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Abstract We propose a data-directed paradigm (DDP) to
search for new physics. Focusing on the data without using
simulations, exclusive selections which exhibit significant
deviations from known properties of the standard model
can be identified efficiently and marked for further study.
Different properties can be exploited with the DDP. Here,
the paradigm is demonstrated by combining the promising
potential of neural networks (NN) with the common bump-
hunting approach. Using the NN, the resource-consuming
tasks of background and systematic uncertainty estimation
are avoided, allowing rapid testing of many final states with
only a minor degradation in the sensitivity to bumps relative
to standard analysis methods.

1 Introduction

Despite its success in describing the elementary particles
and their interactions, the Standard Model (SM) is still
incomplete [1]. Many models extending beyond the Standard
Model (BSM) have been developed over the years predict-
ing the existence of new resonances. Thus, the search for new
resonances, either theoretically-predicted or model-agnostic,
is a core strategy for discovery in experimental high energy
physics (e.g. recently [2–4]).

With almost no exception,1 all BSM searches have been
conducted following the blind analysis paradigm, in which
an enormous amount of time and effort is invested before
looking at the data, i.e. on background modeling and system-
atic uncertainty estimation. These resource-intensive tasks
have allowed only a limited region in the space spanned by
all observables (“observable-space”) to be explored to-date.

1 In [5–7], discrepancies between the data and Monte Carlo prediction
were searched for in a large variety of final states.
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Indeed, searches typically focus on inclusive final states – di-
lepton, di-photon, di-jet, etc. – ignoring all other observables
and avoiding exclusive selections such as di-lepton + jets, di-
jets + missing transverse momentum, di-photon within a t t̄
topology, etc. Moreover, within the studied final states, event
selection is usually optimized relative to predefined signal
models. So far, no significant indication of BSM physics has
been found.

Complimentary to the blind analysis paradigm, we pro-
pose a data-directed paradigm (DDP) which begins by effi-
ciently identifying regions of interest in the data. Similarly
to [5–7], albeit without using Monte Carlo (MC) simulation,
the strategy consists of quickly searching the observable-
space for exclusive regions exhibiting a significant deviation
from some fundamental SM property. Such regions should
be considered for data-directed signal hypotheses and fur-
ther examined using traditional analysis techniques. Like in
[4], no MC simulation is used. Thus, the search is not sensi-
tive to MC mismodelling or limited MC statistics. Given the
large number of plausible signals which could manifest in an
infinite number of exclusive regions, and moreover, the lim-
ited time, manpower and resources at hand, searches like the
proposed DDP might provide our best chance at discovering
BSM physics.

2 A data-directed paradigm

A DDP search can be realized with two key ingredients:

1. A theoretically well-established property of the SM with
respect to which deviations can be searched for - here
we exploit the fact that within the SM, in absence of reso-
nances, almost any invariant mass distribution is smoothly
falling. Other properties of the SM, such as flavour sym-
metry [8] or forward-backward symmetry could also be
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exploited once detector effects are taken into account (as
implemented for instance in [9]).

2. An efficient algorithm to scan the observable-space in
search for deviations – here we train a deep neural network
(NN) to map any invariant mass distribution into a distri-
bution of statistical significance for excesses of events
(“bumps”). The latter is known as a “z” distribution and
is based on the profile likelihood ratio test for positive sig-
nals [10]. Different algorithms should be developed when
searching for deviations from other SM properties.

The challenge of bump-hunting is an excellent showcase for
a search in the DDP2; even a simple implementation achieves
good accuracy. As long as the underlying background distri-
bution is smoothly falling, a single trained NN, as described
in this letter, can quickly perform statistical inference from
many selections of observed data. For example, when adapt-
ing it to a narrower mass range, it predicted a maximum sig-
nificance in agreement with the di-muon results presented
in [3] in seconds. Crucially, it avoids the time- and effort-
consuming tasks of full background and systematic uncer-
tainty estimation currently carried out for every invariant
mass distribution under consideration. This way, a poten-
tially unlimited quantity of exclusive distributions can be
scanned and large regions in the observable-space can be
covered. Nevertheless, event-by-event optimization for bump
enhancement, as studied for instance in [11–13], is left to
future work.

Bumps identified using the DDP are likely to be caused by
statistical fluctuations. These will disappear when tested with
more data. Bumps originating from systematic uncertainties
due to detector effects (trigger thresholds, kinematic edges,
etc.) should appear in MC simulations as well and can be
ruled out. Among the bumps found which do not disappear
with added data and do not appear in simulation, the most sig-
nificant ones should be considered as BSM signal hypotheses
and devoted a dedicated analysis. Inevitably, some may be
due to mismodelled systematic effects.

