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Abstract We present a dispersive representation of the η′
transition form factor that allows one to account, in a consis-
tent way, for the effects of ρ–ω mixing in both the isoscalar
and the isovector contributions. Using this formalism, we
analyze recent data on η′ → π+π−γ to constrain the isovec-
tor part of the form factor, individually and in combination
with data for the pion vector form factor, which suggests a
tension in the ρ–ω mixing parameter. As a first application,
we use our results, in combination with the most recent input
for the isoscalar part of the form factor, to predict the corre-
sponding spectrum of η′ → �+�−γ , in particular we find the
slope parameter bη′ = 1.455(24) GeV−2. With forthcoming
data on the latter process, our results establish the necessary
framework to improve the evaluation of the η′-pole contribu-
tion to the anomalous magnetic moment of the muon using
experimental input from both η′ decay channels.

1 Introduction

The transition form factors (TFFs) of pseudoscalar mesons,
FPγ ∗γ ∗(q2

1 , q2
2 ) with P = π0, η, η′, describe the interaction

with two (virtual) photons,

i
∫

d4x eiq1·x 〈0∣∣T { jμ(x) jν(0)
}∣∣P(q1 + q2)

〉

= εμναβq
α
1 q

β
2 FPγ ∗γ ∗(q2

1 , q2
2 ), (1.1)

where jμ = (2ūγμu−d̄γμd−s̄γμs)/3 is the electromagnetic
current, q1,2 are the photon momenta, and ε0123 = +1. For
both photons on-shell, these form factors determine the di-
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photon decays governed by the chiral anomaly [1,2]

Γ (P → γ γ ) = πα2M3
P

4

∣∣FPγ γ

∣∣2, (1.2)

with FPγ γ = FPγ ∗γ ∗(0, 0). For the pion, the corresponding
normalization was experimentally [3] found to be close to
the prediction from the low-energy theorem [4–6] Fπ0γ γ =
1/(4π2Fπ ) in terms of the pion decay constant Fπ , to the
extent that higher-order corrections [7–10] thwart agreement
with experiment. For P = η, η′ the analog relations depend
on the details of η–η′ mixing [11–17], see Ref. [18] for a
review. Here, we will use the outcome of the PDG global fit,
Γ (η′ → γ γ ) = 4.34(14) keV [19], i.e.,

Fη′γ γ = 0.3437(55) GeV−1. (1.3)

Beyond the normalization, understanding the momentum
dependence of the TFFs is critical to be able to calculate the
pseudoscalar-pole contributions to hadronic light-by-light
scattering (HLbL) in the anomalous magnetic moment of the
muon. Currently, the main uncertainty in the Standard-Model
prediction [20–48]

aSM
μ = 116 591 810(43) × 10−11 (1.4)

originates from hadronic vacuum polarization, see, e.g.,
Refs. [20,49–54] for further discussion, but to match the final
projected precision of the Fermilab experiment, which will
improve upon the current world average [55–59]

aexp
μ = 116 592 061(41) × 10−11 (1.5)

by more than another factor of two, also the uncertainties in
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the subleading HLbL contribution, in Ref. [20] estimated as
[33–46,60–65]

aHLbL
μ = 90(17) × 10−11, (1.6)

need to be reduced accordingly. Recent progress includes a
second complete lattice calculation [66], while on the phe-
nomenological side the role of higher intermediate states and
the implementation of short-distance constraints are being
scrutinized [67–75]. Besides these subleading contributions,
the η and η′ poles are currently estimated using Canter-
bury approximants alone [37] – as opposed to the π0 pole,
for which independent calculations from dispersion rela-
tions [40,41], lattice QCD [42], and Canterbury approxi-
mants all give a coherent picture – so that a full dispersive
analysis is called for to corroborate the corresponding uncer-
tainty estimates. Several steps in this direction have already
been taken in previous work [76–79], in particular, towards
a better understanding of the role of factorization-breaking
terms [79].

In this paper, we address another subtlety that is related
to the interplay of isoscalar and isovector contributions. In
principle, since η, η′ have isospin I = 0, both photons
need to be either isoscalar or isovector, leading to a simple
vector-meson-dominance (VMD) picture of decays proceed-
ings either via two ρ mesons or some combination of ω and
φ. However, isospin-breaking effects are resonance enhanced
just as in the pion vector form factor (VFF), so that both
the admixture of an ω into the isovector contribution and,
vice versa, of ππ intermediate states into the isoscalar com-
ponent can become phenomenologically relevant, at least in
the vicinity of the resonance. This issue becomes particularly
important when the two-pion cut in the isovector contribu-
tion is constrained via data for η′ → π+π−γ , since also in
this case isoscalar corrections will enter. Based on Ref. [80]
we develop a coupled-channel formalism that allows one to
disentangle these effects in a consistent manner, apply the
result to recent η′ → π+π−γ data from BESIII [81], and
then calculate the resulting singly-virtual TFF to predict the
spectrum for η′ → �+�−γ . A summary of the formalism is
given in Sect. 2, with a detailed derivation in the appendix.
Fits to the η′ → π+π−γ data are presented in Sect. 3, fol-
lowed by the prediction for η′ → �+�−γ in Sect. 4 and our
conclusions in Sect. 5.

2 Formalism

The singly-virtual TFF in the definition (1.1) determines the
spectrum for P → �+�−γ according to

dΓ (P → �+�−γ )

ds
= α3(M2

P − s)3(s + 2m2
�)σ�(s)

6M3
Ps

2

× ∣∣FPγ ∗γ ∗(s, 0)
∣∣2, (2.1)

where s is the invariant mass of the lepton pair and σ�(s) =√
1 − 4m2

�/s the phase-space variable. Once FPγ ∗γ ∗(s, 0) is
known, the di-lepton spectrum can thus be predicted.

However, the differential decay width (2.1) scales as
O(α3) in the fine-structure constant α = e2/(4π), leading
to a challenging experimental signature. Additional informa-
tion on the energy dependence can be obtained by combining
the P → π+π−γ decay with the pion VFF FV

π ,

〈π±(p′)| jμ(0)|π±(p)〉 = ±(p′+ p)μFV
π ((p′− p)2), (2.2)

which determines the discontinuity of the dominant 2π inter-
mediate states. Experimentally, the decay P → π+π−γ is
more easily accessible, given that in this case the differen-
tial decay width only scales as O(α), and information on
the spectrum can then be used to reconstruct the isovec-
tor part of the TFF. This strategy is straightforward as long
as isospin violation is neglected, while the transition from
P → π+π−γ to P → �+�−γ becomes more intricate once
such corrections are included. In particular, ρ–ω mixing is
enhanced by the presence of the resonance propagator, and
therefore needs to be included to obtain a realistic line shape.
In such a situation, one cannot consider the 2π channel in
isolation anymore, since also FV

π depends on ρ–ω mixing,
leading to a spectral function in which the double discontinu-
ities of 2π and 3π intermediate states, corresponding to ρ and
ω, respectively, no longer cancel. In Appendix A–Appendix
D we systematically develop a formalism that avoids such
inconsistencies, allowing for a meaningful consideration of
ρ–ω mixing in both the isoscalar and isovector contributions.
The central result is given by

FPγ ∗γ ∗(s, 0) = FPγ γ +
[

1 + ερωs

M2
ω − s − iMωΓω

]

× s

48π2

∫ ∞

4M2
π

ds′ σ 3
π (s′)P(s′)|FV

π (s′)|2
s′ − s − iε

+ FPγ γ wPωγ s

M2
ω − s − iMωΓω

[
1 + ερωs

48π2g2
ωγ

×
∫ ∞

4M2
π

ds′ σ 3
π (s′)|FV

π (s′)|2
s′(s′ − s − iε)

]

+ FPγ γ wPφγ s

M2
φ − s − iMφΓφ

, (2.3)

a dispersion relation constructed from a spectral function
whose double discontinuity vanishes, see Eq. (D.16). Equa-
tion (2.3) is expressed in terms of the ρ–ω mixing parameter
ερω and the weights wPV γ , defined in Eq. (D.8), which deter-
mine the isoscalar contribution to the slope of the TFF, as well
as the second-order polynomial
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P(s) = A

2

(
1 + βs + γ s2) (2.4)

introduced to describe the η′ → π+π−γ decay spectrum
below.

