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Abstract For the subclass of Horndeski theory of gravity,
we investigate the effects of reheating on the predictions of
natural inflation. In the presence of derivative self-interaction
of a scalar field and its kinetic coupling to the Einstein tensor,
the gravitational friction to inflaton dynamics is enhanced
during inflation. As a result, the tensor-to-scalar ratio r is
suppressed. We place the observational constraints on a nat-
ural inflation model and show that the model is now consis-
tent with the observational data for some plausible range
of the model parameter Δ, mainly due to the suppressed
tensor-to-scalar ratio. To be consistent with the data at the
1σ (68% confidence) level, a slightly longer natural infla-
tion with Nk � 60 e-folds, longer than usually assumed,
is preferred. Since the duration of inflation, for any specific
inflaton potential, is linked to reheating parameters, including
the duration Nre, temperature Tre, and equation-of-state ωre

parameter during reheating, we imposed the effects of reheat-
ing to the inflationary predictions to put further constraints.
The results show that reheating consideration impacts the
duration of inflation Nk . If reheating occurs instantaneously
for which Nre = 0 and ωre = 1/3, the duration of natural
inflation is about Nk � 57 e-folds, where the exact value
is less sensitive to the model parameter Δ compatible with
the CMB data. The duration of natural inflation is longer (or
shorter) than Nk � 57 e-folds for the equation of state larger
(or smaller) than 1/3 hence Nre �= 0. The maximum tem-
perature at the end of reheating is Tmax

re � 3 × 1015 GeV,
which corresponds to the instantaneous reheating. The low
reheating temperature, as low as a few MeV, is also possible
when ωre is closer to 1/3.

a e-mail: chenhsu0223@gmail.com
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1 Introduction

Cosmic inflation is a period of accelerated expansion of the
early universe and an attractive mechanism for explaining the
observed structures in the universe. It provides a solution to
several puzzles, so-called cosmological problems, including
the horizon, flatness, and monopole problems [1–5]. Current
observations favor the inflationary paradigm for its prediction
of an almost scale-invariant spectrum of primordial curva-
ture perturbations imprinted in the cosmic microwave back-
ground (CMB) radiation and the large scale structure forma-
tions data [6–9]. The simplest model of inflation describes
the period of exponential expansion of the early universe
being driven by the slow-roll of a single scalar field known
as the inflaton. To match the CMB temperature anisotropy
measurements and give rise to a sufficient amount of infla-
tion, the models of inflation share the flatness of the inflaton
potential as a common feature among them [10,11]. This
nontrivial requirement of flatness of inflaton potential cre-
ates fine-tuning problems, in particular, quantum corrections
in the absence of a symmetry generically spoil the flatness
of the potential, which is known as the η-problem.

In particle physics model of inflation, the flatness of the
potential should be protected against radiative corrections
that can arise from the inflaton self-interactions or from its
coupling to matter fields, responsible for reheating the uni-
verse after inflation [12–14]. To protect the flatness of the
inflaton potential against the radiative corrections, the sym-
metries of a system play an important role – e.g., as for the
standard model Higgs field, supersymmetry can provide a
natural protection against the radiative corrections [13,14].
If the inflaton is a pseudo-scalar axion, the axionic (shift)
symmetry, φ → φ + constant, is another possible sym-
metry that protects the flatness of the inflaton potential. In
this case, the inflaton potential arises from the breaking of a
(global) shift symmetry, and the couplings of inflaton to mat-
ter fields do not affect the inflaton potential as long as the shift
symmetry is respected. This mechanism was originally pro-
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posed in Ref. [12] as natural inflation, and its implications in
light of the observational data, as well as implementations in
the other theories, have been discussed in Refs. [12–25]. In
the natural inflation model, a rolling inflaton has a flat poten-
tial due to shift symmetries. Whenever a global symmetry is
spontaneously broken, Nambu Goldstone bosons arise, with
a potential that is exactly flat. However, the inflaton cannot
roll and drive inflation if the shift symmetry is exact. Thus,
to drive inflation, there must be additional explicit symmetry
breaking hence these particles become pseudo-Nambu Gold-
stone bosons, with “nearly” flat potentials exactly as required
by inflation [16]. The resulting inflaton potential is generally
of the form V (φ) = Λ4[1 + cos(φ/ f )], where f is called
the decay constant and is constrained by the observational
data [12,15,16]. Despite its well established theoretical moti-
vation and a simple form of the potential, the natural inflation
model is disfavored at greater than 95% confidence by the
observational data [10,11,26,27], especially after the recent
announcement of the improved Planck + BICEP/Keck 2018
data [28]. Although the original model, in which the scalar
field is minimally coupled to gravity, is now disfavored by
current observational constraints, some variants of natural
inflation, including the generalized and multi-field versions,
were proposed and discussed in Refs. [14,29–32], and refer-
ences therein. The inflationary predictions in those extended
models can be modified and, in general, be consistent with
observations.

