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Abstract In this paper we study a model of interacting dark
energy–dark matter where the ratio between these compo-
nents is not constant, changing from early to late times in such
a way that the model can solve or alleviate the cosmic coinci-
dence problem (CP). The interaction arises from an assumed
relation of the form ρx ∝ ρα

d , where ρx and ρd are the energy
densities of dark energy and dark matter components, respec-
tively, and α is a free parameter. For a dark energy equation
of state parameter w = −1 we found that, if α = 0, the
standard �CDM model is recovered, where the coincidence
problem is unsolved. For 0 < α < 1, the CP would be allevi-
ated and for α ∼ 1, the CP would be solved. The dark energy
component is analyzed with both w = −1 and w �= −1.
Using Supernovae type Ia and Hubble parameter data con-
straints, in the case w = −1 we find α = 0.109+0.062

−0.072 at 68%
C.L., and the CP is alleviated. For w �= −1, a degeneracy
arises on the w–α plane. In order to break such degeneracy
we add cosmic microwave background distance priors and
baryonic acoustic oscillations data to the constraints, yield-
ing α = −0.075 ± 0.046 at 68% C.L.. In this case we find
that the CP is not alleviated even for 2σ interval for α. Fur-
thermore, this last model is discarded against flat �CDM
according to BIC analysis.

1 Introduction

The standard model of cosmology, known as �CDM model,
correctly describes the type Ia Supernovae (SNe Ia) obser-
vations, which indicate a recent accelerated expansion of
the universe. It also explains quite well the formation of
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large-scale structures and the cosmic abundance of different
types of matter and energy. However, although being a model
extremely predictive and observationally robust, �CDM suf-
fers from profound theoretical difficulties, such as not giving
a reasonable explanation for the nature of cold dark matter
(CDM) and the very discrepant value between the observed
and predicted for cosmological constant �. For an interesting
and recent review on �CDM problems we refer the reader
to [1]. Another very recent problem concerning the standard
model is the so called Hubble tension, a statistical signifi-
cant disagreement between predictions of H0 by early time
probes against a number of late time determinations of H0

from local measurements of distances and redshifts (see [2]
for a review).

There are several alternative models to �CDM. An overall
class of theories replace the constant � term by a dynamical
dark energy (DE) component (see [3,4] for a recent discus-
sion). Other consider the possibility of a coupling between
dark matter (DM) and dark energy [5–19]. This specific class
of theories have the advantage to explain why the present
values of dark energy and dark matter densities are of the
same order of magnitude, which indicate we are living in a
very special moment of the cosmic history. This is known as
the cosmic coincidence problem (CP) [20,21]. In [4] it was
shown that a dynamical DE model and the interacting DM-
DE approaches become indistinguishable both at the back-
ground and linear perturbation level. Thermodynamic prop-
erties of interaction models were studied in [6,12], showing
that the presence of a non null chemical potential for at least
one of the fluids allows the decay from the DM fluid into
DE, with no violation of the second law of thermodynamics
and also being favored by cosmological data in some cases. In
[14] it was shown that a general late-time interaction between
cold dark matter and vacuum energy is also in agreement to
current cosmological data sets, occurring at about z = 0.9.
A new class of metastable dark energy phenomenological
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models in which the DE decay rate does not depend on exter-
nal parameters was proposed in [18]. A scenario in which DM
particles interact via a force mediated by a scalar field was
proposed very recently in [19], where the scalar field drives
cosmic acceleration.

Most of the interacting DM-DE models are described by
the Friedmann equations and the conservation equations:

ρ̇d + 3H(ρd + pd) = Q, (1)

ρ̇x + 3H(ρx + px ) = −Q, (2)

where ρd and pd are DM energy density and pressure, and
ρx and px are DE energy density and pressure. For a dust like
DM fluid we have pd = 0 and for a vacuum like DE fluid
we have px = −ρx , for instance. Q denotes the phenomeno-
logical interaction term. For Q > 0 we have DE decaying
into DM while for Q < 0 we have DM decaying into DE. A
thermodynamic analysis [6] showed that both decaying route
are possible.

