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Abstract Parton distribution functions (PDFs) are an essen-
tial ingredient for theoretical predictions at colliders. Since
their exact form is unknown, their handling and delivery
for practical applications relies on approximate numerical
methods. We discuss the implementation of PDFs based on a
global interpolation in terms of Chebyshev polynomials. We
demonstrate that this allows for significantly higher numeri-
cal accuracy at lower computational cost compared with local
interpolation methods such as splines. Whilst the numerical
inaccuracy of currently used local methods can become a
nontrivial limitation in high-precision applications, in our
approach it is negligible for practical purposes. This holds
in particular for differentiation and for Mellin convolution
with kernels that have end point singularities. We illustrate
our approach for these and other important numerical oper-
ations, including DGLAP evolution, and find that they are
performed accurately and fast. Our results are implemented
in the C++ library ChiliPDF.

1 Introduction

Theoretical predictions at hadron colliders require parton
distribution functions (PDFs), which describe the partonic
content of the colliding hadrons. PDFs are nonperturbative
objects and their exact form is unknown, such that their han-
dling and delivery in practical applications requires approxi-
mate numerical methods. Currently available tools use local
interpolation over a finite grid of function values, such as
splines. For example, the LHAPDF library [1], which has
de facto become the standard interface with which PDFs are
provided to the community, implements a cubic spline inter-
polation.

In this paper, we demonstrate a different approach for
the numerical representation of PDFs, which is based on
a global, high-order interpolation using Chebyshev polyno-
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mials, and which allows for significantly higher numerical
accuracy at lower computational cost than local interpola-
tion methods. We have implemented this approach in the C++
library ChiliPDF,1 which is used for most of the numerical
demonstrations in the following. We think, however, that the
methods presented in our paper are of interest beyond their
implementation in a specific software package.

There is a long history of using families of polynomials
for handling PDFs or related quantities. Without any claim
to completeness, let us mention a few examples. To express
PDFs in terms of their Mellin moments, Bernstein polyno-
mials were proposed in Ref. [2] and Jacobi polynomials in
Ref. [3]. An explicit solution of the evolution equations was
obtained in Refs. [4,5] by expanding PDFs and splitting func-
tions in Laguerre polynomials. More references and discus-
sion can be found in Refs. [6–8]. To compute analytically the
complex Mellin moments of parton luminosities, Refs. [9,10]
used an expansion in Chebyshev polynomials. The latter also
appear in the parameterization of initial conditions in the PDF
fits of Refs. [11–14]. We find that all these methods differ
quite significantly from each other and from the method to
be presented in this work.

Let us emphasize that we are not concerned here with the
question of how best to parameterize input PDFs that are
fitted to data, nor with the associated systematic error or bias
due to the choice of parameterization. For our purposes, we
consider the fitted input PDFs to be known “exactly”. Our
method could be used to address this parameterization issue
as well, but we leave this for future exploration.

What we are concerned with is the numerical implemen-
tation and handling of PDFs in practical applications, for
instance when using PDFs evolved to some scale to obtain
quantitative predictions from analytic cross section formulae
or with Monte-Carlo event generators. The interpolation of
PDFs comes with an inherent inaccuracy that is of purely
numerical origin, similar to numerical integration errors.

1 Chebyshev Interpolation Library for PDFs.
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Such inaccuracies should at the very least be small com-
pared to uncertainties due to physics approximations such as
the perturbative expansion. But ideally, one would like such
inaccuracies to be negligible or at least small enough to be of
no practical concern. We will show that this goal can indeed
be achieved with Chebyshev interpolation.

Several observations lead us to believe that the perfor-
mance of available local interpolation methods is becoming
insufficient. Generically, the relative accuracy of the interpo-
lation provided by LHAPDF is expected (and found to be) in
the ballpark of 10−3 to 10−4. For high-precision predictions
this is already close – perhaps uncomfortably close – to the
desired percent-level theoretical precision. Moreover, PDFs
typically appear in the innermost layer of the numerical eval-
uation, whose output is then further processed. For example,
they enter at the maximally differential level, which is subject
to subsequent numerical integrations. Each step comes with
some loss of numerical precision, which means the innermost
elements should have a higher numerical accuracy than what
is desired for the final result. If an integration routine becomes
sensitive to numerical PDF inaccuracies, its convergence and
hence the computational cost can suffer greatly, because the
integrator can get distracted (or even stuck) trying to inte-
grate numerical noise. We have explicitly observed this effect
for quadrature-based integrators, which for low-dimensional
integrations are far superior to Monte-Carlo integrators, but
whose high accuracy and fast convergence strongly depends
on the smoothness of the integrand. Another issue is that
with increasing perturbative order, the convolution kernels
in cross section formulae become more and more steep or
strongly localized. This requires a higher numerical accu-
racy of the PDF, because its convolution with such kernels is
sensitive not just to its value but also to its derivatives or its
detailed shape. In Ref. [15], it was indeed observed that the
limited numerical accuracy of PDFs provided by LHAPDF
can cause instabilities in the final result.

Many applications require an accurate and fast execu-
tion of nontrivial operations on PDFs, such as taking Mellin
moments, computing Mellin convolutions with various ker-
nels, taking derivatives, and so forth. A prominent example
is DGLAP evolution, which has been extensively studied in
the literature, see e.g. Refs. [16–20], and for which there is a
variety of codes that solve the evolution equations either via
Mellin moments [21–23] or directly in x space [24–28]. The
latter require in particular the repeated Mellin convolution
of PDFs with splitting functions, in addition to interpolation
in x .

Another important application is the computation of beam
functions and similar quantities, which typically appear in
resummation formulae. In multiscale problems, beam func-
tions can depend on additional dynamic variables [29–37], in
which case their evaluation necessitates fast on-the-fly eval-
uation of Mellin convolutions and in some cases their sub-

sequent DGLAP evolution. A further area is the calculation
of subleading power corrections, where the first and second
derivatives of PDFs with respect to x are explicitly required
[38–44]. With cubic splines, the first and second derivative
respectively correspond to quadratic and linear interpolation
and hence suffer from a poor accuracy. Numerical instabil-
ities in derivatives computed from spline interpolants were
for instance reported in Ref. [45].

Last but not least, for double parton distributions [46] or
other multi-dimensional distribution functions, local interpo-
lation methods become increasingly cumbersome due to the
large number of variables and even larger number of distribu-
tions. By contrast, our global interpolation approach allows
for a controllable numerical accuracy with reasonable mem-
ory and runtime requirements. This will be discussed in future
work.

Clearly, there is always a trade-off between the numeri-
cal accuracy of a method and its computational cost, and the
accuracy of different methods should be compared at similar
computational cost (or vice versa). In our case, the primary
cost indicator is the number of points on the interpolation
grid, which controls both the number of CPU operations
and the memory footprint.2 As a result of its low polyno-
mial order, local spline interpolation has an accuracy that
scales rather poorly with the grid size, so that even a moderate
increase in precision requires a substantial increase in com-
putational effort. This can be (partially) offset by improving
the performance of the implementation itself, see for exam-
ple Refs. [28,47]. Such improvements can be made for any
given method, but they do not change the accuracy scaling
of the method itself.

Global interpolation approximates a function over its
domain by a single, high-order polynomial. On an equis-
paced grid, this leads to large oscillations near the edges
of the interpolation interval, such that the interpolant never
converges and may in fact diverge exponentially. This is well
known as Runge’s phenomenon [48]. It is often misinter-
preted as a problem of polynomial interpolation in general,
which may be one reason why local interpolation methods
such as splines tend to be preferred. What is perhaps not
sufficiently appreciated [49] is the fact that Runge’s phe-
nomenon is caused by the use of an equidistant grid and can
be completely avoided by using a non-equidistant grid that
clusters the grid points toward the edges of the interval. An
example for this is Chebyshev interpolation, which leads to
a well-convergent approximation, i.e., one that can be made
arbitrarily precise by increasing the number of interpolation
points. Moreover, approximation with Chebyshev polynomi-

2 Of course, the inherent complexity of a method matters as well. For
instance, more complex and thereby more accurate splines tend to have a
higher computational cost per grid point. However, these are secondary
effects we will not focus on.
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als on a finite interval is closely related to and thus as reliable
as the Fourier series approximation for periodic functions.
We find that Chebyshev interpolation for PDFs has an excel-
lent accuracy scaling. As we will show, it easily outperforms
local spline interpolation by many orders of magnitude in
accuracy for the same or even lower number of grid points.

In the next section, we provide some mathematical back-
ground on Chebyshev interpolation as we require it. In
Sect. 3, we present the global Chebyshev interpolation of
PDFs used in ChiliPDF and compare its accuracy with
local spline interpolation. We also discuss methods for esti-
mating the numerical accuracy, as well as the basic opera-
tions of taking derivatives and integrals of PDFs. In Sects. 4
and 5, we describe the implementation and accurate evalu-
ation of Mellin convolutions and of DGLAP evolution with
ChiliPDF. We conclude in Sect. 6. In an appendix, we dis-
cuss the performance of different Runge–Kutta algorithms
for solving the evolution equations.

2 Chebyshev interpolation

In this section, we give a brief account of Chebyshev inter-
polation, i.e. the interpolation of a function that is discretized
on a grid of Chebyshev points. This includes the topics of dif-
ferentiation, integration, and of estimating the interpolation
accuracy. A wealth of further information and mathematical
background can be found in Ref. [50].3

Throughout this section, we consider functions of a vari-
able t restricted to the interval [−1, 1]. The relation between t
and the momentum fraction x of a PDF is specified in Sect. 3.