Adopting the original natural inflation potential without
any modification – e.g., V (φ) = Λ4[1 + cos(φ/ f )], we
investigate natural inflation for the cosmological models
with the derivative self-interaction of the inflaton field and
inflaton’s kinetic coupling to gravity via the Einstein ten-
sor. The cosmological model of our interest was proposed in
Ref. [33] (see Refs. [34,35] for its applications) as a subclass
of G-inflation framework [36], which is based on the Horn-
deski (equivalently, generalized Galileon) theory [37,38],
i.e., the most general scalar-tensor theory with second-order
field equations avoiding the Ostrogradski instability [39], see
Ref. [40] for a review. A unique feature of considering infla-
ton’s derivative self-interaction and its kinetic coupling with
gravity is that the gravitationally enhanced friction mecha-
nism works for steep potentials [41–46]. Thus, it motivates
us to investigate whether it is possible to reconcile the predic-
tions of natural inflation with the CMB observations in the
setting of inflaton’s derivative self-interaction and its kinetic
coupling with gravity scenario.

After inflation, it is usually assumed that the inflaton
coherently oscillates at the minimum of its potential, decay-
ing and transferring its energy to a relativistic plasma of
the standard model particles [47–49]. This post-inflationary
process that populates our universe with ordinary matter is
known as reheating, see Ref. [50] for a review. Because
there are no direct cosmological observations are traceable

from reheating, the physics of reheating is highly uncertain
and unconstrained. Thus, this post-inflationary era depends
heavily on models of inflation. It was pointed out in the lit-
erature that consideration of reheating may provide addi-
tional constraints to inflationary perdictions [51–55]. In this
work, for our model, we follow the approaches proposed in
Refs. [29,51–58] to perform the analyses on the reheating
parameters, including the equation of state, the duration, and
the temperature of reheating. Then, using the link between
these parameters of reheating and the observable quantities
of inflation, we provide constraints on the inflationary pre-
dictions of natural inflation in light of current observational
data [10,11,28].

This paper is organized as follows. We start Sect. 2 by
setting up our model with the derivative self-interaction of
the scalar field and the kinetic coupling between the scalar
field and gravity, which belongs to the subclass of Horn-
deski’s theory of gravity. Then, in the same section, we derive
the background equations of motion, as well as the observ-
able quantities; including power spectra of tensor and scalar
modes, PS and PT , respectively, their spectral tilts nS and
nT , and the tensor-to-scalar ratio r in the slow-roll scenario
of inflation. Based on our analytic results obtained in Sect. 2,
we place the observational constraints on nS and r predic-
tions of natural inflation in Sect. 3 and show that the natural
inflation model is now consistent with the latest observational
data, mainly due to the suppressed tensor-to-scalar ratio. In
Sect. 4, we impose the effects of reheating to the predictions
of natural inflation. The results of the section implies that
the reheating parameters, the equation of state ωre and the
temperature Tre at the end of reheating, significantly affect
the duration of inflation Nk hence the nS and r . We conclude
our work and provide some implications of our findings in
Sect. 5.

2 Background and perturbation dynamics

The action for the cosmological model that we investigate in
this work is give as [33–35]

S =
∫

d4x
√−g

[
M2

p

2
R − 1

2

(
gμν − α

M3 g
μν∂ρ∂ρφ

+ β

M2 G
μν

)
∂μφ∂νφ − V (φ)

]
, (1)

where Mp = 2.44×1018GeV is the reduced Planck mass and
V (φ) is the inflaton potential, and M is the mass scale making
α and β dimensionless constants. In the limit (α, β) → 0,
the Einstein gravity with a minimal coupling to the scalar
field is recovered. Thus, the case with (α, β) �= 0 reflects the
deviation from the general relativity. While Refs. [33–35]
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discuss the scalar field dependent coupling function ξ(φ)

for the α-term in Eq. (1), we consider such the coupling to
be a constant; namely, ξ(φ) = 1, in the present study for
simplicity.

Varying the action with respect to metric gμν and φ, one
obtains the Einstein and field equations

Gμν = 1

M2
p
Tμν, (2)

∂μ∂μφ − V,φ + α

M3

(
∂μ∂νφ∂μ∂νφ − ∂μ∂μφ∂ν∂

νφ

+Rμν∂
μ∂νφ

) + β

M2 Gμν∂
μ∂νφ = 0, (3)

respectively, where the Gμν = Rμν −gμνR/2 is the Einstein
tensor,

Tμν = ∂μφ∂νφ − 1

2
gμν

(
∂αφ∂αφ + 2V

)

+ α

M3

[
(∂αφ∂αφ)(μ∂ν)φ − �φ∂μφ∂νφ

−1

2
gμν(∂αφ∂αφ)β∂βφ

]