3 Fits to η′ → π+π−γ and e+e− → π+π−

For the pion VFF, defined in Eq. (2.2), we employ a dispersive
representation

FV
π (s) = (1 + απ s)Ω(s), (3.1)

where

Ω(s) = exp

{
s

π

∫ ∞

4M2
π

dx
δ1

1(x)

x(x − s − iε)

}
(3.2)

is the Omnès function [82] and δ1
1(s) denotes the ππ P-wave

scattering phase shift in the isospin I = 1 channel. As input
for the phase shift we use the solution of the Roy-equation
analysis optimized for fits to pion VFF data of Ref. [27]. The
term multiplying the Omnès function in Eq. (3.1) takes the
effects of inelastic contributions, such as 4π , as well as our
ignorance about the high-energy behavior of the phase shift
into account, where the constant απ is left as a free parameter
to be constrained by the fit. The isospin-breaking effect of
ρ–ω mixing in e+e− → π+π− is parameterized via

FV,e+e−
π (s) =

(
1 + ερω

s

M2
ω − s − iMωΓω

)
FV

π (s) (3.3)

(in line with t̂R(s)12 in Eq. (D.4)), where ερω will be deter-
mined by the fit.

In our formalism, the differential decay spectrum of η′ →
π+π−γ is described by [83]

dΓ (η′ → π+π−γ )

ds
= 16παΓ0|FV

π (s)|2
∣∣∣∣P(s)

+ gη′ωγ ερω

gωγ

1

M2
ω − s − iMωΓω

∣∣∣∣
2

,

Γ0 = 2s

3

(M2
η′ − s

16πMη′
σπ(s)

)3

, (3.4)

see Appendix D.2 for the derivation. The appearance of the
pion VFF herein is due to the universality of ππ P-wave
final-state interactions [76,84]. The constants A, β, and γ in
P(s), see Eq. (2.4), are used as fit parameters, and we refer
to Eqs. (C.4) and (D.10) for the definitions of the coupling
constants gωγ and gη′ωγ , respectively.

We fit to several time-like pion VFF data sets: provided by
the e+e− → π+π− energy-scan experiments SND [85,86]

and CMD-2 [87–90], where in both cases diagonal errors
were given, as well as from radiative-return measurements
BaBar [91,92] (below 1 GeV) and KLOE [93–96], where
in both cases statistical and systematic covariance matri-
ces were provided. Furthermore, the recent data set for the
η′ → π+π−γ spectrum measured by BESIII [81] is used
in the fit, which largely supersedes older data in statistical
accuracy [97]. In order to avoid the d’Agostini bias [98] in
the minimization of a χ2 with naively constructed covariance
matrices when dealing with normalization uncertainties, an
iterative fit procedure, proposed in Ref. [99] and applied to
e+e− → π+π− in Ref. [27], is employed. Since the pion
VFF is defined as a pure QCD quantity in Eq. (2.2), the pion
VFF data sets have been undressed of vacuum-polarization
(VP) effects. As noted in Ref. [27], a minor rescaling of
energy for each individual π+π− data set leads to a signifi-
cant improvement of the fit quality. Equivalently, we take the
ω mass for individual data sets as a fit parameter. In the case of
fitting the combined KLOE data set, we follow Ref. [27] and
assign a global ω mass with individual mass shifts ΔM (i)

ω

to each of the three underlying data sets, from 2008 [93],
2010 [94], and 2012 [95]. Furthermore, the mass shifts are
constrained by penalties Δχ2

i = (ΔM (i)
ω /ΔEc)

2, with cali-
bration uncertainty ΔEc = 0.2 MeV [100]. These terms are
counted as additional data points in the number of degrees of
freedom. Finally, for BaBar and KLOE the observables are
cross sections weighted over energy bins, an effect that is also
included in our fit in the same way as in Ref. [27]. Further
data sets are available from BESIII [101] and SND [102], but
not yet included for consistency: since we use the ππ phase
shift from Ref. [27], we restrict our analysis to the same data
sets used therein, in particular, since the results for the η′
decays are insensitive to the precise choice of VFF data sets.

The BESIII data set for η′ → π+π−γ includes the num-
ber of selected events, the number of background events, the
detection efficiency, and the detector resolution root mean
square in the respective energy bin. The latter is taken into
account by taking the convolution of the theoretical spectrum
in Eq. (3.4) with a Gaussian distribution of mean correspond-
ing to the respective bin center and standard deviation given
by the respective value for the energy resolution. Efficiency
and number of background events are subsequently included
in the fit function. Since the data are given in the form of an
event rate, the physical values of the fit parameters A and ερω

are extracted by utilizing the constraint

Γ (η′ → π+π−γ ) =
∫ M2

η′

4M2
π

ds
dΓ (η′ → π+π−γ )

ds
(3.5)

in the single fit to the BESIII decay spectrum, where the par-
tial width Γ (η′ → π+π−γ ) is given by the corresponding
quantities in Table 1. The couplings gωγ and gη′ωγ have been
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Table 1 Input parameters used in this work. Note that Mω becomes a
free parameter for the VFF fits, to account for the uncertainty in energy
calibration in each data set as well as the tension with determinations
from e+e− → 3π and e+e− → π0γ . The quoted numbers for Mω,
Γω are VP subtracted, to ensure consistency with the bookkeeping as
defined in the appendix. We also show the analog quantities for the
φ, which enter the isoscalar part of the TFF (and are consistent with
analogous determinations from e+e− → K̄ K [104]). The entries for
Γ (V → e+e−)Br(V → 3π), V = ω, φ, from Ref. [103] are consistent
with but more precise than the current PDG averages

Quantity Value Reference

Mη′ 957.78(6) MeV [19]

Γη′ 0.188(6) MeV [19]

Fη′γ γ 0.3437(55) GeV−1 [19]

Br(η′ → π+π−γ ) 29.5(4)% [19]

Mω 782.607(23) MeV [31]

Γω 8.69(4) MeV [31]

Γ (ω → e+e−)Br(ω → 3π) 0.5698(31)(82) keV [103]

Br(ω → 3π) 89.2(7)% [19]

Br(η′ → ωγ ) 2.50(7)% [19]

Mφ 1019.197(20) MeV [31]

Γφ 4.22(5) MeV [31]

Γ (φ → e+e−)Br(φ → 3π) 0.1841(21)(80) keV [103]

Br(φ → 3π) 15.24(33)% [19]

Br(φ → η′γ ) 6.22(21) × 10−5 [19]

extracted by means of VMD models [83] to be

gωγ =
√

3Γ (ω → e+e−)

4πα2Mω

= 0.0619(3),

gη′ωγ = −
√√√√8M3

η′Γ (η′ → ωγ )

α(M2
η′ − M2

ω)3
= −0.400(8) GeV−1,

(3.6)

where the experimental input quantities are listed in Table 1
as well. Note that the definition of the coupling gη′ωγ differs
from the one in Ref. [83] by a factor of the elementary charge
e, with such factors always factorized throughout this work.
Also note that the given value for the coupling gωγ has been
corrected for VP in order to be consistent with the definition
of the pion VFF as a pure QCD quantity. The correction
amounts to a factor of |1 −Π(M2

ω)| = 0.977, where Π(s) is
the Standard Model VP function of Ref. [26].