2.1 Chebyshev polynomials

The Chebyshev polynomials of the first and second kind,
Tk(t) and Uk(t), are defined by

Tk(cos θ) = cos k θ, Uk(cos θ) = sin(k + 1)θ

sin θ
(1)

for integer k ≥ 0. They are related by differentiation as
dTk(t)/dt = kUk−1(t), and they are bounded by |Tk(t)| ≤ 1
and |Uk(t)| ≤ k + 1. The relations

Vk(−t) = (−1)k Vk(t), V0(t) = 1,

Vk+2(t) = 2t Vk+1(t) − Vk(t) (2)

hold for both V = T and V = U . They show that Tk(t) and
Uk(t) are indeed polynomials, which may not be immediately

3 The first chapters of this book are available on https://people.maths.
ox.ac.uk/trefethen/ATAP.

obvious from Eq. (1). Both families of polynomials form an
orthogonal set, i.e. for k,m ≥ 0 they satisfy

∫ 1

−1

dt√
1 − t2

Tk(t) Tm(t) = αk π

2
δkm,

∫ 1

−1
dt

√
1 − t2 Uk(t)Um(t) = π

2
δkm, (3)

where α0 = 2 and αk = 1 otherwise.
For given N , the Chebyshev points are given by

t j = cos θ j , θ j = jπ

N
with j = 0, . . . , N . (4)

They form a descending series from t0 = 1 to tN = −1
and satisfy the symmetry property tN− j = −t j . The poly-
nomial TN (t) assumes its maxima +1 and minima −1 at
the Chebyshev points. We call the set of Chebyshev points
a Chebyshev grid. Using Eq. (1) and expressing sines and
cosines as complex exponentials, one readily derives the dis-
crete orthogonality relations

N∑
j=0

β j Tk(t j ) Tm(t j ) = N

2βk
δkm

for k,m = 0, . . . , N ,

N−1∑
j=1

(
1 − t2

j

)
Uk−1(t j )Um−1(t j ) = N

2
δkm

for k,m = 1, . . . , N − 1, (5)

where β0 = βN = 1/2 and β j = 1 otherwise.
Notice that the density of Chebyshev points increases from

the center toward the end points of the interval [−1, 1]. This
feature is crucial to avoid Runge’s phenomenon for equis-
paced interpolation grids, as discussed in the introduction.

2.2 Chebyshev interpolation and Chebyshev series

We now consider the approximation of a function f (t) by a
finite sum of Chebyshev polynomials Tk(t). Using Tk(t j ) =
Tj (tk) and the first relation in Eq. (5), one finds that the sum

pN (t) =
N∑

k=0

βk ck Tk(t) (6)

with the interpolation coefficients

ck = 2

N

N∑
j=0

β j f (t j ) Tk(t j ) (7)

satisfies
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pN (t j ) = f (t j ) for j = 0, . . . , N . (8)

In other words, pN (t) is the unique polynomial of order
N that equals the function f (t) at the N + 1 Chebyshev
points t0, . . . , tN . We therefore call pN (t) the Chebyshev
interpolant.

A sufficiently smooth function f (t) can be expanded in
the Chebyshev series

f (t) = lim
N→∞ fN (t), fN (t) =

N∑
k=0

ak Tk(t), (9)

whose series coefficients

ak = 2

αk π

∫ 1

−1

dt√
1 − t2

f (t) Tk(t) (10)

readily follow from the first orthogonality relation in Eq. (3).
Substituting t = cos θ and using Eq. (1), we recognize in
Eqs. (9) and (10) the Fourier cosine series for the function
F(θ) = f (cos θ), which is periodic and even in θ . The
Chebyshev series on the interval [−1, 1] is thus nothing but
the Fourier series of a periodic function in disguise, with
the same excellent convergence properties for N → ∞. The
Chebyshev series fN (t) is not immediately useful in practice,
because its coefficients can only be obtained by explicitly
carrying out the integral in Eq. (10). The Chebyshev inter-
polant pN (t), however, can be computed very efficiently (see
below) and only requires evaluating f (t j ) at the N+1 Cheby-
shev points. The key property of interpolating in the Cheby-
shev points is that the resulting interpolation coefficients ck
approach the series coefficients ak in the limit N → ∞.
Their precise relation can be found in [50, chapter 4]. It is
therefore guaranteed that pN (t) approaches fN (t) and thus
f (t) for N → ∞.

2.3 Interpolation accuracy

How accurately pN (t) approximates the function f (t)
depends on the smoothness of f and its derivatives. We
give here a convergence statement that is useful for the inter-
polation of PDFs. For typical parameterizations, input-scale
PDFs are analytic functions of the momentum fraction x for
0 < x < 1, but nonanalytic at x = 1, where they behave
like (1 − x)β with noninteger β. We anticipate that this cor-
responds to a behavior like (1 + t)β at t = −1 when we map
an x interval onto a Chebyshev grid in t .

Suppose that on the interval [−1, 1] the function f and
its derivatives up to f (ν−1) with ν ≥ 1 are Lipschitz con-
tinuous,4 and that the derivative f (ν) is of bounded vari-

4 The following corresponds to theorem 7.2 in Ref. [50], with the con-
dition of absolute continuity being replaced by the stronger condition

ation V . We recall that a function F(t) is Lipschitz con-
tinuous on [−1, 1] if there exists a constant C such that
|F(s) − F(t)| ≤ C |s − t | for all s, t ∈ [−1, 1]. A differen-
tiable function F(t) is of bounded variation V on [−1, 1] if
the integral

V =
∫ 1

−1
dt |F ′(t)| =

K∑
k=0

|F(tk+1) − F(tk)| (11)

is finite, where in the second step we have split the inter-
val [−1, 1] into K subintervals with boundaries t0, . . . , tK+1

such that on each subinterval F ′(t) has a definite sign. Under
these conditions, one has

∣∣ f (t) − pN (t)
∣∣ ≤ 4V

πν(N − ν)ν
(12)

for all N > ν and all t ∈ [−1, 1]. We note that the Chebyshev
series has a similar convergence property, which is obtained
by replacing pN (t) with fN (t) and 4V with 2V in Eq. (12).

For the example of a function f (t) = (1 + t)n+δ with
integer n ≥ 1 and 0 < δ < 1, the above statement holds
with ν = n. The function and its derivatives up to f (n−1)

are Lipschitz continuous on [−1, 1]. The nth derivative is
proportional to (1 + t)δ and not Lipschitz continuous but of
bounded variation. The (n + 1)st derivative is proportional
to (1 + t)−1+δ and thus not of bounded variation, because it
diverges at t = −1.

It is important to note that Eq. (12) provides a bound on
the maximal absolute interpolation error anywhere in the
interval. Often the absolute interpolation error will be much
smaller over most of the interval. In the vicinity of a point
where f (t) goes to zero, the relative error can still remain
large, and the convergence pN (t)/ f (t) → 1 for N → ∞ is
in general not uniform over the full interval. We will indeed
see this for the interpolation of PDFs close to zero crossings
or to the end point x = 1.

2.4 Barycentric formula

A simple and efficient way to compute the Chebyshev inter-
polant is given by the barycentric formula

pN (t) =
N∑
j=0

f (t j ) b j (t), (13)

Footnote 4 continued
of Lipschitz continuity, which we find sufficient for our purpose and
easier to state.
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where t j denotes again the Chebyshev points, and the
barycentric basis functions are given by

b j (t) = β j (−1) j

t − t j

/ N∑
i=0

βi (−1)i

t − ti
. (14)

b j (t) is a polynomial of order N , although this is not evident
from Eq. (14). The number of operations for evaluating the
barycentric formula scales like N . The formula is found to
be numerically stable in the interpolation interval. We note
that it is not stable for extrapolating the function f (t) outside
this interval [50, chapter 5].

The representation given by Eqs. (13) and (14) is a special
case of the barycentric formula for the polynomial L(u) of
order N that interpolates a function f (u) given on a set of
N + 1 distinct points u0, . . . , uN :

LN (u) =
N∑
j=0

f (u j ) � j (u) (15)

with basis functions

� j (u) = λ j

u − u j

/ N∑
i=0

λi

u − ui
, (λi )

−1 =
∏
j 	=i

(u j − ui ).

(16)

LN is called the Lagrange polynomial for the pairs of values
{u j , f (u j )}. We will again use Eq. (15) below. The simple
form of Eq. (14) comes from the fact that the Chebyshev
points yield the very simple weights λi = βi (−1)i 2n−1/n.

2.5 Differentiation

Given the Chebyshev interpolant pN (t) for a function f (t),
one can approximate the derivative f ′(t) = d f (t)/dt by the
derivative p′

N (t). Note that in general f ′ is not equal to p′
N

at the Chebyshev points. Obviously, one cannot compute the
exact values of f ′(t j ) from the function values f (t j ) on the
grid.

The derivative p′
N (t) is a polynomial of degree N −1 and

thus also a polynomial of degree N (with vanishing coef-
ficient of t N ). It is therefore identical to its own Chebyshev
interpolant of order N , so we can compute it on the full inter-
val [−1, 1] by the barycentric formula

p′
N (t) =

N∑
j=0

p′
N (t j ) b j (t). (17)

To obtain the values of p′
N (t j ), we take the derivative of

Eq. (6) using T ′
k = kUk−1. The resulting discrete sums are

easily evaluated using Eq. (1) and expressing the sine func-
tion in terms of complex exponentials. We then obtain the
relation

p′
N (t j ) =

N∑
k=0

Djk f (tk) (18)

with D00 = −DNN = (2N 2 + 1)/6 and

Dj j = − cos θ j

2 sin2 θ j
for j 	= 0, N ,

Djk = βk

β j

(−1) j+k

t j − tk
for j 	= k. (19)

Note that the matrix multiplication (18) maps a vector
f (tk) = const onto the zero vector, as it must be because
the derivative of a constant function is zero.