+ β

M2

[
−1

2
∂μφ∂νφR + 2∂αφ∂(μφRα

ν)

+∂αφ∂βφRμανβ + ∂μ∂αφ∂ν∂αφ − ∂μ∂νφ�φ

− 1

2
Gμν∂αφ∂αφ + 1

2
gμν

(
(�φ)2

−∂α∂βφ∂α∂βφ − 2∂αφ∂βφRαβ
)]

, (4)

is the energy momentum tensor, �φ ≡ ∂μ∂μφ, and V,φ ≡
dV (φ)/dφ. In a spatially flat Friedman-Robertson-Walker
universe with metric

ds2 = −dt2 + a(t)2δi j dx
i dx j , (5)

where a(t) is a scale factor, the background and field equa-
tions are obtained as

3M2
pH

2 = 1

2
φ̇2 + V (φ) + 3α

M3 H φ̇3 − 9β

2M2 φ̇2H2, (6)

M2
p

(
2Ḣ + 3H2

)
= −1

2
φ̇2 + V + α

M3 φ̇2φ̈

− β

2M2 φ̇2
(

2Ḣ + 3H2 + 4H
φ̈

φ̇

)
, (7)

φ̈ + 3H φ̇ + V,φ + 3α

M3 φ̇2
(
Ḣ + 3H2 + 2H

φ̈

φ̇

)

− 3β

M2 H φ̇

(
2Ḣ + 3H2 + H

φ̈

φ̇

)
= 0, (8)

where the overdot denotes the derivative with respect to time
t . To investigate the slow-roll inflation, we take so called the
slow-roll conditions that read V (φ) � φ̇2 and φ̈ � 3H φ̇

into account and introduce the following slow-roll parame-
ters

ε1 ≡ − Ḣ

H2 , ε2 ≡ − φ̈

H φ̇
, ε3 ≡ φ̇2

2M2
pH

2 , (9)

which assumed to be small, εi � 1 where i = 1, 2, 3, during
inflation. Equation (8) can, therefore, be rewritten in terms
of these parameters as

3H φ̇

[
1 − 1

3
ε2 + 3α

M3 H φ̇

(
1 − ε1

3
− 2ε2

3

)

− 3β

M2 H
2
(

1 − 2ε1

3
− ε2

3

)]
= −V,φ. (10)

Thus, under the slow-roll conditions, Eqs. (6) and (8) can be
approximated as

3M2
pH

2 � V, 3H φ̇ (1 + A) � −V,φ, (11)

where

A = 3α

M3 H φ̇ − 3β

M2 H
2. (12)

In Eq. (11), (1 +A) should be positive not to violate the null
energy condition. As one can see from Eq. (12) that the func-
tion A encodes the information about the additional interac-
tions; the derivative self-interaction of the scalar field (the
first term) and the kinetic coupling between the scalar field
and gravity (the second term) that we introduced in Eq. (1),
and it becomes zero if both terms cancel each other, which
indicates the complete absence of these additional interac-
tions in our model. To weigh the contributions of each term
in Eq (12) during inflation, we introduce a parameter defined
by

γ ≡ α

βM

φ̇

H
. (13)

If the kinetic coupling between the scalar field and gravity is
much stronger (or weaker) than the derivative self-interaction
of the scalar field during inflation, |γ | � 1 (or |γ | � 1).
Thus, the equally important contributions from both interac-
tions indicate |γ | ∼ O(1). Equation (12) can be rewritten in
terms of γ as

A = 3β(γ − 1)
H2

M2 . (14)

Here, if the γ equals unity, the A becomes zero, which,
as discussed, indicates the absence of the additional inter-
actions. The resulting spectrum for the CMB mode would
be the same as that in slow-roll inflation in GR. If the A
is non-zero, one can consider two different limiting cases;
|A| � 1 and A � 1, respectively, during inflation. When
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|A| � 1, Eq. (11) leads to the slow-roll approximated equa-
tions for standard single-field inflation in the Einstein gravity.
Although the |A| � 1 case could be interesting to investigate
as it can be treated perturbatively in the slow-roll parameters,
its effect deviating from standard slow-roll inflation in gen-
eral relativity (GR) would be small, if not negligible. It is,
therefore, worth investigating the second case where A � 1
to account for the effects of additional interactions encoded
in theA. Thus, our interest in this work is to consider the case
where A � 1, while |γ | ∼ O(1). From Eq. (14), condition
A � 1 implies that

H2

M2
p

� 1

3β(γ − 1)

M2

M2
p
, (15)

where β(γ − 1) > 0 with |γ | ∼ O(1) is assumed. To satisfy
the sufficient condition to avoid from quantum gravity that
reads H2/M2

p � 1, the condition M2/M2
p � 3β(γ − 1)

should also hold for our model, and we will examine the
parameter space that satisfies this condition in the next sec-
tion.

