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Abstract Two new static and spherically symmetric inte-
rior solutions in the regime isotropic and anisotropic fluid
pressure with vanishing complexity are constructed. For
the construction of these interior solutions the framework
of Gravitational Decoupling considering an unusual way
through the choose a temporal metric deformation is used.
We use the Einstein’s universe solution and an ansatz as
seed solutions. The solutions fulfill the fundamental physical
acceptability conditions for a restricted set of compactness
parameters.

1 Introduction

A large number of isotropic fluid solutions are known, of
which only a few satisfy the conditions of physical accept-
ability for a self-gravitating compact object [1]. In the case of
anisotropic fluid solutions this number of physically accept-
able solutions is even more limited. Such kind of stellar solu-
tions are very appreciated in stellar astrophysics since it is
well known that disturbances of the isotropy and fluctuations
of the local anisotropy in pressures may be caused by a large
variety of physical phenomena of the kind that are expect in
compact objects (see Ref. [2], for an extensive discussion in
this point). Examples of such phenomena are the high den-
sity regimen, existence of solid stellar cores, the presence of
superfluid, phase transition, rotation, etc [3–19]. Recently in
[20] has been proved that any realistic physical process of the
kind expected in stellar evolution always tends to produce
pressure anisotropy by the presence of dissipation, energy
density inhomogeneities and shear. In fact, if the system is
initially isotropic in pressure, the resulting final stage of a
dynamical regime in the evolution of a star should exhibit
pressure anisotropy. Anyway isotropic models also remain
common assumptions in the study of compact objects (See
for example the Refs. [21–26]).
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Therefore the importance of obtaining methods for the
construction of these two types of interior solutions is highly
valued. Due to in static and spherically symmetric space
times, the are only three independent Einstein field equa-
tions (EFE) but five unknown, namely two metric functions,
the density energy and the radial and tangential pressures
results that is necessary to provide two extra conditions in
order to solve the problem, which can be relations between
the metrics functions or state equations that can relate the
physical quantities. In such sense there are many ways to
construct static anisotropic solutions, but recently the Grav-
itational Decoupling (GD) [27] through the Minimal Geo-
metric Deformation (MGD) permit us to solve the EFE and
also extend isotropic known solutions to anisotropic case.

Such technique uses an isotropic solution as a seed and
extra condition to close the entire system. In such sense, there
are several works where the GD has been implemented in 2
+ 1 and 3 + 1 space times [28–67]. Particularly, in this work
we use the recently introduced definition of complexity for
self–gravitating fluids [68] to close the system of equations
risen by what we will call in this work as Temporal Geo-
metric Deformation (TGD), which takes in account only a
geometric deformation on the temporal metric component of
the seed solution. Mathematically such temporal deforma-
tion can be taken from the framework of the extended case
of MGD (MGDe) (see [69] for details of MGDe), but how-
ever, it does not respond to an usual gravitational decoupling
since it requires an extra source with zero density energy.
However, in this work we show that the TGD can be useful
to obtain new interior solutions.

There are few works where the complexity factor for self-
gravitating spheres is used as extra condition to close the
system of differential equations arising from Gravitational
Decoupling through the MGD [70–72] in order to obtain
new stellar models. In these sense, recently new static and
spherically symmetric solutions have found in the anisotropic
fluid regime with vanishing complexity [70,73–76]. Even,
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recently the problem of general relativistic gravitational col-
lapse under the assumption of vanishing complexity factor
has been used [77], and also has been used in the study of
hyperbolical fluids in Modified Gravity [78].