Several interaction terms Q have been studied in the liter-
ature [6–19]. Most of them are Q ∝ ρx or Q ∝ ρd . Models
with Q ∝ Hρd have been largely explored in literature, how-
ever it is plagued with instabilities at the evolution of density
perturbations [22,23]. Models with Q ∝ Hρx are free of
such instabilities. In particular, the model with Q = 3εHρx

has been studied in [6] and the ε parameter has been con-
strained by SNe Ia observational data as ε = −0.026+0.021

−0.027
at 1σ C.L. This shows that a negative value of Q is favoured
by observations at 1σ interval, with the ε = 0 limit only
slightly away from the best-fit value.

Following a different approach, Cai and Su [11] have
found that there must be a change of the sign of Q at about
z = 0.5 in a model independent of the specific interaction
term. This raises a remarkable challenge to the interacting
models, since the usual phenomenological forms of interac-
tion do not change their signs during the cosmological evo-
lution. A model that encompass such very peculiar charac-
teristic is presented in [12].

Very recently a model with Q = �ρx was presented by
Shafieloo et al. [18], where � is a constant with the dimen-
sions of inverse time, related to decaying of DE. With a vac-
uum like equation of state, px = −ρx , Eq. (2) has a solution
of the form ρx (t) = ρx (t0) exp[−�(t − t0)], exactly like a
radioactive decay of matter and � is related to the ‘half-life’
of DE. Such model is known as a metastable dark energy
with radioactive-like decay. A more recent analysis in light
of Planck 2018 data was done in [24], and a dynamical sys-
tem analysis was done in [25]. A very interesting interacting
closed model has been explored recently with full CMB data,
which offer a very compelling solution to the Hubble con-
stant tension [2,26].

In the present paper we analyse a model of interacting DM-
DE fluids in which we aim to test if an interaction between

DM and DE may solve or alleviate the CP. In �CDM model,
the cosmological constant density has always the same value,
namely ρ� = ρ�0, while the energy density of pressureless
matter satisfies ρd = ρd0(a/a0)

−3, where the subscript “0”
stands for present day values. The CP says that ρ�0 ∼ ρd0

today. Since that the ratio between the scale factor today to
that one at last scattering surface is a0/a = 103 or z ∼ 1000,
we have a ratio r = ρd

ρ�
∼ 109 at that epoch. Thus, an inter-

action between DM-DE could maintain the ratio constant
along the evolution, r ∼ 1, solving the CP, since it would
not be specific to the present moment. If the ratio is such that
r << 109 at z ∼ 1000 we say that CP is alleviated.

The standard �CDM model is characterized by a constant
equation of state parameter w = p�

ρ�
= −1, where both

ρ� and p� are constant. The dark matter and � densities
evolutions can be seen in logarithmic scale in Fig. 1 (left).
The logarithmic densities in this case are given by

ln ρ� = ln ρ�0, ln ρd = −3 ln a + ln ρd0. (3)

For models where the equation of state parameter is also
-1 but with both ρ� and p� time varying, the energy den-
sity associated to � changes with time, and this defines a
�(t)CDM model, with a typical behaviour for the evolution
of densities given in Fig. 1 (right). If the energy density of
�(t) approximates the dark matter energy density in Fig. 1,
we solve or at least alleviate the CP. For this, let us try to
write:

ln ρ� = k1 ln a + ln ρ�0, ln ρd = k2 ln a + ln ρd0. (4)

Rearranging the equations gives:

ρ�

ρ�0
=

(
ρd

ρd0

)k1/k2

, (5)

which corresponds to:

ρx = βρα
d (6)

for a general DE component.
Thus, in order to test if an interaction model can solve

or alleviate the CP, we assume the relation (6) for the dark
sector. With this assumption, we have that if the data indicate
α ∼ 0, there is no interaction and �CDM model is recovered.
If α = 1, the ratio r is exactly constant and the CP is solved.
For 0 < α < 1, we may conclude that the DM-DE interaction
may alleviate the CP. In Fig. 1 (right), we see how α = 0.5
alleviates the CP. Below we derive which interaction term Q
results in the relation (6).

