γ 21, and 1 denotes the identity matrix.
For simplicity we are going to assume a Gaussian prior with
unit variance for u, which yields for the posterior distribution:

πG
X (u) ∝ exp

(
− 1

2γ 2
|y − gu|2 − 1

2
u2

)
. (35)

The posterior is Gaussian and we can easily compute its mean
and variance:

m = (gT y)

γ 2 + |g|2 , (36)

σ 2 = γ 2

γ 2 + |g|2 . (37)

In this case, in the limit of vanishing observational noise, we
obtain

m
 = (gT y)

|g|2 , (38)

σ 2

 = 0. (39)

The mean is given by the weighted average of the datapoints,
which is also the solution of the χ2 minimization

m
 = arg min
u∈R

|y − gu|2 . (40)

Note that in this case the variance σ
 vanishes independently
of the prior. In the limit of small noise, the distribution tends
to a Dirac delta around the value of the MAP estimator.

2.3 Linear problems

Linear problems in finite-dimensional spaces are character-
ized by a simple forward law,

y = Gu, (41)

where G is a matrix. In this framework one can readily derive
analytical solutions that are useful to understand the main fea-
tures of the Bayesian approach. Assuming that the priors are
Gaussian again, the cost function S(u) is a quadratic function
of u,

S(u) = (Gu − y0)
T C−1

Y (Gu − y0)

+ (u − u0)
T C−1

X (u − u0) (42)

= (u − ũ) C̃−1
X (u − ũ) + const, (43)

where

C̃−1
X =

(
GTC−1

Y G + C−1
X

)
, (44)

ũ = C̃X

(
GTC−1

Y y0 + C−1
X u0

)
. (45)

The case where we have no prior information on the model
is recovered by taking the limit C−1

X → 0, which yields

C̃−1
X =

(
GTC−1

Y G
)

, (46)

ũ = C̃X

(
GTC−1

Y y0

)
. (47)

The action of C−1
Y on the vector of observed data y0 is best

visualised using a spectral decomposition

C−1
Y =

∑
n

1

σ 2
n
Pn, (48)

where Pn denotes the projector on the n-th eigenvector of
CY , and σ 2

n is the corresponding eigenvalue. The action of
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C−1
Y is to perform a weighted average of the components of

y0 in the directions of the eigenvectors of CY .
An explicit expression for the posterior distribution of data

can be obtained from the joint distribution by marginalising
over the model input u:

πG
Y (y|y0,CY , u0,CX ) =

∫
du πG(y, u|y0,CY , u0,CX )

∝ exp

(
−1

2
(y − ỹ)T C̃−1

Y (y − ỹ)

)
, (49)

where

ỹ = Gũ, (50)

C̃Y = GC̃XGT . (51)

Note that this is the naive error propagation from the covari-
ance of the model, C̃X , to the space of data.
Posterior distribution of unseen data In real-life cases we
are also interested in the posterior distribution of a set of
data that have not been included in the fit. Because differ-
ent datasets are described by the same theory, the knowledge
of one dataset will inform our knowledge of the underlying
theory – i.e. we will determine a posterior distribution for
the model. That new knowledge about the model will then
propagate to any other – unseen – set of data, even if the exper-
iments are completely unrelated. In the Bayesian framework
that we have developed, this situation can be modeled by
having two independent sets of data y and y′, for which we
have a prior distribution

π0
Y

(
y, y′|y0,CY , y′

0,C
′
Y

) = π0
Y

(
y′|y′

0,C
′
Y

)
π0
Y (y|y0,CY )

∝ exp

[
−1

2

(
y′ − y′

0

)T
(C ′

Y )−1 (
y′ − y′

0

)]

× exp

[
−1

2
(y − y0)

T (CY )−1 (y − y0)

]
. (52)

Note that the prior distribution is factorised as the product
of individual distributions for y and y′ since the datasets are
assumed to be independent. Following the derivation above,
we can write the joint distribution for the data and the model

πG(y, y′, u) ∝ π0
Y (y, y′|y0,CY , y′

0,C
′
Y )π0

X (u)

× δ (y − Gu) δ
(
y′ − G′u

)
. (53)

Because both sets of data are derived from the same model u,
the joint distribution above introduces a correlation between
the data sets. The same model u appears in both delta func-
tions in the equation above. We can now marginalise with

respect to the dataset y,

π(y′, u) ∝ exp

[
−1

2

(
y′ − y′

0

)T
(C ′

Y )−1 (
y′ − y′

0

)]

× exp

[
−1

2
(u − ũ)T (C̃X )−1 (u − ũ)

]
δ
(
y′ − G′u

)
.

where C̃X and ũ are given respectively in Eqs. 44 and 45. By
marginalising again, this time with respect to the model, we
derive the posterior distribution of the unseen data,

π
y
Y (y′) ∝ exp

[
1

2

(
y′ − ỹ′)T (C̃ ′

Y )−1 (
y′ − ỹ′)] , (54)

where

C̃ ′
Y = G′C̃ ′

XG′T (55)

ỹ′ = G′ũ′, (56)

and we have introduced the variables ũ′ and C̃ ′
X ,

C̃ ′−1
X = G′TC ′−1

Y G′ + C̃−1
X (57)

ũ′ = C̃ ′
X

(
G′TC ′−1

Y y′
0 + C̃−1

X ũ
)

. (58)

The variables C̃X and ũ have been defined above. We repeat
their definition here in order to have all the necessary equa-
tions collected together:

C̃−1
X = GTC−1

Y G + C−1
X (59)

ũ = C̃X

(
GTC−1

Y y0 + C−1
X u0

)
. (60)

Equations 55–60 yield the central value and the variance of
the posterior distribution of unseen data as a function of y0,
y′

0, CY , C ′
Y , u0 and CX .

A comment on non-linear models The linear models that we
have discussed so far may look over-simplified at first sight.
In practice, it turns out that non-linear models can often be
linearised around the central value of the prior distribution,

G(u) = G(u0) + G (u − u0) + · · · , (61)

where

Gi
α = ∂Gi

∂uα

∣∣∣∣
u0

, (62)

and we have neglected higher-order terms in the expansion
of G(u).

If these terms are not negligible, another option is to find
the MAP estimator, and then expand the forward map around
it, which yields equations very similar to the previous ones,
with u0 replaced by u∗. If the posterior distribution of u is
sufficiently peaked around the MAP estimator, then the linear
approximation can be sufficiently accurate.
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2.4 The infinite-dimensional case

In the finite-dimensional case, where the probability mea-
sures are specified by their densities with respect to the
Lebesgue measure, Eq. (7) can be rephrased by saying that ρ

is the Radon–Nikodym derivative of the probability measure
μG with respect to μ0, viz.

dμG

dμ0 (u) ∝ ρ(y − G(u)). (63)

Using the fact that the density ρ is a positive function, we
can rewrite

ρ(y − G(u)) = exp (−Φ(u; y)) , (64)

and therefore

dμG

dμ0 (u) ∝ exp (−Φ(u; y)) . (65)

In finite-dimensional spaces, the three equations above are
just definitions that do not add anything to the above discus-
sion in terms of probability densities. Their interest resides
in the fact that the last expression, Eq. (65), can be properly
defined when X is infinite-dimensional, allowing a rigorous
extension of the Bayesian formulation of inverse problems
to the case of infinite-dimensional spaces.

Summarising the details of probability measure in infinite-
dimensional spaces, is beyond the scope of this work. Adopt-
ing instead a heuristic approach, we can say that a function f
is a random function if f (x) is a random variable for all val-
ues of x . Since the values of the function at different values of
x can be correlated, a random function is fully characterised
by specifying the joint probability densities

π ( f1, . . . , fn; x1, . . . xn) , (66)

where fi = f (xi ), for all values of n, and all values of
x1, . . . , xn . This infinite set of finite-dimensional densities
allows the definition of a probability measure.

For a Gaussian random function, these densities only
depend on a mean value function m(x) and a covariance
C(x, x ′). The probability densities for the variables fi , for
any value of n is

π ( f1, . . . , fn; x1, . . . , xn)

∝ exp

⎡
⎣−1

2

∑
i j

( fi − mi )C
−1(xi , x j )

(
f j − m j

)
⎤
⎦ .

(67)

The covariance C is such that

C(x, x ′) =
∫

d f d f ′ ( f − m(x))
(
f ′ − m(x ′)

)

×π
(
f, f ′; x, x ′) , (68)

which shows that the two-point probability density deter-
mines all the other distributions.
Functional linear problems This formalism allows us to for-
mulate a Bayesian solution of the inverse problem

yi =
∫

dx Gi (x)u(x), (69)

where yi is a discrete set of observables and u(x) is a random
function, with a Gaussian prior with mean u0(x) and covari-
ance CX (x, x ′). The vector of observed values is denoted y0,
and we assume that the prior distribution of y is a Gaussian
centred at y0 with covariance CY .

