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Abstract We discuss the use of machine learning tech-
niques in effectively nonparametric modelling of generalised
parton distributions (GPDs) in view of their future extraction
from experimental data. Current parameterisations of GPDs
suffer from model dependency that lessens their impact on
phenomenology and brings unknown systematics to the esti-
mation of quantities like Mellin moments. The new strategy
presented in this study allows to describe GPDs in a way ful-
filling theory-driven constraints, keeping model dependency
to a minimum. Getting a better grip on the control of system-
atic effects, our work will help the GPD phenomenology to
achieve its maturity in the precision era commenced by the
new generation of experiments.

1 Introduction

Generalised parton distributions (GPDs) [1–5] are widely
recognised as one of the key objects to explore the struc-
ture of hadrons. They encompass information coming from
one-dimensional parton distribution functions (PDFs) and
elastic form factors (EFFs). GPDs allow for a hadron tomog-
raphy [6–8], where densities of partons carrying a fraction of
hadron momentum are studied in the plane perpendicular to
the hadron’s direction of motion. GPDs also provide access to
the matrix elements of the energy-momentum tensor [2,3,9],
making it possible to evaluate the total angular momentum
and “mechanical” properties of hadrons, like pressure and
shear stress at a given point of space [10–13].

Experimental access to GPDs is mainly possible thanks to
exclusive processes occurring on hadrons remaining coher-
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ent after a hard scale interaction. Some notable processes
of this type are deeply virtual Compton scattering (DVCS)
[3], time-like Compton scattering (TCS) [14] and deeply vir-
tual meson production (DVMP) [4,15]. All of them allow to
study transitions of hadrons from one state to another, with
a unique insight into changes taking place at the partonic
level. GPDs have been primarily studied in leptoproduction
experiments, in particular those conducted in JLab, DESY
and CERN, and are key objects of interest in programmes of
future electron-ion colliders, like EIC [16,17], EicC [18] and
LHeC [19]. Many data sets have already been collected and
reviewed for DVCS [20,21] and DVMP [22], while the first
measurement for TCS has been completed recently [23].

Although several datasets are already available for fits, the
extraction of GPDs is far from being satisfactory. The main
reasons are:

(i) sparsity of available information. GPDs are multidi-
mensional functions, so one needs much more data to
constrain them in the phase-space of kinematic vari-
ables, comparing to e.g. one-dimensional PDFs. Fur-
thermore, one needs to cover this phase-space by data
collected for various processes and experimental setups,
which is required to distinguish between many types
of GPDs and contributions coming from various quark
flavours and gluons.

(ii) complexity of extraction. In order to fully benefit from
available sources of information about GPDs, such as
data collected in exclusive measurements, PDFs and
EFFs for boundary conditions, lattice QCD, one needs
to know and implement links connecting those sources
with GPDs. The extraction of GPDs requires a deconvo-
lution of amplitudes measured in exclusive processes,
which is not trivial and in some cases does not even
possess a unique solution [24]. Both the evolution of
GPDs and the description of exclusive processes must
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be understood to a level allowing for a robust extraction.
This requires a substantial effort and a careful design of
tools aggregating GPD-related theory developments.

(iii) model dependency. Currently available phenomenolog-
ical GPD models, like GK [25–27] and VGG [28–31],
use similar Ansätze with a rigid form and therefore
cannot be considered as diverse sources for the esti-
mation of model uncertainty. The severity of such a
model dependency and its impact on e.g. the extraction
of orbital angular momentum have never been studied
in a systematic way, partially because there were no
tools to do so.

The answer of the GPD community to those problems so
far has been as follows. More data sensitive to GPDs will
be delivered by a next generation of experiments. These
experiments, performed in many laboratories and with mul-
tiple setups, will provide the much needed input to the GPD
phenomenology. We witness a substantial progress in the
description of exclusive processes and in the systematic use
of GPD evolution equations [32]. The development of lattice
QCD techniques is accelerating, as proved by Ref. [33]. The
PARTONS [34] and GeParD [35] projects provide aggre-
gation points for GPD-related developments and practical
know-how in phenomenology methods. Techniques to stress
model dependency are developed for the extraction of ampli-
tudes, the latter used to access the “mechanical” properties
of nucleons [36,37]. However, to the best of our knowledge,
no substantial progress has been recently made to address the
problem of model dependency of GPDs extractions.

In this Article, we discuss new ways of modelling GPDs
which provide flexible parameterisations inspired by artifi-
cial neural network (ANN) techniques. These parameterisa-
tions may be used as tools to study the model dependency
affecting extractions of GPDs and derived quantities, like
orbital angular momentum of hadrons. We address aspects
of neural network optimisation, such as over-learning and
convergence. Our work aims in providing a better grip on
the control of systematic effects, much needed in front of the
precision era of GPD extractions.

We note that methods providing effectively nonparamet-
ric modelling are already widely used with a great success to
determine PDFs, see e.g. Refs. [38–41]. It is therefore natu-
ral to adopt them and the associated extraction strategies in
the analysis of GPDs. The challenges preventing their direct
application are mainly due to the fact that GPDs depend on
more kinematic variables in comparison to PDFs, and require
to enforce extra nontrivial theoretical constraints. In this Arti-
cle we show for the first time how to meet these challenges.

The Article is organised as follows. In Sect. 2 we pro-
vide the theoretical background for our line of research and
summarize the theory driven constraints that GPD parameter-
izations must obey. The modelling of GPDs in (x, ξ)-space

is given in Sect. 3, while that in (β, α)-space is discussed in
Sect. 4. We provide the summary in Sect. 5.

2 Theoretical background

GPDs are functions of three variables: the average longi-
tudinal momentum fraction carried by the active parton, x ,
the skewness ξ , which describes the longitudinal momen-
tum transfer, and the four-momentum transfer to the hadron
target, t . GPDs also depend on the factorisation scale, μF,
being the variable entering evolution equations. A knowl-
edge of these equations allows to run the evolution starting
from a reference scale, μF,0, where GPD models are defined,
to any μF. We therefore only consider GPDs at μF,0, and in
the following we suppress the μF dependence for brevity.
For illustration we will only consider the GPD H(x, ξ, t) for
a quark of unspecified flavour, but we note that the discus-
sion can be easily extended for other GPDs. H(x, ξ, t) is a
real and ξ -even function as a consequence of QCD invari-
ance under discrete symmetries. Without loss of generality,
we only consider positive ξ in this work.