In principle, the provided data would need to be fit by the
binned maximum likelihood strategy, i.e., by minimizing the
log-likelihood function

L = −
∑
i

log

(
(μi )

ni e−μi

ni !
)

, (3.7)

Table 2 Comparison of the fit outcome of the differential decay width
in Eq. (3.4) to the BESIII η′ → π+π−γ spectrum [81] of the binned
maximum likelihood and minimum χ2 strategies

Quantity Likelihood χ2

A [ GeV−3] 17.10(35) 17.07(32)

β [ GeV−2] 0.589(53) 0.599(51)

γ [ GeV−4] −0.204(53) −0.214(50)

ερω × 103 1.624(73) 1.622(55)

Mω [ MeV] 783.07(33) 783.08(31)

where ni represents the number of events in bin i and μi is
the value of the fit function in this energy bin. This proves
to be disadvantageous for our purpose, since we aim at a
combined χ2 fit of the pion VFF data sets and the η′ →
π+π−γ spectrum in order to extract a common ρ–ω mixing
parameter ερω. In Table 2, the fit parameters to the BESIII
data stemming from the binned maximum likelihood method
are compared to those of a χ2 fit, by minimizing

χ2 =
∑
i

(
μi − ni

σi

)2

, (3.8)

where Poissonian errors σi = √
ni have been assumed. The

χ2 fit gives a χ2/dof = 1.78 and the errors of the fit parame-
ters have been inflated by a scale factor

√
χ2/dof. While the

central values all agree with each other within error margins,
the error estimates of the χ2 fit are slightly lower than those
of the binned maximum likelihood fit, but sufficiently close
to justify a χ2 fit in combination with VFF data. The quoted
errors for the extracted values of A and ερω include the errors
of all fit parameters and their correlations through Eq. (3.5)
as well as the errors of the experimental input parameters.

In the combined fit of the η′ → π+π−γ spectrum and the
pion VFF data sets, the ρ–ω mixing parameter ερω is a shared
parameter. In comparison to the η′ → π+π−γ single fit, we
are confronted with the problem that we fit the physical value
of ερω and not the one including the event rate Nev. Therefore,
Nev needs to be calculated at every step of the fit iteration.
Defining 2Pev(s) = NevA(1 + βs + γ s2), Eq. (3.5) can be
written as

0 = A2N
2
ev + A1Nev + A0, (3.9)

where

A2 = −Γ (η′ → π+π−γ ) + 16πα

∫ M2
η′

4M2
π

ds Γ0|FV
π (s)|2

× g2
η′ωγ

ε2
ρω

g2
ωγ

1

(M2
ω − s)2 + M2

ωΓ 2
ω

,
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Fig. 1 Fit to the differential decay rate of η′ → π+π−γ (individually
or combined with the VFF). To highlight differences in the ρ–ω region,
we show the associated function P̄ , as defined in Eq. (3.11), compared
to the experimental data from BESIII [81]. The function P̄ is calculated
in units that still contain the event rate

A1 = 32πα

∫ M2
η′

4M2
π

ds Γ0|FV
π (s)|2Pev(s)

gη′ωγ ερω

gωγ

× M2
ω − s

(M2
ω − s)2 + M2

ωΓ 2
ω

,

A0 = 16πα

∫ M2
η′

4M2
π

ds Γ0|FV
π (s)|2P2

ev(s), (3.10)

and notation as in Eq. (3.4), in order to determine Nev with
input of ερω in physical units. Hence, the main difference to
the individual fit is that to be able to perform a combined
fit with the VFF data sets, we need to ensure physical units
already at each step in the fit iteration. The linear parameter
απ in the pion VFF is used as a shared parameter for all data
sets in the combined fit as well.

The result of the combined fit is listed in Table 3, where
the errors are inflated by the overall

√
χ2/dof. The error of

the physical value of A takes into account the correlations
and inflated errors of the fit parameters as well as the errors
of all input quantities. The results for Mω and ερω are in
good agreement with Ref. [27], validating the simplified fit
form (3.1) as a convenient way to compare ρ–ω mixing in the
pion VFF and η′ → π+π−γ . The outcome of the combined
fit for the case of the η′ → π+π−γ spectrum is shown in
Fig. 1, where

P̄(s) =
[

1

Γ0|Ω(s)|2
dΓ (η′ → π+π−γ )

ds

]1/2

(3.11)

is shown to emphasize differences in the vicinity of the ρ–ω

mixing effect.
Both in Fig. 1 and by comparing Tables 2 and 3, one sees

that both processes are not fully consistent, with the tension
in ερω the most apparent one: the η′ → π+π−γ data prefer
a value ερω 	 1.6(1)×10−3, while the combined fit, statisti-
cally dominated by the VFF data sets, produces a value close
to ερω 	 2.0 × 10−3, with negligible uncertainty at the level
of the difference. This mismatch is highlighted by the pre-
sentation as in Fig. 1, and comes out substantially larger than
any effect that could be obtained by variation of fit strategy
and choice of input parameters. In none of the variants we
studied did the combination of experimental errors and exter-
nal input suggest an uncertainty beyond Δερω 	 0.1×10−3,
which leads us to conclude that this tension is significant.

A minor tension also occurs in the mass of the ω.1 Here,
the results from 2π come out significantly below the pre-
ferred value from e+e− → 3π, π0γ [28,31], see Table 1,
but extractions from 2π are known to be sensitive to a
phase in ερω [92], with the corresponding difference at least
partially explained by radiative intermediate states that can
generate such an isospin-breaking effect [105]. In contrast,
the η′ → π+π−γ data favor a central value that devi-
ates about 0.5 MeV in the opposite direction, albeit with
moderate significance. Since also the recent 3π data from
BESIII [106] suggest a similar increase compared, e.g., to
Refs. [88,103,107], as does Ref. [101] compared to other
2π data sets, it is difficult not to see a pattern in BESIII
determinations of Mω.

4 Predicting η′ → �+�−γ

In order to determine the η′ TFF according to Eq. (2.3), the
ρ–ω mixing parameter ερω, the parameter associated with
inelastic contributions to the pion VFF απ , as well as the
polynomial parameters A, β, and γ of the η′ → π+π−γ

spectrum from the combined fit serve as input. Additionally,
from the quantities listed in Table 1, the ω mass and width,
the TFF normalization Fη′γ γ , together with the associated
couplings in Eq. (3.6) enter the description of the isovector
part of the TFF. The isoscalar part, consisting of the contri-
butions of the ω and φ resonances, depends on the couplings
wη′V γ in Eq. (D.9), which were calculated from the quan-
tities in Table 1. In the time-like regime, the resulting TFF
then appears as shown in Fig. 2, where it is compared to
experimental data [108].

1 Note that constraining the relative shifts in the ω masses from the
expected uncertainty in the energy calibration, in a similar fashion as
it was done here in the combined fit for the case of KLOE, only leads
to marginal changes in the results compared to the ones displayed in
Table 3 for the other pion VFF data sets, see Ref. [27].
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Table 3 Combined fit to several pion VFF data sets (BaBar, KLOE,
CMD-2, SND) and η′ → π+π−γ spectrum (BESIII) with overall
χ2/dof = 1.64. In the row for KLOE, the three values for Mω refer to

the combinations of the global KLOE ω mass and the corresponding
mass shifts of the three underlying data sets from 2008, 2010, 2012,
respectively. See main text for details

Since the form of polynomial P(s) and the linear poly-
nomial multiplying the Omnès function in the representation
of the pion VFF are governed by physics below 1 GeV, their
values at high energies do not bear much meaning. There-
fore, and in order to improve the convergence properties of
the dispersion integrals in Eq. (2.3) at the same time, they
are led to constant values P(sc) and 1+απ sc above a certain
cutoff value sc. This cutoff is varied between sc = 1 GeV2,
the point where P(s) reaches its maximum (sc = 1.89 GeV2

with β and γ from the combined fit) and the point where P
drops below its value at s = 0 (sc = 3.79 GeV2). Together
with the errors of the input quantities in Table 1, the errors of
the parameters from the combined fit, and their correlations,
this procedure is used to generate the error band of the disper-
sive η′ TFF representation shown in Fig. 2. In this figure, the
dispersive curve displays the broad ρ peak from the isovector
part of the TFF. Around the ω mass, the ρ–ω mixing effect
is overlaid by the narrow peak of the ω resonance from the
isoscalar part of the TFF. Slightly below an invariant mass
square of 1 GeV2 the isoscalar φ contribution begins to set
in. The available experimental data are in excellent agree-
ment with the dispersive prediction, but not accurate enough
to distinguish it from the VMD model. Figure 2 also shows
the peak of the φ resonance, which, however, is not accessi-
ble in η′ decays, but could be scanned in e+e− → η′γ near
threshold.