Higher derivatives of the Chebyshev interpolant pN (t)
can be computed by repeated multiplication of f (tk) with
the differentiation matrix Djk and subsequent application of
the barycentric formula. Since each derivative reduces the
degree of the interpolating polynomial by 1, the accuracy
of approximating f (n)(t) by p(n)

N (t) gradually degrades with
increasing n. This loss of accuracy can be accounted for by
choosing a sufficiently large order N to start with.

2.6 Integration

Using Eq. (6) together with

∫ 1

−1
dt Tk(t) =

{
2/(1 − k2) for even k,

0 for odd k,
(20)

one readily obtains the integration rule

∫ 1

−1
dt f (t) ≈

N∑
k=0
even

2βk ck
1 − k2 =

N∑
j=0

w j f (t j ) (21)

with weights

w j = 4β j

N

N∑
k=0
even

βk
cos(k θ j )

1 − k2 . (22)

This is known as Clenshaw–Curtis quadrature. A detailed
discussion of its accuracy (and comparison with Gauss
quadrature) can be found in Ref. [50, chapter 19] and
Ref. [51].
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2.7 Interpolation without end points

The interpolant (6) is a sum over Chebyshev polynomials Tk .
Another interpolant can be obtained from the polynomials
Uk , namely

qN−2(t) =
N−1∑
k=1

dkUk−1(t) (23)

with coefficients

dk = 2

N

N−1∑
j=1

f (t j )
(
1 − t2

j

)
Uk−1(t j ). (24)

Using the second relation in Eq. (5) together with the equality
sin θ j Uk−1(t j ) = sin θk U j−1(tk), one finds that

qN−2(t j ) = f (t j ) for j = 1, . . . , N − 1. (25)

This means that qN−2(t) interpolates f (t) on the same
Chebyshev points as pN (t), with the exception of the interval
end points. Correspondingly, qN−2 has polynomial degree
N − 2 rather than N , as is evident from Eq. (23). We thus
have an alternative approximation for f (t), which can be
computed from the same discretized function values as those
needed for computing pN (t). For sufficiently large N , one
may expect that qN−2 approximates f (t) only slightly less
well than pN (t), given that its polynomial degree is only
smaller by two units. We may hence use |qN−2(t) − pN (t)|
as a conservative estimate for the interpolation error | f (t) −
pN (t)|.5

To evaluate qN−2(t), we can again use a barycentric for-
mula, namely

qN−2(t) =
N−1∑
j=1

f (t j ) b̃ j (t). (26)

The corresponding basis functions

b̃ j (t) = (−1) j sin2 θ j

t − t j

/ N−1∑
i=1

(−1)i sin2 θi

t − ti
(27)

can easily be obtained from Eq. (14) by comparing the gen-
eral expressions (15) and (16) for the sets of points t j with
j = 0, . . . N or j = 1, . . . N − 1. We note that using the
barycentric formula (26) in the full interval [−1, 1] = [tN , t0]
involves an extrapolation from the interval [tN−1, t1] on

5 To be precise, since pN (t) is more accurate than qN−2(t), the dif-
ference |qN−2(t) − pN (t)| is actually an estimate of the accuracy of
qN−2(t) and thus a conservative estimate for the accuracy of pN (t).

which qN−2(t) interpolates f (t). For sufficiently large N , the
extrapolation is however very modest, because tN−1 − tN =
t0 − t1 ≈ π2/(2N 2).

Formulae for differentiation and integration of f (t) that
use the approximant qN−2 are easily derived in analogy to
the formulae that use pN . For differentiation, one obtains

q ′
N−2(t) =

N−1∑
j=1

q ′
N−2(t j ) b̃ j (t) (28)

and

q ′
N−2(t j ) =

N−1∑
k=1

D̃ jk f (tk) (29)

with

D̃ j j = 3 cos θ j

2 sin2 θ j
,

D̃ jk = sin2 θk

sin2 θ j

(−1) j+k

t j − tk
for j 	= k. (30)

For integration, one uses

∫ 1

−1
dt U j−1(t) =

{
2/j for odd j,

0 for even j,
(31)

to obtain an open integration rule

∫ 1

−1
dt f (t) ≈

N−1∑
k=1
odd

2dk
k

=
N−1∑
j=1

w̃ j f (t j ) (32)

with weights

w̃ j = 4 sin θ j

N

N−1∑
k=1
odd

sin(k θ j )

k
. (33)

This is well known as Fejér’s second rule, see e.g. Ref. [52].6

Using Eq. (32) to estimate the error of Clenshaw–Curtis
integration (21) is similar to Gauss–Kronrod quadrature [53,
54], where for a grid with 2N+1 points one has an integration
rule of order 3N +1 and a Gauss rule of order 2N −1, where
the latter uses a subset of the points and is used to estimate
the integration uncertainty.7 The difference in polynomial

6 This paper is also available at http://www.sam.math.ethz.ch/
~waldvoge/Papers/fejer.html.
7 An integration rule is of order p if polynomials up to order p are
integrated exactly. For odd N , the order of the Gauss–Kronrod rule is
increased from 3N+1 to 3N+2, because odd polynomials are correctly
integrated to zero for symmetry reasons [54]. Likewise, the order of the
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orders between the two rules is hence larger in this case than
for the pair of Clenshaw–Curtis and Fejér rules, so that one
may expect the error estimate in the latter case to be closer
to the actual error. We shall come back to this in Sect. 3.4.

Given the Chebyshev grid (4) with N+1 points for even N ,
one might also think of estimating the integration or inter-
polation accuracy by using the subgrid t0, t2, . . . tN−2, tN ,
which has N/2+1 points and is again a Chebyshev grid. For
the grids and functions we will consider in this work, this
would however give a gross overestimate of the actual error,
because the interpolant with N/2 + 1 points is significantly
worse than the one with N + 1 points. By contrast, using
interpolation without the end points of the original N + 1
point grid, we obtain error estimates that are rather reliable,
as will be shown in Sect. 3.4.

3 Chebyshev interpolation of PDFs

3.1 Interpolation strategy

To interpolate a parton distribution function f (x) in the
momentum fraction x , we interpolate the function f̃ (x) =
x f (x) in the variable u = ln x . For a given minimum momen-
tum fraction x0, the interval [x0, 1] is thus mapped onto the
interval [u0, 0]. For reasons discussed below, we usually split
the x interval into a few subintervals. On each subinterval, we
perform a linear transformation from u = ln x to t ∈ [−1, 1]
and introduce a Chebyshev grid in t , which is used to inter-
polate the function as described in Sect. 2. To specify the
full grid, which is a conjunction of k subgrids, we use the
notation

[x0, x1, . . . , 1](n1,n2,...,nk ), (34)

where the xi are the subinterval boundaries and ni = Ni + 1
is the number of Chebyshev points for subgrid i . We will refer
to this as an (n1, n2, . . . , nk)-point grid. Note that adjacent
subgrids share their end points, so that the total number of
grid points is npts = ∑

i ni − (k − 1).
To be specific, let us consider one subgrid with N + 1

points u0, . . . , uN , which is mapped by a linear transform
onto the Chebyshev grid t0, . . . , tN given by Eq. (4). The
corresponding grid points in x are xi = eui . We can then
interpolate the PDF using the barycentric formula

f̃ (x) ≈
N∑
j=0

f̃ j b j (ln x) for x0 ≤ x ≤ xN , (35)

where

Footnote 7 continued
quadrature rules (21) and (32) for even N is increased from N to N + 1
and from N − 2 to N − 1, respectively.

f̃ j = x j f (x j ), b j (u) = β j (−1) j

u − u j

/ N∑
i=0

βi (−1)i

u − ui
. (36)

Here we have used that the form of the barycentric basis
functions (14) remains unchanged under a linear transform
of the interpolation variable. Formulae analogous to Eq. (35)
can be used to interpolate functions derived from PDFs, such
as their derivatives (see Sect. 3.3) or Mellin convolutions of
PDFs with an integral kernel (see Sect. 4).

One reason to use subgrids concerns error propagation. As
seen in Eq. (35), the interpolation of f̃ at a certain value x
involves the values of f̃ on all grid points in the interpolation
interval, although the weight of points close to x is higher than
the weight of points far away. In an x region where f̃ is much
smaller than its maximum in the interval, numerical errors
from regions of large f̃ can strongly affect the interpolation
accuracy. This is not much of an issue in our tests below,
where f̃ is computed from an analytic expression, but it does
become important when interpolating a PDF that has been
evolved to a higher scale and is thus affected by numerical
errors from the solution of the DGLAP equations.

So on one hand, the accuracy depends on the behavior
of the interpolated function on each subgrid. On the other
hand, using multiple subgrids for a fixed total number npts of
points decreases the polynomial degree of the interpolant on
each subgrid, and the accuracy quickly degrades when the
polynomial degree becomes too small. Hence, for given npts

and x0, there is a certain range for the number of subgrids
that give the best performance for typical PDFs. We find that
the optimum is to take 2 or 3 subgrids for the values of npts

and x0 used in the following.
To study the accuracy of Chebyshev interpolation for typ-

ical PDFs, we consider a number of representative test func-
tions, covering a broad range of shapes and analytic forms,

x f1(x) = 0.0703 x−0.415 (1+4.44 x) (1+0.0373 ln x) (1 − x)7.75,

x f2(x) = 17.217 x−0.33293 (1 − x)5.3687

× [
1 − 1.664 T1(y(x)) + 0.99169 T2(y(x))

− 0.42245 T3(y(x)) + 0.10176 T4(y(x))
]
,

x f3(x) = 4.34 x−0.015 (1 − x)9.11

− 1.048 x−0.167 (1 − x)25.0,

x f4(x) = 7.4 x0.92 (1 − x)4.6

×
(

1 − 2.8
√
x + 4.5 x − 2.0 x2

)
, (37)

where y(x) = 1 − 2
√
x and Tk denotes the Chebyshev poly-

nomials defined in Eq. (1). These functions correspond to
PDFs at the input scales of several common PDF sets. Specif-
ically, we have f1 = ū at NNLO for ABMP16 [55], f2 = g at
LO for MMHT2014 [14], f3 = g at NLO for HERAPDF2.0
[56], and f4 = dv at NLO for JR14 [57]. We have studied
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several other functions, including x f (x) ∝ x−0.7 (1 − x)9.2,
which decreases very steeply and behaves like a typical gluon
density at high scale. The results shown in the following are
representative of this more extended set of functions.