2 Gravitational decoupling

In this section we introduce the Gravitational Decoupling
by MGDe (for more details, see [69]). Let us start with the
Einstein field equations (EFE)

Gμν = Rμν − 1

2
Rgμν = k2Tμν, (1)

with

Tμν = T (s)
μν + θμν , (2)

where k2 = 8πG
c4 and T (s)

μν represents the matter content of

a known solution of Einstein’s field equations,1 namely the
seed sector, and θμν describes an extra source. Note that,
since the Einstein tensor fulfill the Bianchi identities, the
total energy–momentum tensor satisfies

∇μT
μν = 0. (3)

In a static and spherically symmetric space-time sourced by

Tμ(s)
ν = diag(ρ(s),−p(s)

r ,−p(s)
t ,−p(s)

t ) (4)

θμ
ν = diag(θ0

0 , θ1
1 , θ2

2 , θ2
2 ), (5)

and a metric given by

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2), (6)

Equations (1) and (2) lead to

k2ρ = 1

r2 + e−λ

(
λ′

r
− 1

r2

)
, (7)

k2 pr = − 1

r2 + e−λ

(
ν′

r
+ 1

r2

)
, (8)

k2 pt = e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
, (9)

where we have defined

ρ = ρ(s) + θ0
0 , (10)

pr = p(s)
r − θ1

1 , (11)

pt = p(s)
t − θ2

2 . (12)

The conservation equation (3) is a linear combination of
Eqs. (7)–(9), and yields

(pr )
′ + ν′

2
(ρ + pr ) + 2

r
(pr − pt ) = 0, (13)

1 In this work we shall use c = G = 1.

which in terms of the two sources in Eq. (2) reads as

(p(s)
r )′ + ν′

2

(
ρ(s) + p(s)

r

)
+ 2

r

(
p(s)
r − p(s)

t

)

−
(
θ1

1

)′ + ν′

2

(
θ0

0 − θ1
1

)
+ 2

r

(
θ2

2 − θ1
1

)
= 0. (14)

Is clear that the non-linearity of Einstein’s equations
avoids that the decomposition (2) lead to two set of equa-
tions; one for each source involved. Nevertheless, contrary
to the broadly belief, such a decoupling is possible in the
context of MGD and MGDe as we shall demonstrate in what
follows.

Let us introduce a geometric deformation in the metric
functions given by

ν −→ ξ + αg, (15)

e−λ −→ e−μ + α f , (16)

where { f, g} are the so-called decoupling functions and α is
the same free parameter that “controls” the influence of θμν

on T (s)
μν . Now, replacing (15) and (16) in the system (7)–(9),

we are able to split the complete set of differential equations
into two subsets: one describing a seed sector sourced by the
conserved energy-momentum tensor, T (s)

μν

k2ρ(s) = 1

r2 − e−μ

(
1

r2 − μ′

r

)
, (17)

k2 p(s)
r = − 1

r2 + e−μ

(
1

r2 + ξ ′

r

)
, (18)

k2 p(s)
t = e−μ

4

(
2ξ ′′ + ξ ′2 − μ′ξ ′ + 2

ξ ′ − μ′

r

)
, (19)

and the other set corresponding to source θμν

k2θ0
0 = −α f

r2 − α f ′

r
(20)

k2θ1
1 + αZ1 = −α f

(
1

r2 + ν′

r

)
(21)

k2θ2
2 + αZ2 = −α f

4

(
2ν′′ + ν′2 + 2ν′

r

)

−α f ′

4

(
ν′ + 2

r

)
, (22)

where Z1 = e−μg′
r and 4Z2 = e−μ(2g′′ + αg′2 + 2g′

r +
2ξ ′g′ − μ′g′).

By another hand if we insert ν′ = ξ ′ + αg′ in Eq. (14)
results[

− (p(s)
r )′ − ξ ′

2

(
ρ(s) + p(s)

r

)
− 2

r

(
p(s)
r − p(s)

t

) ]

−αg′

2

(
ρ(s) + p(s)

r

)

+(θ1
1 )′ − ν′

2
(θ0

0 − θ1
1 ) − 2

r
(θ2

2 − θ1
1 ) = 0, (23)
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where the bracket in Eq. (23) represents the divergence of
T (s)

μν calculated with the metric {ξ, μ}, and T (s)
μν satisfies with

∇(ξ,μ)
σ T σ(s)

ν = 0 (24)

since T (s)
μν correspond a known “seed” source that satisfies

its respective EFE. Note that

∇σ T
σ(s)
ν = ∇(ξ,μ)

σ T σ(s)
ν − αg′

2
(T 0(s)

0 − T 1(s)
1 )δ1

ν (25)

where the divergence ∇σ is calculated with the metric {ν, λ}.
Explicitly Eq. (24) give us