Similarly to the finite-dimensional case, the Bayesian
solution yields a Gaussian random function for the posterior
distribution of the solution u(x). In order to characterise the
posterior Gaussian distribution we need explicit expressions
for its mean and its covariance. Introducing the matrix

Si j =
∫

dxdx ′ Gi (x)CX (x, x ′)G j (x ′) + Ci j
Y , (70)

and its inverse T i j = (
S−1

)i j
, the posterior Gaussian field is

centred at

ũ(x) = u0(x) +
∫

dx ′ CX (x, x ′)

× Gi (x ′)T i j
(
y j

0 −
∫

dx ′′ G j (x ′′)u0(x
′′)

)
, (71)

which is the expected generalization of the finite-dimensional
example discussed above. Interestingly, this can be rewritten
as

ũ(x) = u0(x) +
∫

dx ′ CX (x, x ′)ψ(x ′), (72)

where

ψ(x) = Gi (x)δyi , (73)

and the weighted residuals are given by

δyi = T i j
(
y j

0 −
∫

dx ′ G j (x ′)u0(x
′)
)

. (74)

Defining

Ψ i (x) =
∫

dx ′ CX (x, x ′)Gi (x ′), (75)

the posterior covariance can be written as

C̃X (x, x ′) = CX (x, x ′) − Ψ i (x)T i jΨ j (x ′). (76)
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It is instructive to compare the Bayesian result summarised
above with the method proposed by Backus and Gilbert [6] to
solve the same inverse problem. Assuming that there exists
an unknown ‘true’ model utrue, such that the observed data
are

yi0 =
∫

dx Gi (x)utrue(x), (77)

we look for an estimate uest of the true solution in the form

uest(x) = Qi (x)yi0, (78)

so that the problem is now recast as finding the functions
Qi (x). Using Eq. 77 we obtain

uest(x) =
∫

dx ′R(x, x ′)utrue(x
′), (79)

which states that with a finite amount of data we can only
resolve a filtered version of the true solution. The kernel R
is given by

R(x, x ′) = Qi (x)Gi (x ′). (80)

The coefficient functions Qi (x) can be chosen so that the
kernel is as close as possible to a delta function,

R(x, x ′) � δ(x, x ′) ⇒ uest � utrue. (81)

Approximating the delta function can be achieved by min-
imising
∫

dx ′ (
R(x, x ′) − δ(x − x ′)

)2
, (82)

which yields

Qi (x) =
(
S−1

)i j
G j (x), (83)

where

Si j =
∫

dx Gi (x)G j (x). (84)

The interesting observation is that the central value of the
Bayesian solution presented above reduces to the Backus–
Gilbert uest in the case where u0 is just white noise and
therefore

CX (x, x ′) = δ(x − x ′). (85)

The connections between the Bayesian treatment and the
Backus–Gilbert solution and its regulated variations, deserves
further investigations, which we defer to future studies. Note
that the Bayesian solution allows a variety of priors to be
explicitly declared and compared to the Backus–Gilbert solu-
tion.

3 NNPDF Monte Carlo approach to inverse problems

In this section we discuss the NNPDF approach to inverse
problems, and make contact explicitly with the formalism
laid out in Sect. 2. In the Bayesian formulation, Eq. 19 gives
a quantitative description of how the information contained
in the experimental data propagates into our knowledge of
the space of models. In practice, it should be possible to sam-
ple directly from the posterior distribution, or to find a solu-
tion using some kind of Backus–Gilbert methodology [6].
These new types of approach are not straightforward and we
defer their investigation to further, dedicated studies. Here we
focus instead on the standard NNPDF fitting procedure and
investigate its relation with the Bayesian result. The NNPDF
approach generates an ensemble of fit results, which are sup-
posed to describe the posterior probability distribution for
the model (i.e. in the space of PDFs) given the experimental
data. In the case of a linear map, we show here that this is
exactly the case: the NNPDF replicas are distributed exactly
according to the posterior density that was obtained in the
previous section.

3.1 Fitting replicas

The approach for generating a sample in model space utilised
by NNPDF can broadly be described as fitting model replicas
to pseudo-data replicas. As discussed in Eq. 5 the experimen-
tal values are subject to observational noise. If we assume this
observational noise to be multigaussian then the experimen-
tal central values, y0, are given explicitly by

y0 = f + η, (86)

where f is the vector of true observable values, and the obser-
vational noise is drawn from a Gaussian centred on zero such
as in Eq. 18, i.e. η ∼ N (0,CY ) whereCY is the experimental
covariance matrix. In Eq. 86, each basis vector corresponds
to a separate data point, and the vector of shifts η permits
correlations between data points according to the covari-
ance matrix provided by the experiments. Given the data,
the NNPDF approach is to compute a MAP estimator along
the lines discussed in the previous section, i.e. finding the
model that minimises the χ2 to the data.2 The key difference
between the NNPDF approach and the classical MAP esti-
mator is that instead of fitting the observational data given
by Eq. 86, an ensemble of model replicas are fitted each to
an independently sampled instance of pseudo-data, which is

2 In order to avoid overfitting, the NNPDF fitting procedure does not
aim for the absolute minimum of the χ2 defined from the training sam-
ple. Instead a conventional split between training and validation is used.
The details of this procedure are not relevant for the current discussion
and will be neglected here.
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Fig. 2 Histogram showing the distribution of 104 replicas generated
around an experimental value y0 with unit variance. The central value
y0, which is represented by the solid dot at the centre of the replica
distribution, is drawn from a Gaussian distribution with unit variance
centred at the true value f , which is assumed to be the origin in this
plot. The central value y0 is kept fixed for the whole set of replicas

generated by augmenting y0 with some noise, ε(k),

μ(k) = y0 + ε(k) = f + η + ε(k), (87)

where k is the replica index and each instance of the noise, ε,
is drawn independently from the same Gaussian from which
the observational noise is drawn from, i.e. ε ∼ N (0,CY ). For
each replica k, μ(k) is a vector in R

Ndata . The distribution of
pseudo-data in a simple one-dimensional example is shown
in Fig. 2. Note that, if we were to repeat this construction
multiple times, the true value f would be within a 1σ interval
centred at y0 with a 68% probability.

The parameters for each model replica maximise the like-
lihood evaluated on the corresponding pseudo-data. We can
think of this approach as a special case of MAP estimation,
as described in Eq. 20, where there is no model prior that reg-
ulates the likelihood. Another way of viewing this is to take
C−1
X → 0 in Eq. 20, as was done to obtain the result in Eq. 46.

Either way, there is no prior information about the model. The
parameterisation of the model is fixed, so the model space is
the space of parameters u ∈ R

Nmodel . In R
Nmodel , we find the

parameters which minimise the χ2 between the predictions
from the model and the corresponding pseudo-data μ(k)

u(k)∗ = arg min
u(k)

χ2(k)

= arg min
u(k)

∑
i j

(
G(u(k)) − μ(k)

)T
C−1
Y

(
G(u(k)) − μ(k)

)
,

(88)

where, as usual, minimising the χ2 is equivalent to maximis-
ing the likelihood, L, since χ2 ≡ − logL.

As a final note: since we do not include the model prior,
overall normalisations can be omitted in Eq. 88. It is clear
however that if we were including a model prior in our MAP,

it is important that the relative normalisation between the
likelihood function and the model prior is clearly specified.

3.2 Fluctuations of fitted values

Whilst this MC methodology, maximising the likelihood on
an ensemble of pseudo-data replicas, makes intuitive sense,
we would like to explicitly draw the connection between the
distribution of model replicas and the posterior distribution
of the parameters given the data as described e.g. in Eq. 19.
In order to investigate this issue, we will again consider a
model whose predictions are linear in the model parameters,
so that the posterior distribution of model parameters can
be computed explicitly. DIS observables can be seen as an
example of a linear model. Let us assume that the PDF are
parametrized by their values at selected values of xi , so that
u is a finite-dimensional vector

ui = u(xi ), i = 1, . . . , Nmodel. (89)

The observables are then computed by taking a matrix-vector
multiplication of the vector u by a Ndata ×Nmodel matrix, Fi j ,
which is called FK table in the NNPDF jargon,

yi =
Nmodel∑
j=1

Fi j u j , (90)

where i = 1, . . . , Ndata. In this case the forward map coin-
cides exactly with the FK table, Gi j = Fi j and the sum in
Eq. 90 approximates the convolution in Eq. 2. However it
should be clear that the discussion below applies to any model
whose forward map can be approximated as Eq. 90, like a
linear approximation of neural networks [7]. Let us consider
for instance the actual NNPDF parametrization, where the
value of the PDF is given by a neural network whose state is
determined by a set of weights θ . In this case X is the space
of weights, the model will be specified by a vector θ in the
space of weights, and we are going to continue using u to
denote the PDF, so that

ui = u(xi ; θ). (91)

If the parameters have a sufficiently narrow distribution
around some value θ̄ , then we can expand the expression
for the observables:

yi =
∑
j

Fi j

[
u(x j ; θ̄ ) +

∑
k

∂u

∂θk

∣∣∣∣
x j ,θ̄

(
θ − θ̄

)
k

]
(92)

and therefore

yi − ȳi =
∑
k

GikΔθk, (93)
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where

Gik =
∑
j

Fi j
∂u

∂θk

∣∣∣∣
x j ,θ̄

, (94)

ȳi =
∑
j

Fi j u(x j ; θ̄ ), (95)

Δθk = θk − θ̄k . (96)

In order to get an exact analytical solution for the linear
model, we additionally requireG to have linearly independent
rows, and therefore GCYGT is invertible. As discussed in
Sect. 2, in the absence of prior information on the model, the
posterior distribution of model parameters is a Gaussian with
mean and covariance given by Eqs. 46 and 47.