Throughout this work, the relative numerical accuracy of
interpolation for a given quantity is obtained as

relative accuracy = ∣∣interpolated result/exact result − 1
∣∣,
(38)

where the exact result is evaluated using the analytic form
of the functions in Eq. (37). In most plots, we also show the
exact result itself as a thick black line, which is solid (dashed)
when the result is positive (negative). The relative accuracy
for other numerical operations is obtained in full analogy to
Eq. (38).

3.2 Interpolation accuracy and comparison with splines

We now compare Chebyshev interpolation with local inter-
polation. As a prominent example for a method widely used
in high-energy physics calculations, we take the interpolation
provided by the LHAPDF library [1], which has become a
standard interface for accessing parton densities. LHAPDF
offers linear and cubic splines in either x or ln x . We use cubic
splines in ln x , which is the default in LHAPDF and gives the
most accurate results among these options.8 For brevity, we
refer to these as “L-splines” in the following. Since spline
interpolants come in a wide variety, we also consider the
cubic splines used by the Interpolation command of
Mathematica (versions 11 and 12) and refer to them as “M-
splines”. For M-splines, both the first and second derivative
of the interpolant are continuous, whilst for L-splines only
the first derivative is continuous but the second is not.

The interpolation grids used in LHAPDF depend on the
PDF set and cover a wide range in the minimum momen-
tum fraction x0 and in the total number of grid points
npts, as shown in Table 1 for several common PDF sets.
The resulting average density of points per decade in x is
ρ = −npts/ log10(x0) and essentially determines the numer-
ical accuracy of the spline interpolation. For the sake of com-
parison, we use the grids with the smallest and the largest
density among common PDF sets, which happen to be the
MMHT2014 grid (npts = 64 with ρ = 10.7) and the HER-
APDF2.0 grid (npts = 199 with ρ = 33.1).

In Fig. 1 we compare the spline interpolation on the low-
density grid (MMHT2014 grid with npts = 64) with Cheby-
shev interpolation on a (32, 32)-point grid, which has nearly

8 Technically, we generate LHAPDF data files for the functions in
Eq. (37) and then run the LHAPDF interpolation routines with the
option logcubic. The LHAPDF data files are generated with dou-
ble precision to avoid any artificial loss of numerical accuracy due to
the intermediate storage step.

Table 1 LHAPDF grid parameters for several common PDFs ordered
by increasing grid density ρ = −npts/ log10(x0)

PDF set x0 npts ρ

MMHT2014 [14] 10−6 64 10.7

ABMP16 [55] 10−7 99 14.1

NNPDF3.1 [58] 10−9 150 16.7

CT18 [59] 0.926 × 10−9 161 17.8

JR14 [57] 10−9 190 21.1

MSHT20 [60] 10−6 127 21.2

NNPDF4.0 [61] 10−9 196 21.8

CT14 [62] 10−9 240 26.7

HERAPDF2.0 [56] 0.99 × 10−6 199 33.1

the same total number of points (npts = 63). The M-splines
turn out to be more accurate than the L-splines, but this comes
at the expense of them being more complex to construct. The
Chebyshev interpolation achieves a significantly higher accu-
racy by several orders of magnitude than either of the splines.
This reflects that, contrary to splines, Chebyshev interpola-
tion uses polynomials of a high degree. In Fig. 2, we compare
splines on the high-density grid (HERAPDF2.0 grid with
npts = 199) with Chebyshev interpolation on a (40, 32)-
point grid with a total of npts = 71. Here, even with less
than half the number of points, the Chebyshev interpolation
achieves several orders of magnitude higher accuracy. This
also highlights that the interpolation accuracy scales much
better with the number of points for Chebyshev interpolation
than for splines.

In Fig. 3 we compare the accuracy of interpolation on
a single Chebyshev grid with the accuracy obtained with
the two subgrids used in Fig. 2. We see that for the same
total number of points, interpolation on two subgrids is more
accurate, as anticipated above.

We observe in Figs. 1, 2 and 3 that the relative accuracy
varies with x for Chebyshev interpolation somewhat more
than it does for splines. In fact, the absolute accuracy of
Chebyshev interpolation varies much less with x , as can be
seen by comparing Fig. 3 with Fig. 4. The opposite holds
for splines, where the relative accuracy shows less variation
than the absolute one. This reflects that Chebyshev interpo-
lation is “global” over the full interpolation interval, whilst
splines are quite “local” (although the continuity conditions
for neighboring splines lead to some correlation over larger
distances in x).

As is seen in Figs. 1, 2 and 3, the relative accuracy degrades
in the limit x → 1 for both splines and Chebyshev interpola-
tion. This is not surprising, because in this limit the PDFs in
Eq. (37) approach zero. Moreover, they behave like (1 − x)β

with noninteger β and are hence nonanalytic at x = 1. This
behavior cannot be accurately reproduced by interpolating

123



Eur. Phys. J. C (2022) 82 :257 Page 9 of 25 257

Fig. 1 Relative interpolation accuracy (38) for the sample PDFs f1(x)
and f3(x) in Eq. (37). The spline interpolants (green and blue) use the
low-density grid with npts = 64. The Chebyshev interpolation (red) uses

the grid [10−6, 0.2, 1](32,32), which has npts = 63. Here and in similar
plots, the exact result that is being interpolated is shown in black (and
dashed where the result is negative)

Fig. 2 As Fig. 1, but for denser grids. The spline interpolants (green and blue) use the high-density grid with npts = 199. The Chebyshev
interpolation (red) uses the grid [10−6, 0.2, 1](40,32), which has npts = 71

polynomials in the vicinity of x = 1, whatever their degree.
We emphasize that this problem concerns the relative inter-
polation accuracy. As seen in Fig. 4, the absolute error of
interpolation does remain small for x up to 1, as is expected
from Eq. (12). This is sufficient for many practical purposes,
including the evaluation of convolution integrals that appear
in cross sections or evolution equations. If high relative accu-
racy is required at large x , one needs to use subgrids with a
sufficient number of points tailored to the region of interest.

3.3 Differentiation and integration

We now turn to Chebyshev interpolation for derivatives of
the function f̃ (x) = x f (x). We use the barycentric formula
(17) and its analog for the second derivative, multiplying of
course with the Jacobian for the variable transformation from
t to x . For comparison, we also take the numerical derivative
( f̃sp(x + h) − f̃sp(x − h))/2h of the L-spline interpolant
f̃sp(x). We use a variable step size h = 10−4 x , having ver-
ified that the result remains stable when decreasing h even

further. The second derivative of f̃sp is evaluated in an anal-
ogous way.

In Fig. 5 we consider the quantities

x2 f ′(x) = x f̃ ′(x) − f̃ (x),

x3 f ′′(x) = x2 f̃ ′′(x) − 2x f̃ ′(x) + 2 f̃ (x) (39)

and the accuracy of evaluating them using the two methods
just described. We see that with Chebyshev interpolants, a
significantly higher accuracy is obtained. This is not surpris-
ing, since the polynomials approximating the derivatives are
of a high degree in that case, whereas with cubic splines, one
locally has a quadratic polynomial for the first derivative and
a linear approximation for the second derivative. For the low-
density grid with npts = 64, the L-splines in fact give errors
around 10% for the first and 100% for the second derivative
in parts of the x range. We note that on each Chebyshev grid,
the absolute accuracy of the derivatives (not shown here) has
a milder variation in x than the relative one, following the
pattern we saw in Fig. 4 for x f (x) itself.
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Fig. 3 Relative interpolation accuracy for the sample PDFs f2(x) and f4(x) in Eq. (37). The L-splines (green) use the high-density grid with
npts = 199. The Chebyshev interpolations use grids with npts = 71, either with a single subgrid (blue) or with two subgrids [10−6, 0.2, 1](40,32)

(red)

Fig. 4 As Fig. 3, but showing the absolute instead of relative interpolation accuracy for x f (x), i.e. the absolute difference between the interpolated
and exact results

To explore the accuracy of numerical integration, we con-
sider the truncated Mellin moments

Mi ( j) =
∫ 1

x0

dx x j−1 fi (x), (40)

where the lower integration limit is the lowest point x0 of
the grid. In Fig. 6, we show the dependence of the relative
accuracy on the total number of grid points when using 1
to 4 subgrids of equal size. The advantage of using subgrids
is clearly seen, especially for high moment index j , which
emphasizes the large x region of the integrand. We find that
taking 2 or 3 subgrids gives best results for a wide range of
j . The disadvantage of using interpolants with lower poly-
nomial degree becomes the dominant limiting factor with 4
or more subgrids.

3.4 Estimating the numerical accuracy

Let us now take a closer look at methods to estimate
the numerical accuracy of interpolation or integration with
Chebyshev polynomials. An obvious option is to re-compute
the quantity of interest with an increased number of points.

However, the examples in Fig. 6 show that the accuracy is
not a strictly decreasing function of npts, and we see fluctua-
tions with local minima and maxima as npts varies by about
10 units. For a reliable estimate, one should therefore take a
sufficiently large increase in npts. Increasing npts in several
steps provides an additional way of ensuring that the estimate
is trustworthy.