(p(s)
r )′ + ξ ′

2
(ρ(s) + p(s)

r ) + 2

r
(p(s)

r − p(s)
t ) = 0, (26)

which is a linear combination of Eqs. (17)–(19). By the way
if we take in account the Eqs. (24) and (23) results that

∇σ T
σ(s)
ν = −αg′

2
(T 0(s)

0 − T 1(s)
1 )δ1

ν , (27)

and

∇σ
ν θσ

ν = −∇T σ(s)
ν = αg′

2
(T 0(s)

0 − T 1(s)
1 )δ1

ν . (28)

Explicitly, it reads

(θ1
1 )′ − ν′

2
(θ0

0 − θ1
1 ) − 2

r
(θ2

2 − θ1
1 ) = αg′

2
(ρ(s) + p(s)

r ),

(29)

which is a linear combinations of Eqs. (20)–(22).
Then the sources T (s)

μν and θμν can be decoupled by MGDe
in such a way that between them there is an energy-moment
exchange as it is you can see in the equations (27) y (28).

Now, in order to take in account that the metric should be
continuous at surface � of star we have to match smoothly
the interior metric with the outside (Schwarzschild exterior
solution), we require

eν
∣∣∣
�− =

(
1 − 2M

r

) ∣∣∣∣
�+

, (30)

eλ
∣∣∣
�− =

(
1 − 2M

r

)−1 ∣∣∣∣
�+

, (31)

pr (r)
∣∣∣
�− = pr (r)

∣∣∣
�+ , (32)

which corresponds to the continuity of the first and second
fundamental form across that surface.

Note that the system of Eqs. (7)–(9) represents three dif-
ferential equations with five unknowns functions, namely
{ν, λ, ρ, pr , pt } represents a static and spherically symmet-
ric space time sourced by an anisotropic fluid. In such sense,
two auxiliary conditions must be provided, namely metric
conditions, equations of state, etc. Then using GD approach
we use a seed solution which reduce the number of degrees
of freedom to four and, as a consequence, only one extra
condition is required. Thus the extra condition have been

implemented in the decoupling sector given by Eqs. (20)–
(22) as some equation of state which leads to a differential
equation for the decoupling functions f and g. However, we
will take an alternative route in order to obtain the decou-
pling functions, which is the complexity factor that we shall
introduce in the next section.

3 Complexity of compact sources

Recently, a new definition of complexity for self–gravitating
fluid distributions has been introduced in Ref. [68]. This def-
inition is based on the intuitive idea that the least complex
gravitational system should be characterized by a homo-
geneous energy density distribution and isotropic pressure.
Specifically, in [68] is demonstrated that there is a scalar
belonging to a class of scalar functions called Structure
Scalars (such scalars were analyzed in detail by first time
in [79] and obtained from the orthogonal splitting of the Rie-
mann tensor [80,81]) that in spherically symmetric space
times captures the essence of what we mean by complexity,
namely

YT F = k2
 − k2

2r3

∫ r

0
r̃3ρ′dr̃ , (33)

with 
 ≡ pr − pt . Also, it can be shown that (33) allows to
write the Tolman mass as,

mT = (mT )�

(
r

r�

)3

+ r3
∫ r�

r

e(ν+λ)/2

r̃
YT Fdr̃ , (34)

which can be considered as a solid argument to define the
complexity factor by means of this scalar YT F given that
this function, encompasses all the modifications produced by
the energy density inhomogeneity and the anisotropy of the
pressure on the active gravitational mass. In fact, this scalar
represents a quantity that define the property of complexity
of self-gravitating static spheres (the extension for the time
dependent case is defined in [82]) that permits us to study
them in a depeen way.