In Sect. 2 the main equations are presented, in Sect. 3 the
model is analysed and in Sect. 4 we have the conclusions.
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Fig. 1 Dark sector densities
evolution for �CDM (left) and
�(t)CDM (right) models. The
densities are normalized by
current critical density, ρc0
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2 DE-DM interacting model

The Friedmann equation in a flat background for the present
model is:

H2 = κ2

3
(ρb + ρr + ρd + ρx ), (7)

where κ2 = 8πG, and the conservation laws for the baryonic
energy density ρb, radiation energy density ρr , DM energy
density ρd and DE energy density ρx are

ρ̇b + 3Hρb = 0, (8)

ρ̇r + 4Hρr = 0, (9)

ρ̇d + 3Hρd = Q, (10)

ρ̇x + 3H(1 + w)ρx = −Q, (11)

where we assume that baryons and dark matter satisfy a dust
like equation of state, pr = ρr

3 and dark energy satisfies

px = wρx , (12)

where w is the DE equation of state (EOS) parameter.
Inspired by the metastable dark energy decay model pre-

sented above we chose to work with a phenomenological
interaction term of the form

Q = �(t)ρx , (13)

where now �(t) represents a time dependent decaying rate
and the energy densities of DE and DM are related by (6):

ρx = βρα
d ≡ f (ρd), (14)

with constant α and β, such that for α �= 1 the β parameter
is a dimensionful constant, and for α = 1 we see that the
ratio ρx/ρd is just a constant, β, showing that both densities
evolves exactly at the same manner. A small deviation of α

from unity shows a nontrivial dependence between DM and
DE densities.

From (11), (13) and (14) we obtain:

�(t) = −3H(1 + w) − α
ρ̇d

ρd
, (15)

and from (10):

ρ̇d

ρd

[
1 + αβρα−1

d

1 + β(1 + w)ρα−1
d

]
= −3H = −3

ȧ

a
. (16)

The above equation can be integrated to obtain ρd(a) in an
implicit logarithm equation, which is useful just for the par-
ticular case w = −1. For the general case, Eq. (16) must be
solved numerically.

2.1 The case w �= −1

In the more general case, w �= −1, Eq. (16) can not be solved
analytically to obtain ρd(a). So, in this case, we choose
to solve numerically the differential equations (10)–(16) to
obtain ρd , ρx and H as function of the scale factor or redshift.

Aiming to constrain the model with data, we rewrite Eq.
(16) in terms of the redshift and in terms of dimensionless
quantities. So, by using the definitions rd ≡ ρd

ρd0
, rx ≡ ρx

ρx0
,

�d0 ≡ ρd0
ρc0

, �x0 ≡ ρx0
ρc0

, where ρc0 is the present critical

density, and the relation d
dt = −H(1+ z) d

dz , we may rewrite
Eq. (16) as:

drd
dz

= 3rd
1 + z

[
�d0 + (1 + w)�x0r

α−1
d

�d0 + α�x0r
α−1
d

]
(17)

with initial condition rd(z = 0) = 1. Relation (14) now is
simply:

rx = rα
d (18)

and

E(z) ≡ H(z)

H0
=

[
�b0(1 + z)3 + �r0(1 + z)4

+�d0rd(z) + �x0rx (z)]
1/2 (19)

can be used to constrain the model with observational data
and we have included the baryon and radiation contributions,
�b0 ≡ ρb0

ρc0
and �r0 ≡ ρr0

ρc0
, respectively. Due to spatial flat-

ness, for z = 0 the Eq. (19) reads �b0+�r0+�d0+�x0 = 1.

2.2 The case w = −1

The case w = −1 can be solved analytically with the aid of
the Lambert w function, as we show in details in Appendix
A. The solution for ρd(z) is:

ρd = ρd0

[
W

(
αr0eαr0(1 + z)3(α−1)

)
αr0

] 1
α−1

(20)
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Fig. 2 Left: H(z) data [27] and
some curves predicted from the
�(t)CDM model for some
values of α. The best fit
corresponds to Table 2. α = 0
corresponds to standard �CDM
model. Right: apparent SNe Ia
magnitudes mB from Pantheon
compilation [28]
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In this case,

ρx (z) = ρx0

[
W

(
αr0eαr0(1 + z)3(α−1)

)
αr0

] α
α−1

(21)

and

E2 = H(z)2

H2
0

= �b0(1 + z)3 + �r0(1 + z)4 + ρd + ρx

ρc0
(22)

is used to constrain the model with observational data.

3 Data

The cosmological data used to constrain the models are
briefly described below.

3.1 H(z) data

The Hubble parameter data, named H(z), can be obtained
from many sources, with the main being clustering (lumi-
nous red galaxies (LRGs) and baryon acoustic oscillations
(BAO)) and differential age of objects (cosmic chronome-
ters). Here we use the largest known sample of H(z) data
up to date, with 51 measurements [27]. This dataset can be
seen in Fig. 2 (left). We use these data for the �(t)CDM
analysis. For DM-DE interacting model we include separate
BAO data in the analysis. In order to avoid unknown correla-
tions with this BAO data, we exclude H(z) data coming from
clustering estimates, reducing the compilation to 31 cosmic
chronometers. This separation can be seen in Table 1 of Ref.
[27].