Let us now stick to the parametrization in Eq. 89 and
let us deploy the NNPDF Monte Carlo method to fitting

model replicas, then in the case under study arg minu(k) χ2(k)

is found analytically by imposing that the derivative of χ2(k)

with respect to the model parameters is zero, i.e.

u(k)∗ = (GTC−1
Y G)−1

(
GTC−1

Y y0 + GTC−1
Y ε(k)

)
. (97)

Equation 97 shows that u∗ is a linear combination of the
Gaussian variables ε, and therefore is also a Gaussian vari-
able. Its probability density is then completely specified by
the mean and covariance, which can be calculated explicitly,
given that the probability density for ε is known:

E{u∗} [u∗] = ũ = (GTC−1
Y G)−1GTC−1

Y y0, (98)

cov(u∗) = C̃X = (GTC−1
Y G)−1. (99)

These two equations show that, under the assumptions speci-
fied above, u∗ ∼ N (ũ, C̃X ). In other words, when the model
predictions are linear in the model parameters, the NNPDF
MC method is shown to produce a sample of models exactly
distributed according to the expected posterior distribution of
model parameters given the data. When we fit PDFs, parame-
terised as deep fully connected neural networks, to data which
includes hadronic observables, it is clear that the forward map
is non-linear, and therefore this proof does not strictly apply.
As discussed above, even for non-linear models we can make
a linear approximation of the forward map provided that we
are expanding around the MAP estimator. This means the
NNPDF MC methodology should reproduce the posterior
distribution of the model given the data, at least close to ũ,
the central value of the fitted replicas. Furthermore, by fluc-
tuating the data and fitting the replicas, the fluctuations in
data space are propagated to model space non-linearly. So
even for non-linear problems, the NNPDF MC methodology
can be expected to produce a sample of models which are
at least approximately distributed according to the posterior

model distribution. It remains to be shown, however, that fur-
ther away from the MAP estimator the approximation holds
despite the non-linear dependence of the model replicas on
the data uncertainties.

3.3 Closure test

The concept of the closure test, which was first introduced
in Ref. [8], is to construct artificial data by using a known
pre-existing function to generate the true observable values,
f . One way of achieving this is by choosing a model w

and then compute f = G(w). Then the experimental central
values are artificially generated according to Eq. 86, where
the observational noise is pseudo-randomly generated from
the assumed distribution. In Ref. [8], f is referred to as level
0 (L0) data and y0 is referred to as level 1 (L1) data. Finally,
if we use the NNPDF MC method to fit artificially generated
closure data, the pseudo-data replicas that are fitted by the
model replicas are referred to as level 2 (L2) data.

The outcome of the fit is then compared with the known
true value to check the precision and accuracy of the fitting
procedure. Finding quantitative estimators that allow us to
characterise the quality of the closure fit is one of the main
problems that need to be addressed. We will discuss a new
class of estimators in the next section.

Note that in a closure test, the assumed prior of the data
is fully consistent with the particular instance of observed
central values, y0: by construction, there are no inconsis-
tent data sets. In the original closure test of Ref. [8] there
was also no modelisation uncertainty, the true observable
values were assumed to be obtained by applying the for-
ward map G to a vector in model space w. It is worth not-
ing that the assumption of zero modelisation uncertainties is
quite strong and likely unjustified in many areas of physics.
In the context of fitting parton distribution functions there
are potentially missing higher order uncertainties (MHOUs)
from using fixed order perturbative calculations as part of the
forward map. MHOUs have been included in parton distri-
bution fits [4,5] and in the future these should be included
in the closure test, however this is beyond the scope of the
study presented here, since MHOUs are still not included
in the NNPDF methodology by default. In the results pre-
sented in the rest of this paper we do include nuclear and
deuteron uncertainties, as presented in [9–11], since they are
to be included in NNPDF fits by default. Extensive details
for including theoretical uncertainties, modelled as theoret-
ical covariance matrices can be found in those references.
For the purpose of this study the modelisation uncertainty is
absorbed into the prior of the data, since

y0 = G(u) + η + δ (100)

where δ ∼ N (0,C theory). As long as the modelisation uncer-
tainty is independent of the data uncertainty, we can absorb
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δ into η by modifying the data prior: η ∼ N (0,C +C theory).
In doing that, we must also update the likelihood of the data
given the model to use the total covariance (C + C theory).
From now onwards we will omitC theory because it is implicit
that we always sample and fit data using the total covariance
matrix which includes any modelisation uncertainty we cur-
rently take into account as part of our methodology.

Mapping the closure test procedure to the quantities used
in the Bayesian treatment presented in the previous section
will allow us to derive a number of analytical results in
Sect. 4.4.

4 Data space estimators

In order to perform a quantitative analysis of the results
obtained in the closure tests, we discuss several estimators,
which are computed from the outcome of the closure test
fits. These results depend on the pseudo-data that have been
generated and therefore are stochastic variables which can
fluctuate. The values of the estimators on a single replica
will not tell anything about the quality of our fits: we need
to understand their probability distributions in order to vali-
date our fitting procedure. We begin this section by defining
estimators in data space, i.e. estimators that are computed
from the model predictions for a set of experimental data
points. Having defined the estimators, we define criteria to
characterise faithful uncertainties. We conclude this section
with a discussion of the predictions that can be obtained for
these estimators in the case of a linear model, where ana-
lytical calculations can be performed. As we already saw in
the previous section, the analytical results cannot be applied
directly to the NNPDF fits, but they are useful examples that
illustrate the expected behaviour of these quantities.

4.1 Deriving the data space estimators

For a given model u(k)∗ , obtained from fitting the k-th replica,
we start by defining the model error as the χ2 between the
model predictions and some data central values y0

′, nor-
malised by the number of data points

1

Ndata

(
G′ (u(k)∗

)
− y0

′)T
CY

′−1
(
G′ (u(k)∗

)
− y0

′) , (101)

and we purposely denoted the data which the model error is
evaluated on as y0

′, as opposed to the training data y0, which
is used to determine the model parameters. The correspond-
ing covariance is denoted CY

′. Note that in Eq. 101, y0
′ is a

stochastic variable, but also u(k)∗ is a stochastic variable, with
its pattern of fluctuations, since the fitted model depends on

the data μ(k) that enter the fit. We define the model error Eout

on the set of data y0
′ by taking the average over the models,

Eout = 1

Ndata

× E{u∗}
[(

G′ (u(k)∗
)

− y0
′)T CY

′−1
(
G′ (u(k)∗

)
− y0

′)]
,

(102)

where we defined the expectation value over the ensemble of
model replicas as

E{u∗} [x] ≡ 1

Nreplicas

Nreplicas∑
k=1

x (k). (103)

We could of course set y0
′ = y0 and evaluate the model

performance on the fitted data however, as is common in
machine learning literature, we intend to use a separate set
of test data. Ideally we would choose y0

′ such that y0
′ and y0

are statistically independent, as in Eq. 52. This is achieved
by choosing the split such that the experimental covariance
matrix is block diagonal:

C total
X =

[
CX 0
0 CX

′
]

. (104)

It is useful to perform a decomposition of Eq. 102, fol-
lowing usual manipulations of the likelihood function asso-
ciated with least-squares regression in [12]. Least-squares
regression is a special case of minimum likelihood estima-
tion, where the uncertainty on each data point is equal in mag-
nitude and uncorrelated. Here we review the decomposition
in the more general framework of data whose uncertainty is
multigaussian. Starting with Eq. 102 (evaluated on the ideal
test data), we can complete the square

Eout = 1

Ndata

×
{
E{u∗}

[(
G′ (u(k)∗

)
− f ′)T CY

′−1
(
G′ (u(k)∗

)
− f ′)]

+ E{u∗}
[(

f ′ − y0
′)T CY

′−1 (
f ′ − y0

′)]

+ 2E{u∗}
[(

G′ (u(k)∗
)

− f ′)T CY
′−1 (

f ′ − y0
′)]}

.

(105)

Let us now discuss these terms one by one, starting from
the last two. The second term is the shift associated with
evaluating the model error on noisy test data and the final term
is a cross term which we will deal with later. We therefore
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focus next on further decomposing the first term,

E{u∗}
[(

G′ (u(k)∗
)

− f ′)T
CY

′−1
(
G′ (u(k)∗

)
− f ′)]

= E{u∗}
[(

G′ (u(k)∗
)

− E{u∗}
[
G′ (u(k)∗

)])T
CY

′−1

×
(
G′ (u(k)∗

)
− E{u∗}

[
G′ (u(k)∗

)])]

+
(
E{u∗}

[
G′ (u(k)∗

)]
− f ′)T

CY
′−1

×
(
E{u∗}

[
G′ (u(k)∗

)]
− f ′) , (106)

where we have used the fact that the second term is constant
across replicas and the cross term that arises in this decom-
position is zero when the expectation value across replicas is
taken. The first term in this expression we call the variance
and the second term is the bias.