The procedure just described can give sound accuracy esti-
mates and is what we will adopt for assessing the accuracy
of DGLAP evolution in Sect. 5.3. However, since the result
must be evaluated multiple times on increasingly dense grids,
this procedure can be computationally expensive, especially
when the cost scales more than linearly with the number
of grid points. This is indeed the case of DGLAP evolu-
tion, where the evaluation of convolution integrals involves
npts × npts matrices.

An alternative with much less computational overhead is
to estimate the accuracy from the difference between Cheby-
shev interpolation and interpolation on the same grid without
the end points, as described in Sect. 2. This does not require
any additional function evaluations. We compare this esti-
mate with the actual interpolation accuracy in Fig. 7. In the
subinterval for large x , the estimate is very close to the true
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Fig. 5 Relative accuracy of the first derivative (top) and second derivative (bottom) for Chebyshev interpolation (red) and numerical differentiation
of L-splines (green). The grids used on the left have lower npts as in Fig. 1, and those on the right have higher npts as in Fig. 2

error, whilst in the subinterval for small to intermediate x
it somewhat overestimates the actual numerical error. The
amount of overestimation is highest close to the interval lim-
its, which is not surprising, because this is where the two
interpolation methods differ most. The corresponding com-
parison for differentiation is shown in Fig. 8 and follows the
same pattern. We also note that the quality of the estimate
for other sample PDFs is as good as or even better than in
the examples shown here.

The analog for integration of the previous method is to
estimate the accuracy of Clenshaw–Curtis integration from
the difference to the Fejér quadrature rule.9 In Fig. 9, we
compare this estimate with the actual numerical error for
the Mellin moment (40). We find that it tends to overesti-
mate the actual error by two to three orders of magnitude,
which is more than what we saw for interpolation. For com-
parison, we also show the relative accuracy obtained with
the widely used Gauss–Kronrod rule, using the same two
subintervals and the same number of grid points per subin-
terval as for Clenshaw–Curtis. As is commonly done, the
accuracy estimate for Gauss–Kronrod is obtained from the
difference between the nominal Gauss–Kronrod rule and the

9 We always refer to what is known in the literature as Fejér’s second
rule, given in Eq. (32).

lower-order Gauss rule on a subset of the grid points. We
see that the Gauss–Kronrod rule has the highest accuracy. In
practical applications, the true result is however not known,
and an integrator is only as good as its accuracy estima-
tion. Here, the accuracy estimate for Gauss–Kronrod is much
worse than our estimate for Clenshaw–Curtis.10 As discussed
at the end of Sect. 2, this is not unexpected given the compar-
ison of polynomials orders, but it is interesting to see that the
quantitative effect can be as pronounced as in our examples.
We also note that the quantitative differences between the
integration methods vary significantly with the shape of the
integrands, as is evident from the two panels in Fig. 9.

Overall, as far as numerical accuracy estimates are con-
cerned, using interpolation, differentiation, or integration
without the end points of a Chebyshev grid can be considered
as an inexpensive estimate of reasonable quality. It is not an
alternative to the high-quality estimate one can achieve by a
stepwise increase in the number of grid points. Its biggest
advantage is thus to provide a fast and reliable indicator
whether the accuracy of a result is sufficient or calls for a
dedicated, more expensive investigation.

10 Expert readers will know that it is in fact not uncommon for Gauss–
Kronrod integrators to have overly conservative accuracy estimates.
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Fig. 6 Relative accuracy of the truncated Mellin moments (40) with
x0 = 10−9 and with j = 2 (top) or j = 10 (bottom), for f2(x) (left)
or f4(x) (right). We use Chebyshev grids with k = 1 to 4 subgrids

and npts/k points per subgrid, namely [x0, 1] (blue), [x0, 0.2, 1] (red),
[x0, 10−3, 0.5, 1] (green), and [x0, 10−6, 10−3, 0.5, 1] (yellow). The
results for different npts are connected by lines to guide the eye

Fig. 7 Comparison of the true relative interpolation accuracy (red) and its estimate (blue) obtained from the difference between interpolation on
the Chebyshev grid with and without its end points. The (40, 32)-point grid used is the same as in Fig. 2

4 Mellin convolution

In this section, we consider the Mellin convolution of a PDF
with an integral kernel, such as a DGLAP splitting function,
a beam-function matching kernel, or a hard-scattering coef-
ficient. In terms of the scaled PDF f̃ (x) = x f (x), we wish
to compute

(
K ⊗ f̃

)
(x) =

∫ 1

x

dz

z
K (z) f̃

(
x

z

)
. (41)

Here, K (z) is the scaled kernel, given e.g. by K (z) = z P(z)
for a DGLAP splitting function P(z).11

11 We recall that h1 = h2 ⊗ h3 implies h̃1 = h̃2 ⊗ h̃3 with h̃i (z) =
zhi (z).
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Fig. 8 Comparison of true (red) and estimated (blue) interpolation accuracy as in Fig. 7, but for the first and second derivative of the sample PDF
f3(x)

Fig. 9 Comparison of the relative integration accuracy (solid) and
its estimate (dashed) for Clenshaw–Curtis (red) and Gauss–Kronrod
(green) quadrature. The considered integrals are the truncated Mellin
moments Mi ( j) of the test functions fi (x) with i = 2, 3. For both
methods we use two subgrids [10−9, 0.2, 1](41,31) with the appropriate

Chebyshev or Gauss–Kronrod points for the integration variable ln x .
In the accuracy estimates, the results for a given integration rule are
first added for the two subintervals, and then the absolute difference
between the involved higher-order and lower-order rules is taken

Let us see how Eq. (41) can be evaluated in a discretized
setting. For simplicity, we first consider a single Chebyshev
grid for the range x0 ≤ x ≤ 1 as described in Sect. 3.1. The
convolution (K ⊗ f̃ )(x) is a function of x over the same
domain as f̃ (x). Hence, we can interpolate it in complete
analogy to f̃ (x) itself. For this purpose, we only need to
evaluate Eq. (41) at the grid points xi ,

(
K ⊗ f̃

)
(xi ) =

∫ 1

xi

dz

z
K (z) f̃

(
xi
z

)

≈
∫ 1

xi

dz

z
K (z)

N∑
j=0

f̃ j b j

(
ln

xi
z

)
, (42)

where in the last step we used the barycentric formula (35) to
interpolate f̃ (xi/z) under the integral. Introducing the kernel
matrix

Ki j =
∫ 1

xi

dz

z
K (z) b j

(
ln

xi
z

)
, (43)

we can compute the function values of K ⊗ f̃ on the grid by
a simple matrix multiplication,

(
K ⊗ f̃

)
(xi ) ≈

N∑
j=0

Ki j f̃ j . (44)

Importantly, the matrix Ki j only depends on the given kernel
and grid but not on f̃ . It can thus be pre-computed once using
standard numerical integration routines.

In general, K (z) is a distribution rather than an ordinary
function. Restricting ourselves to plus and delta distributions,
we write

K (z) = Ksing(z) + Kreg(z) + δ(1 − z) Kδ, (45)

where Ksing(z) is the singular part of the kernel and con-
tains plus distributions. The function Kreg(z) contains at most
an integrable singularity at z = 1, for instance powers of
ln(1−z). The separation between Ksing and Kreg is not unique
and may be adjusted as is convenient. The convolution (41)
can now be written as
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(
K ⊗ f̃

)
(x) =

∫ 1

x

dz

z
Ksing(z)

[
f̃

(
x

z

)
− f̃ (x)

]

+
∫ 1

x

dz

z
Kreg(z) f̃

(
x

z

)
+ Kd(x) f̃ (x),

(46)

where

Kd(x) = Kδ +
∫ 1

x

dz

z
Ksing(z) (47)

can be evaluated analytically if the separation between Ksing

and Kreg is chosen appropriately. Due to the explicit sub-
traction of f̃ (x) in the first integral in Eq. (46), the plus
prescription in Ksing can now be omitted, because

∫ 1

x
dz

[
g(z)

]
+ h(z) =

∫ 1

x
dz g(z) h(z) for h(1) = 0.

(48)

From the definition (47) one readily finds that Kd (x) diverges
like lnn+1(1−x) for x → 1 if K (z) contains a termLn(1−z),
where we write

Ln(y) =
[

lnn(y)

y

]
+

(49)

for the logarithmic plus distribution of degree n. However, a
PDF vanishes much faster for x → 1 than Kd(x) diverges,
such that the product Kd(x) f̃ (x) tends to zero in that limit.

Applying Eq. (46) to the evaluation of the Ki j matrix in
Eq. (43), we have

Ki j =
∫ 0

ui
dv Ksing(e

v)
[
b j (ui − v) − δi j

]

+
∫ 0

ui
dv Kreg(e

v) b j (ui − v) + δi j Kd(xi ), (50)

where ui and u j are grid points in u, and where we have
changed the integration variable to v = ln z. The plus pre-
scription in Ksing can again be omitted, because the term in
square brackets vanishes at least linearly in v for v → 0.
Hence, all integrals can be evaluated numerically, for which
we use an adaptive Gauss–Kronrod routine.

Given that xN = 1, the matrix element KNN is ill defined
if K contains a plus distribution, because Kd(x) diverges for
x → 1 in that case. This does not present any problem: we
already noticed that Kd(x) f̃ (x) → 0 for x → 1, which
translates to KNN f̃N = 0 in the discretized version. This
term may hence be omitted in the matrix multiplication (44),
along with all other terms KiN f̃N .

It is not difficult to generalize the preceding discussion to
the case of several subgrids in u, each of which is mapped

onto a Chebyshev grid. One then has a distinct set of barycen-
tric basis functions for each subgrid. If u j and ui − v are not
on the same subgrid, then the basis function b j (ui − v) in
Eq. (50) must be set to zero. As a consequence, the matrix
Ki j has blocks in which all elements are zero. Let us, how-
ever, note that Ki j always has nonzero elements below the
diagonal i = j and is not an upper triangular matrix.

