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Abstract Starting from an effective action for quantum
gravity, we calculate the quantum gravitational corrections
to the Wald entropy of a four dimensional non-extremal
Reissner–Nordström (RN) black hole in the limit of small
electric charge, generalising a previous calculation carried
out by Calmet and Kuipers (Phys Rev D 104(6):066012,
2021) for a Schwarzschild black hole. We show that, at sec-
ond order in the Ricci curvature, the RN metric receives quan-
tum corrections which shift the classical position of the event
horizon. We apply the Wald entropy formula by integrating
over the perimeter of the quantum corrected event horizon.
We then compute the quantum gravitational corrections to
the temperature and the pressure of the black hole.

1 Introduction

One of the greatest achievement in theoretical physics in
the last fifty years is the discovery that black holes have
an entropy [1,2]. The leading classical contribution to the
entropy of a black hole in Einstein’s general relativity is equal
to one quarter of the area of the event horizon. If the theory
of gravity is modified, then the entropy receives additional
contributions. Recently [3], effective field theory methods
were used to calculate the quantum gravitational corrections
to the entropy of a Schwarzschild black hole using the Wald
entropy formula [4], which in four dimensions reads

SWald = −2π

∫

r=rh

d� εμνερσ

∂L
∂Rμνρσ

, (1)

where L is the Lagrangian density of the theory, d� =
r2 sin θdθdφ, Rμνρσ is the Riemann tensor and εμν is an
antisymmetric tensor normalised as εμνε

μν = −2. The inte-
gral has to be evaluated at the horizon radius rh . An impor-
tant observation is that the metric itself may receive quantum
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gravitational corrections that could impact the position of the
horizon. The Schwarzschild metric does not receive correc-
tions at second order in curvature [5], but it does at third order
[3].

In this work we apply the same effective field theory
approach to quantum gravity as in [3] to compute the quan-
tum gravitational corrections at second order in curvature to
the entropy of a more realistic type of black holes, namely
the electrically charged ones, also known as Reissner–
Nordström (RN) black holes. The motivation behind adding
electric charge is dictated not only by theoretical interest.
Indeed, real astrophysical black holes do have a tiny elec-
tric charge, which can be approximately estimated as 100
Coulombs per solar mass [6]. If one is interested only in
the motion of photons and neutral matter (neutrinos and
gravitational waves) in the vicinity of the hole, then the
assumption of zero charge is justified. However, the dynam-
ics of charged particles like electrons and protons can be pro-
foundly affected. The electric field of the black hole can do
work and accelerate the particles to large, relativistic speeds.
Incidentally, this could explain why cosmic rays are detected
on the Earth with very high energies (see M. Zajacek, A.
Tursunov, Electric charge of black holes: Is it really always
negligible? arXiv:1904.04654 [astro-ph.GA]).

From the technical point of view, there is a difference
between the result of [3] and ours. Unlike the Schwarzschild
black hole, which is a vacuum solution of general relativity,
the presence of electric charge for the RN black hole implies a
non-vanishing energy–momentum tensor. As a consequence,
we found that the classical RN metric receives quantum grav-
itational corrections already at second order in curvature. We
obtained these corrections by solving the quantum corrected
Einstein and Maxwell equations perturbatively in the gravi-
tational coupling GN up to order O(G2

N ). We present their
derivation in Sect. 2. Quantum corrections to the RN met-
ric were already considered in the literature using alternative
methods. In [7,8] it was assumed that it is quantum mat-
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ter, and not quantum gravity, which is responsible for the
quantum effects. Accordingly, the energy–momentum tensor
was expanded in a power series in the fine structure constant
α using usual Feynman diagram techniques, then a Fourier
transformation of the form factors was performed to get the
correction to the metric. In [9], quantum corrections to the
RN metric were obtained within the context of 2D spherically
symmetric dilaton gravity models.