The low-energy properties of the TFF are described by the
slope parameter bη′ , which is defined by

Fη′γ ∗γ ∗(s, 0) = Fη′γ γ

(
1 + bη′s + O(s2)). (4.1)

It can be calculated via a sum rule, following from Eq. (2.3),
and disentangled into its isovector contribution

b(I=1)

η′ = 1

48π2Fη′γ γ

∫ ∞

4M2
π

dx

x
σ 3(x)P(x)|FV

π (x)|2, (4.2)

and isoscalar contribution

b(I=0)

η′ =
∑

V∈{ω,φ}

wη′V γ

M2
V

, (4.3)

with bη′ = b(I=1)

η′ + b(I=0)

η′ . Numerical values are listed
together with the evaluation of the sum rule for the normaliza-
tion (D.21) in Table 4. As expected from VMD, the isovector
part dominates both the normalization and the slope, saturat-
ing the former by 70% and producing about 80% of the latter.
In combination with the isoscalar part the sum rule for the
normalization is fulfilled by 95%, suggesting a slightly faster
convergence than similar sum rules in Refs. [40,41,110,111].
The two isospin-breaking corrections to the normalization,
in the isovector and isoscalar part, combine to about −0.3%
and thus prove negligible compared to the uncertainty in the
sum-rule evaluation. Accordingly, these corrections become
most relevant in the resonance region, where even sublead-
ing effects are enhanced by the small width of the ω reso-
nance, see Fig. 2. The ω resonance peak would be about 4%
increased in magnitude if ερω = 0.

Our result for the slope,

bη′ = 1.455(24) GeV−2, (4.4)

is consistent with, but considerably more precise than the
experimental determinations bη′ =1.60(17)(8)GeV−2 [108]
(from η′ → e+e−γ ) and bη′ = 1.60(16) GeV−2 [112],
bη′ = 1.38(23) GeV−2 [113] (via e+e− → e+e−η′), and
also agrees very well with bη′ = 1.43(4)(1) GeV−2 [16]
extracted via Padé approximants. Moreover, the improved
formalism and combined fit allowed us to substantially
reduce the uncertainties compared to the previous dispersion-
theoretical analysisbη′ = 1.53+0.15

−0.08 GeV−2 [77], also reflect-
ing the improved input on η′ → π+π−γ from Ref. [81] in
comparison to the earlier measurement [97]. A close-up of
the low-s region of the TFF is included in Fig. 2 as well.
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Fig. 2 Determination of the η′ TFF by means of Eq. (2.3) in compar-
ison to data from BESIII [108] (statistical and systematic errors added
in quadrature) scaled with Fη′γ γ from Table 1 and the VMD model of
Eq. (D.23) with φ resonance contribution according to Eq. (D.22); for

the kinematic range accessible in η′ decays (left) and a larger time-like
region including the φ resonance with inset magnifying the low-s region
(right). See also Ref. [109] for an earlier version of this figure

Table 4 Contributions from the various components of the TFF to the sum rules of the normalization and the slope parameter

(I = 1)ερω=0 Δ(I = 1)ερω �=0 (I = 0)ωερω=0 Δ(I = 0)ωερω �=0 (I = 0)φ Total

Norm [%] 71.85(93) −0.1433(20) 7.20(23) −0.1389(46) 15.85(61) 94.6(1.2)

bη′ [ GeV−2] 1.185(23) 0 0.1176(32) 0 0.1526(53) 1.455(24)

5 Conclusions

This work presents progress in a dispersive calculation of
the TFF of the η′, as required for future studies of the η′-pole
contribution to HLbL scattering in the anomalous magnetic
moment of the muon. First, we established a formalism that
enables a consistent implementation of isospin-breaking ρ–
ω mixing effects, both in the isoscalar and isovector part of
the form factor. The technical derivation is presented in a
self-contained way in the appendices of the paper, leading to
our main result (2.3) for the final TFF representation. More-
over, we worked out how the information on the isovector
TFF contained in the spectrum for η′ → π+π−γ can be
combined, in terms of the decomposition (3.4).

These results form the basis for the application studied
in the main part of the paper, an analysis of recent data
from BESIII on η′ → π+π−γ and subsequent prediction
of the full η′ TFF. A combined fit of the η′ → π+π−γ

spectrum and data on the pion VFF reveals a tension in the
ρ–ω mixing parameter, with the former suggesting a sub-
stantially smaller value than extracted from isospin breaking
in e+e− → π+π−, see Fig. 1. Given the modest fit quality
already in the individual fit as well as another minor tension in

the ω mass, it would be desirable to scrutinize these observa-
tions with an independent measurement of the η′ → π+π−γ

spectrum, e.g., from CLAS at Jefferson Lab [114].
As a final step, we used the parameters determined in the

global fit to η′ → π+π−γ and e+e− → π+π−, in combi-
nation with up-to-date input on the isoscalar resonances, to
predict the full TFF at low energies, see Fig. 2 and Table 4.
Deviations from VMD are most visible in the vicinity of
the ω resonance, where the dispersive implementation of the
ρ meson via 2π intermediate states changes the line shape
compared to the strict VMD limit. Our results should prove
valuable for the analysis of future data on η′ → π+π−γ and
η′ → �+�−γ [115,116], in particular towards improving the
calculation of the η′-pole contribution to HLbL scattering.
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Appendix A: Coupled-channel formalism

In Appendix B–Appendix D, we derive a coupled-channel
formalism for π+π−, �+�−, and π+π−π0, concentrating on
the ω resonance for the latter. In particular, we aim at delineat-
ing the impact of ρ–ω mixing on the pion vector form factor
and pseudoscalar decays in a consistent way, leading to the
master formulae with which the η′ decays are analyzed in the
main part. The construction follows the formalism developed
in Ref. [80] (cf. also Refs. [117,118]), which can be summa-
rized as follows: the full scattering amplitude t (s), carrying
channel indices i , j , is written as2

t (s)i j = t̃(s)i j + ξiΓout(s)i tR(s)i jΓin(s)
†
jξ j , (A.1)

where tR denotes the part of the scattering amplitude that
arises from iterating a resonance potential

tR(s)i j = [1 − VR(s)Σ(s)
]−1
ik VR(s)k j , (A.2)

via the self energies

Σ(s)i j = δi j
s

π

∫ ∞

sithr

ds′ σ̃i (s′)ξ2
i |Γ (s′)i |2

s′(s′ − s − iε)
, (A.3)

with phase space σ̃i , centrifugal barrier factors ξi , and vertex
functions Γi . The potential is parameterized in terms of bare
resonances

V̄R(s)i j = −
n∑

l,l ′=1

g(l)
i Gll ′g

(l ′)
j , Gll ′ = δll ′

s − m2
l

,

VR(s) = V̄R(s) − V̄R(0), (A.4)

2 Note that, here and below, repeated indices related to ξi and Γi are
not summed over.

with bare masses ml and then (potentially) subtracted at
s = 0. For our application, this formalism is attractive, as it
allows us to account for the physics of photon and ω exchange
via VR , the ππ rescattering via Omnès factors in the Γi , and
combine everything in a way that is consistent with ana-
lyticity and unitarity. In addition, form factors (and thereby
pseudoscalar decays) can be described in a similar way

F(s)i = Γout(s)i
[
1 − VR(s)Σ(s)

]−1
ik Mk, (A.5)

with source terms parameterized as

Mk = ck −
n∑

l,l ′=1

g(l)
k Gll ′α

(l ′)s, (A.6)

where the factor s in the resonance coupling arises as a
consequence of gauge invariance. In the following, we will
develop this formalism step by step for a three-channel sys-
tem {2π, �+�−, 3π}, mediated via two resonances {γ, ω}.
Note that the ρ resonance is already contained in t̃(s) for
the 2π channel and thus also in the corresponding vertex
function Γ (s).