Table 1 Chosen priors for the free parameters

Parameter Flat prior interval

�b0 [0, 0.2]
�d0 [0, 1]
w [−2, 0]
α [−1, 1]
H0 (km/s/Mpc) [20, 120]

3.2 SNe Ia

SNe Ia luminosity distances are good tracers of the late Uni-
verse history, thereby yielding strong constraints on dark
energy. Here we use the largest sample up to date, namely the
Pantheon sample [28], which consists of 1048 SNe apparent
magnitudes over the redshift range 0.01 < z < 2.3. This
dataset can be seen in Fig. 2 (right).

3.3 Cosmic microwave background

The cosmic microwave background (CMB) yields strong
constraints on cosmological models. Acting basically as a
standard ruler at the last scattering surface, it consists of a
strong constraint because it integrates the Universe history
from today (z = 0) up to z ∼ 1000. Here we work with the
so called CMB distance priors, which include quantities that
are representative of the full CMB spectrum. We choose to
work with the priors on the shift parameter, which is related
to the position of the first acoustic peak in the power spectrum
of the CMB anisotropies, acoustic scale and baryon density,
(R, �A,�bh2), respectively, as described by [29]. We work
with the priors coming from Planck (2018) [30], as indicated
by Table 1 of [29]. The CMB temperature and radiation den-
sity have been fixed from [31].

3.4 BAO

Prior to the recombination, baryons and radiation were
strongly coupled. Due to this coupling, baryon clustering was
suppressed by photon pressure. These oscillations between
baryon clustering and photon pressure repulsion resulted
in an imprint on the correlation function of galaxies after
recombination. The correlation function of galaxies decays
with distance, as expect due to gravity being an attractive
force. The baryon acoustic oscillations, however, results in
an excess at the correlation function at the scale of sound
horizon at recombination, rs ∼ 150 Mpc. The position
of this BAO signature imposes strong constraints on the
matter density. Here we use the BAO signature estimate
from various sources, as indicated in Tables II and III of
Ref. [32].
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Fig. 3 All constraints (SNe Ia and H(z)) on �(t)CDM model

4 Analysis

In all analyses here, we have used the free software emcee
[33,34] in order to probe the posterior distributions p ∝ πL,
where π is the prior and L ∝ e−χ2/2 is the likelihood. The
assumed priors were flat with large intervals on parame-
ters encompassing all the non-negligible region of the like-
lihoods, except where physical limits were needed, like
�d > 0 and �b > 0. The chosen priors can be seen on
Table 1. In order to plot the results, we have used the free
software getdist [35].

4.1 �(t)CDM model

In the case of �(t)CDM model, that is, interacting model
where the dark energy has EOS w = −1, we have fixed

the baryon density parameter to �b0 = 0.0493 according
to CMB constraints from Planck (2018) [30], which is also
in agreement with Big Bang Nucleosynthesis (BBN) con-
straints. We then have as free parameters (H0,�d0, α).

The free parameters are strongly constrained from SNe
Ia in combination to H(z), as can be seen from Figs. 3
and 4 and Table 2. As can be seen in Fig. 3, mainly in
the plane �d0 – α, the combination of SNe Ia and H(z)
strongly reduces the parameter space. In Table 2, the value
for H0 is very close with the value obtained for �CDM in
Planck (2018) [30], namely, H0 = 67.4 ± 0.5 km/s/Mpc.
With our fixed value of �b0 = 0.0493, we obtain �m0 =
�b0 + �d0 = 0.336 ± 0.036 at 68% C.L., which is very
close with the value obtained from Planck (2018) [30],
�m0 = 0.315 ± 0.007. The value obtained for α, as can
be seen from Table 2, is compatible with zero only with
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Fig. 4 Combined constraints (SNe Ia and H(z)) on �(t)CDM model

Table 2 Combined constraints on the free parameters of �(t)CDM
model from Pantheon+H(z) data for 68% and 95% C.L

Parameter 68% and 95% limits

�d0 0.287+0.036+0.071
−0.036−0.075

α 0.109+0.062+0.14
−0.072−0.12

H0 (km/s/Mpc) 68.7+1.1+2.2
−1.1−2.1

1.6σ , so the interaction is not discarded by this analy-
sis.