To compute the entropy, we restricted to the case of a non-
extremal RN black hole and we additionally made the well-
founded physical assumption that its charge Q is very small
compared to its mass M . To be precise, in every expressions
we kept only terms up to order O (

Q2
)
. In this sense, our

results can be thought of a small correction to those obtained
for the Schwarzschild black hole. As already mentioned, the
Wald entropy requires to integrate over the event horizon.
We found that the corrections to the metric imply a small
shift of the horizon radius, which contributes to the final
expression of the entropy. These calculations are presented
in Sect. 3. Previous works obtained the quantum corrections
to the entropy of non-extremal RN black holes in other ways.
Most notably, by computing the stringy α′ corrections [10],
by applying the brick-wall method [11], by counting the
degrees of freedom near the horizon [12], or by immersing
the black hole in an isothermal bath within a cavity [13].

After computing the entropy, in Sect. 4 we have a look at
the first law of thermodynamics. We found that both the tem-
perature and the pressure of RN black holes receive quantum
gravitational corrections at order O (

Q2
)

in such a way that
the first law remains valid.

2 Quantum gravitational corrections to the
Reissner–Nordström metric

2.1 Equations of motion from the effective action

Effective field theory is an organised procedure that separates
out the effects of high energy from those at low energy. Any
ultra-violet completion of quantum gravity that reduces to
general relativity in its low energy regime is described by an
effective action, consisting of local and non-local terms [14–
20]. The local action is a curvature expansion involving quan-
tities invariant under general coordinate transformations. At
second order in curvature, it is

�L =
∫

d4x
√−g

(
R

16πGN
+ c1(μ)R2

+c2(μ)RμνR
μν + c3(μ)Rμνρσ R

μνρσ

)
, (2)

where μ is an energy scale. The exact values of the coeffi-
cients c1, c2, c3 are unknown, as they depend on the nature
of the ultra-violet theory of quantum gravity. The non-local

action is

�NL = −
∫

d4x
√−g

[
αR ln

( �
μ2

)
R

+βRμν ln

( �
μ2

)
Rμν + γ Rμνρσ ln

( �
μ2

)
Rμνρσ

]
,

(3)

where � = gμν∇μ∇ν and ln
(
�/μ2

)
is an operator with the

following integral representation [21]:

ln

( �
μ2

)
=

∫ +∞

0
ds

(
1

μ2 + s
− 1

� + s

)
. (4)

The numerical values of the coefficients α, β, γ are calcu-
lable, see e.g. [22]. In four dimensions, the Gauss–Bonnet
term∫

d4x
√−g

(
R2 − 4RμνR

μν + Rμνρσ R
μνρσ

)
(5)

is a topological invariant. Hence, as a simplification of the
equations of motion, it is possible to eliminate the Riemann
tensor in the local action (2) by redefining the coefficients as

c1 → c̄1 =c1−c3, c2 → c̄2 = c2 + 4c3, c3 → c̄3 = 0. (6)

At second order in curvature, there exists also a non-local
version of the Gauss–Bonnet theorem [5]:

Rμνρσ ln

( �
μ2

)
Rμνρσ = 4Rμν ln

( �
μ2

)
Rμν

−R ln

( �
μ2

)
R. (7)

Therefore, it is possible to eliminate the Riemann tensor in
the non-local action by redefining the coefficients as

α → ᾱ = α − γ, β → β̄ = β + 4γ, γ → γ̄ = 0. (8)

Since we are considering an electrically charged black hole,
to the purely gravitational terms we have to add the Maxwell
action

�M = −1

4

∫
d4x

√−g FμνF
μν, (9)

where Fμν = ∂μAν − ∂ν Aμ is the electromagnetic tensor
and Aμ is the electromagnetic potential. The full action is
then

� = �L + �NL + �M =
∫

d4x
√−gL. (10)

The Maxwell equations, obtained by varying (10) with
respect to Aμ, are

gμν∇μFντ = 0. (11)

In addition, there is a Bianchi identity

∇[μFντ ] = 0. (12)
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The quantum corrected Einstein equations, obtained by vary-
ing (10) with respect to the metric, are