As previously mentioned Eout should be considered a
stochastic estimator, in theory we could take the expecta-
tion value across training data y0 and test data y0

′. In other
words, Eout is a function of the Gaussian parameters η and η′,
and we can take the average over them to compute the aver-
age over training and test data. Denoting as ρ the Gaussian
describing the distribution of η and η′, we can define

Ey
[Eout] =

∫
dη ρ (η) Eout (η) . (107)

The average over the test data cancels the cross term in
Eq. 105 and the final result would be

Ey0Ey0
′ [Eout] = Ey0 [bias] + Ey0 [variance] + Ey0

′ [noise].
(108)

We are not interested in the observational noise term, since
it is independent of the model and in the limit of infinite
test data Ey0

′ [noise] → 1. The two estimators of interest are
independent of the parameter η′ associated with the test data,
however they do depend implicitly of η, entering the defini-
tion of the training data used to determine u(k)∗ . Therefore we
only need to take the expectation value over the parameter
η, associated with the training data. In practical terms, this
can be achieved by running multiple closure fits, each with a
different observational noise vector η, and taking the average
i.e.

Ey0 [x] = 1

Nfits

Nfits∑
j=1

x . (109)

Clearly this is resource intensive, and requires us to perform
many fits. In NNPDF3.0 [8], single replica proxy fits, namely
fits run over different training sets and made by a single
replica, were used to perform a study of the uncertainties.
Here we have expanded the data-space estimators used in

the closure fits and also will be using multiple full replica
fits to calculate various expectation values - made possible
by our next generation fitting code.

4.2 Geometric interpretation

It is possible to interpret the relevant data space estimators
geometrically, by considering a coordinate system where
each basis vector corresponds to an eigenvector of the exper-
imental covariance matrix normalised by the square root of
the corresponding eigenvalue. An example of this is given
in Fig. 3, where for simplicity we have considered a system
with just two data points, i.e. a two-dimensional data space,
with a diagonal covariance and we take these for both the
training and the test set. The origin of the coordinate system
is the true value of the observable. The observational noise
in these coordinates corresponds to a unit circle centred in
the origin as shown in Fig. 3. If the experimental covariance
is faithful, there is a 68% probability that the experimental
value y0 is within this unit circle. Fig. 3 shows one possible
instance of y0. Repeating the entire fit procedure multiple
times requires generating new sets of experimental data y0.
The average over y0 mentioned above, is precisely the aver-
age over multiple fits, restarting the procedure each time from
a new instance of y0.

For a given y0 the replicas are generated as a set of points
Gaussianly distributed around it and therefore, in the limit
of a large number of replicas, 68% of them will fall within
a unit circle centred in y0. This is the dashed circle in the
figure. Clearly there is also a 68% probability that the true
value (i.e. the origin in our plot) is inside this second circle.
The model predictions, one for each replica, are then a set
of points, whose mean is Eε[g]. The mean squared radius
of those points is what we call the variance. The bias is the
l2-norm of the vector between the origin and the mean of the
model predictions.

A faithful representation of the errors requires that the true
value, i.e. the origin of the coordinate system in our figure, has
68% probability of being within 1σ from the central value of
the fit, which is given by Eε[g]. Looking at the figure again,
the probability for the origin to be inside the shaded circle
must be 68%. We will discuss faithful errors in more detail
in the next subsection.

4.3 Faithful uncertainties in data space

The two closure estimators of interest, bias and variance,
can be used to understand faithful uncertainties in a practical
sense. If we return to Eq. 108 we can examine both estimators
in a more detail.
Variance The variance in the above decomposition refers to
the variance of the model predictions in units of the covari-
ance
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Fig. 3 Example of geometric interpretation of closure test estimators.
The origin is the true observable values for each data point. The level
one data (or experimental central values) are shifted away from this by
η. In this example the covariance matrix is diagonal, so the eigenvectors
correspond to the two data points, the square root of the eigenvalues are
simply the standard deviation of those points. This is without loss of
generality because any multivariate distribution can be rotated into a
basis which diagonalises the covariance matrix. The 1-sigma observa-
tional noise confidence interval is a unit circle centered on the origin.
Some closure estimators can be understood as l2-norms of the vectors
connecting points, i.e the bias is the l2-norm of the vector from the
origin to the central value of the predictions

variance = 1

Ndata
E{u∗}

×
[ (

G′ (u(k)∗
)

− E{u∗}
[
G′ (u(k)∗

)])T
CY

′−1

×
(
G′ (u(k)∗

)
− E{u∗}

[
G′ (u(k)∗

)]) ]
, (110)

which can be interpreted as the model uncertainty in the space
of the test data. It is instructive to rephrase Eq. 110 as

variance = 1

Ndata
Tr

[
C ′(replica)CY

′−1
]
, (111)

where

C ′(replica) = E{u∗}
[ (

G′ (u(k)∗
)

− E{u∗}
[
G′ (u(k)∗

)])

×
(
G′ (u(k)∗

)
− E{u∗}

[
G′ (u(k)∗

)])T ]
(112)

is the covariance matrix of the predictions from the model
replicas. Note that we can rotate to a basis where CY

′ is
diagonal,
(
CY

′−1
)
i j

= 1

(σ ′
i )

2 δi j , (113)

then we can rewrite Eq. 111 as

variance = 1

Ndata

∑
i

C ′(replica)
i i

(σ ′
i )

2 . (114)

The numerator in the right-hand side of the equation above
is the variance of the theoretical prediction obtained from
the fitted replicas, while the denominator is the experimental
variance, the average is now taken over eigenvectors of the
experimental covariance matrix. Note that this ratio does not
need to be equal to one, the model error on a given point can
be smaller than the experimental one, since all theoretical
estimates are correlated by the underlying theoretical law.
Bias Similarly, the bias is defined as the difference between
the expectation value of the model predictions and the true
observable values in units of the covariance, i.e.

bias = 1

Ndata

(
E{u∗}

[
G′ (u(k)∗

)]
− f ′)T

CY
′−1

×
(
E{u∗}

[
G′ (u(k)∗

)]
− f ′) . (115)

The smaller the bias, the closer the central value of the pre-
dictions is to the underlying law. In Eq. 108, the expectation
value is taken across the prior distribution of the training data,
which yields

Ey0 [bias] = 1

Ndata
Tr

[
C ′(central)CY

′−1
]
, (116)

where we have introduced C ′(central) as the covariance of the
expectation value of the model predictions,

C ′(central) = Ey0

[ (
E{u∗}

[
G′ (u(k)∗

)]
− f ′)

×
(
E{u∗}

[
G′ (u(k)∗

)]
− f ′)T ]

. (117)

The point is that the bias on the test data is a stochastic vari-
able which depends on the central value of the training data
through u(k)∗ . The matrix C ′(central) describes the fluctuations
of the central value of the model prediction around the true
observable values as we scan different realisations of the
training data.

It is important to stress the difference between variance
and bias. In the case of the variance, we are looking at the
fluctuations of the replicas around their central value for fixed
y0. This is related to the ensemble of model replicas we pro-
vide as the end product of a fit and can be calculated when
we have one instance of y0, provided by the experiments. In
the case of the bias we consider the fluctuations of the cen-
tral value over replicas around the true theoretical prediction
as the values of y0 fluctuate around f . This latter procedure
is only possible in a closure test, where the underlying true
observable is known. The bias as defined here yields an esti-
mate of the fluctuations of the MAP estimator if we could do
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multiple independent instances of their measurements from
each experiment.
Bias-variance ratioFinally, the bias-variance ratio is defined
as

Rbv ≡
√

Ey0 [bias]
Ey0 [variance] , (118)

where we have taken the square root, since bias and vari-
ance are both mean squared quantities. The value of Rbv

yields a measurement of how much uncertainties are over or
under estimated. If the uncertainties are completely faithful,
then Rbv = 1. We note that Rbv is not completely general:
it is not a measure defined in model space and depends on
the choice of test data. Therefore it only gives local infor-
mation on the model uncertainties. If the distribution of the
expectation value of model predictions is gaussian centered
on the true observable values, with covariance C ′(central) and
the distribution of the model replicas is also gaussian, with
covariance C ′(replica) then model uncertainties are faithful if

C ′(central)C ′(replica)−1 = 1. (119)

The difficulty with calculating Eq. 119 comes from the fact
thatC ′(replica) is likely to have large correlations which would
lead it to be singular or ill-conditioned. As a result, any error
estimating C ′(replica) from finite number of replicas could
lead to unstable results. Rbv overcomes this instability by
taking the ratio of the average across test data of these matri-
ces, in units of the experimental covariance matrix. There
may still be large relative errors for smaller eigenvalues of
C ′(replica), but these should not lead to instabilities in Rbv

unless they correspond to directions with very low experi-
mental uncertainty. As an extra precaution, we shall estimate
an uncertainty on Rbv by performing a bootstrap sample on
fits and replicas.
Quantile statistics When the closure test was first presented
in [8], there was an estimator introduced in the space of PDFs
which also aimed to estimate faithfulness of PDF uncertain-
ties using the combined assumption of Gaussian PDF uncer-
tainties and quantile statistics, called ξ1σ . Here we can define
an analogous expression in the space of data,

ξ
(data)
nσ ′ = 1

Ndata

Ndata∑
i

× 1

Nfits

Nfits∑
l

I[−nσ ′(l)
i ,nσ ′(l)

i ]
(
E{u∗}

[G′
i
](l) − f ′

i

)
,

(120)

where σ ′(l)
i =

√
C ′(replica)

i i is the standard deviation of the
theory predictions estimated from the replicas of fit l and
I[a,b](x) is the indicator function, which is one when a ≤

x ≤ b and zero otherwise. In other words, ξ
(data)
nσ ′ is count-

ing how often the difference between the prediction from
the MAP estimator and the true observable value is within
the nσ -confidence interval of the replicas, assuming they’re
Gaussian. Since C ′(replica) is primarily driven by the replica
fluctuations, we assume that it is roughly constant across fits,
or independent upon the specific instance of observational
noise. This allows us to write ξ

(data)
nσ ′ for a specific data point

in the limit of infinite fits, each to a different instance of the
data as

ξ
(data)
nσ ′

i
=

∫ ∞

−∞
I[−nσ ′

i ,nσ ′
i ]

(
E{u∗}

[G′
i
](l) − f ′

i

)
ρ(η) d(η),

(121)

where E{u∗} [Gi ](l) has implicit conditional dependence on η.
If the distribution of

E{u∗}
[G′

i
](l) − f ′

i

is Gaussian, centered on zero, we can define σ̂ ′
i =

√
C ′(central)

i i .
In this case

ξ
(data)
nσ ′

i
= erf

(
nσ ′

i

σ̂ ′
i

√
2

)
, (122)

which is simply the standard result of integrating a gaussian
over some finite symmetric interval.