GPD models must fulfil a set of theory driven constraints:

(i) reduction to the PDF q(x) in the forward limit:

H(x, ξ = 0, t = 0) ≡ q(x), (1)

(ii) polynomiality [42–44], which is required to keep GPDs
invariant under Lorentz transformation. The property
states that any Mellin moment of a GPD, An , is a fixed-
order polynomial in ξ :

An(ξ, t) =
∫ 1

−1
dxxnH(x, ξ, t)

=
n∑
j=0
even

ξ j An, j (t) + mod(n, 2)ξn+1An,n+1(t),

(2)

where we call An, j (t) a Mellin coefficient. We note that
A0(ξ, t) = A0,0(t) ≡ F1(t) is the Dirac EFF form fac-
tor. The polynomiality “entangles” the x and ξ depen-
dencies.

(iii) positivity constraints [45–53], which are inequalities
ensuring positive norms in the Hilbert space of states.
Because of the variety of these inequalities, we do not
quote them all here. Instead, we refer the Reader to
the aforementioned references, and only note that the
constraints typically involve several types of GPDs. In
the following we will illustrate how to deal with the
positivity constraints with this simple inequality [45,
46],
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|H(x, ξ, t)| ≤
√
q

(
x + ξ

1 + ξ

)
q

(
x − ξ

1 − ξ

)
1

1 − ξ2 , (3)

which is applicable in the DGLAP region, i.e. for x > ξ .

For the sake of completeness, we write a direct relation
between Mellin moments, which are extensively discussed
in this Article, and conformal moments given by:

Cn(ξ, t) = ξn
∫ 1

−1
dx C

3/2
n

(
x

ξ

)
H(x, ξ, t), (4)

where C
3/2
n (x) are Gegenbauer polynomials:

C
3/2
n (x) =

n∑
k=0
even

cn,k x
n−k, (5)

with coefficients

cn,k = (−1)
k/2 Γ (n − k/2 + 3/2)

Γ (3/2)(k/2)!(n − k)!2n−k . (6)

A finite number of Mellin moments is needed to express a
single conformal moment of a fixed order,

Cn(ξ, t) =
n∑

k=0
even

cn,kξ
kAn−k(ξ, t), (7)

and vice versa, a finite number of conformal moments is
needed to express a single Mellin moment,

c0,0A0(ξ, t) = C0(ξ, t), (8)

cn,0An(ξ, t) = Cn(ξ, t) −
n∑

k=2
even

cn,kξ
kAn−k(ξ, t). (9)

The conformal moments conveniently diagonalise the evo-
lution equations at leading-order (LO) [54], but they also
appear in the modelling of GPDs, like for instance in Ref.
[55].

GPDs may be equivalently [56] defined in the double dis-
tribution representation of β and α variables, which is related
to (x, ξ)-space by the Radon transform:

f (x, ξ) =
∫

dΩ F(β, α), (10)

where dΩ = dβ dα δ(x − β − αξ) and |α| + |β| ≤ 1.
Working in (β, α)-space allows us to relatively easily fulfil
both the reduction to PDFs and the polynomiality property.
However, any projection of experimental observables using
GPD models defined in that space, or vice versa, any attempt
to find free parameters of such models from experimental
data, requires either the Radon transform or its inverse coun-
terpart. This is typically done numerically, which severely

slows down computations. In some cases the Radon trans-
form can be performed analytically, but it requires a rather
simple form of double distributions and may be numerically
unstable due to delicate cancellations of small numbers, typ-
ically occurring at small ξ (see e.g. the O (

ξ−5
)

factor in
Eq. (27) of Ref. [57]). The inverse Radon transform poses a
challenge of its own, as reported for instance in Ref. [58].

We close this section with the remark that the core of this
work is related to preserving proper forward limits, polyno-
miality and positivity of GPDs models. This primarily does
not involve the t variable, which in general is not relevant
in our study and as in other analyses of this type will sup-
pressed for brevity. In summary, we are left with the problem
of modeling GPDs in 2D spaces: either (x, ξ) or (β, α).

3 Modelling in (x, ξ)-space

3.1 Principles of modelling

The polynomiality property suggests that the An, j coeffi-
cients introduced in Eq. (2) provide a convenient basis to
describe GPDs in a flexible modelling based on multiple
parameters. The coefficients are not expected to be cor-
related, making them true degrees of freedom for GPDs.
Another reason to choose this basis is the relation between
Mellin and conformal moments indicated in Sect. 2. This
relation allows one to perform the LO evolution of GPDs in
a fast and straightforward way. Finally, the strategy advo-
cated here is a convenient way to incorporate calculations of
Mellin moments performed by lattice QCD in the modelling
of GPDs.

Because there are infinitely many An, j coefficients, for a
practical use we only consider a subset of them. This is jus-
tified by the fact that the evaluation of higher order Mellin
moments becomes increasingly sensitive to the numerical
noise: if H(x, ξ) is a bounded summable function, its Mellin
moment An(ξ) tends to zero when n gets to infinity, in which
case it starts to drown in the noise in any evaluation. This
prevents the extraction of high order Mellin moments from
experimental data without adding prior assumptions. Evalu-
ation on the lattice also suffers from increased uncertainty at
higher orders. Therefore, even if in principle the full series of
Mellin moments is required to unambiguously reconstruct a
function, this situation almost never appears in practical sit-
uations. The general case to consider is actually when only
a finite number of Mellin moments are known. An extra reg-
ularization is thus necessary to restore the uniqueness of the
function defined by its Mellin moments (in the present case,
this extra regularization is introduced by the choice of a poly-
nomial basis or an ANN basis as described below). By lin-
earity, we point out that this argument still holds true when
dealing with conformal moments instead of Mellin moments.
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Fig. 1 The sketch indicates three groups of the polynomiality expan-
sion coefficients, An, j , appearing in the modelling after fixing the trun-
cation parameter to N = 4. The coefficients that we assume to be
constrained by data and lattice QCD are denoted by �, those that are
null, but only at the initial factorisation scale are denoted by �, while
those calculable from � after fixing the recovery of x-dependence are
denoted by �

In our modelling, we only let free the coefficients An, j

appearing in Mellin moments up to and including the order
n ≤ N . The value of N is arbitrary and it controls the flexibil-
ity of models, just like the order of polynomials or the size of
artificial neural networks used in modern parameterisations
of PDFs. In other words, N fixes the number of degrees of
freedom. For even values of N , which for brevity we only
consider in this study, this number is (1 + N/2)(2 + N/2)− 1.

The coefficients An, j for n > N and j ≤ N are recovered
from those for n ≤ N by a specific reconstruction procedure
of the x-dependence that is discussed in the following. On
the contrary, we assume that the coefficients An, j vanish for
n > N and j > N . Note that this is true at μF,0 where
we are defining the model. For μF �= μF,0, evolution will
make these once null coefficients to have non-zero values,
but only for j ≤ n+mod(n, 2) since evolution preserves the
polynomiality property. We summarise this paragraph with
a sketch shown in Fig. 1.