1

8πGN
Gμν + 2

(
Hμν + Kμν

) = Tμν. (13)

The Tμν on the right-hand side is the energy–momentum
tensor for electromagnetism,

Tμν = 1

4π

(
FμρFν

ρ − 1

4
gμνFρσ F

ρσ

)
. (14)

On the left-hand side, Gμν is the usual Einstein tensor

Gμν = Rμν − 1

2
Rgμν, (15)

while Hμν and Kμν are the quantum corrections to the clas-
sical Einstein’s equations. The local contribution is

Hμν = c̄1

(
2RRμν − 1

2
gμνR

2 − 2∇μ∇νR

+2gμν�R

)
+ c̄2

(
− 1

2
gμνRρσ R

ρσ + 2Rρσ Rμρνσ

−∇μ∇νR + �Rμν + 1

2
gμν�R

)
. (16)

The non-local contribution is obtained by varying �NL . In
principle one has to take the variation of the logarithm. How-
ever, δ/δgμν ln

(
�/μ2

)
contains terms of higher order than

two in curvature [22,23] so that they can be neglected here.
The non-local contribution is then

Kμν = −2ᾱ

(
Rμν − 1

4
gμν R + gμν� − ∇μ∇ν

)
ln

( �
μ2

)
R

−β̄

(
δρ

μRνσ + δρ
ν Rμσ − 1

2
gμν R

ρ
σ + δρ

μgνσ �

+gμν∇ρ∇σ − δρ
μ∇σ ∇ν − δρ

ν∇σ ∇μ

)
ln

( �
μ2

)
Rσ

ρ.

(17)

2.2 Solution of the equations of motion

In this section we solve the quantum corrected Einstein and
Maxwell equations using perturbation theory in the gravita-
tional constant GN . The equations are coupled together as
the electromagnetic tensor Fμν appears in the Einstein equa-
tions through the energy–momentum tensor Tμν , while the
metric enters explicitly into Maxwell’s equations.

We consider a small perturbation gqμν of order O (
G2

N

)
around the classical RN solution:

gμν = gRN
μν + gqμν. (18)

We recall that, in the canonical coordinates xμ = {t, r, θ, φ},
the RN solution is

ds2
RN = gRN

μν dxμdxν

= −
(

1 − 2GNM

r
+ GN Q2

r2

)
dt2

+
(

1 − 2GNM

r
+ GN Q2

r2

)−1

dr2

+r2dθ2 + r2 sin2 θdφ2. (19)

Let us have a look at gqμν . We fix the gauge freedom by setting
gqθθ = gqφφ = 0 and define two functions �(r) and �(r) such
that

ds2
q = gqμνdx

μdxν = −G2
N�(r)dt2 − G2

N�(r)dr2. (20)

The full metric is then

ds2 = gμνdx
μdxν

= −
(

1 − 2GNM

r
+ GN Q2

r2 + G2
N�(r)

)
dt2

+
(

1 − 2GNM

r
+ GN Q2

r2 + G2
N�(r)

)−1

dr2

+r2dθ2 + r2 sin2 θdφ2. (21)

Notice that, at order O (
G2

N

)
,

(
1 − 2GNM

r
+ GN Q2

r2

)−1

− G2
N�(r)

=
(

1 − 2GNM

r
+ GN Q2

r2 + G2
N�(r)

)−1

. (22)

The non-vanishing independent component of Fμν for the
classical RN black hole is FRN

tr = −FRN
rt = Q/r2. Since

the Maxwell and Einstein equations are coupled together, it
is well possible that this component receives a correction.
We thus define a function �(r) such that

Ftr = −Frt = Q

r2 + G2
N�(r). (23)

To proceed, we plug the metric (21) and the components of
the electromagnetic tensor (23) into the equations (11)–(13),
keeping only terms up to order O (

G2
N

)
. Since Hμν and Kμν

are quadratic in curvature, this implies in particular that they
just need to be evaluated on the classical RN solution, i.e.
(13) can be expressed schematically as