We now study the numerical accuracy of this method rela-
tive to the exact result, which we obtain by the direct numer-
ical evaluation of the convolution integral (46). For com-
parison, we also show the accuracy of the result obtained
by approximating f̃ (x) in Eq. (46) with its L-splines inter-
polant and performing the convolution integral numerically.
All explicit numerical integrals in this study are performed
at sufficiently high precision to not influence the results.

In Fig. 10, we show the results of this exercise for the
convolution of our sample PDFs fi (x) with kernels that have
different singular behavior at the end point z = 1. The kernel
in the top row is the leading-order DGLAP splitting function
Pgg , which contains a term L0(1 − z). The kernel in the sec-
ond row is ln4(1 − z), which is the most singular term in
the three-loop splitting functions Pgq and Pqg [63,64]. In
the bottom row, we take L5(1 − z) as kernel, which appears
in the N3LO corrections to the rapidity spectrum of inclu-
sive Higgs production in pp collisions [15]. In all cases, the
accuracy of our Chebyshev based method is several orders of
magnitude higher than the one obtained when interpolating
PDFs with L-splines and then performing the convolution
integral.

The numerical inaccuracies for the convolution with
L5(1−z) using L-splines are in the percent range over a wide
range of x and much higher than those for the other kernels
we looked at. This is in line with the results of Ref. [15],
which finds that the convolution of L5(1 − z) with PDFs
from the LHAPDF library can lead to considerable numer-
ical instabilities. The PDFs used in that work are those of
the NNPDF3.0 analysis [65], and for the sake of comparison
we use the corresponding grid for spline interpolation in the
plots on the right of Fig. 10.

An alternative method to evaluate the convolution is to use
the Chebyshev interpolant of f̃ and perform the convolution
integral itself numerically, analogous to what we did with
L-splines above. This avoids the additional interpolation of
(K ⊗ f̃ ) that happens in the above kernel matrix method.
The numerical accuracy of this alternative method differs
slightly from the accuracy of the kernel matrix method, but
it is of the same order of magnitude. Hence, the additional
interpolation of (K ⊗ f̃ ) does not introduce a significant
penalty in accuracy beyond that of interpolating f̃ itself. This
makes the kernel matrix method far more attractive, as it
avoids the evaluation of a numerical integral for each desired
f̃ and x .
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Fig. 10 Relative accuracy of Mellin convolutions. The red curves cor-
respond to Chebyshev interpolation for both the PDF and the convolu-
tion result, as described in the text. The green curves are obtained by
performing the numerical convolution integral for the PDF interpolated
with L-splines. Details about the convolution kernels are given in the

text. On the left, we use the same grids as in Fig. 1, with npts = 63
for Chebyshev interpolation and npts = 64 for L-splines. On the right,
we use the Chebyshev grid [10−9, 0.2, 1](40,32) with npts = 71 and for
L-splines a grid with npts = 150 (corresponding to the NNPDF3.1 grid
in Table 1)

5 DGLAP evolution

5.1 Numerical solution of DGLAP equations

In this section, we present our approach to the numerical
solution of the DGLAP evolution equations [66–68]. Up to
order αn+1

s , they read

d f (x, μ)

d ln μ2 =
n∑

m=0

[
αs(μ)

4π

]m+1 (
P(m) ⊗ f (μ)

)
(x), (51)

where P(m) is the splitting function at orderm. For notational
simplicity, we suppress the indices for the parton type and the
associated sum on the right-hand side. To solve Eq. (51), we
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discretize the scaled PDFs f̃ (x) = x f (x) on a Chebyshev
grid and evaluate the Mellin convolutions on the right-hand
side as discussed in Sect. 4. The integro-differential equation
(51) then turns into a coupled system of ordinary differential
equations (ODEs),

d f̃i (μ)

d ln μ2 =
N∑
j=0

n∑
m=0

[
αs(μ)

4π

]m+1

P̃(m)
i j f̃ j (μ), (52)

where f̃i (μ) = f̃ (xi , μ) and P̃(m)
i j is the kernel matrix

for K (z) ≡ zP(m)(z) as defined in Eq. (43). This sys-
tem of ODEs can be solved numerically using the standard
Runge–Kutta algorithm, which is described in more detail in
Appendix A. This formulation as a linear system of ODEs by
discretization in x is common to many approaches that solve
the DGLAP equations in x space [17–19,25–27]. By using
the Chebyshev grid for the discretization in x , the resulting
evolved PDF can then be Chebyshev interpolated.

The Runge–Kutta algorithm uses a discretization of the
evolution variable t (not to be confused with the argument of
Chebyshev polynomials in Sect. 2). It is advantageous if the
function multiplying f̃ on the right-hand side of the evolution
equation depends only weakly on t , because this tends to give
a uniform numerical accuracy of evolution with a fixed step
size in t . We therefore evolve in the variable

t = − ln αs(μ) (53)

instead of ln μ2. For the running coupling at order n, we write

dα−1
s

d ln μ2 = −β(αs)

α2
s

=
n∑

m=0

βm

4π

( αs

4π

)m
(54)

and use a Runge–Kutta routine (see the end of Appendix A)
to solve for α−1

s as a function of ln μ2. At leading order, the
DGLAP equation (51) then becomes

d f (t)

dt
= 1

β0
P(0) ⊗ f (t). (55)

with no explicit t dependence on the right-hand side. Using
αs = e−t , we have at NLO

d f (t)

dt
= 1

β0 + (β1/4π) e−t

[
P(0) + P(1)

4π
e−t

]
⊗ f (t), (56)

where an explicit t dependence appears in the two-loop terms
with β1 and P(1). The corresponding equations at NNLO and
higher are easily written down.

The pattern of mixing between quarks, antiquarks, and
gluons under DGLAP evolution is well known. Its structure
at NNLO is given in Refs. [63,69] and remains the same at

higher orders. To reduce mixing to a minimum, we work in
the basis formed by

g, Σ± =
∑
i

q±
i , u± − d±, d± − s±,

s± − c±, c± − b±, b± − t±, (57)

where q± = q ± q̄ . Contrary to the often-used flavor non-
singlet combinations u + d − 2s, u + d + s − 3c, etc., the
differences between consecutive flavors in Eq. (57) are less
prone to a loss of numerical accuracy due to rounding effects
in regions where the strange and heavy-quark distributions
are much smaller than their counterparts for u and d quarks.
Note that at NNLO, the combination Σ− has a different evo-
lution kernel than the flavor differences in the second line
of Eq. (57). This is due to graphs that have a t channel cut
involving only gluons.

We implement the unpolarized splitting functions at LO
and NLO in their exact analytic forms. For the unpolarized
NNLO splitting functions, we use the approximate expres-
sions given in Refs. [63,69], which are constructed from a
functional basis containing only the distributions L0(1 − z),
δ(1 − z) and polynomials in z, 1/z, ln z, and ln(1 − z). With
these parameterizations, the numerical evaluation of the ker-
nel matrices in all channels takes about as long for P(2) as it
does for P(1).12

Both αs and the PDFs depend on the number nF of quark
flavors that are treated as light and included in the MS renor-
malization of these quantities. For the conversion between αs

for different nF , we use the matching conditions in Ref. [70]
at the appropriate order. For the transition between PDFs
with different nF , we implement the matching kernels given
in Ref. [71], which go up to order α2

s . We have verified that
they agree with the independent calculation in Ref. [72]. The
Mellin convolutions of matching kernels with PDFs are also
evaluated as described in Sect. 4.

5.2 Validation

To validate our DGLAP evolution algorithm, we compare
our results with the benchmark tables in section 1.33 of
Ref. [73] and section 4.4 of Ref. [74]. These tables con-
tain PDFs evolved to the scale μ = 100 GeV from initial
conditions given in analytic form at μ0 = √

2 GeV. Evo-
lution is performed at LO, NLO and NNLO, either at fixed
nF = 4 or with a variable number of flavors nF = 3 . . . 5
and flavor transitions at scales μc and μb. The default choice
is μc = mc = √

2 GeV and μb = mb = 4.5 GeV. We com-

12 Using the approximate, parameterized NNLO splitting functions is a
matter of convenience and for compatibility with the benchmark results
below. It is also possible to use the exact expressions, since the kernel
matrices are evaluated only once.
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pare with the LO and NLO results in Ref. [73] and with the
NNLO results in Ref. [74]. The latter are obtained with the
same parameterized NNLO splitting functions that we use.
Furthermore, the parameterization in eq. (3.5) of Ref. [22] is
used for the two-loop matching kernel for the transition from
a gluon to a heavy quark. We also use this parameterization
for the sake of the present comparison, noting that visible
differences with the benchmark results appear when we use
the exact analytic form for this kernel instead.

The benchmark tables were obtained using two programs,
HOPPET [25] and QCD- Pegasus [22], both run with high-
precision settings. The former solves the evolution equations
in x space, whilst the latter uses the Mellin moment tech-
nique. The tables give results for the evolved PDFs at 11
values of x between 10−7 and 0.9. The results are given with
five significant digits, with the exception of several sea-quark
combinations at x = 0.9, which are very small and are given
to only four significant digits.

As specified in Ref. [73], evolution with HOPPET was
performed by using seventh-order polynomials for the inter-
polation on multiple x grids spanning the interval [10−8, 1]
with a total of npts = 1,170. A uniform grid in ln μ2 was
used, with 220 points between μ = √

2 GeV and 1000 GeV.
The results were verified to be stable within a 10−5 relative
error for x < 0.9 by comparing them with the results of the
same program with half the number of points on both the x
and the μ grids. Furthermore, they were compared with the
results obtained with QCD- Pegasus.