3 A neural network implementation

The NN we employ is trained in a supervised manner, for
which we generate a set of artificial training and testing data.
These contain inputs which simulate realistic distributions in
observed data (in contrast to individual events, as in [11–13]),
and can be further tailored for any given search. Inputs are
matched to analytically calculated z distributions as targets.
When given an invariant mass distribution, the NN predicts
a z distribution which shows where and how likely it is that

2 In [7], bump-hunting was exploited by comparing data to MC predic-
tion in many different final states.

Fig. 1 Illustration of the sample generation procedure. a A smoothly
decaying background curve (orange) is generated over 100 bins. Each
bin is assigned a Poisson fluctuation. A signal with a significance rel-
ative to the fluctuated background (green) is added to it, producing the
observed data (blue). b The corresponding significance distribution, z,
is calculated analytically. The left and right axes in both panels show
the non-scaled and scaled distributions, respectively

the data contains a bump. Once the NN has been trained, we
validate that its predictions are consistent and that its loss
value converges. Finally, its predictions are evaluated on the
test set and we discuss its performance.

We generate the inputs of the NN as 100 bin histograms
of observed events, N = B + S. These are representative of
data with high statistics and dynamic range (the bin width
reflects a given detector resolution). The generation process
is illustrated in Fig. 1. Each input is composed of a smoothly
decaying background curve, B, to which Poisson fluctuations
are added, and a localized Gaussian signal, S, whose signif-
icance is defined relative to the fluctuated background. We
calculate bin-by-bin the corresponding NN target, z, which
we use to approximate the significance distribution given
the unfluctuated background and assuming a Gaussian signal
shape [10]. Each input and target pair is collectively referred
to as a “sample”. All samples are globally scaled to the inter-
val [0, 1] under a linear transformation before being utilized
by the NN.

A variety of smoothly falling backgrounds is modelled by
randomly selecting one of the following ten functional forms
for each sample:

be−ax , ax + b,
1

ax
+ b,

1

ax2 + b,
1

ax3 + b,

1

ax4 + b, a (x − x2)
2 + y2, −a · ln (x) + b,

(y1 − y2) cos (a (x − b)) + y2, cosh (a (x − x2)) + b.

(1)
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The parameters a and b are defined such that each curve
decays between two points, (x1, y1) and (x2, y2), where
x1 < x2 are the centers of the extreme bins and y1 > y2

are randomized from the interval [100, 10,000].
Gaussian shaped signals are generated with mean val-

ues distributed randomly between bin 25 and bin 76. The
width (standard deviation) of the signals is fixed at 3 bins. To
improve the desired feature detection, the NN is trained with
a data set containing signals with significance in the range
[1,20]σ . The performance of the NN is determined on a test-
ing data set by evaluating its ability to identify bumps with
a significance of 3σ – the common definition of a “hint” for
BSM physics.

Various NN architectures can be used. Here, we choose
an architecture based on a dense layer followed by six 1-
dimensional convolutional layers. The latter are intended for
feature-detection, while the former is useful in suppressing
position-dependent biases. A “rectified linear unit” activation
function is used. The “Adam” optimizer is used to minimize
the “mean squared error” loss function over 200 epochs at a
learning rate of 0.0003 with a batch size of 100. We generate
a total of 600,000 training samples, 20% of which are used
for validation, and 150,000 testing samples.

4 Results

The accuracy of the NN prediction is illustrated in Fig. 2 in
terms of the difference between the maximal predicted sig-
nificance, zmax

pred, and the one calculated via the profile likeli-
hood ratio test, zmax

true . All generated test samples are included
in the figure; in over 87% of these the predicted peak was
found within 1 bin of zmax

true . A mean (μ) of −0.02 indicates a
negligible bias in the prediction and a 0.46 standard deviation
(σ ) measures its precision. The asymmetry seen as a sharp
edge in the third quadrant originates from the small number
of maximal z predictions below one.

We are interested in finding samples with bumps of 3σ sig-
nificance while rejecting samples without bumps. Figure 3
shows zmax

true in a solid line and zmax
pred in a dashed line for sam-

ples with no signal added (blue) and for samples with a 3σ

significance signal added (orange). In a traditional bump-
hunting search, the signal significance is evaluated relative to
an estimated background. Thus, the measured significance of
a 3σ signal could fluctuate around this value. This is the origin
of the width of the zmax

true distributions: the signal is generated
with a significance relative to the fluctuated background and
its zmax

true is evaluated relative to the smooth background.
According to the Neyman–Pearson lemma (see e.g. [14]),

zmax
true provides the most powerful signal to background sepa-

ration. It relies on exact knowledge of both the background
and signal shapes. Yet, despite using no a priori knowledge of
the two, the signal to background separation in zmax

pred is only

Fig. 2 The difference between zmax
pred and zmax

true as a function of zmax
true .