Note that the vanishing complexity condition (YT F = 0)
can be satisfied not only in the simplest case of isotropic and
homogeneous system but also in all the cases where


 = 1

2r3

r∫
0

r̃3ρ′dr̃ . (35)

In this respect, Eq. (35) leads to a non–local equation of state
that can be used as a complementary condition to close the
system of EFE. Similarly, we can provide a particular value
of YT F and use this information to find a family of solutions
with the same complexity factor.
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Specifically YT F = 0 in terms of the complexity factors
of seed solution (Y (s)

T F ) and extra source (Y θ
T F ) is

YT F = Y (s)
T F + Y θ

T F = 0, (36)

namely

Y (s)
T F + k2
θ − k2

2r3

∫ r

0
r̃3ρ′

θdr̃ = 0. (37)

4 Temporal geometric deformation

So particularly if we consider the case where f = 0 and g �=
0, such choose of deformation over the metric in this work we
call as Temporal Geometric Deformation (TGD). So, from
of Eqs. (15), (16), (20)–(22) we obtain for this case that

ρθ = k2θ0
0 = 0, (38)

pθr = −k2θ1
1 = αZ1, (39)

pθ t = −k2θ2
2 = αZ2, (40)

thus


θ = pθr − pθ t = α

k2 (Z1 − Z2). (41)

In this way Eq. (37) becomes to

Y (s)
T F = α(Z2 − Z1), (42)

implicitly it gives us

g′′ + α

2
g′2 + 1

2

(
2ξ ′ − μ′ − 2

r

)
g′ − 4

α
eμY (s)

T F = 0. (43)

Even one can consider for facility as seed solutions with
zero complexity such that

g′′ + α

2
g′2 + 1

2

(
2ξ ′ − μ′ − 2

r

)
g′ = 0, (44)

which is a differential equation for g as unknown quantity
due to ξ and μ can be known since we can assign a seed
solution in order to close our problem.

5 Model I: isotropic extension of Einstein’s universe
solution

If we consider the known Einstein’s universe solution [83]

eξ = constant (45)

e−μ = 1 − r2

C2 (46)

k2ρ(s) = 3

C2 (47)

k2 p(s) = − 1

C2 (48)

as seed solution, we can solve (44) obtaining the geometrical
deformation

g(r) = 2

α
ln

(
α
√
r2 − C2 + 2A

)
+ η, (49)

where A and η are integration constants. Now using this geo-
metric deformation in (15) we obtain the temporal metric

eν(r) = B
(
α
√
r2 − C2 + 2A

)2
, (50)

where B = eαη. Thus using (46) and (50) in the EFEs (7)–(9)
the matter sector obtained is

ρ(r) = 3

k2C2 (51)

p(r) = 3α(C2 − r2) − 2A
√
r2 − C2

k2C2
(

2A
√
r2 − C2 + α

(
r2 − C2

)) . (52)

Note if we set α = 0 we return to the Einstein’s universe
solution. Now using the continuity conditions given by Eqs.
(30)–(32) we obtain

A = 3
(
C2 − R2

)
2
√
R2 − C2

α, (53)

C2

R2 = R

2M
, (54)

B = − M

2α2R3 . (55)

Indeed, in Figs. 1 and 2 the metrics profile for these solu-
tion is showed. Note that eν is a monotonously increasing
function of radial coordinate with eν(0) = constant , and
e−λ is monotonously decreasing with e−λ(0) = 1.

Also, in Fig. 3 we show the profile of p as a function
of radial coordinates for different compactness factors. We
notice that the pressure is finite at center and decreases
monotonously toward the surface. Note as expected the den-
sity energy is constant since we have a homogeneous solu-

Fig. 1 Temporal metric for Model I for compact factors: 0.1 (blue line),
0.15 (black line), 0.20 (red line) and 0.25 (green line)
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Fig. 2 Radial metric for Model I for compact factors: 0.1 (blue line),
0.15 (black line), 0.20 (red line) and 0.25 (green line)

Fig. 3 Radial pressure for Model I for compact factors: 0.1 (blue line),
0.15 (black line), 0.20 (red line) and 0.25 (green line)

Fig. 4 k2[ρ(r) − p(r)] for Model I: 0.1 (blue line), 0.15 (black line),
0.20 (red line) and 0.25 (green line)

tion. Further in Fig. 4 the Dominant Energy Condition (DEC)

ρ(r) − p(r) ≥ 0 (56)

is satisfied for r > 0. We have checked that DEC is fulfill for
all u = M/R < 0.375.