The reconstruction of the x-dependence from a number of
An, j coefficients is themoment problem known in mathemat-
ics. Let us address it by expressing GPDs in a way suggested
by the polynomiality property:

H(x, ξ) =
N∑
j=0
even

f j (x)ξ
j . (11)

Here, f j (x) is a function of x that satisfies the following
relation to Mellin coefficients:
∫ 1

−1
dxxn f j (x) = An, j , (12)

where An, j = 0 for j > n + mod(n, 2). Since H(x =
±1, ξ) = 0 and considering the polynomial form of Eq. (11),
f j (x) has to vanish at the end points:

f j (−1) = f j (1) = 0. (13)

Equations (12) and (13) are essential to constrain f j (x) and
therefore to obtain valid GPD models. In the following we

will try two bases for f j (x), i.e. two forms of this function:
one based on monomials, which has already been studied
in the literature (see Ref. [56] and references therein), and
one inspired by the ANN technique. A given basis fixes the
bridge between the picture of GPDs given by Mellin moments
(ξ -dependent integrals over x) and the picture where GPDs
are explicitly given as functions of x and ξ . We note that the
selection of a given basis and the necessity of keeping a finite
N introduces some model-dependency. We however expect
this bias to become arbitrarily small for sufficiently large N .

It is important to note that GPDs may exhibit a singular-
ity at x = ξ = 0, which corresponds to the singularity of
PDF at x = 0. However, this singularity does not affect the
evaluation of Mellin moments. Since here we are modeling
GPDs with a polynomial in ξ , see Eq. (11), we are not able
to effectively build a model that exhibits the singularity at
only x = ξ = 0 (and not at x = 0, ξ �= 0). It is a general
flaw of this type of modelling, which motivated us to find
ANN-inspired GPDs in (β, α)-space, which we present in
Sect. 4. Still, a direct modelling of (x, ξ)-space can be used
for a subset of non-singular GPD models, like the pion model
[59,60] used for a demonstration in Sect. 3.4. In addition, one
can consider a reference GPD model, H0(x, ξ), with a cor-
rect H0(x, ξ)/q(x) behaviour for ξ → 0, and constrain a
polynomial model, H1(x, ξ), such that H0(x, ξ) + H1(x, ξ)

correctly reproduces ξ > 0 data and e.g. lattice results for
Mellin moments. This kind of hybrid modelling may be plau-
sible for phenomenology, as models defined in (x, ξ)-space
can be directly compared to data, and therefore their usage
can severely speed up minimization procedures.

3.2 Polynomial basis

According to the Stone-Weierstrass theorem, any continu-
ous function defined on a compact set can be uniformly
approximated by a polynomial to any desired degree of pre-
cision. Applying this theorem to the two-dimensional func-
tion H(x, ξ) suggests to express f j (x) that is defined in the
|x | ≤ 1 interval by

f j (x) =
N+2∑
i=0

wi, j x
i . (14)

Here, wi, j are coefficients multiplying the xiξ j monomials
in the global expression of H(x, ξ). The order of polynomial
(14) is N + 2, and it is the minimal order required to satisfy
both Eqs. (12) and (13). We note that the order may be higher,
which provides extra degrees of freedom available in the
modelling.

Mellin coefficients can be evaluated from monomial ones
in the following way:
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∀
even n

An, j =
N+2∑
i=0
even

wi, j

∫ 1

−1
dxxi+n =

N+2∑
i=0
even

wi, j
2

1 + i + n
,

(15)

∀
odd n

An, j =
N+1∑
i=1
odd

wi, j

∫ 1

−1
dxxi+n =

N+1∑
i=1
odd

wi, j
2

1 + i + n
,

(16)

where we remind that N is even, and where Eq. (13) yields:

N+2∑
i=0

wi, j =
N+2∑
i=0

(−1)iwi, j = 0. (17)

To find the opposite relations we need to solve Eqs. (15),
(16) and (17) for wi, j . We express all these equations in the
matrix form:

A j = C · w j . (18)

Here, A j = (
A0, j , . . . , An, j , . . . , AN , j , 0, 0

)T and w j =(
w0, j , . . . , wi, j , . . . , wN+2, j

)T, and the length of each vec-
tor is N + 3. The matrix C is:

C =

⎛
⎜⎜⎜⎜⎝

c0,0 . . . c0,i . . . c0,N+2

. . . . . . . . . . . . . . .

cn,0 . . . cn,i . . . cn,N+2

. . . . . . . . . . . . . . .

cN+2,0 . . . cN+2,i . . . cN+2,N+2

⎞
⎟⎟⎟⎟⎠ , (19)

where:

cn,i =

⎧⎪⎪⎨
⎪⎪⎩

2

1 + i + n
n ≤ N and even n + i,

0 n ≤ N and odd n + i,

(−1)i n otherwise.

(20)

This matrix is only characterized by the parameter N . There-
fore, as soon as this parameter is fixed the matrix is ready for
the inversion (for instance numerically), and this can be done
only once in the modelling procedure.

We note that the presented realisation of GPDs in the
monomial basis of minimal order N + 2 naturally arises in
the context of the so-called dual parameterisation [10] after
its initial formal representation has been recast as a conver-
gent series. This parameterisation is physically motivated by
an infinite series of t-channel exchanges. We also note that
any attempt of modelling GPDs in the (x, ξ)-space based on
classical orthogonal polynomials of x , like Gegenbauer poly-
nomials, will lead to the same conclusions as presented in this
section. This is because any monomial of x can be expressed
by a finite number of classical orthogonal polynomials.

(4)

x

ξ0

ξ4

ξ2 H(x,ξ)

w11
(2)

w16
(1)

w11
(1)

w63
(2)

(1) (2) (3)

Fig. 2 Scheme of an exemplary artificial neural network used to repre-
sent a single GPD. The example is for the truncation parameter N = 4

3.3 Artificial neural network basis

In the case of ANNs, universal approximation theorems (see
e.g. Ref. [61]) for arbitrary width or depth of the neural net-
work ensure that a large enough network is able to accu-
rately represent any continuous function on a compact set.
The graphical representation of an exemplary network used
to construct valid GPD models is shown in Fig. 2.