1

8πGN
Gμν

[
gRN + gq

]

+2
(
Hμν

[
gRN

]
+ Kμν

[
gRN

])

= Tμν

[
gRN + gq

]
. (24)

The Ricci scalar computed from the pure RN solution van-
ishes. Thus, in Hμν and Kμν only the terms containing the
Ricci and Riemann tensors have to be considered. Special

care is needed for the quantity Lρ
σ ≡ ln

(
�
μ2

)
Rρ

σ . The

components of the Ricci tensor for the classical RN solution
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are Rt
t = Rr

r = −Rθ
θ = −Rφ

φ = −GN Q2/r4. Hence,
it is necessary to compute ln

(
�/μ2

)
r−4. It was shown [24]

that the action of the logarithm on a smooth radial function
f (r) is

ln

( �
μ2

)
f (r) = 1

r

∫ +∞

0
dr ′ r ′

r + r ′ f (r
′)

− lim
ε→0+

{
1

r

∫ r−ε

0
dr ′ r ′

r − r ′ f (r
′)

+1

r

∫ +∞

r+ε

dr ′ r ′

r ′ − r
f (r ′) + 2 f (r)

[
γE + ln (με)

] }
,

(25)

where γE is the Euler–Mascheroni constant. The function
r−4 is smooth everywhere except at r = 0, which causes
some problems while evaluating the integrals at r = 0. How-
ever, as we show in Appendix A, the divergences can be
controlled and eventually disappear. The result is

ln

( �
μ2

)
1

r4 = − 2

r4

(
ln (μr) + γE − 3

2

)

≡ − 2

r4 ln (μ̃r) , (26)

where we have defined for simplicity μ̃ = μ exp
(
γE − 3

2

)
.

We now write the explicit form of the equations. The t t
component of (24) is

−r4�(r) − r5 d�(r)

dr
+64πQ2 [(

3c̄2 − 5β̄
) + 6β̄ ln (μ̃r)

] = 0, (27)

which is solved by

�(r) = −64πQ2

r4

[
c̄2 − β̄ + 2β̄ ln (μ̃r)

]
. (28)

The rr component of (24) is

− r4�(r)+64πQ2[c̄2+2β̄ ln (μ̃r)
]− r5 d�(r)

dr
= 0. (29)

Plugging (28) into (29) results in

�(r) = −32πQ2

r4

[
c̄2 + 2β̄ ln (μ̃r)

]
. (30)

The θθ and φφ components of (24) have the form

256πQ2c̄2 + 128πQ2β̄
[−1 + 4 ln (μ̃r)

]

+r5
[
d�(r)

dr
+ d�(r)

dr
+ r

d2�(r)

dr2

]
= 0, (31)

One can check that the expressions (28), (30) for �(r) and
�(r) satisfy (31). Let us consider now the Maxwell equa-
tions. The Bianchi identity (12) is automatically satisfied.
The t component of (11) is

4r�(r) + Q

[
d�(r)

dr
− d�(r)

dr

]
+ 2r2 d�(r)

dr
= 0. (32)

Plugging the solutions (28) and (30) into (32) gives

�(r) = 16πQ3

r6

[
c̄2 − 2β̄ + 2β̄ ln (μ̃r)

]
. (33)

We conclude that the set of equation obtained by varying
the full action (10) has the following solution, valid at order
O (

G2
N

)
:

ds2 = − f (r)dt2 + 1

g(r)
dr2 + r2dθ2 + r2 sin2 θdφ2,

Ftr = −Frt = Q

r2 + 16πG2
N Q

3

r6

[
c2 + 4c3

+2 (β + 4γ )

(
ln (μr) + γE − 5

2

) ]
(34)

with

f (r) = 1 − 2GNM

r
+ GN Q2

r2 − 32πG2
N Q

2

r4

[
c2 + 4c3

+2 (β + 4γ )

(
ln (μr) + γE − 3

2

) ]
, (35)

g(r) = 1 − 2GNM

r
+ GN Q2

r2 − 64πG2
N Q

2

r4

[
c2 + 4c3

+2 (β + 4γ ) (ln (μr) + γE − 2)
]
. (36)

In other words, both the the classical RN metric and the inde-
pendent component of the electromagnetic tensor receive
quantum corrections at second order in curvature. They are
proportional to the charge, so in the limit Q → 0 one cor-
rectly recovers the classical Schwarzschild solution.