Fig. 5 z(r) for Model I: 0.1 (blue line), 0.15 (black line), 0.20 (red
line) and 0.25 (green line)

In addition, in Fig.5 we show the redshift z(r) = e−ν/2−1
in function of radial coordinate. Note that z decreases out-
ward at the surface as expected.

Additionally, if one consider the rough approximation of

the sound velocity for isotropic fluid v =
√

p
ρ

inside the star,

we can show the profile of v in the Fig. 6 as a function of radial
coordinate. Note that the condition of causality is fulfilled, as
expected [84]. We have checked that all physical conditions
are fulfill for the compactness factor of u < 0.375.

It is worth mentioning that we have shown in this section
that from a cosmological solution an isotropic and homoge-
neous interior solution was found through the TGD, which
is well behaved from a physical point view. This result is
important because any other cosmological solution could be
used to obtain some interesting interior solution using the
TGD.

Fig. 6 v(r) for Model I for compactness factor: 0.1 (blue line), 0.15
(black line), 0.20 (red line) and 0.25 (green line)

123



266 Page 6 of 12 Eur. Phys. J. C (2022) 82 :266

6 Model II: an anisotropic solution

In this section we use the following convenient ansatz as seed
solution to apply the same procedure used in the section 5
(namely the TGD)

eξ = A(Cr2 + 1)4 (57)

e−μ = 1

(Cr2 + 1)2 , (58)

where A and C are constants (See the appendix 11). Then
using this ansatz in (44) we obtain the deformation

g(r) = β + 2

α
ln

(
8

(Cr2 + 1)2 − 8Cη

)
, (59)

where β and η are integration constants. So using (59) in (15)
we obtain

eν = a

(
α − 8Cη

(
Cr2 + 1

)2
)2

, (60)

where a = Aeαβ .
Now, using the EFE (7)–(9) the matter sector obtained is

ρ = C
(
Cr2

(
Cr2 + 3

) + 6
)

k2
(
Cr2 + 1

)3 , (61)

pr = αC
(
Cr2 + 2

)
k2

(
8Cη

(
Cr2 + 1

)4 − α
(
Cr2 + 1

)2
)

− 8C2η
(
Cr2 + 1

) (
Cr2

(
Cr2 + 3

) − 6
)

k2
(

8Cη
(
Cr2 + 1

)4 − α
(
Cr2 + 1

)2
) , (62)

pt =
2C

(
α + 24Cη

(
Cr2 + 1

)2
)

k2
(
Cr2 + 1

)3
(

8Cη
(
Cr2 + 1

)2 − α
) . (63)

In summary, we have obtained the anisotropic solution

eν = a

(
α − 8Cη

(
Cr2 + 1

)2
)2

, (64)

e−λ = 1(
Cr2 + 1

)2 , (65)

ρ = C
(
Cr2

(
Cr2 + 3

) + 6
)

k2
(
Cr2 + 1

)3 , (66)

pr = αC
(
Cr2 + 2

)
k2

(
8Cη

(
Cr2 + 1

)4 − α
(
Cr2 + 1

)2
)

− 8C2η
(
Cr2 + 1

) (
Cr2

(
Cr2 + 3

) − 6
)

k2
(

8Cη
(
Cr2 + 1

)4 − α
(
Cr2 + 1

)2
) , (67)

pt =
2C

(
α + 24Cη

(
Cr2 + 1

)2
)

k2
(
Cr2 + 1

)3
(

8Cη
(
Cr2 + 1

)2 − α
) . (68)

Fig. 7 Temporal metric for Model II for compact factors: 0.38 (blue
line), 0.39 (black line), 0.40 (red line) and 0.407 (green line)

Fig. 8 Radial metric for Model II for compact factors: 0.38 (blue line),
0.39 (black line), 0.40 (red line) and 0.407 (green line)

Moreover, using the continuity conditions at the surface of
stellar compact object we obtain

η = α
(
CR2 + 2

)
8C

(
C3R6 + 4C2R4 − 3CR2 − 6

) , (69)

C = R3 − 2MR2 − √
R6 − 2MR5

2MR4 − R5
, (70)

a =
(√

R5(R − 2M) + 16MR2 − 7R3
)2

64α2R5(R − 2M)
. (71)

It is worth mentioning that from (70) and (71) is clear that
compactness parameter satisfies R > 2M , which is in accor-
dance with the restriction that any stable configuration should
be greater than Schwarzschild radius.