The analogy between Rbv and ξ
(data)
nσ ′ is clear, the ratios

of uncertainties are both attempts to quantify Eq. 119 whilst
keeping effects due to using finite statistics under control.
Whilst with Rbv we take the average over test data before
taking the ratio, ξ (data)

nσ ′ instead takes the ratio of the diagonal
elements - ignoring correlations. Since the predictions from
the model will be compared with experimental central val-
ues, taking into account experimental error, we find it more
natural to calculate ξ

(data)
nσ ′ in the basis which diagonalises the

experimental covariance of the test data as in Eq. 113. If we

assume that in this new basis, that both
C ′(replica)

i i

(σ ′
i )

2 and
C ′(central)

i i

(σ ′
i )

2

are approximately constant for all eigenvectors of the experi-
mental covariance matrix, then we recover the approximation

ξ
(data)
nσ ′ ∼ erf

(
nRbv√

2

)
. (123)

Whilst it is clear that Eq. 123 is reliant on a fair few assump-
tions which may not hold, we will use the comparison of
ξ

(data)
nσ ′ with Rbv to consider how valid these assumptions

may be.

4.4 Closure estimators: linear problems

Once again we return to the linear model framework set out
in Sect. 3.2. We can perform an analytical closure test in
this framework, and check our understanding of the closure
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estimators. Consider the true observable values for the test
data are given by

f ′ = G′w (124)

where w ∈ X , and we assume that the number of (non-zero)
parameters in the underlying law is less than or equal to the
number of parameters in the model, Nlaw ≤ Nmodel. Using
the previous results from Sect. 3.2, we can write down the
difference between the true observables and the predictions
from the MAP estimator (or the expectation of the model
predictions across model replicas - in the linear model these
are the same)

E{u∗}
[
G′ (u(k)∗

)]
− f ′ = G′(ũ − w)

= G′C̃XGTC−1
Y η,

(125)

where we recall that G is the forward map to the training
observables. Because the training observables, previously
denoted as y0, do not necessarily coincide with the data used
to compute the estimators, denoted as y′

0, we have two differ-
ent mapsG andG′. Calculating the covariance across training

data of E{u∗}
[
G′

(
u(k)∗

)]
− f ′ gives

C ′(central) = G′C̃XG′T , (126)

so the full expression for Ey0 [bias] is given by

Ey0 [bias] = 1

Ndata
Tr

[
G′C̃XG′TCY

′−1
]
. (127)

We note that if the test data is identical the data the model was
fitted on, we recover an intuitive result Ey0 [bias] = Nmodel

Ndata
.

In the case of a polynomial model, where the parameter of
the model are the coefficients of the polynomial function, the
maximum value which Nmodel can take whilst G still has lin-
early independent rows is Ndata and in this case the Ey0 [bias]
takes its maximum value of 1. The central predictions from
the model exactly pass through each data point.

We can perform a similar exercise on the model replica
predictions. The difference between the predictions from
model replica (k) and the expectation value of the model
predictions is

G′ (u(k)∗
)

− E{u∗}
[
G′ (u(k)∗

)]
= G′(u(k)∗ − ũ)

= G′C̃XGTC−1
Y ε.

(128)

Since ε and η follow the same distribution, it is clear that

C ′(replica) = C ′(central)
, (129)

which simply means that

variance = Ey0 [bias]. (130)

We recall that when the map is linear, the NNPDF MC
methodology generates replicas which are sampled from the
posterior distribution of the model given the data. We have

shown here that provided the underlying law belongs to the
model space, the posterior distribution of the model predic-
tions satisfy the requirement that Rbv = 1.

We note that due to the invariance of the trace under cyclic
permutations, we can rearrange Eq. 127 as

Ey0 [bias] = 1

Ndata
Tr

[
C̃XG′TCY

′−1G′] , (131)

where the term G′TCY
′−1G′ can be understood as the covari-

ance matrix of the posterior distribution in model space given
the test data, with zero prior knowledge of the model, which
we denote as C̃ ′

X :

Ey0 [bias] = 1

Ndata
Tr

[
C̃X C̃

′−1
X

]
, (132)

where we emphasise that the covariance matrices C̃X and C̃ ′
X

are obtained from completely independent Bayesian infer-
ences with no prior information on the model parameters,
unlike in Eq. 57 where a sequential marginalisation causes
C̃ ′
X to depend on C̃X .
Alternatively, if we perform a sequential marginalisation

of the data, and use the result in Eq. 57, but then take
CY

′−1 → 0, i.e. there is no information on the observables
in the test set, then the covariance of the posterior model
distribution is

C̃−1
X = GTC−1

Y G, (133)

which is identical to the posterior model distribution given
just the training data - as one would expect. Now we can
express bias (or variance) as

Ey0 [bias] = 1

Ndata
Tr

[
C̃ ′
YCY

′−1
]
, (134)

where C̃ ′
Y is the covariance of the posterior distribution of y′

with no prior information on that data. This might seem pecu-
liar because in determining C̃ ′

Y we took the limitCY
′−1 → 0,

which encodes the fact that we had no prior information on
the unseen data, however in Eq. 134 we require CY

′−1 to be
finite. We rationalise Eq. 134 as a comparison between the
posterior distribution in the space of data of some unseen
observables to an independently determined prior from per-
forming the relevant experiment which measures the same
observables. The two distributions can be compared when
the independently measured experimental data is published.
Underparameterised model Note that if we were to choose
the number of model parameters such that Nlaw > Nmodel,
then the variance would be unaffected, since the underlying
law parameters cancel. However, the bias would now contain
an extra term from the extra parameters in the underlying law,
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schematically:

(E{u∗}
[
G′ (u(k)∗

)]
− f ′)i

=
∑

1≤ j≤Nmodel

G′
i j (ũ − w) j −

∑
Nmodel< j≤Nlaw

G′
i jw j ,

(135)

which would mean that Rbv �= 1. This demonstrates that
requiring Rbv = 1 demands that the model space is suitably
flexible, if the underlying law is parameterised then this can
be summarised as requiring w ∈ X . Note that in the under-
parameterised regime the model replicas are still drawn from
the posterior distribution, however because w /∈ X we have
somehow invalidated the assumptions that go into the relation
between model predictions and the data-space prior.

Although Rbv was largely chosen on practical grounds,
we see that it is still a stringent test that our assumptions
are correct and that the distribution our model replicas are
drawn from is meaningful, this is what we mean when we
say faithful uncertainties.

An unfortunate trade-off when using Rbv is that it cannot
be used as a diagnostic tool, and is instead used simply for
validation. For example, if Rbv > 1, then we cannot know
whether there was a problem with the fitting methodology
used to generate the model replicas or a deeper issue such as
an inflexible model.

5 Numerical setup and results

In this section we first introduce the experimental setup used
to run the closure tests, and then discuss the actual results.
Following the study performed in Ref. [8], we first analyse
the relative size of the different components of PDFs uncer-
tainty, comparing the changes between methodologies used
to produce the NNPDF3.1 [13] and NNPDF4.0 [2] sets of
PDFs respectively. We then move to the data space estima-
tors Rbv and ξ

(data)
1σ ′ , which have been computed only for

NNPDF4.0.3 The results here act both as a proof of principle
of new estimators presented in this paper but also as part of a
suite of methodological validation tools, see also the “future
tests” [15], used to understand the PDF uncertainties of the
recent NNPDF4.0 set of PDFs. For the purpose of under-
standing how the results here were produced, we will briefly
describe the key features of the NNPDF4.0 methodology, but
refer the reader to Ref. [2] for a full discussion on how these
methodological choices were made.

3 As pointed out before, the computation of the expectation value over
training data, defined in Eq. 109, is made possible by the efficiency of
the new framework [14].