The components of the metric that we have just found
seem to depend on the arbitrary energy scale μ. However,
the renormalised constants c1, c2, and c3 carry an explicit
scale dependence [25]:

c1(μ) = c1(μ∗) − α ln

(
μ2

μ2∗

)
,

c2(μ) = c2(μ∗) − β ln

(
μ2

μ2∗

)
,

c3(μ) = c3(μ∗) − γ ln

(
μ2

μ2∗

)
,

(37)

where μ∗ is some fixed scale where the effective theory is
matched onto the full theory. Inserting these expressions into
(35) and (36), one sees that the terms involving ln μ cancel
out. This in an indicator of the correctness of our results.

3 Quantum gravitational corrections to the entropy of
non-extremal Reissner–Nordström black holes

The results obtained in the previous section are valid for a
generic charge Q. In this section we focus on a non-extremal
black hole with the additional physical condition the charge is
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much smaller than the mass, i.e. Q2 	 GM2. Accordingly,
in all the expressions we keep only terms up to orderO (

Q2
)
.

The classical RN metric has two horizons located at the
radii

r+ = GNM +
√
G2

N M
2 − GN Q2

= 2GNM − Q2

2M
+ O

(
Q4

)
,

r− = GNM −
√
G2

N M
2 − GN Q2

= Q2

2M
+ O

(
Q4

)
.

(38)

The entropy is generally defined in terms of r+ only, namely

SRN = πr2+
GN

= A

4GN
− 2πQ2 + O

(
Q4

)
, (39)

where A = 16πG2
N M

2 is the classical area of the event
horizon of a Schwarzschild black hole. In this section we
compute the quantum corrections to this expression.

First of all, the corrections to the metric imply a shift of
the horizon radius:

rh = 2GNM − Q2

2M
+ 8πQ2

GNM3

[
c2 + 4c3

+2 (β + 4γ ) (ln (2GNMμ) + γE − 2)
]

+ O
(
Q4

)
.

(40)

We now compute the entropy of a quantum non-extremal RN
black hole using the Wald formula (1) evaluated at the new
radius (40). The εμν tensor is defined as

εμν =
⎧⎨
⎩

√
f (r)/g(r) if (μ, ν) = (t, r)

−√
f (r)/g(r) if (μ, ν) = (r, t)

0 otherwise.
(41)

In the Wald formula, all the terms of the full effective action
have to be considered, without invoking the Gauss–Bonnet
theorem. Up to orders O(Q2) and O (

G2
N

)
, the r tr t compo-

nent of the Riemann tensor and the t t component of the Ricci
tensor for the metric (34) are respectively

Rtrtr = −2GNM

r3 − 3GN Q2

r4

−320πG2
N Q

2

r6

[
(c2 + 4c3)

+2(β + 4γ )

(
ln(μr) + γE − 39

20

) ]
, (42)

Rtt = GN Q2

r4 + 2GNMQ2

r5

−192πG2
N Q

2

r6

[
(c2 + 4c3)

+2(β + 4γ )

(
ln(μr) + γE − 11

12

) ]
(43)

and the Ricci scalar is

R = 192πG2
N Q

2(β + 4γ )

r6 . (44)

Using the relations

∂R

∂Rμνρσ

= 1

2

(
gμρgνσ − gμσ gνρ

)
, (45)

∂
(
Rαβ Rαβ

)
∂Rμνρσ

= gμρRνσ − gνρRμσ , (46)