Appendix B: π+π− and �+�−

Appendix B.1: ππ channel

As a first step we consider the single-channel case when
only external π+π− states and photon exchange are retained.
The isospin I = 1 ππ scattering amplitude is written in the
conventions

M1(s, t) = 32π
∑
odd l

(2l + 1)t1
l (s)Pl(z), (B.1)

with Legendre polynomials Pl(z) and normalized in such a
way that the cross section reads

dσ

dΩ
= |M|2

64π2s
. (B.2)

The P-wave amplitude is identified with t̃(s) in Eq. (A.1) as

t̃(s) ≡ 48π t1
1 (s) = e2iδ1

1(s) − 1

2i σ̃π (s)
,

σ̃π (s) = σπ(s)

48π
, σπ(s) =

√
1 − 4M2

π

s
. (B.3)

This definition is motivated by the isospin decomposition of
the physical amplitude

Mπ+π− = 1

6
M2 − 1

2
M1 + 1

3
M0, (B.4)
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since then Mπ+π−|P-wave = −t (s)z and t (s) can essentially
be interpreted as the standard amplitude with the angular
dependence removed.

In addition, we can match the contribution from the s-
channel photon-exchange diagram

Mπ+π−
γ = e2

s

(
s − 4M2

π

)
z
(
FV

π (s)
)2 (B.5)

to the second term in Eq. (A.1). That is, including the
hadronic running of α for self consistency, we have

tγ (s) = −4πα

s

(
s − 4M2

π

)(
FV

π (s)
)2

(1 − Ππ(s))−1,

Ππ(s) = −4πα

s

s2

π

∫ ∞

4M2
π

ds′ σ̃π (s′)(s′ − 4M2
π )|FV

π (s′)|2
s′2(s′ − s − iε)

,

(B.6)

which takes the form

tγ (s) = VR(s)ξ2
π (s)Γout(s)Γ

†
in(s)

1 − VR(s)Σπ(s)

= ξ2
π (s)Γout(s)Γ

†
in(s)tR(s), (B.7)

provided that we identify

Γout(s) = Γ
†

in(s) = FV
π (s), VR(s) = −4πα

s
,

ξπ (s) =
√
s − 4M2

π ,

Σπ(s) = s2

π

∫ ∞

4M2
π

ds′ σ̃π (s′)ξ2
π (s′)|Γ (s′)|2

s′2(s′ − s − iε)
. (B.8)

The full result

t (s) = t̃(s) + ξπ (s)Γout(s)tR(s)Γ †
in(s)ξπ (s) (B.9)

then indeed agrees with Eq. (A.1), the only difference being
that the self energy enters in twice-subtracted form.

Appendix B.2: �+�− channel

In the leptonic channel we start from the VP function in the
form

Π�(s) = −4πα

s

s2

π

∫ ∞

4m2
�

ds′ σ̃�(s′)4(s′ + 2m2
�)

s′2(s′ − s − iε)
, (B.10)

which leads one to identify

Γout(s) = Γin(s) = 1, VR(s) = −4πα

s
,

ξ�(s) = 2
√
s + 2m2

�,

Σ�(s) = s2

π

∫ ∞

4m2
�

ds′ σ̃�(s′)ξ2
� (s′)

s′2(s′ − s − iε)
, (B.11)

and thereby

t (s) = ξ2
� (s)tR(s) = ξ2

� (s)VR(s)

1 − VR(s)Σ�(s)
. (B.12)

This amplitude, when interpreted in the same way as the
ππ amplitude t (s) derived in the previous subsection, pro-
duces the total cross section3

σ(�+�− → �+�−) = 2π

64π2s

1

4

∣∣∣ξ2
� (s)VR(s)

∣∣∣2 × 2

3

= (4πα)2

12πs3 (s + 2m2
�)

2, (B.13)

which matches the QED result from the s-channel diagram
(the factor 1/4 averages over initial-state spins). In this way,
the factor ξ� captures the kinematic dependence from the
fermion traces instead of the centrifugal barrier, but up to this
difference in interpretation the same decomposition applies
as in the ππ channel.

Appendix B.3: Combining π+π− and �+�−

The two-channel system {2π, �+�−} with a photon mediator
in VR(s) follows by combining the results from the previous
two subsections:

tR(s) = (1 − VR(s)Σ(s)
)−1

VR(s), (B.14)

VR(s) = −4πα

s

(
1 1
1 1

)
, Σ(s) = diag

(
Σπ(s),Σ�(s)

)
,

so that

tR(s) = −4πα

s

(
1 1
1 1

) (
1 − Π(s)

)−1
,

Π(s) = −4πα

s

(
Σπ(s) + Σ�(s)

)
. (B.15)

In particular, we find for the e+e− → π+π− cross section,
by the same procedure as in Eq. (B.13),

σ(e+e− → π+π−) = 2π

64π2s

1

4

σπ(s)

σe(s)

∣∣t (s)21
∣∣2 × 2

3

3 The factor 2/3 arises from the angular integral
∫ 1
−1 dz z2, as does

represent the correct angular dependence for the bosonic amplitude in
Eq. (B.5), but in general only the integrated quantities are reproduced
correctly, since part of the angular dependence is moved into the cen-
trifugal barrier factors, e.g., in contrast to ξπ , the ξ� do not correspond
to the center-of-mass momentum. Accordingly, we only keep the differ-
ential form when adequate, and otherwise simply display the integrated
result.
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= πα2

3s

σ 3
π (s)|FV

π (s)|2
|1 − Π(s)|2

s + 2m2
e

sσe(s)
,

(B.16)

which reproduces the expected result. Adding further lep-
tonic channels is straightforward, e.g., in the VP function the
sum of the lepton species appears. For simplicity, we will
restrict the discussion to a single lepton channel throughout.

Appendix C: Including the 3π channel

Our main objective in including the 3π channel is as follows:
since in the end we are mainly interested in the 2π channel,
the impact of 3π states is only indirect, so that we do not aim
at a full description of the γ ∗ → 3π amplitude as derived in
Refs. [40,41,119], but at a consistent implementation of the
ω, which, due to ρ–ω mixing, is how the 3π channel leaves
its imprints in 2π . This motivates including the ω as a second
mediator besides the photon in the resonance potential VR .

Appendix C.1: 3π and �+�−

As a first step, we consider the �+�− and 3π channels only,
in order to fix the parameters in the potential. We make the
ansatz

VR(s) = −4πα

s

(
1 g3s
g3s (g3s)2

)
− 1

s − M2
ω,0

(
0 0
0 g2

ω3

)
,

Σ(s) = diag
(
Σ�(s),Σ3π (s)

)
, (C.1)

with functions/couplings g3, gω3, Σ3π (s), and bare ω mass
Mω,0 to be determined in the following. The underlying idea
is that the potential is generated by photon and ω states,
where the ω is to be approximated by a narrow resonance,
with parameters that correspond to renormalized versions of
the bare parameters from Eq. (C.1).

In order to determine these parameters, we first consider
the �+�− component

tR(s)22 = −4πα

s

(
1 − Π�(s) − Πω(s)

)−1
, (C.2)

where we have used the fact that VP is the only correction
that should appear in �+�− scattering. In a narrow-width
approximation for the ω one would expect

Πω(s) = e2g2
ωγ s

s − M2
ω + iMωΓω

, (C.3)

where the ω–γ coupling has been chosen in agreement with
the Lagrangian definition

Lωγ = − e

2
gωγ F

μνωμν, ωμν = ∂μων − ∂νωμ. (C.4)

The potential in Eq. (C.1) produces

Πω(s) = −e2s
(
s − M2

ω,0

) g2
3

g2
ω3

+ e2s
( g3
gω3

(
s − M2

ω,0

))2
s − M2

ω,0 + Σ3π (s)g2
ω3

, (C.5)

demonstrating that g3 in Eq. (C.1) indeed needs to be accom-
panied by a factor s to ensure gauge invariance. The compar-
ison to Eq. (C.3) then suggests the identification4

Σ3π (s) ≡ Σ3π = M2
ω,0 − M2

ω + iMωΓω

g2
ω3

,

gωγ = − g3

gω3

(
s − M2

ω,0

)
. (C.6)

The need to absorb an s dependence into gωγ shows that
these relations are only strictly meaningful at the resonance
mass, while polynomial ambiguities arise elsewhere. For the
moment, we indicate this caveat by writing

Πω(s) = Pω(s) + e2g2
ωγ s

s − M2
ω + iMωΓω

, (C.7)

with the role of the polynomial to be clarified in the following.
In total, the amplitudes in this two-channel system are

tR(s)22 = −e2

s

(
1 − Π(s)

)−1
,

tR(s)23 = e2gω3gωγ

s − M2
ω + iMωΓω

(
1 − Π(s)

)−1
,

tR(s)33 =
[
Πω(s)

Σ3π

− g2
ω3(1 − Π�(s))

s − M2
ω + iMωΓω

](
1 − Π(s)

)−1
,

(C.8)

where Π(s) = Π�(s) + Πω(s).