Fig. 4 The green line is the input underlying law for the gluon PDF,
which is sampled from the ensemble of replicas from a fit to data. The
central value and the 68% confidence interval for those replicas are
plotted as the orange line and band respectively

5.1 Closure test setup

Using neural networks to fit PDFs has been discussed many
times in previous NNPDF publications, see for example [8,
13]. A new feature of NNPDF4.0 is that, for the default fit
performed in the evolution basis, a single neural network
parameterises all 8 PDF flavours

{g,Σ, V, V3, V8, T3, T8, T15}

at the initial scale. The PDF for a single flavour j , at the
initial scale Q0 = 1.65 GeV is given by

f j (x, Q0) = NN (x, ln x |u) j ∗ x1−α j ∗ (1 − x)β j , (136)

where α and β are the preprocessing exponents, which con-
trol the PDF behaviour at x → 0 and x → 1 respectively
and NN (x, ln x |u) j is the j th output of the neural network,
which takes x and ln x as input. As discussed in Sect. 3.1,
an ensemble of models is fitted, each one is a MAP esti-
mator of the corresponding pseudo-data it is fitted on. An
optimization algorithm is used to try and find the parame-
ters which maximise the likelihood. There are clearly many
choices with respect to hyperparameters, the discussion of
how these choices have been made is beyond the scope of this
paper and left to the full NNPDF4.0 release [2]. A summary
of the hyperparameters used to produce results presented in
this paper are provided in Table 3.

As input to the closure test, a single replica was drawn ran-
domly from a previous NNPDF fit to experimental data. This
has generally more structure than the final central PDF and
it is therefore a more general choice than any final central fit.
We refer to this as the underlying law and the corresponding
predictions as the true observable values. An example of the
gluon input is provided in Fig. 4. In principle any function
could be used as underlying law, however it makes sense to
use a realistic input.
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The observables used in the fits are a subset of the full
NNPDF4.0 dataset. For convenience, we chose to fit the PDFs
on a variant of the NNPDF3.1 dataset used in Ref. [16], which
is described in detail in a study of the determination of the
strange PDF [17]. The datasets used in the calculation of
statistical estimators are the new datasets which have been
included in NNPDF4.0 and discussed in detail in the main
release [2]. For a full summary of the observables used in the
test data and a visual representation of the kinematic region
of both the training and testing data, see App. B.

The partitioning of the available data into fitting and test-
ing should not affect the interpretation of the closure test
results. However, one could consider splitting the data into
fitting and testing in a way which was physically motivated
e.g. the partitioning could have been stratified such that the
kinematic coverage of the data of each partition was approx-
imately equal. Alternatively, since the data is generated from
the theory predictions produced by the input underlying law,
one could even produce completely artificial data using a
different set of FK tables.

In order to compute the expectation value over training
data defined in Eq. 109, we generate 30 different sets of exper-
imental central values (or L1 data), as discussed in Sect. 3.3,
for the fitted 3.1-like dataset. Each set of experimental cen-
tral values was then fitted following NNPDF4.0 methodology
[2], producing 40 pseudo-data replicas.

5.2 Different components of the PDF uncertainty

As already discussed in Ref. [8], fitting to L0, L1 and L2
pseudo-data allows us to validate different aspects of the fit-
ting procedure. In an L0 fit, we fit multiple time the exact
same set of data, which corresponds to the theory prediction
from the chosen model. The fitted pseudo-data is the result
obtained by applying the forward map to the model. It is clear
that in this case the quality of the fit can be improved at will,
provided that the parametrization is flexible enough and the
minimization algorithm is efficient. There are indeed multi-
ple solutions that reproduce exactly the data set, while inter-
polating between the data points. In an L1 fit the data have
been fluctuated around the theoretical prediction – mimick-
ing thereby the central values of experimental measurements.
The true model no longer reproduces the data; instead it will
yield a χ2 of order one. The pseudo-data are held fixed, fluc-
tuations from one replica to the next are due to the existence
of multiple solutions that hold a similar value for the resid-
ual χ2 at the end of the minimization process. Finally, in
the L2 fits, the fluctuations of the data are reproduced by the
replicas, and propagated to the model function when fitting
the data for each replica. Since the NNPDF fitting methodol-
ogy has changed in the latest release, adopting the procedure
described in Ref. [18], it is important to compare the uncer-
tainties at L0, L1 and L2 that are obtained with the NNPDF4.0

methodology with the corresponding ones obtained with the
NNPDF3.1 framework.

An example of these relative errors on fitted PDFs is shown
in the upper panel of Fig. 5 where results from L0, L1 and L2
closure tests are displayed on the same plot in the case of the
gluon distribution. Each fit is normalized to the correspond-
ing central value. We note how the L0 and L1 uncertainties
tend to increase in the x regions where less experimental
data are available, namely at small and large-x , where the
model is left unconstrained and has more freedom to fluctu-
ate, while they are considerably reduced in the data region
where the contribution of the L2 error, induced by the actual
experimental data, becomes more important. The fact that the
data uncertainty is not always the dominant component of the
PDF uncertainty was already stressed in Ref. [8]. Improved
methodologies should therefore aim to reduce the L0 and L1
error in the data region. Where less experimental data are
available, we should still expect the dominant component of
PDFs error to come from the L0 and L1 uncertainties, which
however should be driven by the lack of experimental infor-
mation rather than by the unefficiency of the methodology.

In this respect, it is interesting to compare these results
with what we find with the NNPDF3.1 methodology. The cor-
responding plots are shown in the lower panel of Fig. 5: unlike
the NNPDF4.0 case, here the PDF uncertainty is always
dominated by the L0 uncertainty, even in those kinematic
regions where experimental data are present. We can con-
clude that moving to the NNPDF4.0 methodology, thanks to
the optimized hyperparameters listed in Table 3, we observe
a marked reduction of the L0 uncertainty, see Fig. 6, where
the latter is plotted on the same panel for both NNPDF4.0 and
NNPDF3.1. The better efficiency of the NNPDF4.0 method-
ology can be also appreciated by looking at Fig. 7, where
we plot the distribution across replicas of the L0 closure test
χ2 as a function of the training epoch and genetic algorithm
generation for the NNPDF4.0 and NNPDF3.1 methodology
respectively. As mentioned before, in a L0 closure test the
quality of the fit can in principle be improved at will, assum-
ing the use of an efficient optimizer. For the final χ2 of the
central value of each fit, plotted as a black dashed line, we
find 0.002 and 0.012 in the NNPDF4.0 and NNPDF3.1 fit-
ting code respectively, showing the better efficiency of the
new methodology.

It should be noted how Fig. 5 only provide a qualitative
assessment of the relative size of the different components
of PDFs uncertainty. Despite being useful to assess how the
methodology has improved with respect to the previous one,
they do not provide any quantitative estimation of the faithful-
ness of PDF uncertainty. This is best achieved in data space,
using the new estimators introduced in the previous sections.
How to validate PDFs uncertainty in the extrapolation regions
remains an open problem, and will be addressed in a future
work.
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Fig. 5 Relative PDF error for the gluon distribution in the NNPDF4.0 (upper panel) and NNPDF3.1 (lower panel) methodology, plotted in
logarithmic (left) and linear scale (right)

Fig. 6 Level 0 uncertainty in the NNPDF4.0 and NNPDF3.1 methodology

5.3 Data space estimators

Results forRbv and the corresponding uncertainty calculated
on the test data are shown in the first column of Table 1. The
uncertainties, which take into account the finite size of the
replicas and fits samples, have been computed by performing
bootstrap [19], where we randomly sample from both fits and

replicas and re-calculate Rbv . The value and error presented
in the table is then the mean and standard deviation across
bootstrap samples. We checked that the distribution of the
estimator across bootstrap samples is indeed Gaussian. We
also checked that increasing the number of fits and replicas
reduced the bootstrap error but the central values were the
same within the estimated bootstrap uncertainties. We see
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Fig. 7 χ2 distribution across replicas as a function of the training epoch and genetic algorithm generation for the NNPDF4.0 (left) and NNPDF3.1
(right) methodology. The black dotted line in each plot represents the final χ2 of the central value of the corresponding fit, equal to 0.002 and 0.012
respectively

Table 1 In the first column we show the bias-variance ratio, Rbv , for
unseen data, summarised in Table 2. The uncertainty is estimated by
performing a bootstrap sample across fits and replicas and calculating
the standard deviation. We see that overall Rbv is consistent with 1,
within uncertainties. In the second and third columns we compare the
measured value of ξ1σ and the estimated value from Rbv . The two
values are consistent, which suggests the approximation that the ratio of
uncertainties is approximately the same across all data is not completely
invalidated

Rbv ξ1σ erf(Rbv/
√

2)

1.03 ± 0.05 0.69 ± 0.02 0.67 ± 0.03

that overall Rbv is consistent with 1, which gives a good
indication that, at least for the unseen data used in this study,
the uncertainties are faithful

In Fig. 8 we compare qualitatively the distribution of
bias across fits, to the distribution of the difference between
replica predictions and expectation values of predictions (in
units of the covariance) across different fits and replicas. The
square root ratio of the mean of these two distributions is
precisely Rbv .