∂
(
Rαβγ δRαβγ δ

)
∂Rμνρσ

= 2Rμνρσ (47)

and the result of the action of ln
(
�/μ2

)
on 1/r3, 1/r5, 1/r6,

ln(μr)/r6, collected in Appendix A, we find

SWald = −8π

√
f (rh)

g(rh)

∫

r=rh

d�
∂L

∂Rrtrt

= A

4G
− 2πQ2 + S0 + S2Q

2 + O
(
Q4

)
, (48)

where

S0 = 64π2c3+64π2γ
[

ln
(

4G2
N M2μ2

)
+ 2γE − 2

]
, (49)

S2 = 4π2

GNM2

[
5c2 + 20c3 + β (10γE − 21)

+8γ (5γE − 11) + 10 (β + 4γ ) ln (2GNMμ)
]

+ 64π3

9G2
N M4

{
54(β + 4γ )

[
c1 + 2α ln (2GNMμ)

]

+6(36γE − 75)β
[
c2 + 2β ln (2GNMμ)

]

+48(48γE − 97)γ
[
c3 + 2γ ln (2GNMμ)

]

+6
[
c2γ (120γE − 251) + 3c3β(40γE − 81)

+4βγ (120γE − 247) ln (2GNMμ)
]

+54
[
c2

2 + 4c2β ln (2GNMμ) + 4β2 ln2 (2GNMμ)
]

+576
[
c2

3 + 4c3γ ln (2GNMμ) + 4γ 2 ln2 (2GNMμ)
]

+360
[
c2c3 + 2c2γ ln (2GNMμ) + 2c3β ln (2GNMμ)

+4βγ ln2 (2GNMμ)
]

+ (β + 4γ )
[
9α(12γE − 25)

+18β
(
γE (6γE − 25) + 35 + π2

)

+4γ
(
6γE (24γE − 97) + 331 + 30π2)]}

. (50)

The first expression S0 reproduces the result obtained in
[3] for a Schwarzschild black hole. Plugging the explicit μ

dependence of the ci coefficients (37) into S0 and S2, one
can check that the terms involving μ cancel out. Hence, the
corrections to the entropy are RG invariant. Our results are
consistent.
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We conclude this section with a remark. The second
part of S2 is proportional to ci c j and ciα j . In principle
one could reproduce this behaviour by including in the
action also terms proportional to R4, like ci R2c j R2 and
ci R2α j R ln

(
�/μ2

)
R. However, from (42)–(44) the Rie-

mann and Ricci tensor, and the Ricci scalar are proportional to
GN or G2

N . This implies that the equations of motion contain
terms of at least order O (

G3
N

)
. For example, the equations

of motion from �4 = ∫
d4x R4 are

4R3Rμν − 1

2
gμνR

4 − 24R
(∇μR

)
(∇νR)

−12R2∇μ∇νR + 12gμνR
2�R

+24gμνR∇ρR∇ρR = 0. (51)

Since we are working up to order O (
G2

N

)
, we can safely

neglect those terms.

4 Quantum gravitational corrections to temperature
and pressure

In this section we compute the quantum corrections to ther-
modynamic quantities of physical interest, namely temper-
ature and pressure. The first law of thermodynamics for a
Schwarzschild black hole is

dE = dM = TdS, (52)

where T and S are the temperature and entropy of the black
hole, respectively. The total energy of a charged black hole is
E = M + Q�, where � is the electric potential of the black
hole. If the charge is fixed, the first law gets modified as

dE = dM + Qd� = TdS, (53)

Classically, the first non-trivial contribution to the tempera-
ture that contains the charge is a quartic term:

TRN = 1

4π

∣∣∣dg
RN
tt

dr

∣∣∣
r=r+

= 1

8πGNM

− Q4

128πG3
N M

5
+ O

(
Q6

)
. (54)

The corrections to the metric imply a correction to the tem-
perature of order O (

Q2
)
:

T = 1

4π

√
d f (r)

dr

dg(r)

dr

∣∣∣∣
r=rh

= 1

8πGNM

+ Q2

4G3
N M

5

[
2(c2 + 4c3) + β (4γE − 9) + 4γ (4γE − 9)

+4 (β + 4γ ) ln (2GNMμ)
]

+ O
(
Q4

)
. (55)

The electric potential is

� =
∫ +∞

rh
dr ′ Ftr =

∫ +∞

rh
dr ′

(
Q

r ′2 + G2
N�(r ′)

)

= Q

2GNM
+ O

(
Q3

)
, (56)

meaning that it does not receive corrections at order O (
Q2

)
.

Even at the classical level, one finds that TdS/dM −
Qd�/dM = 1 + �(M, Q) i.e. the unity plus some addi-
tional terms. In order to preserve the first law, one assumes
that the charged black hole has a pressure P such that

T
dS

dM
− Q

d�

dM
− P

dV

dM
= 1 + �(M, Q), (57)

where V = 4/3πr3
h is the volume of the black hole. The

pressure is then given by

P = −�(M, Q)

dV
dM

= −T dS
dM − Q d�

dM − 1
dV
dM

. (58)

The pressure on the outer horizon of a classical RN black
hole is negative and proportional to the charge squared [26]:

PRN ∼ −Q2

r4+
. (59)

Evidently, a Schwarzschild black hole does not have a pres-
sure at the classical level. However, quantum effects do create
a pressure [3]. Using (58) we find that the pressure of a non-
extremal RN black hole, including the quantum corrections,
is

P = − Q2

64πG4
N M

4
− γ

2G4
N M

4
+ P2Q

2 + O
(
Q4

)
(60)

with

P2 = 1

32G5
N M6

[
c2 + 4c3 + 2β(γE − 4)

+8γ (γE − 5) + 2(β + 4γ ) ln(2GNMμ)
]

+ π

9G6
N M8

{
54(β + 4γ )

[
c1 + 2α ln (2GNMμ)

]

+72(3γE − 7)β
[
c2 + 2β ln (2GNMμ)

]

+768(3γE − 7)γ
[
c3 + 2γ ln (2GNMμ)

]

+6
[
c2γ (120γE − 287) + 3c3β(40γE − 91)

+160βγ (3γE − 7) ln (2GNMμ)
]

+54
[
c2

2 + 4c2β ln (2GNMμ) + 4β2 ln2 (2GNMμ)
]

+576
[
c2

3 + 4c3γ ln (2GNMμ) + 4γ 2 ln2 (2GNMμ)
]

+360
[
c2c3 + 2c2γ ln (2GNMμ) + 2c3β ln (2GNMμ)

+4βγ ln2 (2GNMμ)
]

+ (β + 4γ )
[
36α(3γE − 7)
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+9β
(
8γE (3γE − 14) + 95 + 4π2)

+γ
(
192γE (3γE − 14) + 2095 + 120π2)]}

. (61)

The term −γ /2G4
N M

4 is the only quantum correction
for a Schwarzschild black hole. A charged black hole has
additional quantum corrections proportional to the electric
charge.

5 Conclusions and outlook

In this paper we have studied the quantum gravitational cor-
rections to the Wald entropy of a four dimensional, non-
extremal Reissner–Nordström black hole, starting from an
effective action for quantum gravity supplemented by the
Maxwell action. The corrections to the entropy are RG
invariant. Furthermore, contrary to what happens for the
Schwarzschild metric, we have shown that the classical RN
solution receives quantum corrections at second order in cur-
vature. These corrections shift the position of the event hori-
zon. Finally, we computed the quantum gravitational cor-
rections to the temperature and pressure. All these correc-
tions are very small for astrophysical black holes, for which
Q2 	 GM2.