The amount of inflation is quantified by the number Nk of
e-folds, which reads

Nk =
∫ φe

φ

H
˙̃
φ
dφ̃ � 1

M2
p

∫ φ

φe

V

V,φ̃

(1 + A) dφ̃, (16)

where φe is the scalar-field value at the end of inflation and
is to be estimated by solving ε1(φe) ≡ 1.

The linear perturbation analysis for our model Eq. (1) is
carried out in Refs. [33,35], see Ref. [36] for more general
cases, and the observable quantities, including power spectra
of the scalar (PS) and tensor (PT ) modes, their spectral tilts
(nS and nT , respectively), and the tensor-to-scalar ratio r , are
computed on the large scale cSk|τ | � 1 as

PS = k3

2π2

∣∣∣∣ νkzS
∣∣∣∣
2

� H2

8π2M2
pc

3
SεV

(1 + A) , (17)

PT = k3

π2

∑
λ=x,+

∣∣∣∣μλ,k

zT

∣∣∣∣
2

� H2

2π2M2
pc

3
T

, (18)

nS − 1 = d lnPS

d ln k
= 3 − 2μS

� 1

1 + A
[

2ηV − 2εV

(
4 − 1

1 + A
)]

, (19)

nT = d lnPT

d ln k
= 3 − 2μT � − 2εV

1 + A , (20)

r = PT

PS
� 16εV

1 + A , (21)

where εV ≡ M2
p

(
V,φ/V

)2
/2 and ηV ≡ Mp(V,φφ/V ), and

c2
S,T ∼ 1 + O(ε1) � 1, see Refs. [33,35] for further details.

Based on these findings, we place observational constraints
on the natural inflation model in the following sections. In
the standard single field inflation scenario in the general rela-
tivity, which isA � 1 limit of our model, the theoretical pre-
dictions of natural inflation on nS and r has been disfavored
by observational data [10,11,28]. Thus, in the following sec-
tion, we place observational constraints on natural inflation
in theA � 1 limit and show that the model is now consistent
with the current observations even at 1σ (68% confidence)
level.

3 Observational constraints

In the presence of the derivative self-interaction of the scalar
field and its kinetic coupling with the Einstein tensor, we
place observational constraints on natural inflation. Since
natural inflation in the GR limit, where A = 0 (equivalently,
γ = 1), is well discussed in Refs. [10,11,26,27] and ref-
erences therein, we investigate the A � 1 case, from now
on, to account for the significant deviation from the standard
slow-roll inflation scenario in GR. In this and next section,
we consider the A � 1 limit of our analytic results of the
previous section. Thus, it is worth emphasizing that results in
this and the following sections correspond only to the γ �= 1
case.1 The potential for natural inflation reads

V (φ) = Λ4
[

1 + cos

(
φ

f

)]
, (22)

where the energy density Λ4 and the decay constant f are
the parameters of the model with dimensions of mass. In the
limit f → ∞, the potential behaves like pure power laws,
e.g., V (φ) ∼ m2φ2 where m is an energy scale that plays the
role of Λ [29]. For natural inflation, the number Nk of e-fold
is obtained from Eq. (16) as

Nk = Δ [F (φe) − F (φ)] , (23)

where

Δ = β(γ − 1)
f 2Λ4

M2M4
p
, (24)

and

F (φ) = cos

(
φ

f

)
+ 4 ln

√
±1

2

[
1 − cos

(
φ

f

)]
. (25)

1 Taking the γ → 1 limit for our results in this and next sections does
not reproduce the standard results. In other words, the γ = 1 (orA = 0)
case should be treated separately.
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Here, we choose “+” sign in Eq. (25) since the quantity
under the square root should be positive. To obtain Eq. (23),
we assumed A � 1 in Eq. (16). By using the condition that
ε1(φe) = 1, we obtain the scalar-field value φe at the end of
inflation as

cos

(
φe

f

)
= 4

1 ± √
16Δ + 1

− 1, (26)

where we choose “+” sign for reason that | cos(φe/ f )| ≤ 1.
Substituting Eq. (26) into Eq. (25), we obtain

F (φe) = 2 ln

[
1 + 8Δ − √

16Δ + 1

8Δ

]

− 1 + 4Δ − √
16Δ + 1

4Δ
. (27)

Consequently, the potential value at the end of inflation gets

V (φe) =
(√

16Δ + 1 − 1

4Δ

)
Λ4. (28)

For the potential in Eq. (22), the spectral index for scalar
modes and the tensor-to-scalar ratio are obtained from
Eqs. (19) and (21) as

nS = 1 −
2

[
2 − cos

(
φ
f

)]

Δ
[
1 + cos

(
φ
f

)]2 , (29)

r =
8
[
1 − cos

(
φ
f

)]

Δ
[
1 + cos

(
φ
f

)]2 . (30)