As discussed in Sect. 4.3, one can define an analogous
estimator in data space, based upon ξnσ , which was defined
on a grid of points in x and Q2 in PDF space in [8]. There
is not a one-to-one correspondence between this and Rbv ,
but a loose approximation using Eq. 122. In the second and
third columns of Table 1 we compare the estimated ξ1σ from
substituting Rbv into Eq. 122 and to the measured value.
Despite the assumptions entering each of the two estimators
differing, we see good agreement between the ξ1σ estimated
fromRbv and that measured directly. We find this result reas-
suring, since it indicates not only that the total uncertainty
averaged across all data is faithful, but also that the uncer-
tainty on each data point seems faithful. If the results differed

Fig. 8 The green histogram is the distribution of the total bias across
fits, the orange histogram is the distribution of the difference between
the replica and central predictions squared, in units of the covariance
across all fits and replicas. In both of these cases, the x-axis represents
the total distance in units of the covariance summed across all unseen
data. We expect shape of the distributions to be equal, and qualitatively
we see that this is approximately the case. We attribute difference in
shape between the distributions to low statistics, in particular for the
bias distribution across fits. For a qualitative comparison we compare
the square root of the mean of each distribution shown here, getting the
quoted value for Rbv in Table 1, where we observe the first moment of
the distributions are equal within uncertainties

it would indicate some kind of imbalance, where some com-
ponents of the uncertainty are correctly represented by the
replicas but other directions are not. Finally we note how not
only are the measured value and estimated value from Rbv

self consistent, but they are also consistent with 0.68, which
further supports the argument that the model uncertainties
are faithful.

As mentioned before, the improved efficiency of the new
NNPDF4.0 code makes it possible to easily compute the
data space estimators for the new methodology, but not for
the NNPDF3.1 one, for which a much higher computational
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cost would be required to perform the same exercise. For this
reason, here we choose to present numbers for NNPDF4.0
only. Given the fact that uncertainties in NNPDF4.0 are much
smaller than those in NNPDF3.1, one might still wonder
to what extend such estimators can or cannot distinguish
between the two methodologies. In this respect, we notice
that the faithfulness of uncertainties as defined here is not
directly related to the corresponding size, and that the esti-
mators presented here cannot distinguish between two dif-
ferent faithful methodologies. Looking at the toy example of
Fig. 3, if we had bigger uncertainty, like in the NNPDF3.1
case, we would expect to get a bigger blue circle, with the true
value of the observable still within its larger 68%. The data
space estimators for any faithful methodology should there-
fore have similar values to those obtained for NNPDF4.0,
independently of the relative size of the uncertainty.

6 Summary

We have presented a theoretical framework for treating
inverse problems from a Bayesian perspective. In particular,
the framework provides a more formal description of what it
means when we talk about propagating experimental uncer-
tainties into the space of models by focusing on the posterior
probability measure in model space given the available data.
Strictly speaking, there is no fitting required to obtain the
expression for the posterior distributions in the space of the
data or the model, instead these are obtained by marginal-
ising the joint distribution. We note that sampling from the
posterior distribution of the model is, in general, highly non-
trivial; however we can show that at least for linear problems
the NNPDF MC methodology produces a sample of models
which are distributed according to the posterior model distri-
bution predicted from the Bayesian formalism. Furthermore,
we provide evidence that even for non-linear models this
result at least holds as a good approximation close to the
MAP estimator.

We then use this formal framework to think about some
of the estimators which we use as part of the NNPDF closure
test. In particular we derive bias and variance from decom-
posing an out of sample error function, which is understood
from a classic fitting point of view. The estimators are then
related back to the posterior distributions in the Bayesian
framework. We note that the estimators themselves are not
perfect and suffer from only testing the model uncertainties
locally (in regions where the test data probes). Furthermore,
the estimators only give an approximate overall picture, and
cannot be used to diagnose where the problem arises if we
find evidence that the model uncertainties are not faithful.

Given the framework set out here, future work should
be undertaken to generalise the closure estimators to model
space. This would likely involve a combination of the closure

estimators presented here and the extension of the Bayesian
framework to infinite-dimensional spaces.

We give some closure results, as a proof of principle. The
results presented here are examined in more detail alongside
the full NNPDF4.0 release [2] but serve as an example of how
the data space estimators can be practically included even in a
rather complex setting. The NNPDF4.0 methodology passes
the closure test according to the estimators that we analysed,
providing evidence that for unseen data the current NNPDF
methodology appears to provide faithful uncertainties. The
estimators are not limited to this specific application, and
the results presented demonstrate how the data space estima-
tors can be incorporated into any inverse problem. As previ-
ously mentioned, a more general set of estimators in model
space would be the gold-standard and give us confidence in
our uncertainties for future observables which probe regions
which are not covered by either the training or testing data.

We stress that, if the ultimate goal of closure tests is to
validate whether the uncertainty of a given methodology is
faithful in the context of a global fit, this is not fully achieved
by the estimators presented here: in the closure test frame-
work described in this study, the prior on the data is fully
consistent with the generation of the observable central val-
ues from the true observables and uncertainties by construc-
tion, which is often not the case in real world fits. Something
which has to be investigated is how we can guarantee faith-
ful uncertainties when this is no longer the case. For example
one could consider a closure test where the generated data
was inconsistent with the prior. The closure tests presented
here should therefore be seen as the first necessary step in this
direction, and future study will aim to complete the picture.

Some of the observed inconsistency between the prior
and the data central values might be due to missing theoret-
ical uncertainties, but once all sources of theoretical uncer-
tainties have been accounted for there could still be ten-
sion in the data. The advantage of viewing inverse prob-
lems from a Bayesian perspective is access to methodologies
which deal with inconsistent data (or unknown systematics)
in a Bayesian framework, for example in these cosmological
studies [20,21]. These methods potentially offer a more for-
mal approach to dealing with inconsistent data, rather than
ad hoc procedures.

The inclusion of MHOUs in the likelihood was justified
from a Bayesian perspective [5], but here we have drawn
a connection between the model replicas and the posterior
distribution in model space, which explains why theoretical
uncertainties must be included in both the sampling of the
pseudodata replicas and the likelihood. Therefore we empha-
sise that the framework set out here is not only useful for
understanding model uncertainties with the current method-
ology, but also for motivating future methodological devel-
opment from a Bayesian perspective. We defer more detailed
investigations of the potential of this approach to future work.
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Appendix A: Gaussian integrals

Theory errors can be included in this framework by allowing
the distribution of observables around the theory prediction
to have a finite width, e.g. by replacing the Dirac delta

δ(y − Gu) (137)

in Eq. 12 with a Gaussian

θ(y, u|G) ∝ exp

[
−1

2
(y − Gu)T C−1

T (y − Gu)

]
. (138)

For the purposes of this study, we do not want to provide a
realistic estimate of theory errors. Instead we will be assum-
ing that the errors are uncorrelated and identical for all data
points

CT = σ 21, (139)

and we will be interested in the limit where σ 2 → 0.

A.1 Integrating out the data

Marginalizing with respect to y in this case yields

πM (u|y0, u0,G) ∝ π0
M (u|u0)

∫
dy π0

D(y|y0)θ(y, u|G).

(140)

The argument of the exponential in the integrand is a
quadratic form in y,

A = (y − y0)
T C−1

D (y − y0) + (y − Gu)T C−1
T (y − Gu) .

(141)

The integral can be easily evaluated by completing the square,

A = (y − ỹ)T C̃−1
D (y − ỹ) + RD. (142)

Comparing Eqs. 141 and 142 at order y2 and y, yields

C̃−1
D = 1

σ 2

(
1 + σ 2C−1

D

)
, (143)

ỹ =
(
1 + σ 2C−1

D

)−1 (
Gu + σ 2C−1

D y0

)
, (144)

and therefore

ỹT C̃−1
D ỹ = 1

σ 2 (Gu)T
(
1 + σ 2C−1

D

)−1
(Gu)

+ yT0 C
−1
D

(
1 + σ 2C−1

D

)−1
(Gu)

+ (Gu)T C−1
D

(
1 + σ 2C−1

D

)−1
y0

+ σ 2yT0 C
−1
D

(
1 + σ 2C−1

D

)−1
C−1
D y0. (145)

Note that the four terms in the equation above are ordered in
increasing powers of σ 2 and ultimately we will be interested
in the limit σ 2 → 0, which reproduces the Dirac delta in
θ(y, u). Plugging Eq. 145 in Eq. 142 and again comparing
to Eq. 141, we find

RD = 1
σ 2 (Gu)T

[
1 − 1

1+σ 2C−1
D

]
(Gu) − yT0 C

−1
D (Gu)

− (Gu)T C−1
D y0 + yT0 C

−1
D y0 + O(σ 2),

Expanding for small values of σ 2 the terms of order 1/σ 2

cancel; keeping only finite terms in the limit σ 2 → 0 we
finally obtain

RD = (Gu − y0)
T C−1

D (Gu − y0) . (146)

This is exactly the result that we obtained earlier when

θ(y, u|G) = δ(y − Gu). (147)

It should not come as a surprise since in the limit where σ 2 →
0 the Gaussian distribution that we chose to describe the
fluctuations of the data around the theory predictions reduces
indeed to a Dirac delta. The posterior for the model is exactly
the one we computed in Sect. 2. We do not learn anything
new from this exercise, but it is a useful warm-up for the next
example. The integral over y can now be performed easily,
since it is yet again a Gaussian integral.
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A.2 Integrating out the model

Using the same approach as above, we now want to
marginalise with respect to the model in order to obtain the
posterior distribution of the data:

πD(y|y0, u0,G) ∝ π0
D(y|y0)

∫
du π0

M (u|u0)θ(y, u|G).