The exemplary network is made out of four layers: input
and output layers ((1) and (4), respectively), and two hid-
den layers ((2) and (3)). The signal is processed through the
network as follows:

(i) The neuron in the input layer receives the value of x
and distributes it to all neurons in the first hidden layer
(second layer of the network: (2)) via a set of connec-
tions. A single weight is associated to each of those con-
nections that is denoted by w

(1)
1,i , where in our example

i = 1, . . . , 6.
(ii) Each neuron in the hidden and output layers processes

the incoming signal according to this equation:

o(l)
k = ϕ

(l)
k

(
b(l)
k +

∑
i

o(l−1)
i w

(l−1)
i,k

)
, (21)

whereo(l)
k is the output of k-th neuron in (l) layer,ϕ(l)

k (·) is

the activation function, w(l−1)
i,k is the weight associated to

the connection between i-th neuron from (l−1) layer and
k-th neuron from (l) layer, and b(l)

k is the bias parameter.
We note that:

o(1)
1 ≡ x, (22)

o(4)
1 ≡ H(x, ξ). (23)
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(iii) To reproduce the form of Eq. (11) we use the linear acti-
vation function for the neuron in the output layer:

ϕ
(4)
1 (·) = (·), (24)

where (·) denotes the function argument, and we intro-
duce the ξ -dependence via weights associated to the con-
nections linking the last hidden layer with the output
layer:

w
(3)
i,1 = ξ2(i−1). (25)

We also set the bias in the output neuron to:

b(4)
1 = 0. (26)

This choice means that f j (x) associated to ξ j , see
Eq. (11), is effectively described by an ANN with a single
hidden layer corresponding to the first hidden layer of the
full network, and the output layer corresponding to one
neuron in the second hidden layer of the full network.

We are free to choose the activation function associated
to the neurons in the hidden layers. For the purpose of fur-
ther demonstration in the first hidden layer we use either the
sigmoid function,

ϕ
(2)
k (·) = 1

1 + exp (−(·)) , (27)

or the rectifier function (ReLU),

ϕ
(2)
k (·) = (·)Θ(·), (28)

where Θ(·) is the Heaviside step function. In the second

hidden layer the linear activation function will be used,

ϕ
(3)
k (·) = (·). (29)

This choice allows us to analytically evaluate the Mellin

coefficients using:

Φ
(2)
k (n) =

∫ 1

−1
dxxno(2)

k =
∫ 1

−1
dxxnϕ(2)

k

(
b(2)
k + w

(1)
1,k x

)

(30)

for the sigmoid function Eq. (27):

= (−1)n+1
n∑

i=0

(
w

(1)
1,k

)−i−1 Γ (1 + n)

Γ (1 + n − i)(
(−1)n+iLii+1

(
−eb

(2)
k +w

(1)
1,k

)
− Lii+1

(
−eb

(2)
k −w

(1)
1,k

))
,

(31)

or, for the ReLU function Eq. (28):

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((−1)n + 1)

n + 1
b(2)
k − ((−1)n − 1)

n + 2
w

(1)
1,k for

∣∣∣b(2)
k /w

(1)
1,k

∣∣∣ ≥ 1 and sb/w �= sw,

0 for
∣∣∣b(2)

k /w
(1)
1,k

∣∣∣ ≥ 1 and sb/w = sw,

b(2)
k w

(1)
1,k

(
− b(2)

k

w
(1)
1,k

)n+1

+ sn+1
w w

(1)
1,k

(
w

(1)
1,k(n + 1) + swb

(2)
k (n + 2)

)

(n + 1)(n + 2)w
(1)
1,k

otherwise,

(32)

where:

sb/w = sgn
(
b(2)
k /w

(1)
1,k

)
, sw = sgn

(
w

(1)
1,k

)
, (33)

independently of the choice of the activation function in the
first hidden layer:

Φ
(3)
k (n) =

∫ 1

−1
dxxno(3)

k

=
∫ 1

−1
dxxnϕ(3)

k

⎛
⎝b(3)

k +
∑
i

w
(2)
i,k ϕ

(2)
i

(
w

(1)
1,i x + b(2)

i

)⎞
⎠

= mod(n + 1, 2)
2

n + 1
b(3)
k +

∑
i

w
(2)
i,k Φ

(2)
i (n), (34)

where Lii (x) is the polylogarithm and

Φ
(3)
1+ j/2(n) ≡ An, j . (35)

These coefficients depend linearly on b(3)
k and w

(2)
i,k , so the

latter can be found from a number of Mellin moments
by solving the system of equations similar to that of
Eq. (18). Here, A j = (

A0, j , . . . , Ai, j , . . . , AN , j , 0, 0
)T

is the same as for the polynomial basis, while w j =
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(
b(3)

1+ j/2, w
(2)
1,1+ j/2, . . . , w

(2)
N+2,1+ j/2

)T
and

cn,i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 mod(n + 1, 2)/(n + 1) n ≤ N and i = 0,

Φ
(2)
i (n) n ≤ N and i > 0,

1 n > N and i = 0,

ϕ
(2)
i

(
b(2)
i + (−1)nw

(1)
1,i

)
otherwise.

(36)

The size of the last hidden layer (third layer of the network:
(3)) is N/2 + 1, while to ensure both the polynomiality and
vanishing at |x | = 1 the size of the fist hidden layer (second
layer of the network: (2)) must be at least N + 2.

In our approach the coefficients of the first hidden layer,
w

(1)
1,i and b(2)

i , are not constrained by the Mellin moments.
Values of these coefficients can be taken random, or they can
be fixed with further criteria, e.g. to obtain the best possible
agreement between the input PDF and the resulting GPD
in x-space. The sensitivity on the choice of w

(1)
1,i and b(2)

i
coefficients becomes small for large N.

3.4 Demonstration of models

We illustrate the modelling presented in this section with the
help of the following pion GPD [59,60]:

Hπ (x, ξ) = Θ(x − |ξ |) 30(1 − x)2(x2 − ξ2)

(1 − ξ2)2

+ Θ(|ξ | − |x |) 15(1 − x)(ξ2 − x2)(x + 2xξ + ξ2)

2ξ3(1 + ξ)2 .

(37)

We fix the truncation parameter N to either 4 or 8, and we
evaluate the corresponding An, j coefficients from Hπ (x, ξ).
We use those coefficients to reconstruct Hπ (x, ξ) using either
the polynomial or ANN basis (with either the sigmoid or
ReLU activation functions). This way we check how well
one may reconstruct the underlying GPD only knowing a
number of its Mellin moments. The result is shown in Fig. 3
for ξ = 0 and ξ = 0.5.

In this Article we only show the most elementary use of
the modelling based on Eq. (11). However several possible
extensions or modifications are possible. In particular, one
may extend the sum in Eq. (14) (for polynomial basis) or
the number of neurons in the first hidden layer (for ANN
basis) to introduce more free parameters that can be “spent”
for a better description of the x-dependence and of higher
Mellin coefficients for a given power of ξ . One can also try
the modelling with an explicit PDF contribution:

H(x, ξ) = q(x) +
N∑
j=2
even

f j (x)ξ
j , (38)

which automatically fixes all An,0 coefficients. If needed,
vanishing at |x | = |ξ | can be enforced in this way:

H(x, ξ) = (x2 − ξ2)

N∑
j=0
even

f j (x)ξ
j , (39)

which typically causes an oscillatory behaviour along the
x-axis. One may also introduce a separate D-term [44]:

H(x, ξ) = sgn(ξ)D(x/ξ) +
N∑
j=0
even

f j (x)ξ
j , (40)

here denoted by D(x/ξ), which will contribute to An,n+1

coefficients. This separate contribution allows to reproduce
GPDs, which are not smooth functions and usually exhibit a
kink at |x | = |ξ |.