Using Eq. (23), we obtain

cos

(
φ

f

)
= 1 + 2W

(
±e

1
2

(
F(φe)− Nk+Δ

Δ

))
, (31)

where W(x) is the product logarithm function, also known
as the Lambert W function, and both Δ and Nk are positive
constants. Let us first consider the positive sign for the argu-
ment of W-function in Eq. (31). As the Δ increases from
0 to ∞, while the number of e-folds of inflation is fixed to
be Nk ∼ 60, the exponent increases from −∞ to −1, see
the left panel of Fig. 1. Thus, the argument of W(x) takes
a value in a range 0 ≤ x ≤ 1/e and, consequently, the
W(x) takes a value between zero and W(1/e) � 0.2784.
As a result from Eq. (31), we obtain cos(φ/ f ) ≥ 1, and
the scalar field becomes complex-valued, which we are not
interested in in this work. Let us now consider the negative
sign in Eq. (31). Again, as the Δ increases from 0 to ∞
for a fixed Nk , the argument of W(x) decreases in a range
0 ≥ x ≥ −1/e. In that case, there are two branches of
real values of W(x). Following Ref. [59], we denote the
branch satisfying W(x) ≤ −1 by W−1(x) and the branch
satisfying −1 ≤ W(x) ≤ 0 by W0(x). For the W−1(x)
branch, we obtain cos(φ/ f ) ≤ −1 from Eq. (31), in which
the scalar field is also complex-valued. Lastly, we obtain
| cos(φ/ f )| ≤ 1 for the W0(x) branch. Thus, for our further
study, we choose the negative sign in Eq. (31) and the W0(x)
branch where −1 ≤ W(x) ≤ 0, and then | cos (φ/ f )| ≤ 1,
see the right panel of Fig. 1.

Although we have several free parameters; including α,
β, and M , coming from our model, and Λ and f , from the
choice of inflaton potential, our result shows that the theoret-
ical predictions of nS and r depend only on a single param-
eter Δ, which is given in Eq. (24). Thus, it is effectively one
parameter model, and we plot in the left panel of Fig. 2 the
theoretical predictions of our model based on Eqs. (29) and
(30) for natural inflation.

The shaded dark- and light-blue regions represent the
1σ and 2σ confidence contours of the Planck+BICEP/Keck
2018 data [28], respectively. The diagonal gray lines indi-
cate the different values of Δ; for example, Δ = 20 for the
orange line. The purple lines represent the number Nk of e-

Fig. 1 Left: the exponent of an argument of W-function in Eq. (31) as
a function of Δ and Nk . The solid, dashed, and dot-dashed lines cor-
respond to Nk = 50, 55, and 60, respectively. The the exponent grows

from −∞ to −1, the horizontal black solid line, as the Δ increases from
0 to ∞. Right: the W0(x) branch as a function of Δ and Nk , which gives
| cos(φ/ f )| ≤ 1 in Eq. (31)
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folds during inflation; Nk = 50 (dotted), 60 (dashed), and 70
(solid). The values of r and nS decrease/increase along the
purple lines as the Δ value decreases/increases. The figure
shows that natural inflation is now compatible with the obser-
vational data if the kinetic coupling between gravity and the
scalar field and the derivative self-interaction of the scalar
field are taken into account during inflation. For our model
to be consistent with the observational data at 1σ /2σ level,
the duration of inflation is preferred to be Nk � 60/Nk � 50.
The ranges of Δ compatible with the data are 18 � Δ � 25
(1σ confidence) and 25 � Δ � 45 (2σ confidence) for
Nk = 60(dashed line), the most conservative value for dura-
tion of inflation. Having obtained the range of Δ values in
agreement with the observational data, we can search for the
parameter space of other parameters using Eq. (24).

The amplitude of the scalar power spectrum is well deter-
mined to be PS(k∗) = 2.0989 × 10−9 (TT, TE, EE + lowE +
lensing) at the pivot scale k∗ = 0.05 Mpc−1 [10,11]. Thus,
we can use Eq. (17) to obtain the Λ parameter. First, we write
Eq. (17) in the following form

PS(k∗) = Δ

12π2

Λ4

M4
p

[
1 + cos

(
φ

f

)]3 [
1 − cos

(
φ

f

)]−1

= 2.0989 × 10−9, (32)

where cos(φ/ f ) is given in Eq. (31) in terms of Nk and Δ. The
Nk can be expressed in terms of nS and Δ after substituting
Eq. (31) into Eq. (29), which then reads

Nk = Δ

{
F(φe) − ln

[
exp

(
1 − (nS − 1)Δ + √

1 − 6(nS − 1)Δ

(nS − 1)Δ

)

×
(

1 − 2(nS − 1)Δ + √
1 − 6(nS − 1)Δ

2(nS − 1)Δ

)2
]}

. (33)

Thus, we obtain Λ(nS,Δ) from Eq. (32) as

Λ4

M4
p

= −3π2

Δ
PS(k∗)

(
1 + W

[
−

√
exp

(
F (φe) − Nk + Δ

Δ

)])−3

×W
[
−

√
exp

(
F (φe) − Nk + Δ

Δ

)]
. (34)

For the central nS = 0.9649 value from the Planck TT, TE,
EE + lowE + lensing data [10,11], Eq. (34) gives 2.7331 ×
10−3 ≤ Λ/Mp ≤ 5.1006 × 10−3 for the 15 ≤ Δ ≤ 28
range. The corresponding range of tensor-to-scalar ratio is
0.0035 ≤ r ≤ 0.036, which is compatible with the latest
constraint on r0.05 < 0.036 at 95% confidence [28].