In Figs. 7 and 8 the metrics profile for these solution is
showed. Note that eν is a monotonously increasing func-
tion of radial coordinate with eν(0) = constant , and e−λ is
monotonously decreasing with e−λ(0) = 1.

In Figs. 9, 10 and 11 we show the profile of matter sector as
a function of radial coordinate for the values of compactness
factor in the caption. All quantities, ρ, pr and pt are finite at
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Fig. 9 Density energy for Model II for compact factors: 0.38 (blue
line), 0.39 (black line), 0.40 (red line) and 0.407 (green line)

Fig. 10 Radial pressure for Model II for compact factors: 0.38 (blue
line), 0.39 (black line), 0.40 (red line) and 0.407 (green line)

center of star and decrease monotonously toward the surface.
Furthermore, pr (0) = pt (0) and pt (r) > pr (r) for all r > 0,
as expected (see Fig. 12). So the matter sector fulfill the
physical requirements for acceptable interior solution.

In the Figs. 13 and 14, we show the profile of ρ − pr and
ρ − pt as functions of radial coordinate. From it can be seen
that the DEC for an anisotropic fluid distribution, namely

ρ(r) − pr (r) ≥ 0 and ρ(r) − pt (r) ≥ 0 (72)

condition is fulfill.
In the Fig. 15 we show the redshift z as a function of radial

coordinate. Observe that z decreases outward and its value at
the surface is less than the universal bound zbound = 5.211
[85].

In Figs. 16 and 17, we show that radial and tangential
sound velocities are less than unity (we assumed that c = 1),
as required to fulfill the causal condition.

We have checked that for the solution fulfill the funda-
mental physical conditions for those compactness parameters
such that 0.38 ≤ u = M/R ≤ 0.407.

Fig. 11 Tangential pressure for Model II for compact factors: 0.38
(blue line), 0.39 (black line), 0.40 (red line) and 0.407 (green line)

Fig. 12 k2[pt (r)− pr (r)] for Model II for compact factors: 0.38 (blue
line), 0.39 (black line), 0.40 (red line) and 0.407 (green line)

Fig. 13 k2[ρ(r) − pr (r)] for Model II for compact factors: 0.38 (blue
line), 0.39 (black line), 0.40 (red line) and 0.407 (green line)
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Fig. 14 k2[ρ(r) − pt (r)] for Model II for compact factors: 0.38 (blue
line), 0.39 (black line), 0.40 (red line) and 0.407 (green line)

Fig. 15 z(r) for Model II for compact factors: 0.38 (blue line), 0.39
(black line), 0.40 (red line) and 0.407 (green line)

Fig. 16 vr (r) for Model II for compact factors: 0.38 (blue line), 0.39
(black line), 0.40 (red line) and 0.407 (green line)

Fig. 17 vt (r) for Model II for compact factors: 0.38 (blue line), 0.39
(black line), 0.40 (red line) and 0.407 (green line)

Fig. 18 ρ′′ for Model II for compact factors: 0.38 (blue line), 0.39
(black line), 0.40 (red line) and 0.407 (green line)

7 Convection stability

The stability of a self-gravitating sphere to convection
implies the buoyancy principle inside of fluid, which implies
that any fluid element displaced downward floats back to its
initial position. It was demonstrate in [86] that for this prin-
ciple to be fulfilled in self-gravitating compact objects it is
necessary that

ρ′′(r) ≤ 0. (73)

The Model I automatically fulfill this condition since the
density energy in this model is a constant. While to analyze
the convection stability for the Model II we show the profile
the ρ′′ in function of radial coordinate in Fig. 18. We observe
that the model II is stable after undergoing convective motion
at the inner shells, while for the externals shells the models
are unstable.
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Fig. 19 � for Model II for compact factors: 0.38 (blue line), 0.39 (black
line), 0.40 (red line) and 0.407 (green line). The horizontal line corre-
spond to the value of 4/3

8 Stability against collapse

It is expected that the Model I poses stability since its radial
sound velocity monotonically decreasing with radius (see
Fig.6). However, for the Model II the sound radial velocities
profile is not monotonically decreasing with radius (see Fig.
16), which could be interpreted as a signal of instability,
which may not necessarily be definitive given the effects of
anisotropy [11,87]. Then to analyze its stability we study the
adiabatic index � given by

� = ρ + pr
pr

dpr
dρ

, (74)

which should be greater than 4/3 in order to avoid the gravi-
tational collapse.