Dense regions are shown in red (roughly corresponding to the 1σ

region), while sparse regions are shown in blue

Fig. 3 The distribution of zmax
true (solid line) and zmax

pred (dashed line) for
samples with no signal added (blue) and for samples with a 3σ signifi-
cance signal added (orange)

slightly degraded relative to zmax
true . This is quantified in terms

of receiver operating characteristic (ROC) curves in Fig. 4,
obtained from the distributions of Fig. 3. The true (blue) and
predicted (orange) ROC curves show the efficiency to cor-
rectly identify a 3σ bump versus the false positive rate of
selecting samples with no injected bump. The area under the
true curve, Atrue, is 0.899 while the area under the predicted
curve, Apred, is 0.865, which implies a degradation in perfor-
mance of less than 4%. In other words, the probability that
based on the NN output a selection will be marked as poten-
tially interesting approaches the probability that a traditional
method would do the same.

We also confirmed that the NN is able to generalize in iden-
tifying with comparable accuracy bumps over linear combi-
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Fig. 4 True (blue) and predicted (orange) ROC curves and their asso-
ciated areas under curve, Atrue and Apred

nations of the background forms (Eq. 1), and over an unseen
10th shape when trained on 9 background shapes.3 Thus, it
is unrestricted by specific background forms in its capacity
to detect bumps, which goes beyond the potential of tradi-
tional techniques. Similar performance was obtained in addi-
tional scenarios: when testing on distributions with lower and
higher statistics (in the ranges between 100–500 and 5000–
10,000, respectively), when extending the bump region from
the bin range 25–76 to 5–96, and when training and testing
on samples with wider bumps, of either 4 or 5 bins.

5 Validation

We validate the convergence of the loss value achieved by
increasing either the number of epochs or the size of the
training data set. In terms of Apred from Fig. 4, the NN per-
formance varies insignificantly, by less than 1% when mov-
ing past 200 epochs (for 100,000 input samples) or 500,000
input samples (for 100 epochs).

Consistency was ensured by comparing the NN predic-
tions in two scenarios (with 100,000 training samples and
100 epochs). First, we trained four different NNs using an
independent training data set for each and compared their
predictions on a common testing data set (with 25,000 sam-
ples). Second, the performance of each of the NNs was sep-
arately compared on four different testing data sets. In all
cases, the accuracy when separating signal from background
was unaffected.

3 This test was carried out for the background shapes be−ax and 1
ax4 +b.

6 Discussion

We have presented a data-directed paradigm, complemen-
tary to the blind analysis paradigm, and demonstrated one
of its possible implementations using the concept of bump-
hunting. We have shown that a NN can be trained to effi-
ciently identify bumps over smoothly falling backgrounds
without being given any a priori information about the back-
ground or the bump’s position. Relative to the most powerful
test statistic (profile likelihood ratio), which relies on exact
knowledge of both the background and signal shapes, the
performance of the NN was only inferior by less than 4%
when considering the area under the ROC curve. Since for
each data distribution the NN prediction is obtained within
a couple of seconds (compared to a year or more when fol-
lowing the blind analysis paradigm), these results pave the
way towards scanning the overwhelming observable-space
that is being measured in experiments searching for bumps.
Examples could be searches for di-lepton, di-jet, di-photon,
or jet-lepton-missing ET resonances, in events containing,
in addition, any other set of objects.

In the search for BSM physics we must leave no stone
unturned. Complementary to traditional theory-directed blind
analysis searches, the DDP should be pursued as well. With
the expected ramp up of the Large Hadron Collider, existing
data should be thoroughly explored. A first milestone could
be demonstrating sensitivity to bumps in regions already
investigated. If needed, dedicated NNs could be trained to
account for scenarios not covered by the current implemen-
tation (e.g. different dynamic ranges, bins or widths) and
other architectures could be explored. The search for bumps
over smoothly falling backgrounds is just one example of a
property of the SM that could be considered. Others such as
flavour symmetry [8] or forward-backward symmetry could
be exploited as well. Given the challenge ahead, searches like
the proposed DDP might provide our best chance at discov-
ering BSM physics.
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