Substituting Eq. (34) into Eq. (24), we plot the parameter
space of β(γ −1) vs. M2/M2

p in the right panel of Fig. 2. The
black solid line indicates cutoff scale M2/M2

p = 3β(γ − 1).
The gray shaded region presents the allowed parameter space
from Eq. (15) satisfying the sufficient condition M2/M2

p �
3β(γ − 1) to avoid the quantum gravity. For plotting the
blue- and red-shaded regions, we adopt the nS = 0.9649 and
0.3 ≤ log10( f/Mp) ≤ 2.5 from the Planck paper [10,11].
The value of f/Mp increases from solid to dashed bound-
aries, while we set Δ = 15 and Δ = 28 for the blue and red
regions, respectively. Since we consider γ �= 1 case; hence
β �= 0, in this study, the divergence occurring at β(γ −1) = 0

Fig. 2 Left: the nS − r plot for natural inflation with potential given in
Eq. (22). The shaded regions present the 1σ (dark blue) and 2σ (light
blue) contours of the latest Planck+BICEP/Keck 2018 data [28]. The
diagonal gray lines indicate the different values of Δ within the inter-
val 15 ≤ Δ ≤ 4500, increasing from bottom left to top right with
a step of 10. For the orange line, Δ = 20. The purple lines repre-
sent the number Nk of e-folds during inflation; Nk = 50 (dotted), 60
(dashed), and 70 (solid). Right: the parameter space of β(γ − 1) vs.

M2/M2
p from Eq. (24), where the black line corresponds to the cutoff

scale M2/M2
p = 3β(γ − 1). The gray shaded region is the allowed

parameter space satisfying M2/M2
p � 3β(γ − 1). For the blue- and

red-shaded regions, we set Δ = 15 and Δ = 28, respectively, and vary
the f/Mp value within the range of 0.3 ≤ log10( f/Mp) ≤ 2.5 adopted
from Planck paper [10,11], the value increases from solid to dashed
boundaries
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is not physical. In other words, the γ = 1 case should be
treated separately. The left panel of Fig. 2 shows that the
CMB data prefer the positive values of Δ, which indicates
the β(γ − 1) in Eq. (24) must also be positive. Therefore,
β > 0 for γ > 1 and β < 0 for γ < 1 in the right panel
of Fig. 2, respectively. Thus, we conclude from Fig. 2 that
the natural inflation model is now consistent with the latest
observational data for a broad range of model parameters. In
the following section, to put further constraints to the infla-
tionary predictions for natural inflation, we impose reheating
considerations after inflation.

4 Reheating constraints

Inflation ends when equation-of-state parameter becomes
ωinf = −1/3. The standard inflationary cosmology then
assumes that, after inflation, the universe undergoes a phase
of reheating, during which the inflaton field coherently oscil-
lates at the minimum of its potential, decaying and transfer-
ring its energy to a relativistic plasma, and populates the uni-
verse with ordinary matter. As for the reheating phase, we
follow the approaches proposed in Refs. [29,51–58], espe-
cially [29,56], in which the present day observations are
related to the evolution of the inflaton field during inflation.
The key is the relation between the comoving scale k today
and that during inflation. In other words, the comoving Hub-
ble radius, ak Hk = k, exiting the horizon is associated with
that of present time by

ln
k

a0H0
= ln

(aH)k

(aH)e
+ ln

(aH)e

(aH)re
+ ln

(aH)re

(aH)eq
+ ln

(aH)eq

a0H0
.

(35)

The number of e-folds during each inflation, reheating,
and radiation dominated epoch; Nk = ln(ae/ak), Nre =
ln(are/ae), and NRD = ln(aeq/are), respectively, can be
used to simplify Eq. (35) as

ln
k

a0H0
= −Nk − Nre − NRD + ln

aeq
a0

+ ln
Hk

H0
, (36)

where “aeq” is the scale factor at the matter and radiation
equality, and the subscript “0” denotes the present day value
of each quantity. The Hubble parameter during inflation
is obtained from Eq. (18) with an assumption PT (k∗) =
rPS(k∗) to be Hk = √

2πMp(rPS)
1/2c3/2

T , where cT � 1
for our case. The ratio between the energy density ρe at the
end of the inflation and the energy density ρre at the end of
the reheating depends on the equation-of-state parameter and
the duration of reheating and is