Figure 4 shows in more detail the combined constraints
on the free parameters (�d0, α, H0). We can see that the
parameters are very constrained, with a larger correlation in
the plane �d0–α.

Reference [36] studies another �(t)CDM model, where
they assume Q = aHξρx and w = −0.999. It is interesting

to note that by using data from Pantheon, BAO and BBN,
they find ξ < 0, which implies Q < 0, while we find α > 0,
which implies Q > 0 (DE decaying in DM). The difference
between these results must come from the different interac-
tion terms dependences.

4.2 Interacting XCDM model

When we leave the dark energy EOS w as a free parameter,
allowing for w �= −1, we have the so called XCDM model.
In this case, the SNe Ia+H(z) data are not enough to constrain
the free parameters (�b0,�d0, w, H0) and we have to add
constraints from other data. Thus, we have added constraints
from Planck (2018) [30], with the so called distance priors,
which include the shift parameter, �A and �b0h2. We have
also included constraints from baryon acoustic oscillations
(BAO) from various surveys.
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Table 3 Combined constraints
on the free parameters of
DM-DE interacting model from
Pantheon+H(z)+Planck18+BAO

Parameter Flat �CDM prior XCDM prior

�b0 0.0496+0.0012+0.0024
−0.0012−0.0023 0.0497 ± 0.0012 ± 0.0023

�d0 0.2700+0.0062+0.013
−0.0062−0.012 0.2696+0.0063+0.013

−0.0063−0.012

w −1.071 ± 0.045 ± 0.090 −1.068+0.045+0.090
−0.045−0.091

α −0.078+0.046+0.094
−0.046−0.092 −0.076 ± 0.047 ± 0.093

H0 (km/s/Mpc) 67.13 ± 0.74 ± 1.5 67.09 ± 0.74 ± 1.5
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Fig. 5 Combined constraints from Pantheon+H(z)+Planck18 (�CDM prior)+BAO on DM-DE interacting model with w �= −1

Table 3 presents the combined constraints on the free
parameters of DM-DE interacting model from Pantheon,
H(z), BAO and Planck (2018) data for both prior models,
namely spatially flat �CDM and XCDM models. From this
Table, Figs. 5 and 6, the value obtained for �m0 is �m0 =
0.3196 ± 0.0063 for �CDM prior and �m0 = 0.3193 ±

0.0064 for XCDM prior, which are very close to the value
obtained from Planck (2018) [30], �m0 = 0.3153 ± 0.0073.
The values for H0 are also compatible with Planck (2018)
[30], H0 = 67.36 ± 0.54 km/s/Mpc, for both priors. The
results obtained for the DE EOS parameter, as can be seen
in Table 3, is compatible with −1 at 1.6σ for �CDM prior
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Table 4 BIC comparison for Pantheon+H(z) data

Model Data χ2
min n par ndata BIC �BIC Support

Flat �CDM Pantheon+H(z) 1057.74 2 1099 1071.74 0

�(t)CDM Pantheon+H(z) 1054.91 3 1099 1075.92 4.17 Strong to very strong/significant

Table 5 BIC comparison for
Pantheon+H(z)+Planck18(XCDM
prior)+BAO data

Model Data χ2
min n par ndata BIC �BIC Support

Flat �CDM PHPBa 1064.84 3 1079 1085.79 0

XCDM+Int PHPB 1059.28 5 1079 1094.20 8.41 Decisive/strong

a Pantheon+H(z)+Planck+BAO
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and at 1.5σ for XCDM prior. This shows that the phantom
DE (w < −1) is slightly favoured by these analyses. Other
interesting feature of interacting DE is that the α parameter
now changes sign when compared with �(t)CDM. For the
�CDM prior the value obtained is α = −0.078 ± 0.046,
and for XCDM prior is α = −0.076 ± 0.047, which are
marginally compatible with zero at 1.7 and 1.6σ , respec-
tively.

We also have made model comparisons using the Bayesian
information criterion (BIC) [37–39], among flat �CDM and
�(t)CDM models. We have used, for this comparison, the
Pantheon+H(z) data. Similarly, it was also made a model
comparison among Interacting XCDM and flat �CDM,
using Pantheon+H(z)+Planck18(XCDM prior)+BAO data.
The results can be seen in Tables 4 and 5.