Then in this way we show the adiabatic index profile as
a function of radial coordinate for Model II in Fig.19. We
observe from Fig. 19 that Model II presents stability against
collapse for the compactness factor u ≥ 0.39.

In summary, the two (one in the isotropic and the another
one in the anisotropic pressure regime) models presented
in this manuscript satisfy the fundamental physicals condi-
tions detailed in [84], so they are good candidates to describe
realistic fluid distributions with vanishing complexity for a
restricting set of self-gravitating compact objects.

9 Discussion

The consideration of only a geometric deformation on the
temporal metric of the space time of the seed solution within
the GD by MGDe formalism could be thought of as some-
thing unnatural since such consideration requires that the
extra source θ

μ
ν has a zero density energy ρθ = θ0

0 = 0, but
however in this work we show that such deformation can be

taken from a particular decoupling. So if one accept the fact
that the extra source θ

μ
ν is a mathematical artifice that helps

us find effective physically acceptable interior solutions as
found in the previous section (particularly we obtained new
physically acceptable solutions with vanishing complexity
in the isotropic and anisotropic pressure regime), the TGD
results to be an alternative novel and interesting way to obtain
new interior solutions. Even in the framework of the MGDe
the physical meaning of this extra source can be complex
since θ1

1 and θ2
2 given by (20)–(22), respectively, do not have

the usual form of EFE for an realistic anisotropic source
(which are named as “quasi-Einstein” in [69]). That said, we
though that the TGD could be seen of as a very particular case
of the GD through the MGDe. At the end of the day what
matters is finding a physically acceptable interior solution
given by the equations (6) and (10)–(12).

To be more precise if one consider the GD by MGDe
taking in account the case of g �= 0 and f = 0, (15) and (16)
turns into

ν −→ ξ + αg, (75)

e−λ −→ e−λ , (76)

one can separate the system (7)–(9) into to set of equations
if only if we supposed the extra source as

θμ
ν = diag(0, θ1

1 , θ2
2 , θ3

3 ), (77)

namely, as source with θ0
0 = 0. Then considering such sup-

posing we arrive at a first set of equations related to the seed
sector sourced by the conserved energy-momentum tensor,
T (s)

μν

k2ρ(s) = 1

r2 − e−λ

(
1

r2 − λ′

r

)
, (78)

k2 p(s)
r = − 1

r2 + e−λ

(
1

r2 + ξ ′

r

)
, (79)

k2 p(s)
t = e−λ

4

(
2ξ ′′ + ξ ′2 − λ′ξ ′ + 2

ξ ′ − λ′

r

)
, (80)

and the other set corresponding to source θμν

k2θ0
0 = 0 (81)

k2θ1
1 = −α

e−λg′

r
(82)

k2θ2
2 + αZ = −α

e−λ

4

(
2g′′ + 2ξ ′g′ − λ′g′ + 2g′

r

)
, (83)

where Z = α
e−λg′2

4 . Then we show that a decoupling of EFE
through the TGD is mathematically possible. The source θ

μ
ν

given by (81)–(83) whose physical meaning is difficult to
interpret, as it happens in the extended version of the MGDe
(Even for example there is an interesting work where uses the
framework of MGD which there is no decoupling of EFE to
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found anisotropic static solutions is developed in [88]) plays
an important role in the TGD.

Thus, with the present work we can extend the thought
number of possible interior solutions with vanishing com-
plexity factor that satisfies the non local state equation (35)
and that besides represents realistic stars composed with fluid
in the isotropic and anisotropic pressure regime using the
method presented here.