For the comparison with our approach, we use a Cheby-
shev grid with 3 subgrids [10−8, 10−3, 0.5, 1](24,24,24) which
has npts = 70. The DGLAP equations are solved using
a Runge–Kutta algorithm with the DOPRI8 method (see
Appendix A) and a maximum step size in t of h = 0.1.
This amounts to about 12 Runge–Kutta steps from the start-
ing scale to μ = 100 GeV. Our results for the benchmark
numbers (rounded as stated above) remain the same if we
take 40 instead of 24 points for each subgrid in x . They also
remain unchanged if we use the same Runge–Kutta method
with maximum step size h = 0.3 or h = 0.02.

We compare our results with the numbers reported in
tables 2, 3, 4 of Ref. [73] and in tables 14 and 15 of Ref. [74],
which cover unpolarized evolution both with fixed nF = 4
and with variable nF = 3 . . . 5. Whilst the tables also give
results for evolution with different scales μr in αs and μf in
the PDFs, we always set μr = μf. We agree with all bench-
mark numbers,13 except for those given in our Tables 2 and 3.
In all cases where we differ, the differences can be attributed
to the benchmark results and fall into two categories:

13 Note that the value of αs(100 GeV), evolved at LO with nF = 4, is
mistyped in table 2 of Ref. [73] and corrected in table 16 of Ref. [74].

1. The benchmark tables contain a number of entries, marked
by an asterisk, for which the results of the two used codes
differ in the sixth digit and give different numbers when
rounded to five digits. The number with the smaller mod-
ulus is then given in the tables. In several cases, our result
agrees with number with the larger modulus and in this
sense agree with the benchmark results.

2. We differ from the benchmark numbers in five more cases.
For the two cases at NNLO, the benchmark results have
typographical errors in the exponent. In the other three
cases, we differ by one unit in the fifth digit. We contacted
the authors of the benchmark tables, who confirmed that
indeed their respective codes agree with our numbers [75].

5.3 Numerical accuracy

We now study the numerical accuracy of our method in some
detail. We use x0 = 10−7 and 3 subgrids. The evolution equa-
tions are solved with the DOPRI8 method (see Appendix A).
To assess the accuracy, we compare three settings with differ-
ent numbers of grid points and different Runge–Kutta steps h:

1. [10−7, 10−2, 0.5, 1](24,24,24) (npts = 70) and h = 0.1,
2. [10−7, 10−2, 0.5, 1](40,40,40) (npts = 118) and h = 0.1,
3. [10−7, 10−2, 0.5, 1](40,40,40) (npts = 118)

and h = 0.004.

To estimate the numerical error due to the discretization in x ,
we take the difference between settings 1 and 2, whereas the
error due to the Runge–Kutta algorithm is estimated from
the difference between settings 2 and 3. For the combined
error, we take the difference between settings 1 and 3. Note
that these estimates correspond to the accuracy of setting 1.
We use the same initial conditions at μ0 = √

2 GeV as in
the benchmark comparison described in the previous sub-
section. Starting at nF = 3, heavy flavors are added at
mc = √

2 GeV, mb = 4.5 GeV, and mt = 175 GeV. In
the remainder of this section, we always evolve and match at
NNLO.

The combined discretization and Runge–Kutta accuracy
for evolution to μ = 100 GeV and μ = 10 TeV is shown in
Figs. 11 and 12, respectively, both for the individual parton
flavors g, q, q̄ , and for the valence combinations q− = q− q̄ .
The relative accuracy is better than 10−7 up to x ≤ 0.8, and
much better than that for smaller x . The same holds when we
evolve to μ = 1.01mc or μ = 1.01mb, where the charm or
bottom distributions are very small. The relative accuracy of
uv and dv increases towards small x . This reflects the strong
decrease of these distributions in the small-x limit, as we
already observed and explained in Sect. 3. The combinations
s−, c−, b−, and t− show less variation at small x , and so
does their relative accuracy.
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Table 2 Results for evolution with nF = 4 for which we differ from
the numbers in the benchmark tables in Ref. [73]. The notation for PDF
combinations is L± = d̄ ± ū and q+ = q + q̄ for q = s, c. The number
format ab is shorthand for a × 10b. As discussed in the text, all differ-

ences can be attributed to the benchmark results, where entries with an
asterisk correspond to category 1 and the entry in blue corresponds to
category 2. We note that in the table headers of Ref. [73] it should read
2xL+ instead of xL+

order x xuv xdv xL− 2xL+ xs+ xc+ g

LO 0.5 7.3137−4

0.9 4.8894−9∗
NLO 10−7 6.6914+1∗ 1.1484+3∗

10−4 9.2873+1∗
10−3 6.1649+0∗
10−2 8.4221−1∗

Table 3 As Table 2, but for evolution and flavor matching from nF = 3 . . . 5. The corresponding benchmark tables are in Ref. [73] for LO and
NLO and in Ref. [74] for NNLO

order x xuv xdv xL− 2xL+ xs+ xc+ xb+ g

LO 10−7 4.6071+1

NLO 10−6 5.2290+2∗
0.7 2.0102−2

NNLO 10−7 1.0699−4 9.9694+2

In Fig. 13 we show examples for the separate errors due to
discretization and the Runge–Kutta algorithm. With our set-
tings, the overall numerical accuracy is entirely determined
by the discretization in x , whilst the inaccuracy due to the
Runge–Kutta algorithm can be neglected. The Runge–Kutta
accuracy for uv is in fact determined by the machine preci-
sion except for very large x , as signaled by the noisy behavior
of the error curve.

It is often found that backward evolution, i.e. evolution
from a higher to a lower scale, is numerically unstable.14 The
structure of the DGLAP equations is such that the relative
uncertainties (physical or numerical) of PDFs become larger
when one evolves from a scale μ1 to a lower scale μ0. This
property is shared by other renormalization group equations
in QCD, including the one for αs(μ). To which extent it
leads to numerically unreliable results is, however, a separate
question.

To study backward evolution within our method, we per-
form the following exercise. We start with the input PDFs of
the benchmark comparison, evolve them with nF = 4 from√

2 GeV to mb/2 = 2.25 GeV and match to nF = 5 at that

14 See, however, Ref. [76] for an early study that concluded the contrary.

point.15 The result is taken as initial condition for nF = 5
evolution from μ0 = 2.25 GeV to μ1 = 1 TeV (step 1). The
result of step 1 is evolved down to μ0 (step 2), and the result
of step 2 is again evolved up to μ1 (step 3). We thus have
two quantities that are sensitive to the accuracy of backward
evolution:

– the difference between the output of step 2 and the input
to step 1, which corresponds to the evolution path μ0 →
μ1 → μ0,

– the difference between the output of step 3 and the input to
step 2, corresponding to the evolution path μ1 → μ0 →
μ1.

The relative accuracy for the two evolution paths is shown in
Fig. 14 for the DOPRI8 method with maximum step size h =
0.1. In both cases, we find very high accuracy, in some cases
near machine precision as signaled by the noisy behavior of
the curves. Relative errors tend to be larger for the evolution
pathμ0 → μ1 → μ0, but they are all below 10−8 for x ≤ 0.9

15 Note that by matching at μ = mb/2, we obtain nonzero values for
the b and b̄ distributions.
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Fig. 11 Relative numerical accuracy of NNLO DGLAP evolution and
flavor matching from μ0 = √

2 GeV and nF = 3 to μ = 100 GeV
and nF = 5. We use the PDFs defined in Refs. [73,74]. The top

row shows quark, antiquark, and gluon distributions (with fsea ∈
{ū, d̄, s, s̄, c, c̄, b, b̄}), and the bottom row shows the differences q − q̄

(except in the vicinity of zero crossings). Note that a high
accuracy is also obtained for the small combinations s−, c−,
and b−, which are induced by evolution at order α3

s .
We have also repeated our exercise with the widely-used

RK4 method and h = 0.03, which requires approximately
the same number of function calls as DOPRI8 with h = 0.1
(see the appendix for more detail). This yields relative errors
that are orders of magnitude larger for both evolution paths,
but still below 10−5 for x ≤ 0.9 and away from zero cross-
ings. This shows the significant benefit of using Runge–Kutta
methods with high order for DGLAP evolution. Nevertheless,
even with the standard RK4 method, we find no indication for
numerical instabilities of backward evolution in our setup.

Finally, we note that a Runge–Kutta method with less than
the 13 stages of DOPRI8 can be useful if one needs to per-
form evolution in many small steps, for instance when com-
puting jet cross sections with μ ∼ pT for a dense grid in the
transverse jet momentum pT . Setting h ∼ 0.03, we find the
DOPRI6 method with its 8 stages to be well suited for such
situations.

6 Conclusions

We have shown that a global interpolation using high-order
Chebyshev polynomials allows for an efficient and highly
accurate numerical representation of PDFs. Compared with
local interpolation methods on equispaced grids, such as
splines, our method can reach much higher numerical accu-
racies whilst keeping the computational cost at a comparable
or reduced level.

Not only interpolation, but also differentiation and inte-
gration of PDFs are numerically accurate and computation-
ally simple in our approach. The same holds for the Mellin
convolution of a PDF with an integral kernel, which can be
implemented as a simple multiplication with a pre-computed
matrix. In particular, high accuracy is retained if the kernel
has a strong singularity at the integration end point, such as[
ln5(1−z)/(1−z)

]
+ or ln4(1−z). Even for such demanding

applications, it is possible to achieve a numerical accuracy
below 10−6 with only about 60 to 70 grid points. Hence, with
our method, numerical inaccuracies become safely negligible
for practical physics calculations involving PDFs. If desired,
the inaccuracy caused by the interpolation can be estimated
with modest additional computational effort by using interpo-
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Fig. 12 As Fig. 11, but for evolution and flavor matching up to μ = 10 TeV and nF = 6

Fig. 13 Relative accuracy of NNLO DGLAP evolution and flavor matching, distinguishing the contributions due to x-space discretization (green)
and the Runge–Kutta algorithm (blue). The plot on the left shows x uv(x) and the plot on the right x g(x). Notice the different scales in x

lation on the same grid without the end points. This yields an
estimate that is appropriately conservative, but not as overly
conservative as the estimate we obtain with Gauss–Kronrod
quadrature in the case of integration.