In our simple demonstration we do not check if the models
fulfil the positivity constraint. With the pion model given
by Eq. (37) used as a benchmark it is particularly difficult.
From Eq. (3) we see that if the PDF vanishes for x < 0, the
corresponding GPD must vanish as well for x < −|ξ |. We
are not able to achieve this behaviour easily via our modelling
of Mellin moments. However, we note that with a different
benchmark model it should be possible to use a numerical
enforcement of positivity. This method will be introduced in
the next section of this Article.

4 Modelling in (β, α)-space

4.1 Principles of modelling

The advantage of modelling GPDs using double distributions
is a natural provision of polynomiality by the Radon trans-
form. In addition, a proper reduction to PDFs can be achieved
easily, with a welcome possibility of keeping the singularity
at x = 0 for only ξ = 0. The GPD support x ∈ [−1,+1]
is also naturally encoded in the double distribution support
|α| + |β| ≤ 1.

We are modelling the GPD H(x, ξ) with three contribu-
tions, each one being the subject to the Radon transform
shown in Eq. (10):

(1 − x2)FC (β, α) + (x2 − ξ2)FS(β, α) + ξFD(β, α) (41)

The first term, (1− x2)FC (β, α) gives the “classical” contri-
bution reproducing both the forward limit and the cross-over
line ξ = x [62]. This term is crucial for the comparison
of GPD models with experimental data available today. The
second term, (x2 − ξ2)FS(β, α), gives a “shadow” contribu-
tion, which vanishes for both ξ = 0 and ξ = x [24]. As we
will see, its inclusion is important for a proper estimation of
model uncertainties when GPDs are constrained by a sparse
set of data. The third term, ξFD(β, α), only contributes to
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Fig. 3 The pion model [59,60]
(black solid line) given by
Eq. (37) reconstructed from
either five (N = 4, top row) or
nine (N = 8, bottom row) of its
first Mellin moments as a
function of x for either ξ = 0
(left column) or ξ = 0.5 (right
column). The reconstruction is
done using a polynomial basis
(red dashed line) or an ANN
basis with either sigmoid
activation function (blue dotted
line) or ReLU activation
function (green dash-dotted line)

the D-term, which is accessible in analyses of amplitudes
for exclusive processes (see e.g. Ref. [37]). The inclusion of
this term gives an extra flexibility to the model required to
reproduce all x-moments of GPDs.

We note that for singlet GPDs, for which even Mellin
moments vanish, the prefactors x2 and ξ2 in Eq. (41) do
not break the polynomiality property. Indeed, for odd Mellin
moments of order n, double distributions being the subject
to the Radon transform shown in Eq. (10) give contributions
up to the An,n−1 coefficient only – since the An,n coefficient
is zero for parity reasons. Therefore, adding either an x2 or
ξ2 factor only brings contributions up to An,n+1, which is
compatible with polynomiality.

4.2 FC (β, α) contribution

We factorise FC (β, α) into the forward limit, f (β), which
is well-known, at least for the GPD H(x, ξ), and the profile
function hC (β, α):

FC (β, α) = f (β)hC (β, α)
1

1 − β2 . (42)

The prefactor (1 − x2)/(1 − β2) arising from Eqs. (41) and
(42) turns out to be convenient to preserve positivity with an
ANN-based modelling of hC (β, α). Since in this study we
are only interested in the singlet contribution we fix:

f (β) = sgn(β)q(|β|). (43)

The profile function must fulfil the following set of properties
to ensure the correct behaviour of the GPD in (x, ξ)-space:

(i) even parity w.r.t. the β variable,

hC (β, α) = hC (−β, α), (44)

to keep the whole GPD an odd function of x .
(ii) even parity w.r.t. the α variable,

hC (β, α) = hC (β,−α), (45)

to keep the whole GPD an even function of ξ , and there-
fore to hold time reversal symmetry.

(iii) the following normalisation:

∫ 1−β

−1+β

dαhC (β, α) = 1, (46)

to ensure the proper reduction to the PDF at ξ = 0.
(iv) vanishing at the edge of the support region,

hC (β, α) = 0 for |β| + |α| = 1, (47)

to avoid any singular behaviour, except at the x = ξ = 0
point, and to help enforcing the positivity property at
x ≈ 1.

We use the following model for hC (β, α) fulfilling all the
aforementioned requirements:

hC (β, α) = ANNC (|β|, α)∫ 1−|β|

−1+|β|
dαANNC (|β|, α)

. (48)
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Here, ANNC (|β|, α) is the output of a single artificial neural
network. We have chosen a feed forward artificial neural net-
work with a single hidden layer, whose example is shown in
Fig. 4. Our choice simplifies the evaluation of the integral in
the denominator of Eq. (48). The signal is processed by the
network in a way similar to the case described in Sect. 3.3.
Keeping the nomenclature consistent throughout the text, two
neurons in the input layer distribute the |β| and α values:

o(1)
1 ≡ |β|, (49)

o(1)
2 ≡ α, (50)

while the neuron in the output layer gives:

o(3)
1 ≡ ANNC (|β|, α). (51)

A number of neurons in the hidden layer process information
according to this equation:

o(2)
k =

[
ϕ

(2)
k

(
b(2)
k + w

(1)
1,k |β| + w

(1)
2,kα/(1 − |β|)

)

−ϕ
(2)
k

(
b(2)
k + w

(1)
1,k |β| + w

(1)
2,k

) ]

+
[
w

(1)
2,k → −w

(1)
2,k

]
, (52)

where the biases, b(2)
k , and weights, w

(1)
1,k , w

(1)
2,k , are free

parameters of the network, and where ϕ
(2)
k (·) is the activation

function to be fixed by the network architect. For instance,
it can be the sigmoid function from Eq. (27) or the ReLU
function from Eq. (28). For the output layer we have:

o(3)
1 =

∑
k

w
(2)
k,1o

(2)
k , (53)

where we explicitly used the linear activation function. There
is no bias parameter and the weights, w

(2)
k,1 are the other free

parameters of the network. With the sigmoid function for
ϕ

(2)
k (·), the normalisation factor is:

∫ 1−|β|

−1+|β|
dαANNC (|β|, α) = 2

∑
k

w
(2)
k,1

w
(1)
2,k

(|β| − 1)

×
[

log
(

cosh
(
b(2)
k − w

(1)
2,k + |β|w(1)

1,k

))

− log
(

cosh
(
b(2)
k + w

(1)
2,k + |β|w(1)

1,k

))

+w
(1)
2,k tanh

(
b(2)
k − w

(1)
2,k + |β|w(1)