ρre

ρe
= e−3(1+ωre)Nre . (37)

The energy density ρe at the end of inflation is then com-
puted from the modified Friedmann equations Eq. (11) to
be ρe � V (φe). Assuming the conservation of entropy and
the current neutrino temperature, Tν,0 = (4/11)1/3T0, the
energy density at reheating is

ρre = π2gre
30

T 4
re, (38)

where

Tre =
(

43

11gs,re

) 1
3 a0

are
T0. (39)

The number of e-folds during reheating can be obtained from
Eq. (37) with Eqs. (38) and (36) as

Nre = 4

1 − 3ωre

[
− Nk − ln

k

a0T0
− 1

4
ln

30

π2gre
− 1

3
ln

11gs,re
43

− 1

4
ln V (φe) + 1

2
ln

(
2π2M2

prPS

) ]
. (40)

The corresponding reheating temperature, Tre, is

T 4
re =

(
30

π2gre

)
V (φe)e

−3(1+ωre)Nre . (41)

Assuming the effective equation-of-state parameter ωre

is functionally constant, we plot the temperature Tre and
the duration of reheating as functions of the spectral index
nS in Fig. 3. The left and right panels correspond to two
different values of Δ. In each figure, we choose four dif-
ferent values of ωre; namely, ωre = −1/3 (red), ωre = 0
(blue), ωre = 0.25 (black), and ωre = 1 (green). The small-
est ωre = −1/3 value is required for inflation end, while
the largest ωre = 1 one, the most conservative upper limit,
comes from the causality. Thus, the ωre value varies within
the interval of −1/3 ≤ ωre ≤ 1. The background yel-
low shaded region presents the current 1σ range of nS =
0.9649 ± 0.0042 (68%, T T, T E, EE + lowE + lensing)
from Planck data [10,11]. The pink and brown shaded regions
with Tre ≤ 100GeV and Tre ≤ 10 MeV indicate the con-
straints on energy scales the electroweak and the big-bang
nucleosynthesis, respectively. The ωre values residing inside
the shaded regions are favored. The curves of all ωre inter-
sect at (nS, Tmax

re ) = (0.9634, 3.04 × 1015GeV) for Δ = 20
and (nS, Tmax

re ) = (0.9698, 3.26 × 1015GeV) for Δ = 40
and indicate the instantaneous reheating (Nre = 0) for our
model. The instantaneous reheating temperature Tmax

re and
corresponding spectral index nS values slightly increase as
the Δ value increases, which is due to the potential energy
value at the end of inflation depends on the value of Δ, see
Eqs. (28) and (41). By matching the lines of the same colors

123



268 Page 8 of 11 Eur. Phys. J. C (2022) 82 :268

Fig. 3 The nS − Tre (bottom) and nS − Nre (top) plots for nat-
ural inflation with potential given in Eq. (22). The yellow shaded
region indicates the current 1σ range of nS = 0.9649 ± 0.0042
(68%, T T, T E, EE + lowE + lensing) from Planck data [10,11].

The pink and brown shaded regions indicate the Tre ≤ 100GeV and
Tre ≤ 10MeV energy scales, respectively. The ωre values residing
inside the shaded regions are favored

in both upper and lower panels, one can estimate the dura-
tion and corresponding temperature of reheating. Thus, for
given ωre, the figure shows that the longer the reheating lasts,
the lower the temperature gets at the end of reheating. For
the increasing direction of nS , the Tre increases, while the
Nre decreases, toward the intersecting point for ωre < 1/3.
As for the case of ωre > 1/3, the Tre decreases, while Nre

increases, away from the intersecting point of all lines.
In Eq. (33), the duration Nk of inflation is expressed in

terms of nS and Δ. Also, the nS can be expressed in terms
of reheating parameters, including ωre, Nre, and Tre. Thus,
by taking the reheating considerations into account, we plot
nS − r predictions once again in Fig. 4 for the same values
of ωre as Fig. 3. Since Nre and Tre are related to each other,
we choose Tre as another reheating parameter in Fig. 3. As
it is in Fig. 2, the underlying diagonal gray lines correspond
to the different values of Δ, and it increases from bottom
left to top right within the interval of 20 ≤ Δ ≤ 40. The
purple lines are some reference values of Nk . As the labels
indicate in each panel, the different colors on the diagonal
lines correspond to the different values of Tre. The main
implication of this figure is that both the ωre and the Tre
at the end of reheating provide us with information about
how long inflation had to be lasted to be compatible with
the CMB observations. For example, if ωre < 1/3, inflation
cannot last longer than Nk � 57 e-folds due to our reheating
considerations. Thus, the prediction of nS and r is only 2σ

consistent with the observations. Conversely, the duration of
inflation must be longer than Nk � 57 for ωre > 1/3. As a
result, the theoretical prediction of our model is still consis-
tent with the CMB data, the nS and r values residing inside
1σ contour. The turning point is the instantaneous reheat-
ing with Nre = 0, which also indicates ωre = 1/3. Since
reheating must have occurred instantaneously after inflation,
the estimated duration of inflation is Nk � 57 e-folds, the
exact value is slightly different for different Δ values as the
figure shows. Figure 4 also shows that the CMB data prefer
different ranges of reheating temperature depending on the
values of ωre. For equation of state approaching ωre � 1/3,
the reheating temperature from as low as a few MeV to as
large as 1015GeV can be achieved.