By combining our Chebyshev-based interpolation with a
Runge–Kutta method of high order, we obtain a very accurate
implementation of DGLAP evolution. Using 70 grid points
in x and evolving from μ = 1.41 GeV to μ = 10 TeV, we
find relative errors below 10−7 for x between 10−7 and 0.8.
We successfully tested our implementation against the bench-

mark evolution tables in Refs. [73,74]. Performing backward
evolution with our method, we find no indications for any
numerical instabilities.

Let us briefly point out differences between our implemen-
tation of Chebyshev interpolation and the use of Chebyshev
polynomials in parameterizations of PDFs. Perhaps most
striking is that the order of the highest polynomial used is
much larger in our case. There are several reasons for this.
First, our approach aims at keeping uncertainties due to inter-
polation small compared to physics uncertainties. By con-
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Fig. 14 Relative accuracy of NNLO DGLAP evolution at fixednF = 5
from μ0 → μ1 → μ0 (left) and from μ1 → μ0 → μ1 (right). The
scales are μ0 = 2.25 GeV and μ1 = 1 TeV, and the DOPRI8 method

with maximum step size h = 0.1 is used to solve the evolution equa-
tions. The same grid in x is used as for the benchmark comparison in
Sect. 5.2

Fig. 15 Relative accuracy of different Runge–Kutta methods as a func-
tion of the total number Nfc = s Nsteps of calls to the function F(t, y)
in Eq. (58). The accuracy is evaluated for the truncated Mellin moment

M( j) of the sample PDF f1(x), evolved from t0 = 0.7 to t f = 1.7. The
lines connecting the points correspond to a fitted power law (Nfc)

−p

with p reported in the legend

trast, as argued in [13], a PDF parameterization need not be
much more accurate (relative to the unknown true form) than
the uncertainty resulting from fitting the PDFs to data. Sec-
ond, as we have seen, polynomials up to order 20 or 40 can
be handled with ease in our method, whereas PDF determi-
nations naturally tend to limit the number of parameters to
be fitted to data. Third, the detailed functional forms used in
the PDF parameterizations Refs. [11–14] at a fixed scale μ

differ from each other and from the form (35) we use for

interpolation at any scale μ. It may be interesting to further
investigate the impact of these differences on the number of
polynomials required for a satisfactory description of PDFs.

Our approach is implemented in the C++ libraryChiliPDF,
which is still under development and which we plan to even-
tually make public. To give a sense of its current performance,
we note that the evaluation of the interpolated PDF takes less
than a microsecond. With the settings in Sect. 5.2, NNLO
DGLAP evolution from μ = 1.41 GeV to μ = 100 GeV at
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nF = 4 takes on the order of 10 to 20 milliseconds.16 If sig-
nificantly faster access to evolved PDFs is needed, it may be
preferable to pre-compute the μ dependence and use inter-
polation in both x and μ. This can easily be done using the
techniques we have described.

To conclude, let us mention additional features that are
already available in ChiliPDF but not discussed here: (i)
polarized evolution up to NNLO for longitudinal and up
to NLO for transverse and linear polarizations, with flavor
matching up to NLO for all cases, (i i) combined QCD and
QED evolution of PDFs with kernels up to O(αs α) and
O(α2), with QED flavor matching up to O(α), and (i i i)
evolution and flavor matching of double parton distributions
F(x1, x2, y;μ1, μ2). For the latter, accuracy goals are typ-
ically lower than for computations involving PDFs, but the
possibility to work with a low number of grid points is crucial
for keeping memory requirements manageable. This will be
described in a future paper.
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Intel® Core™ i5 or i7 processor. We expect that with a dedicated per-
formance tuning, the code can still be made faster.

A Runge–Kutta methods

In this appendix, we take a closer look at the Runge–
Kutta (RK) algorithm, which we use to solve the discretized
DGLAP equation (52), as well as the renormalization group
equation (54) for the running coupling. We pay special atten-
tion to different Runge–Kutta methods and their accuracy.

The RK algorithm solves the initial value problem

dy(t)/dt = F(t, y) with y(t0) = y0. (58)

It approximates the solution y(t) by the set of values yi ≈
y(ti ) at equispaced points ti . The distance between two con-
secutive points is called the step size h = ti+1 − ti , and
the algorithm computes yi+1 from the approximate solu-
tion yi at the previous point. The solution at a given t f is
obtained by dividing the interval [t0, t f ] into N steps, such
that t f = tN . When using the algorithm in our work, we fix a
maximum step size hmax. For any given t0 and t f , the number
of steps is then taken as the smallest integer N that satisfies
|t f − t0|/N ≤ hmax. For brevity, hmax is denoted by h in
Sect. 5.

In so-called explicit RK methods, the algorithm for a step
is of the form

yi+1 = yi + h
s∑

j=1

b j k j (59)

with

k1 = F(ti , yi ),

k2 = F(ti + hc2, yi + ha21k1),

k3 = F
(
ti + hc3, yi + h [a31k1 + a32 k2]

)
,

...

ks = F
(
ti + hcs, yi + h [as1 k1 + · · · + as,s−1 ks−1]

)
. (60)

In standard nomenclature, one calls s the number of stages,
ai j the RK matrix, bi the weights and ci the nodes. Different
RK methods are characterized by different values of these
parameters.

A method is of order p if a single step has a numerical
accuracy of O(h p+1). For a given set of RK parameters, it
is easy to determine p from Eqs. (59) and (60) by a Tay-
lor expansion in h. Since for given t0 and t f the number of
required steps scales like 1/h, the cumulated numerical error
of N steps in the solution of the initial value problem (58) is

yN = y(t f ) + O(h p). (61)

A broad range of RK methods with different orders and
numbers of stages is known [77]. Widely used is the RK4
method, also called the “classic RK method” or simply “the
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Table 4 Order and number of stages of the different Runge–Kutta meth-
ods investigated in this work. The entries in parentheses are explained
in the text

Method RK4 Cash-Karp DOPRI5 DOPRI6 DOPRI8

Order (p) 4 5 5 6(7) 8(10?)

Stages (s) 4 6 7 8 13

RK method”, which has four stages and order p = 4. We
also investigate several methods with p > 4, one by Cash
and Karp [78] and three by Dormand and Prince [79,80].
According to their order, we denote the latter by DOPRI5,
DOPRI6, and DOPRI8. The main parameters of these meth-
ods are given in Table 4. As noted in Ref. [80], the order of
the DOPRI6 method is 7 rather than 6 if the function F(t, y)
in Eq. (58) has no explicit t dependence. The numerical study
described below suggests that the DOPRI8 method is of order
10 if F(t, y) is t independent. We do not attempt to provide
a general proof for this conjecture and hence put a question
mark next to the corresponding entry in our table.

To quantify the performance of the different methods for
DGLAP evolution, we evolve the sample PDF f1(x) given
in Eq. (37) with the DGLAP kernel for the flavor non-singlet
combination u+−d+, either at LO or at NLO. As can be seen
in Eqs. (55) and (56), LO evolution corresponds to a t inde-
pendent function F(t, y), whereas NLO evolution implies an
explicit t dependence in F(t, y). We evolve from t0 = 0.7
to t f = 1.7. According to Eq. (53), this respectively gives
αs ≈ 0.5 and αs ≈ 0.18, so that the t dependence of F(t, y)
for NLO evolution is quite strong at the lower end of the
evolution interval.

To monitor the accuracy of evolution, we consider either
the evolved PDF at a given x or the truncated Mellin moment
(40) with a given moment index j . The results are similar in
both cases. In Fig. 15, we show the accuracy for the moment
with j = 3 as a function of Nfc = s Nsteps, where s is the
number of stages of the RK method and Nsteps the number of
RK steps between t0 to t f . Hence, Nfc is the total number of
calls to the function F(t, y) during evolution.17 The accuracy
is determined from the difference between the solution at the
selected Nfc and the solution at a value of Nfc in the region
where the result does not significantly change any more.

For each RK method, we can identify a region in which
the accuracy follows a power law (Nfc)

−p. We determine
the corresponding value p by a fit and find it in reasonable
agreement with the order of the method. This indicates that in
the corresponding region of Nfc the error estimate in Eq. (61)
is indeed applicable.

17 Note that F(t, y) is vector valued in the discretized DGLAP equation
(52). Its evaluation accounts for the bulk of the computational cost of
evolution.

Our investigation shows the significant advantage of RK
methods with high order p for solving the DGLAP equations.
For the example shown in the figure, the DOPRI8 method
yields a relative accuracy below 10−8 with a single step (cor-
responding to 13 function calls), and the limits of machine
precision are reached with 50 to 100 function calls.

A similar conclusion can be drawn for the computation of
αs(μ) from Eq. (54). To illustrate this, we evolve αs(MZ ) =
0.118 down to μ0 = 2.25 GeV with nF = 5. We use the
DOPRI8 method and impose a maximum step size hmax =
0.2. The evolved value αs(μ0) is then inserted into the exact
analytic expression of μ(αs) at the appropriate perturbative
order. Both at NLO and at NNLO, we find that the resulting
value of μ agrees with μ0 at the level of 2 × 10−15.
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