1,k

)

+w
(1)
2,k tanh

(
b(2)
k + w

(1)
2,k + |β|w(1)

1,k

) ]
(54)

4.3 FS(β, α) contribution

The shadow contribution is modelled in a quite similar way
to FC (β, α):

FS(β, α) = f (β)hS(β, α). (55)

β
ANN(β,ɑ)

w11
(2)

w25
(1)

w11
(1)

w51
(2)

(1) (2) (3)

ɑ

Fig. 4 Scheme of an exemplary artificial neural network used to rep-
resent the profile function in the double distribution model

Here, f (β) has been already given in Eq. (43). The inclusion
of this factor may come as a surprise, as the shadow GPD
vanishes in the forward limit, but f (β) helps here to fulfil the
positivity constraint. Similarly to hC (β, α), hS(β, α) must be
an even function with respect to both β and α variables, and
we make it to vanish at |α| + |β| = 1. Its normalisation is
however different. We require

∫ 1−β

−1+β

dαhS(β, α) = 0, (56)

to ensure the vanishing at ξ = 0. We use the following model
for hS(β, α), which fulfils all the aforementioned require-
ments:

hS(β, α)/NS = ANNS(|β|, α)∫ 1−|β|

−1+|β|
dαANNS(|β|, α)

− ANNS′(|β|, α)∫ 1−|β|

−1+|β|
dαANNS′(|β|, α)

. (57)

Here, NS is a scaling parameter, while ANNS(|β|, α) and
ANNS′(|β|, α) are neural networks. As one may conclude,
effectively, we are constructing the shadow contribution by
subtracting two GPDs having the same forward limit. One of
these GPDs, related to ANNS(|β|, α), will be the subject of
modelling. The other one, related to ANNS′(|β|, α), provides
an arbitrary reference point. For simplicity we take:

ANNS′(|β|, α) ≡ ANNC (|β|, α), (58)

that is, one of two networks used in FS(β, α) is the same
as that used in FC (β, α). In fits presented in Sect. 4.6
ANNS(|β|, α) will have the same architecture as ANNS′
(|β|, α), but different free parameters (weights and biases).

4.4 FD(β, α) contribution

This contribution gives the D-term:

FD(β, α) = δ(β)D(α), (59)
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where:

D(α) = (1 − α2)

N∑
i=1
odd

diC
3/2

i (α) , (60)

di are the coefficients of the expansion on the family of
Gegenbauer polynomials and N is a truncation parameter.
This definition in (x, ξ)-space explicitly gives:

D(z) = Θ(1 − |z|)(1 − z2)

N∑
i=1
odd

diC
3/2

i (z) , (61)

where z = x/ξ .

4.5 Remarks

In Eq. (52) the variable α is scaled by 1−|β|, such that α/(1−
|β|) spans over the range of (−1, 1). Such a standardisation
of variables is typical for neural networks, as it leads to a
faster convergence and it allows to describe equally well the
dependencies on all input variables.

The factorisation expressed by Eq. (42) is arbitrary. In
principle, the neural network could absorb some, if not all,
information about PDFs. For instance, we could express a
double distribution F in the following way:

F(β, α) = sgn(β)|β|−δ(1 − |β|)γ ANN(β, α), (62)

where δ and γ are powers driving the behaviour of PDF at
x → 0 and x → 1, respectively, and where the normali-
sation factor, as used in the denominator of Eq. (48), is not
needed anymore. This kind of factorisation may be useful
when (semi-)inclusive and exclusive data will be simultane-
ously used to constrain GPDs.

4.6 Fits to pseudo-data

We now discuss technicalities of constraining GPD mod-
els defined in (β, α)-space from data. We first elaborate on
aspects of our numerical analysis like minimisation, esti-
mation of uncertainties, treatment of outliers, regularisation
and positivity enforcement. Then, we present three exam-
ples demonstrating possible applications of our approach.
We particularly emphasise the estimation of uncertainties in
unconstrained kinematic domains. As in the rest of this Arti-
cle, we will only focus on the GPD H(x, ξ), neglecting the
t and μ2

F-dependencies. We note that the actual extraction of
GPDs from experimental data will require taking into account
both the t-dependence and the evolution equations, but also
other types of GPDs. This is beyond the scope of this Article,
where we only pave the way towards such analysis. The com-
plex link between the GPD H(x, ξ) and experimental data is
also the reason why we do not emulate experimental uncer-
tainties. With no such uncertainties taken into account our

demonstration may be seen as a level-0 closure test known
from the PDF methodology [39,63,64].

In our numerical analysis the minimisation, i.e. the proce-
dure of constraining free parameters, is done with the genetic
algorithm [65]. This algorithm is iterative. In a single iter-
ation many sets of free parameters, referred to in the liter-
ature as “candidates”, are simultaneously checked against a
“fitness function”. After evaluation, the best candidates, i.e.
those characterised by the best values of the fitness function,
are “crossed over” with the hope of obtaining even better
candidates to be used in the next iteration. The cross-over is
followed by a “mutation”, where a number of free parame-
ters is randomly changed, allowing for a significant reduction
of the risk of converging to a local minimum. We note that,
since in a given iteration of the genetic algorithm the fit-
ness function is simultaneously evaluated for all candidates,
multithreading computing can be employed to improve the
performance of the minimisation.

The employed fitness function is the root mean squared
relative error [66]:

RMSRE =

√√√√√ 1

Npts

Npts∑
i=1

(
H0(xi , ξi ) − H(xi , ξi )

H0(xi , ξi )

)2

. (63)

Here, the sum runs over Npts points probing (x, ξ) phase-
space, while H0(xi , ξi ) and H(xi , ξi ) are GPDs given by
the reference (here GK) and ANN models, respectively. The
RMRSE allows to avoid significant differences of contribu-
tions to the fitness function coming from various domains of
(x, ξ)-space.

The pseudo-data used in this analysis do not have uncer-
tainties. However, we are still interested to know what are the
uncertainties of models in domains unconstrained by data, i.e.
what is the effect of the sparsity of data, in particular when
only x = ξ data are used in the fit and the neural network was
designed to explore the whole x �= ξ domain. To estimate
this kind of uncertainties we repeat the minimization mul-
tiple times, each time starting the genetic algorithms with a
random set of initial parameters. We refer to the outcome of
such a single minimization as “a replica”. A replica is a pos-
sible realisation of the GPD model. All replicas reproduce
the data used in the minimization, but because of the flexi-
bility of ANNs their behaviour in unconstrained kinematic
domains can be considered random. We note that this ran-
domness can be unintentionally suppressed if one uses too
small networks or restricts too much the values of weights
and biases.