10 Conclusions

We had propose the GD through by TGD as a method to
obtain new interior solutions for self-gravitating spheres with
zero complexity in the isotropic and anisotropic fluid regime.
We found two new models from which one (Model I) and
other model (Model II) describe self-gravitating spheres in
the isotropic and anisotropic regime of pressure, respec-
tively, which fulfill the fundamental physical acceptability
conditions for a restricted set of compactness factor; namely,
(i) metric functions are regular inside the star, moreover
eν(0) = constant and e−λ(0) = 1, (iii) the material sec-
tor (density energy and pressures) are regular inside star
and decrease monotonously outward, (iii) the solutions sat-
isfies the dominant energy condition. Regarding the convec-
tion stability, we found that the Model I is stable, while the
Model II has instabilities in the outer shells in this sense.
Also, we found that the model II is stable against collapse
for a restricted set of compactness parameters. Specifically,
Model I are adequate to describe compact objects whose
compactness factor is between (0, 0.375), while the Model
II is adequate for u ∈ [0.39, 0.407]. Then in this sense we
have obtaining two new interior solutions with the simplest
factor complexity of self-gravitating objects.

It may be interesting to use the TGD to consider compact
stellar bodies whose compactness factor is different from
zero, as for example some compactness factor corresponding
to a known solution. Even can be interesting to explore the
response of the models presented here against perturbation of
matter sector since they presents instability convection in the
outer regions and stability against the collapse for a certain
sets of compactness parameters. All these ideas could be
addressed in future works.
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11 Appendix: Obtaining a convenient ansatz with zero
complexity

In order to obtain a convenient ansatz with zero complexity
we consider the case when g = 0 and f �= 0, namely, we
consider the MGD. Then from Eqs. (15), (16), (20)–(22) we
obtain the matter sector of the source θμν

k2ρθ = k2θ0
0 = −α f

r2

(
1 + r f ′

f

)
(84)

k2 pθr = −k2θ1
1 = α f

r2

(
1 + rξ ′) (85)

k2 pθ t = −k2θ2
2

= α f

4

[
2ξ ′′ + ξ ′2 + 2

ξ ′

r
+ f ′

f

(
ξ ′ + 2

r

)]
, (86)

in such that Eq. (37) turns into

f ′ +
(

2
ξ ′′

ξ ′ + ξ ′ − 2

r

)
f − 4Y (s)

T F

αξ ′ = 0. (87)

The Eq. (87) allows us to find the function f given the infor-
mation of a seed solution. In this work we use the Durgapal IV
solution [1,89] as seed solution whose metrics components
are

eξ = A(Cr2 + 1)4 (88)

e−μ = 7 − 10Cr2 − C2r4

7(Cr2 + 1)2

+ BCr2

(Cr2 + 1)2(1 + 5Cr2)2/5
, (89)

where A, B and C are constants.
The complexity factor of Durgapal IV solution can be

obtained from EFE and (33), thus it is

Y (s)
T F = 8C2r2

(
Cr2 + 5

)
7
(
Cr2 + 1

)3

− 4BC2r2
(
3Cr2 + 1

)
(
Cr2 + 1

)3 (
5Cr2 + 1

)7/5
. (90)
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Now, using (88) and (90) in (87) we obtain

f (r) =
25Cr2

(
Cr2− 7B

(5Cr2+1)
2/5 +10

)
+1

α
+ 175η

175
(
Cr2 + 1

)2 , (91)

where η is a integration constant. It can be shown that to
ensure regularity in the matter sector the constant η must
satisfy η = − 1

175α
.

Now replacing (89) and (91) in (16) and using η we find

e−λ = 1(
Cr2 + 1

)2 . (92)

So using the EFE (7)–(9) we arrive at

ρ = C
(
Cr2

(
Cr2 + 3

) + 6
)

k2
(
Cr2 + 1

)3 , (93)

pr = C
(
6 − Cr2

(
Cr2 + 3

))
k2

(
Cr2 + 1

)3 , (94)

pt = 6C

k2
(
Cr2 + 1

)3 . (95)

Due to this solution depends only one constant C we will
not analyze their physical acceptability, but however it is
useful since it can be used as seed solution.
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