Appendix C.2: Comparison to 2π and �+�−

The 2π channel could be treated in a similar way as 3π if the
ρ were assumed to be narrow. In this case, one would write
in the vicinity of the pole [120]

FV
π (s) = gρππgργ sρ

sρ − s
, (C.9)

4 The sign in gωγ is motivated by the 2π channel and the definition of
the ρ–ω mixing parameter, to match the sign conventions of Ref. [83].
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with gργ defined in analogy to gωγ and gρππ related to the
decay width via

Γρ = g2
ρππ Mρ

48π
σ 3

π (M2
ρ). (C.10)

If we then assume the integral in Eq. (B.6) to be dominated
by contributions close to the resonance and expand in Γρ , we
obtain

Ππ(s) = −e2g2
ρππg

2
ργ

48π

Mρ

Γρ

σ 3
π (M2

ρ)

× s

π

∫ ∞

4M2
π

ds′
MρΓρ

(s′−M2
ρ)2+(MρΓρ)2

s′ − s − iε
. (C.11)

The imaginary part of the integral can be read off from the iε
prescription, while in the narrow-width limit the numerator
collapses to πδ(s′ − M2

ρ), producing

Ππ(s) = e2g2
ργ s

s − M2
ρ + iMρΓρ

, (C.12)

which coincides with the narrow-width expectation for
Πω(s) in Eq. (C.3). This indicates that ultimately the polyno-
mial in Eq. (C.7) should be put to zero. In the same narrow-
width approximation, the e+e− → π+π− peak cross section
becomes

σ(e+e− → π+π−)
(
M2

ρ

) = 16π2|α(M2
ρ)|2g2

ργ

Mρσe(M2
ρ)

× Γρ(M2
ρ + 2m2

e)

|s − M2
ρ + iMρΓρ |2 ,

(C.13)

which can be used to interpret the result for the e+e− → 3π

cross section (C.21) below.

Appendix C.3: e+e− → 3π cross section

To interpret results for the 3π channel we need to consider
the cross section e+e− → 3π . Its general form can be written
as

σ(e+e− → 3π)(s) =
∫ s+

s−
ds′
∫ t+

t−
dt ′ d2σ(s′, t ′; s)

ds′ dt ′
,

d2σ(s′, t ′; s)
ds′ dt ′

= α2(s′t ′u′ − M2
π (s − M2

π )2)

192πs3

× ∣∣F(s′, t ′, u′; s)∣∣2 s + 2m2
e

sσe(s)
, (C.14)

with s′ + t ′ + u′ = s + 3M2
π and integration boundaries

s− = 4M2
π , s+ = (

√
s − Mπ )2,

t± = 1

2

[
s + 3M2

π − s′ ± σπ(s′)λ1/2(s, M2
π , s′)

]
. (C.15)

The scalar function F(s′, t ′, u′; s) is normalized as

F(0, 0, 0; 0) = F3π = 1

4π2F3
π

, (C.16)

and decomposes as

F(s′, t ′, u′; s) = a(s) f3π (s′, t ′, u′),
f3π (s′, t ′, u′) = Ω1

1 (s′) + Ω1
1 (t ′) + Ω1

1 (u′), (C.17)

as long as rescattering effects are neglected [121]. The sim-
plest form of the normalization function consistent with
Eq. (C.16) and including the ω resonance reads

a(s) = F3π

3

(
1 − c3π

s

s − M2
ω + iMωΓω

)
, (C.18)

where VMD predicts c3π = 1. A similar form holds for the
3π decay width:

Γω = 1

128(2π)3M3
ω

∫ s+

s−
ds′
∫ t+

t−
dt ′

×
(
s′t ′u′ − M2

π (M2
ω − M2

π )2
)
|cω|2∣∣ f3π (s′, t ′, u′)

∣∣2,
(C.19)

where we have written the normalization in terms of another
constant cω, but assumed the same dependence on the Man-
delstam variables as in Eq. (C.17). Numerically, this gives

Γω ≈ 2.865 × 10−7 GeV7|cω|2. (C.20)

The peak cross section can then be expressed as

σ(e+e− → 3π)
(
M2

ω

) = 16π2α2F2
3π |c3π |2

9|cω|2Mωσe(M2
ω)

× Γω(M2
ω + 2m2

e)

|s − M2
ω + iMωΓω|2 . (C.21)

Matching to the expected form (C.13) gives

|c3π | = 3|cω|gωγ

F3π

≈ 0.98, (C.22)

demonstrating that, phenomenologically, c3π indeed comes
out close to the VMD expectation. Finally, we remark that
the form of the cross section (C.21) indeed matches onto
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|tR(s)23|2 from Eq. (C.8) as long as Γω ∝ |gω3|2, which
clarifies the role of this parameter. To work out the explicit
relation one would need to assign ξi and Γi for i = 3π , but
since we will not consider 3π final states in the following,
we do not pursue this avenue any further.

Appendix C.4: Pseudoscalar decays

In the formalism developed so far, the pseudoscalar decays of
P = π0, η, η′ into π+π−γ , �+�−γ , or 3πγ can be derived
from Eq. (A.5), with a suitable choice of source terms Mk . To
avoid the complications from ρ–ω mixing, we first consider
the two-channel case {�+�−, 3π}, before generalizing to the
full system in Appendix D.

For the 3π channel, the ansatz (A.6) applies, i.e., we can
write

M3 = a + gω3

s − M2
ω,0

b + g3e
2c, (C.23)

with constants a, b, c to be determined in the following.
Accordingly, to ensure consistency with Eq. (C.1), we have

M2 = c
e2

s
. (C.24)

Using Eq. (A.2), we find

Fi (s) = (Γout(s)
)
i

(
1 + tR(s)Σ(s)

)
i j M j (s), (C.25)

in particular,

F2(s) = 1

1 − Π(s)

(
e2

s
c + Πω(s)

sg3

(
a + gω3

s − M2
ω,0

b
))

.

(C.26)

To interpret this form factor in the context of P → �+�−γ

decays, we first consider the analog of Eq. (B.16) for a
coupled-channel system of {�+�−, Pγ }

σ(�+�− → Pγ ) = 2π

64π2s

1

4

σPγ (s)

σ�(s)

∣∣t (s)24
∣∣2 × 2

3

≡ π2α3

6s

σ 3
Pγ (s)

∣∣FPγ ∗γ ∗(s, 0)
∣∣2

|1 − Π(s)|2
ξ2
� (s)

σ�(s)
,

(C.27)

where we defined the phase-space factor σPγ (s) = (s −
M2

P )/s. In addition, VR(s) is the same as in Eq. (B.14) and
Γout(s)Pγ = eFPγ ∗γ ∗(s, 0), leaving only ξPγ (s) to be deter-
mined. The matching in Eq. (C.27) yields

ξ2
Pγ (s) = 1

2

(
s − M2

P

)2
. (C.28)

The same relation can also be derived from the Pγ contri-
bution to the VP function Π(s), supporting this assignment
for a Pγ state, in terms of which the differential decay width
becomes

dΓ (P → �+�−γ )

ds
= α3(M2

P − s)ξ2
� (s)ξ2

Pγ (s)σ�(s)