We use the spread of 100 replicas to estimate the model
uncertainty in a given kinematic point. Because of the com-
plexity of our fits and unavoidable problems in the minimisa-
tion, like falling into local minima, it sometimes happens that
a single replica gives values that are very different compared
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to those given by other replicas. This problem is typical in
phenomenological studies (see e.g. Ref. [38]), and requires
finding and removing the problematic replicas, or suppress-
ing them in the estimation of uncertainties. In this analysis
we employ the following algorithm: for a given population
of replicas (i) we randomly choose 1000 points of (x, ξ), (ii)
for a given point we evaluate the GPD values that the replicas
give in that point, and then we check which of those values
are outliers by applying the 3σ -rule [67], (iii) the replicas
giving values identified as outliers in more than 10% points
are entirely removed from the estimation of uncertainties.

As in other analyses using effectively nonparametric mod-
els, a regularisation must be used to avoid biased results
caused by over-fitting. Without a regularisation, an ANN
tends to describe the fitted data extremely precisely, result-
ing in a minimal variance evaluated for these data. It does
not mean though that the ANN will describe equally well
any other data, i.e. that it will have a predictive power. In
general, a bias may appear, because too much attention was
paid to describe the fitted data, and the ANN does not describe
well the general trends. Many types of regularisation methods
exist, and the selection of a given method typically depends
on the problem being under consideration. In this analysis
we use the so-called dropout method [68]. In this method
in a given iteration of the minimisation algorithm (here: the
genetic algorithm) a predefined fraction of neurons (here:
10%) is randomly dropped, i.e. some neurons become inac-
tive, they do not process the signal. The output of other neu-
rons is correspondingly scaled to compensate for the loss.
Effectively, in each iteration a different subset of neurons in
the hidden layer is used, which avoids focusing on details
only characterising the fitted data. The fraction of dropped
neurons we use has been validated against independent sam-
ples with respect to those used in the fits presented in the
following of this section.

The genetic algorithm allows for a straightforward imple-
mentation of penalisation methods to avoid unwanted results,
in particular those not fulfilling binary-like conditions, like
inequalities. We use this feature to enforce the positivity con-
dition. To achieve this, for each set of free parameters (i.e.
for each candidate) we check by how much we can scale
FS(β, α) by changing the NS parameter to saturate the condi-
tion given by Eq. (3). We check this in 10,000 points covering
the (x, ξ < x) domain. If we are not able to scale FS(β, α)

to respect the constraint in all of those points, the candidate
is discarded, i.e. it is dropped from the population of can-
didates. If we can, we scale FS(β, α) accordingly, i.e. we
take the highest allowed value of |NS|. This simple method
of enforcing the positivity constraints requires a substantial
computing power, but gives satisfactory results. We conclude
that up to the numerical noise the constraint is fulfilled, which
we demonstrate with Fig. 10 showing the x-dependencies
of replicas with respect to the positivity bound for few val-

A1,0

A1,2

A3,0

A3,2

A3,4

A5,0

A5,2

A5,4

A5,6

A7,0

A7,2

A7,4

A7,6

A7,8

Fig. 5 Result of constraining the ANN model using 400 points eval-
uated with the GK model [25–27] for sea quarks: x �= ξ case, positiv-
ity not enforced, all three contributions (FC (β, α), FS(β, α), FD(β, α))
used in the presentation of results. The plot shows the first Mellin coef-
ficient for odd moments (even moments strictly vanish) evaluated for
the GK (black dots) and ANN (solid bands) models

ues of ξ . We note that after the minimisation, FC (β, α) and
FS(β, α) may not fulfill alone the positivity constraint given
by the chosen PDF, but they do in sum. It indicates that the
inclusion of FS(β, α) gives an extra freedom to achieve the
positivity.

We now show and discuss results of three extractions of
GPDs with pseudo-data generated with the GK model [25–
27]. In all three cases ANNC (|β|, α) used in both FC (β, α)

and FS(β, α), and ANNS(|β|, α) used in FS(β, α) consist of
5 neurons in the hidden layer, each, and we use the sigmoid
activation function. The FD(β, α) contribution consists of 5
elements, i.e. the sum in Eq. (60) runs up to i = 9.

In the first test-case we train our model on Npts = 400
points uniformly covering the domain of −4 < log10(x) <

log10(0.95), −4 < log10(ξ) < log10(0.95), t = 0 and
Q2 = 4 GeV2. That is, in this scenario, x �= ξ data are
used to constrain our ANN model. The purpose of this test
is to check if our approach can be used to reproduce GPD
models such as GK. All three contributions from Eq. (41) are
used in the fit, even if we a priori know that GK does not
include any D-term. It is because FC (β, α) and FS(β, α) may
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Fig. 6 Result of constraining the ANN model using 400 points eval-
uated with the GK model [25–27] for sea quarks: x �= ξ case, positiv-
ity not enforced, all three contributions (FC (β, α), FS(β, α), FD(β, α))
shown. See the text for more details. The comparison is for (left) ξ = x ,

(center) ξ = 0.1 and (right) ξ = 0.5. The dashed lines denote the GK
model, while the bands represent the result of the fit in the form of a
68% confidence level
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Fig. 7 Result of constraining the ANN model using 200 points evalu-
ated with GK model [25–27] for sea quarks: x = ξ case, positivity not
enforced, FD(β, α) not shown. See the text for more details. The com-
parison is for (left) x = ξ , (center) ξ = 0.1 and (right) ξ = 0.5.

The dashed lines denote the GK model, while the bands represent
the result of the fit in the form of a 68% confidence level. The inner
bands show FC (β, α) contribution, alone, while the outer bands are for
FC (β, α) + FS(β, α)

contribute to the D-term due to the (1 − x2) and (x2 − ξ2)

factors, respectively. With FD(β, α) included in the fit we
are able to compensate for those contributions. We do not
enforce the positivity constraint, as the GK model violates the
inequality shown in Eq. (3). Enforcing this positivity inequal-
ity would lead to a discrepancy between our model and GK.
We note that in average the fit of a single replica ends with a
RMSRE ≈ 0.016 and takes ≈ 1.9 h on 40 computing cores.
Such a small RMSRE indicates that our model can firmly
reproduce the GK model in the probed domain of (x, ξ)-
space. A higher number of neurons in the hidden layers would
lead to an even smaller RMSRE. The graphical representa-
tion of the results is shown in Fig. 5 for Mellin moments and
in Fig. 6 for the x-dependence. As highlighted by the low
average value of the RMSRE, the agreement between the fit-
ted ANN model and GK is very good, hence we conclude to
a successful outcome of the whole test.