As one can see from Table 5, the Interacting XCDM model
can be discarded in comparison to flat �CDM model by
this analysis. In the case of �(t)CDM (Table 4), however,
the model is significantly disfavoured when compared to flat
�CDM. That is, this analysis shows that Pantheon+H(z)
data prefer this interacting �CDM model.

5 Conclusion

Was CP solved or alleviated? In order to try to answer this
question, we have studied a model of interacting DE-DM
where the ratio between these components can change from
early to late times, satisfying a relation of the form ρx ∝ ρα

d ,
where ρx and ρd are the energy densities of dark energy
and dark matter components, respectively, and α is a free
parameter. Then, we compared the ratio ρd/ρx along time
for two distinct models, namely the �(t)CDM model and
interacting XCDM model. We say that CP is solved if the
ratio is ∼ 1 along time evolution, and it is alleviated if the
ratio is less than that predicted by the current standard model.

In the case of �(t)CDM, at the 2σ interval of parameter
α, the ratio ρd/ρ� at z = 1000 is reduced from ≈ 109 to
≈ 3 × 105, and CP is alleviated. For interacting XCDM,
however, a degeneracy emerges on the plane w−α, in such a
way that for phantom DE, α becomes negative. For the best
fit, the CP is even worse, ρd/ρx ≈ 2 × 109 at z = 1000.
At the 2σ interval of parameter α, the ratio ρd/ρx is slightly
reduced to ≈ 2 × 108, and CP is not even alleviated. Yet,
only if one would make a full CMB spectrum analysis, a
final conclusion could be drawn, in this case.

An interesting argument about interaction terms comes
from [22], where they argue that Q should not involve a
global quantity like H , as the DE-DM interaction should
occur locally. As defined above from Eqs. (13) and (15), our
interaction term accomodates both possibilities: If w �= −1,
Q depends on H . For �(t)CDM, however, it does not and
can be interpreted as local.

Another interesting feature is that, as the model with w �=
−1 extends to values with phantom energy solutions (w ≤
−1), there is the possibility of the decay of dark energy in dark
matter restrain the Big Rip singularity, either by changing the
whole evolution of the expansion or causing great production
of dark matter at the last moments, according to the choice
of parameters. Similarly, there is a possibility of having a
Big Rip even with w ≥ −1, if dark matter is decaying into
dark energy at a rate large enough. Such possibilities can be
analyzed in future works.
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Appendix A: Analytical solution for w = −1

Equation (16) with w = −1 is:

(1 + αβρd
α−1)

dρd
dt

= −3ρd

a

da

dt
, (A1)

which can be written as:(
1

ρd
+ αβρd

α−2
)
dρd = −3da

a
. (A2)

The solution of this equation is:

ln
ρd

ρd0
+ αβ

α − 1

(
ρα−1
d − ρα−1

d0

)
= −3 ln a, (A3)

where we have used the initial condition ρd(a = 1) = ρd0.
It can also be written as:

ln ρα−1
d + αβρα−1

d = (α − 1) ln (ρd0a
−3) + αβρα−1

d0 (A4)

In order to solve (A4), we now introduce the Lambert
function W [40] defined as a solution of the equation:

xex = f ⇒ x = W ( f ) (A5)
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or

x + ln x = ln f. (A6)

As shown by [40,41], besides being used to solve Eqs.
(A5)–(A6), the Lambert W function can also be used to solve

x Bx = A, (A7)

with solution

x = W (A ln B)

ln B
. (A8)

Equation (A7) can also be written as:

ln x + x ln B = ln A. (A9)

Comparing (A9) with (A4), we may identify x = ρα
d ,

ln B = αβ and ln A = (α − 1) ln (ρd0a−3) + αβρα−1
d0 , so

that we find the solution:

ρd =
⎡
⎣W

(
αβ exp(αβρα−1

d0 )(ρd0a−3)α−1
)

αβ

⎤
⎦

1
α−1

(A10)

Defining the ratio r ≡ ρx
ρd

, the relation (6), yields r =
βρα−1

d , so that we can use the DE-DM ratio today, r0 =
βρα−1

d0 , to rewrite the solution (A10) as

ρx = ρx0

[
W

(
αr0eαr0a3(1−α)

)
αr0

] α
α−1

. (A11)
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