5 Conclusions

For a cosmological model described by Eq. (1), where the
derivative self-interaction of a scalar field and its kinetic cou-
pling with gravity is presented, we placed observational con-
straints on the natural inflation model. Then, we investigated
the effects of reheating on the inflationary predictions. The
interactions we introduced in this work are assumed to give
equally important contributions during inflation such that
|γ | ∼ O(1) in Eq. (13). The main analytic results of inflation-
ary predictions for our model are obtained in Eqs. (17)–(21),
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Fig. 4 The nS − r plot for natural inflation with potential given in Eq. (22). The shaded regions are the same as Fig. 2

where the presence of A indicates the non-zero effects of
the interactions mentioned above. These equations do not
depend on details of inflaton potential. To give a sizable
effect during inflation, deviating from the standard single-
field inflation model in Einstein gravity, the A should be
A � 1. Equation (11) shows that the additional interactions
in our model significantly enhance the gravitational friction.
Consequently, the tensor-to-scalar ratio is suppressed by a
factor of 1 + A in Eq. (21). The suppression is more signif-
icant if A � 1; hence, the inflationary predictions can be
compatible with the observations.

In Sect. 3, in light of the latest observational data [10,11,
28], we discussed the theoretical predictions of the natural
inflation model with potential given in Eq. (22). Although
we have several free parameters, the observable quantities
of natural inflation depend only on a single parameter Δ as
defined in Eq. (24). In the nS − r plane in Fig. 2, we showed
that the natural inflation model is now compatible with the
observational data for a certain parameter range, mainly due
to the suppressed tensor-to-scalar ratio r . For the predictions
to be consistent with data at 1σ (68% confidence) level, nat-
ural inflation is supposed to last slightly longer (Nk � 60)
than usually assumed. The right panel of Fig. 2 shows the

parameter space of M and γ parameters that provides the
right value for the amplitude of the CMB spectrum.

Imposing the effective equation-of-state ωre parameter to
be constant after inflation, we estimated the duration and
the temperature of reheating in terms of inflationary param-
eters in Eqs. (40) and (41), respectively. In Fig. 3, we plotted
Eqs. (40) and (41) as a function of nS for given Δ and ωre

values. The figure shows that the broad ranges of ωre and
Δ give compatible results with the CMB predictions on nS .
The combined result with Fig. 4 implies that, if ωre > 1/3,
inflation can last long enough – i.e., having N∗ � 60. Thus,
it is more compatible with the CMB data, the predictions
residing inside the 1σ contour, see Fig. 4 for ωre = 1. For
the ωre < 1/3 cases, the maximum number of e-folds in nat-
ural inflation is Nk � 57; hence the predictions reside inside
the 2σ contour only, see Fig. 4 for ωre = −1/3, 0, and 0.25
cases. Our result also shows that the broad range of reheating
temperatures, from as low as ∼ O(10) MeV to as large as
∼ O(1015) GeV, can be achieved at the end of reheating if
the equation of state is closer to 1/3. The maximum reheating
temperature is Tmax

re � 3 × 1015 GeV, corresponding to an
instantaneous reheating scenario for which ωre = 1/3 and
Nre = 0.
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We conclude that the effects of reheating to inflationary
predictions are important to tighten the parameter space of
observable quantities, breaking degeneracy between infla-
tionary predictions that otherwise overlap in the nS−r plane.
We also found it is interesting to investigate the phenomeno-
logical details of reheating for the ωre � 1/3. According to
our result, in that case, inflation can last longer than usually
assumed; hence more consistent with the CMB data, and the
broad range of reheating temperature is also accessible.
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Zaldarriaga, φ2 inflation at its endpoint. Phys. Rev. D 90(8), 083513
(2014)

58. R.G. Cai, Z.K. Guo, S.J. Wang, Reheating phase diagram for single-
field slow-roll inflationary models. Phys. Rev. D 92, 063506 (2015)

59. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth,
On the LambertW function. Adv. Comput. Math.5, 329–359 (1996)

123


	The reheating constraints to natural inflation in Horndeski gravity
	Abstract 
	1 Introduction
	2 Background and perturbation dynamics
	3 Observational constraints
	4 Reheating constraints
	5 Conclusions
	Acknowledgements
	References