12M3
Ps

2

× ∣∣FPγ ∗γ ∗(s, 0)
∣∣2. (C.29)

Due to the final-state photon also the three-particle phase
space can be simplified, producing

dΓ (P → �+�−γ )

ds
= 1

(2π)332M3
P

(
M2

P − s
)
σ�(s)

1

2

× ∣∣MP→�+�−γ (s)
∣∣2 × 2

3
, (C.30)

where we have written the general relativistic amplitude as
MP→�+�−γ (s) in analogy to the scattering reactions studied
before. The matching of Eqs. (C.29) and (C.30) then deter-
mines

MP→�+�−γ (s) = e2

s
ξ�(s)ξPγ (s)eFPγ ∗γ ∗(s, 0)

≡ ξ�(s)ξPγ (s)eF2(s), (C.31)

where the last step gives the identification with the outcome
of our coupled-channel formalism. The parameter c = FPγ γ

thus determines the TFF normalization, and defining, in anal-
ogy to Eq. (C.6), ã = −(s−M2

ω,0

)
a/gω3, we find the relation

FPγ ∗γ ∗(s, 0) = FPγ γ + Πω(s)
ã − b

gωγ e2 . (C.32)

This again strongly suggests to set Pω(s) = 0 in Eq. (C.7),
because then the matching

ã − b ≡ − c3π

gωγ

FPγ γ (C.33)

reproduces precisely the expected momentum dependence
(C.18). Our final result for the P → �+�−γ amplitude,
related to the decay width by Eq. (C.30), reads

MP→�+�−γ (s) = ξ�(s)ξPγ (s)

1 − Π(s)

e3FPγ γ

s

×
(

1 − c3π

s

s − M2
ω + iMωΓω

)
. (C.34)
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Appendix C.5: Radiative corrections to the ω pole
parameters

As final step before generalizing to the full system we con-
sider the modifications to the ω parameters when including
VP corrections. Such modifications arise because of

1 − Π�(s) − Πω(s) =
[
s − M2

ω + iMωΓω − e2g2
ωγ s

1 − Π�(s)

]

× 1 − Π�(s)

s − M2
ω + iMωΓω

. (C.35)

Expanding the first factor in e,

s − M2
ω + iMωΓω − e2g2

ωγ s

1 − Π�(s)

= s
(
1 − e2g2

ωγ

)− M2
ω + iMωΓω + O(e4)

≡ (1 − e2g2
ωγ

)(
s − M̄2

ω + i M̄ωΓ̄ω

)
+ O(e4), (C.36)

we find that the new ω parameters are given by

M̄ω =
(

1 + e2g2
ωγ

2

)
Mω + O(e4),

Γ̄ω =
(

1 + e2g2
ωγ

2

)
Γω + O(e4), (C.37)

and the couplings are renormalized according to

ḡω3 = gω3
√
Z , ḡωγ = gωγ

√
Z , Z = 1+e2g2

ωγ . (C.38)

Numerically, these shifts are rather small, with Z − 1 =
3.3 × 10−4, i.e., the change in gωγ is completely negligible.
As concerns the pole parameters [28,31],

ΔMω = M̄ω − Mω = 0.13 MeV,

ΔΓω = Γ̄ω − Γω = 1.4 keV, (C.39)

the shift in the mass is comparable to current experimen-
tal uncertainties, while the main effect in the width comes
instead from the interaction with the 2π channel. Using the
approximation (C.12), one finds

ΔΓω = e2g2
ωγ

2
Γω + M2

ω

Γρ − Γω

e2g2
ργ

(
e2g2

ωγ − 2ερω

)

= −0.06 MeV. (C.40)

Appendix D: Full system

In this section, we present our final results for the full sys-
tem {2π, �+�−, 3π} with γ and ω mediators in the reso-

nance potential. We write the expressions in terms of the
VP-subtracted ω parameters Mω, Γω, with the understanding
that they are related to the physical pole parameters includ-
ing VP by means of Eqs. (C.39) and (C.40). This convention
simplifies expressions, and at the same time makes the fac-
torization of VP manifest. We show the results for a single
lepton species �, with straightforward generalization to mul-
tiple generations.

Appendix D.1: Scattering channels

The ansatz for the full potential reads

VR(s) = −4πα

s

⎛
⎝ 1 1 g3s

1 1 g3s
g3s g3s (g3s)2

⎞
⎠

− 1

s − M2
ω,0

⎛
⎝ g2

ω2 0 gω2gω3

0 0 0
gω2gω3 0 g2

ω3

⎞
⎠ ,

Σ(s) = diag
(
Σπ(s),Σ�(s),Σ3π (s)

)
, (D.1)

where gω2 parameterizes the isospin-breaking coupling of
the 2π channel to the ω. In practice, we will neglect higher
orders in gω2, given that at this level also other subleading
effects, such as the ω → π0γ channel, would need to be
considered. The full VP function becomes

Π(s) = Π�(s) + Ππ(s)

(
1 + 2sερω

M2
ω − s − iMωΓω

)

+ Πω(s) + O(g2
ω2

)
, (D.2)

with Πω(s) as defined in Eq. (C.3), and the ρ–ω mixing
parameter

ερω = gω2gωγ . (D.3)

The full amplitudes are

tR(s) = 1

1 − Π(s)
t̂R(s) + O(g2

ω2

)
,

t̂R(s)11 = −e2

s

(
1 + 2ερωs

M2
ω − s − iMωΓω

)

+ ε2
ρω

g2
ωγ

1

M2
ω − s − iMωΓω

,

t̂R(s)12 = −e2

s

(
1 + ερωs

M2
ω − s − iMωΓω

)
,

t̂R(s)22 = −e2

s
,

t̂R(s)13 = e2gω3gωγ

s − M2
ω + iMωΓω

(
1 − ερω(1 − Π�(s))

e2g2
ωγ

)
,
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t̂R(s)23 = e2gω3gωγ

s − M2
ω + iMωΓω

(
1 − ερωΠπ(s)

e2g2
ωγ

)
,

t̂R(s)33 = Πω(s)

Σ3π

(
1 − 2ερωΠπ(s)

e2g2
ωγ

)

− g2
ω3(1 − Π�(s) − Ππ(s))

s − M2
ω + iMωΓω

. (D.4)

tR(s)23 and tR(s)33 indeed generalize Eq. (C.8), and in the
conventions (C.6) the sign in the ρ–ω-mixing correction in
e+e− → π+π− agrees with Ref. [83]. Note that the expan-
sion in gω2 is clearly not appropriate for the isospin-violating
corrections to π+π− scattering, where terms of orderO(g2

ω2)

should be counted at the same order as O(e2gω2). For com-
pleteness, we have therefore retained the corresponding cor-
rection in tR(s)11.

Appendix D.2: Decays and transition form factors

Generalizing Eqs. (C.23) and (C.24), we make the following
ansatz for the source terms

M(s) = c
e2

s

⎛
⎝ 1

1
g3s

⎞
⎠+ b

s − M2
ω,0

⎛
⎝gω2

0
gω3

⎞
⎠+

⎛
⎝−P(s)

0
a

⎞
⎠ ,

(D.5)

with parameters a, b, c to be interpreted as before, and only
the role of the function P(s) to be clarified. As a first step,
the result for the P → �+�−γ amplitude generalizes to

MP→�+�−γ (s) = ξ�(s)ξPγ (s)

1 − Π(s)

e3

s
FPγ ∗γ ∗(s, 0),

FPγ ∗γ ∗(s, 0) = FPγ γ + P(s)Σπ(s)

×
(

1 + ερωs

M2
ω − s − iMωΓω

)

+ FPγ γ wPωγ s

M2
ω − s − iMωΓω

(
1 + ερω

sg2
ωγ

Σπ(s)

)

+ O(e2ερω

)
. (D.6)

Here, we have eliminated the parameter c3π in favor of the
ω contribution to the slope of the TFF5

c3π → M2
ωb

ω
P = M2

ω

FPγ γ

dFω
Pγ ∗γ ∗(s, 0)

ds

∣∣∣∣
s=0

= wPωγ , (D.7)

5 For simplicity, we only consider P = η, η′, otherwise, the different
isospin structure for the π0 TFF would need to be taken into account.
In particular, Eq. (D.8) produces wπ0ωγ ≈ 0.5, consistent with c3π =
2wπ0ωγ in this case.

where the weights are given by [18]

w2
PV γ =

⎧⎪⎨
⎪⎩

9M2
V M3

PΓ (V→e+e−)Γ (V→Pγ )

2α(M2
V −M2

P )3Γ (P→γ γ )
if MV > MP ,

3M6
PΓ (V→e+e−)Γ (P→V γ )

2αMV (M2
P−M2

V )3Γ (P→γ γ )
if MP > MV .