(148)

We follow exactly the same procedure outlined above, start-
ing from the argument of the exponential

A = (u − u0)
T C−1

M (u − u0)

+ (y − Gu)T C−1
T (y − Gu) , (149)

we complete the square and rewrite it in the form

A = (u − ũ)T C̃−1
M (u − ũ) + RM . (150)

It can be readily checked that in this case

C̃−1
M = 1

σ 2

(
GTG + σ 2C−1

D

)
, (151)

ũ =
(
GTG + σ 2C−1

M

) (
GT y + σ 2C−1

M u0

)
. (152)

In order to evaluate RM , we need

ũT C̃−1
M ũ = 1

σ 2 y
TG

(
GTG + σ 2C−1

M

)−1 GT y

+uT0 C
−1
M

(
GTG + σ 2C−1

M

)−1 GT y

+yTG
(
GTG + σ 2C−1

M

)−1
C−1
M u0 + O(σ 2).(153)

Noting that

(
GTG + σ 2C−1

M

)−1 = 1

σ 2CM

− 1

σ 2CMGT
(
G 1

σ 2CMGT + 1

)−1

G 1

σ 2CM , (154)

we have, in the limit where σ 2 → 0

G
(
GTG + σ 2C−1

M

)−1 GT = 1

− σ 2
(
GCMGT

)−1 + O(σ 4). (155)

Collecting all terms we find

RM = (y − Gu0)
T

(
GCMGT

)−1
(y − Gu0) . (156)

Performing the Gaussian integral over u in Eq. 148, we obtain
the posterior distribution of the data

π
y
D(y) ∝ exp

[
− 1

2
(y − y0)

T C−1
D (y − y0)

− 1

2
(y − Gu0)

T
(
GCMGT

)−1
(y − Gu0)

]
. (157)

As in the case above, we note that this is a Gaussian distri-
bution,

π
y
D(y) ∝ exp

[
−1

2
(y − ỹ)T C̃−1

D (y − ỹ)

]
, (158)

where the mean and the covariance are given in Eqs. 50
and 51. We can rewrite those expressions as

ỹ = Gũ, (159)

C̃−1
D = C−1

D +
(
GCMGT

)−1
. (160)

In order to simplify the notation we introduce

ĈM =
(
GCMGT

)
, (161)

and then

C̃D = ĈM − ĈM

(
ĈM + CD

)−1
ĈM . (162)

Appendix B: Closure test setup details

B.1 Data

The full list of datasets included in the test set are shown
in Table 2. The central values are not actually used in the
closure test, however we use the experimental uncertainties
in the calculation of both Rbv and ξ

(data)
1σ ′ . The corresponding

predictions generated from the underlying law are used as
the true observable values. Neither of the data-space closure
estimators rely on the central values of the test datasets.

For completeness, in Fig. 9 the kinematic coverage of the
training datasets, which as mentioned is the NNPDF3.1-like
dataset used in [17], and the test datasets shown in Table 2 is
plotted.

B.2 Models

A summary of the hyperparameters for the neural networks
used during the closure fits is given in Table 3. These hyperpa-
rameters were chosen as part of an extensive hyperparameters
scan, which will be explained in detail in NNPDF4.0, for this
study we simply provide the values of the hyperparameters
as a point of reference.
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Table 2 Observables included in the test data. We wish to stress that the
observable central values themselves are not used, however the experi-
mental uncertainties are used in the definition of the closure estimators,
and the corresponding predictions from either the underlying law or the
closure fits

Data set Refs.

DY E906 σ d
DY/σ

p
DY (SeaQuest) [22]

ATLAS W, Z 7 TeV (L = 4.6 fb−1) [23]

ATLAS DY 2D 8 TeV [24]

ATLAS high-mass DY 2D 8 TeV [25]

ATLAS σW,Z 13 TeV [26]

ATLAS W+ + jet 8 TeV [27]

ATLAS σ tot
t t 13 TeV (L = 139 f b−1) [28]

ATLAS t t̄ lepton + jets 8 TeV [29]

ATLAS t t̄ dilepton 8 TeV [30]

ATLAS single-inclusive jets 8 TeV, R = 0.6 [31]

ATLAS dijets 7 TeV, R = 0.6 [32]

ATLAS direct photon production 13 TeV [33]

ATLAS single top Rt 7, 8, 13 TeV [34–36]

CMS dijets 7 TeV [37]

CMS 3D dijets 8 TeV [38]

CMS σ tot
t t 5 TeV [39]

CMS t t̄ 2D dilepton 8 TeV [40]

CMS t t̄ lepton+jet 13 TeV [41]

CMS t t̄ dilepton 13 TeV [42]

CMS single top σt + σt̄ 7 TeV [43]

CMS single top Rt 8, 13 TeV [44,45]

LHCb Z → μμ, ee 13 TeV [46]

Table 3 Hyperparameters for neural networks used in this study. The
parameter choices, and how these choices were made are discussed in
Ref. [2]

Hyperparameter Value

Architecture 2-25-20-8

Activation tanh-tanh-linear

Minimiser NAdam

Max training length 17,000 epochs

Pre-processing exponents Not fitted

Appendix C: Understanding NNPDF3.0 data estimators

In the closure test presented in NNPDF3.0 [8] there was a
data-space estimator which aimed to measure the level of
over or under fitting, Δχ2 . Here we discuss how Δχ2 can
emerge from the bias-variance decomposition and then use
the linear model to try and understand it in the context of
viewing the ensemble of model replicas as a sample from the
posterior distribution of the model given the data.

Despite the link between the estimators emerging from
the decomposition of Eout and the posterior distribution for
data which is not used to inform the model parameters, if
we perform the same decomposition as in Sect. 4.1 but set
y0

′ = y0 then we find that the cross term in the final line
of Eq. 105 does not go to zero when the expectation across
data is taken because there is a dependence on y0 in both the
model predictions and the noisy data. As a result we have to
modify Eq. 108 to be

Ey0 [E in] = Ey0 [bias] + Ey0 [variance]
+ Ey0 [noise] + Ey0 [noise cross term], (163)

Fig. 9 The kinematic coverage
of the training and test data used
to train the models and produce
results presented in this paper.
The kinematics of the two sets
of data with this particular split
overlaps but there are also
kinematic regions which the test
dataset probes, for which there
are no training data
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where we refer now to the right hand side of Eq. 163 as E in

because it’s evaluated on the data used to inform the model
replicas.

Now we examine the definition of Δχ2 introduced in [8],
defined as the difference between the χ2 between the expec-
tation value of the model predictions and the level one data,
and the χ2 between the underlying observable values and the
level one data. In [8] the denominator was also set to be the
second term in the numerator, however here we slightly re-
define Δχ2 to instead simply be normalised by the number
of data points:

Δχ2 = 1

Ndata

×
[ (

E{u∗}
[
G

(
u(k)∗

)]
− y0

)T
C−1
Y

×
(
E{u∗}

[
G

(
u(k)∗

)]
− y0

)

− ( f − y0)
T C−1

Y ( f − y0)
]

= bias + noise cross term, (164)

where in the second line we show how Δχ2 itself can be
decomposed to be equal to two of the terms in Eq. 163.

Constant values of Δχ2 define elliptical contours in data
space centered on the level one data. Δχ2 = 0, in particular,
defines a contour which is centered on the level one data and
passes through the underlying law. When viewing Δχ2 from a
classical fitting perspective, if Δχ2 < 0 then the expectation
value of the model predictions fit the level one data better than
the underlying observables - which indicates an overfitting of
the shift, η. Similarly, Δχ2 > 0 indicates some underfitting
of the level one data.

If we return to the linear model we can write the analytic
value of Δχ2 . Firstly, since y0

′ = y0 we can simplify Eq. 127

Ey0 [bias] = 1

Ndata
Tr

[
GC̃XGTC−1

Y

]

= 1

Ndata
Tr

[
C̃X C̃

−1
X

]

= Nmodel

Ndata
, (165)

because C̃X C̃
−1
X is an Nmodel × Nmodel identity matrix. Sim-

ilarly we can write down the cross term

Ey0 [noise cross term] = −2

Ndata
Ey0

[
(GC̃XGTC−1

Y η)TC−1
Y η

]

= −2

Ndata
Tr[GC̃XGTC−1

Y ]

= −2
Nmodel

Ndata
(166)

which leaves us with

Ey0 [Δχ2 ] = −Nmodel

Ndata
. (167)

The point is that the linear model has already been shown to
be a sample from posterior distribution of the model given
the data. But from the classical fitting point of view we would
say this model has overfitted.

As such, we do not report any results with Δχ2 here,
because when Rbv = 1, it doesn’t add much to the discus-
sion. It may still be useful as a diagnostic tool whenRbv �= 1,
which as discussed could be for a variety of reasons - includ-
ing fitting inefficiency. It also may be used as a performance
indicator for deciding between two fitting methodologies: if
both fits are shown to have Rbv = 1, the methodology with
smaller magnitude of Δχ2 could be preferential. The same
could be said for bias and variance however, bias in particular
is clearly closely related to Δχ2 .
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