The research presented in this paper naturally lends itself
to further generalisations. For instance, one could try to com-
pute the quantum gravitational corrections to the entropy of
a charged rotating (Kerr–Newman) black hole, which is the
most realistic model of an astrophysical black hole. Alterna-
tively, one could also have a look at AdS black holes, whose
importance lies in the context of the AdS/CFT correspon-
dence.
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Appendix: Action of ln
(

�
µ2

)
on radial functions

In this appendix we collect the result of the action of
ln

(
�/μ2

)
on various radial functions f (r). If r > 0, f (r) �=

0 and ∃ε > 0 such that f (r ′) is smooth for |r − r ′| ≤ ε, then
[24]

ln

( �
μ2

)
f (r) = 1

r

∫ +∞

0
dr ′ r ′

r + r ′ f (r
′)

− lim
ε→0+

{
1

r

∫ r−ε

0
dr ′ r ′

r − r ′ f (r
′)

+1

r

∫ +∞

r+ε

dr ′ r ′

r ′ − r
f (r ′)+2 f (r)

[
γE + ln (με)

]}
. (62)

In order to derive the equations of motion from the effec-
tive action (10) in Sect. 2.1, the non-local contribution Kμν

has to be evaluated on the classical RN solution. Since the
components of the Ricci tensor for the classical RN solu-
tion are Rt

t = Rr
r = −Rθ

θ = −Rφ
φ = −GN Q2/r4, the

following quantity has to be computed:

ln

( �
μ2

)
1

r4 . (63)

Owing to the singularity at r = 0, the integral (62) needs
to be regularised. A way to achieve this is by shifting the
denominator of the problematic integrands via r ′ → r ′ ± iε
and then taking the real part of the result, as ln(�/μ2) f (r) ∈
R. Thus

ln

( �
μ2

)
1

r4

= Re lim
ε→0+

{
1

r

∫ +∞

0
dr ′ r ′

r + r ′
1

(r ′ − iε)4

−1

r

∫ r−ε

0
dr ′ r ′

r − r ′
1

(r ′ + iε)4

−1

r

∫ +∞

r+ε

dr ′ r ′

r ′ − r

1

r ′4 − 2

r4

[
γE + ln (με)

]}
. (64)

The divergences cancel out:

ln

( �
μ2

)
1

r4

= Re

[
1

r

(
3

r3 + i
π

r3 − 2 ln r

r3 + 2 ln ε

r3

)

−2γE

r4 − 2 ln ε

r4 − 2 ln μ

r4

]

= − 2

r4

(
ln (μr) + γE − 3

2

)
. (65)

In Sect. 3 we computed the corrections to the entropy using
the Wald formula. The derivative of the effective action with
respect to the Riemann tensor contains contributions from the
Riemann and Ricci tensors of the metric with quantum cor-
rections (35), (36). These tensors contain the radial functions
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r−3, r−5, r−6, ln(μr)r−6. Hence, it is necessary to know the
action of ln

(
�/μ2

)
on them. Let us consider for example

ln
(
�/μ2

)
r−3. We regularise the integrals in (62) as

ln

( �
μ2

)
1

r3

= lim
ε→0+

{
1

r

∫ +∞
√

εr
dr ′ r ′

r + r ′
1

r ′3

−1

r

∫ r−√
εr

√
εr

dr ′ r ′

r − r ′
1

r ′3

−1

r

∫ +∞

r+√
εr
dr ′ r ′

r ′ − r

1

r ′3 − 2

r3

[
γE + ln (με)

]}
.

(66)

Again, all divergences cancel out and the result is

ln

( �
μ2

)
1

r3 = − 2

r3 (ln (μr) + γE − 1) . (67)

With analogous calculations we find

ln

( �
μ2

)
1

r5
= − 2

r5

(
ln(μr) + γE − 47

12

)
, (68)

ln

( �
μ2

)
1

r6 = − 2

r6

(
ln(μr) + γE − 25

12

)
, (69)

ln

( �
μ2

)
ln (μ̃r)

r6 =

= −2 ln (μ̃r)

r6

(
ln(μr) + γE − 25

12

)

+ 1

r6

(
205

72
− π2

3

)
. (70)
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