(D.8)

Determining the signs by the comparison to VMD [18], the
numerical values based on Table 1 are

wη′ωγ = 0.072(2), wη′φγ = 0.158(6), (D.9)

and in terms of couplings gPVγ ,

g2
PVγ =

⎧⎪⎨
⎪⎩

24Γ (V→Pγ )
α

(
MV

M2
V −M2

P

)3
if MV > MP ,

8Γ (P→V γ )
α

(
MP

M2
P−M2

V

)3
if MP > MV ,

(D.10)

one finds

w2
PV γ = g2

PVγ g
2
Vγ

F2
Pγ γ

. (D.11)

In analogy to Eq. (C.30), we have

dΓ (P → π+π−γ )

ds
= 1

(2π)332M3
P

(
M2

P − s
)
σπ(s)

1

2

×∣∣MP→π+π−γ (s)
∣∣2 × 2

3
, (D.12)

with

MP→π+π−γ (s) = −eFV
π (s)ξπ (s)ξPγ (s)

1 − Π(s)

(
P(s) + O(e2)

+ FPγ γ wPωγ ερω

g2
ωγ

1

M2
ω − s − iMωΓω

)
,

(D.13)

where we have neglected non-resonant corrections O(e2)

in the isospin-conserving part and the coefficient of the ω

admixture can be written as gPωγ ερω/gωγ due to Eq. (D.11).
The resulting spectrum becomes

dΓ (P → π+π−γ )

ds
= 16παΓ0|FV

π (s)|2
∣∣∣∣P(s)

+ gPωγ ερω

gωγ

1

M2
ω − s − iMωΓω

∣∣∣∣
2

,

Γ0 = 2s

3

(
M2

P − s

16πMP
σπ(s)

)3

(D.14)

as given in Eq. (3.4), in agreement with Refs. [78,83] upon
the identification 2P(s) = A(1 +βs + γ s2) (and separating
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the factor e2 = 4πα). The function P(s) thus emerges as a
parameterization of the P → π+π−γ spectrum.

Appendix D.3: Dispersion relations

The previous discussion now allows us to write down disper-
sion relations for the pseudoscalar TFF including a consis-
tent treatment of ρ–ω mixing. Reading off the discontinuities
from Eq. (D.6),

Imππ FPγ ∗γ ∗(s, 0) = s

48π
σ 3
π (s)|FV

π (s)|2
[
P(s)

×
(

1 + sερω

M2
ω − s − iMωΓω

)∗

+ FPγ γ wPωγ ερω

g2
ωγ

1

M2
ω − s − iMωΓω

]
,

Im3π FPγ ∗γ ∗(s, 0) = πsδ(s − M2
ω)

[
FPγ γ wPωγ

×
(

1 + ερω

g2
ωγ s

Σπ(s)

)∗

+ ερωP(s)Σπ(s)

]
, (D.15)

we first observe that, as expected, the sum of the double
discontinuities vanishes:

Im
[
Imππ FPγ ∗γ ∗(s, 0)

] = −Im
[
Im3π FPγ ∗γ ∗(s, 0)

]
= sερω

48
σ 3

π (s)|FV
π (s)|2δ(s − M2

ω)

×
(
FPγ γ wPωγ

g2
ωγ

− sP(s)

)
.

(D.16)

Next, we replace

P(s)Σπ(s) → s

48π2

∫ ∞

4M2
π

ds′ σ 3
π (s′)P(s′)|FV

π (s′)|2
s′ − s − iε

,

(D.17)

which does not affect the cancellation of the double discon-
tinuities, but ensures that all dispersive integrals related to
Σπ(s) have the same convergence properties. In the end, this
step amounts to a choice of subtraction scheme, which, in
the coupled-channel formalism, corresponds to polynomial
ambiguities.

To derive a dispersive representation for the TFF, we start
from the once-subtracted version

FPγ ∗γ ∗(s, 0) = FPγ γ + s

π

∫ ∞

4M2
π

ds′

×
∑

i=ππ,3π Imi FPγ ∗γ ∗(s′, 0)

s′(s′ − s)
. (D.18)

To keep track of the ω propagator consistently at all stages
of the calculation, it is useful to replace

s

M2
ω − s − iMωΓω

→ s

π

∫
ds′ πδ(s′ − M2

ω)

s′ − s − iε
(D.19)

and only restore the finite width in the end.6 Combining
denominators in the various dispersion integrals, one can
show that indeed the ω propagator factorizes, leading to a
form very similar to Eq. (D.6):

FPγ ∗γ ∗(s, 0) = FPγ γ +
[

1 + ερωs

M2
ω − s − iMωΓω

]

× s

48π2

∫ ∞

4M2
π

ds′ σ 3
π (s′)P(s′)|FV

π (s′)|2
s′ − s − iε

+ FPγ γ wPωγ s

M2
ω − s − iMωΓω

[
1 + ερωs

48π2g2
ωγ

×
∫ ∞

4M2
π

ds′ σ 3
π (s′)|FV

π (s′)|2
s′(s′ − s − iε)

]
. (D.20)

This is our final result for a dispersive representation of
FPγ ∗γ ∗(s, 0) that includes corrections from ρ–ω mixing in a
consistent manner, with crucial ingredient the function P(s)
as determined by the P → π+π−γ spectrum (3.4). In par-
ticular, from the limit s → ∞ one can read off the sum rule

FPγ γ = 1 − ερω

48π2

∫ ∞

4M2
π

ds′ σ 3
π (s′)P(s′)|FV

π (s′)|2

+ FPγ γ wPωγ

×
[

1 − ερω

48π2g2
ωγ

∫ ∞

4M2
π

ds′ σ 3
π (s′)|FV

π (s′)|2
s′

]
.

(D.21)

The isoscalar part of the TFF also involves a contribution
from the φ, which simply amounts to adding

Fφ
Pγ ∗γ ∗(s, 0) = FPγ γ wPφγ s

M2
φ − s − iMφΓφ

(D.22)

to the right-hand side of Eq. (D.20) (and FPγ γ wPφγ to the
one of Eq. (D.21)). The combination of Eqs. (D.20) and
(D.22) is the form (2.3) gitven in the main text.

As a final cross check, we show that Eq. (D.20) reproduces
the correct VMD limit. To this end, we first approximate the
dispersive integrals by their narrow-width limit, in analogy
to Eq. (C.12). The second integral already takes VMD form,
while for the former we need |P(M2

ρ)|. This quantity can be

6 This can be done more rigorously by using a smeared-out version of
the δ-function instead, but the results are identical. See also the discus-
sion leading to Eq. (C.12).
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related to Γ (P → ργ ) by integrating Eq. (3.4) and again
replacing the integral by its narrow-width limit. In this way,
we can remove |P(M2

ρ)| in favor of wPργ , see Eq. (D.8), and
using the VMD relations gρππ = 1/gργ , gργ = 3gωγ , we
obtain

FVMD
Pγ ∗γ ∗(s, 0) = FPγ γ

[
1 +

(
1 + ερωs

M2
ω − s − iMωΓω

)

× wPργ s

M2
ρ − s − iMρΓρ

+ wPωγ s

M2
ω − s − iMωΓω

×
(

1 + 9ερωs

M2
ρ − s − iMρΓρ

)]
, (D.23)

in agreement with the expected VMD result.
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