In the second test-case only x = ξ data are used to con-
strain our GPD model. These are Npts = 200 points uni-
formly covering the domain of −4 < log10(x = ξ) <

log10(0.95), t = 0 and Q2 = 4 GeV2. The purpose of this
test is to demonstrate how our approach can be used to recon-
struct GPDs from amplitudes for processes like DVCS and
TCS, when described at LO. The positivity inequality is not
enforced. The result is shown in Fig. 7. Since we are not inter-
ested in the D-term (it is not constrained by x = ξ data, but
can be accessed elsewhere, namely in dispersive analyses)
the contribution coming from FD(β, α) is removed from the
presentation of results. The contribution to the D-term gen-
erated by FC (β, α) and FS(β, α) is small with respect to the
uncertainties and will be discussed in more detail in the next
paragraph. The fit of a single replica ends in this test-case in
average with a RMSRE ≈ 0.0019 and takes ≈ 0.5 h on 40
computing cores. In Fig. 7 one may observe exploding uncer-
tainties, except for the ξ = x line. This behaviour is expected.
From the same figure one may judge on the importance of
including the shadow contribution, FS(β, α). We see that
FC (β, α) is over-constrained by the necessity of reproduc-
ing the GPD at both ξ = 0 and ξ = x lines. Since hC (β, α)

is normalized, see Eqs. (46) and (48), ANNC (|β|, α) associ-
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Fig. 8 Result of constraining the ANN model using 200 points evalu-
ated with the GK model [25–27] for sea quarks: x = ξ case, positivity
enforced, FD(β, α) not shown. See the text for more details. The com-
parison is for (left) x = ξ , (center) ξ = 0.1 and (right) ξ = 0.5.
The dashed lines denote the GK model, while the bands represent

the result of the fit in the form of a 68% confidence level. The inner
bands show FC (β, α) contribution, alone, while the outer bands are for
FC (β, α)+ FS(β, α). The regions excluded by the positivity constraint
are denoted by the hatched bands
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Fig. 9 Result of constraining the ANN model using 200 points eval-
uated with the GK model [25–27] for sea quarks: x = ξ case, positiv-
ity enforced. Contributions coming from (left) FC (β, α) and (center)

FS(β, α) are shown. (right) Contribution to D-term induced by both
FC (β, α) and FS(β, α) is shown. All plots are for ξ = 0.5

ated to this term lacks the flexibility allowing for a significant
contribution to the uncertainties in kinematic domains that
are unconstrained by data.

The conditions used in the third test-case are the same
as in the second one, except now the positivity inequality is
enforced to show its impact on the reduction of uncertain-
ties. The algorithm for the selection of replicas fulfilling the
positivity inequality introduces a substantial computational
burden. The fit of a single replica in average ends with a
RMSRE ≈ 0.0075 and takes ≈ 26 h on 40 computing cores.
One should be able to optimise the algorithm to make this
time shorter. The result is shown in Fig. 8. We observe a
significant reduction of uncertainties due to positivity. The
contributions coming from the FC (β, α) and FS(β, α) terms,
together with the D-term induced by those two terms, is
shown in Fig. 9. Both contributions are substantial.

5 Summary

The lack of GPD flexible parameterisations fulfilling all
required theoretical constraints has been an obstacle slow-
ing down the completion of global fits to experimental data
comparable to those currently achieved in the PDF commu-
nity. Often GPD models are either too rigid to accommodate
the measurements, or insufficiently constrained from the the-
oretical point of view. Since the different theoretical require-
ments are hardly met in common analytic expressions, neural
networks are appealing tools to obtain flexible, yet complex,
parameterisations. To the best of our knowledge, our present
study is the first providing concrete elements to actually build
GPD models based on neural network techniques.

In this Article we discuss different strategies to model
GPDs in (x, ξ) and (β, α) spaces. In all cases GPD Mellin
moments and polynomiality play a central role. We show in
particular that a neural network description of double dis-
tributions is an efficient way to implement polynomiality,
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Fig. 10 Result of constraining
the ANN model using 200
points evaluated with the GK
model [25–27] for sea quarks:
x = ξ case, positivity enforced.
Distributions of GPDs
normalised by the positivity
bound are shown as a function
of either x or (1 − x). Solid red
curves are for replicas used in
this analysis. The regions
excluded by the positivity
constraint are denoted by the
hatched bands. The plots are for
(top left) ξ = 0.0001, (top right)
ξ = 0.01, (bottom left) ξ = 0.9
and (bottom right) ξ = 0.999

positivity, discrete symmetries, as well as the reduction to
any freely chosen PDF in the forward limit.

An increased control of systematic effects is highly desir-
able in front of the precision era of GPD physics and extrac-
tions. To this aim we also address questions of a practical
nature when dealing with many parameters: existence of local
minima in optimisation routines, presence of outliers in sta-
tistical data analysis, etc.

In view of future GPD fits to experimental DVCS data,
we pay a special attention to singlet GPDs, and to con-
tributions with both vanishing forward limit and vanishing
DVCS amplitude at leading order in perturbation theory.
Our parameterisations may thus be used as tools to study the
model dependency affecting extractions of GPDs and derived
quantities, like GPD Mellin moments and the total angular
momentum of hadrons. Since these parameterisations fulfil
theory driven constraints, they may be conveniently used in
current and future analyses of GPDs, or in connection e.g. to
lattice QCD, either in x-space or through Mellin moments.
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resources of Świerk Computing Centre, Poland are greatly acknowl-
edged. This project was supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No

824093. This work is supported in part in the framework of the GLU-
ODYNAMICS project funded by the “P2IO LabEx (ANR-10-LABX-
0038)” in the framework “Investissements d’Avenir” (ANR-11-IDEX-
0003-01) managed by the Agence Nationale de la Recherche (ANR),
France.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: All final data
obtained in this study are contained in this published article.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. D. Müller, D. Robaschik, B. Geyer, F.M. Dittes, J. Hořejši, Fortsch.
Phys. 42, 101 (1994). https://doi.org/10.1002/prop.2190420202

2. X.D. Ji, Phys. Rev. Lett. 78, 610 (1997). https://doi.org/10.1103/
PhysRevLett.78.610

3. X.D. Ji, Phys. Rev. D 55, 7114 (1997). https://doi.org/10.1103/
PhysRevD.55.7114

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/prop.2190420202
https://doi.org/10.1103/PhysRevLett.78.610
https://doi.org/10.1103/PhysRevLett.78.610
https://doi.org/10.1103/PhysRevD.55.7114
https://doi.org/10.1103/PhysRevD.55.7114


Eur. Phys. J. C (2022) 82 :252 Page 15 of 16 252

4. A.V. Radyushkin, Phys. Lett. B 385, 333 (1996). https://doi.org/
10.1016/0370-2693(96)00844-1

5. A.V. Radyushkin, Phys. Rev. D 56, 5524 (1997). https://doi.org/
10.1103/PhysRevD.56.5524

6. M. Burkardt, Phys. Rev. D 62, 119903 (2000). https://doi.org/10.
1103/PhysRevD.62.071503. [Erratum: Phys. Rev. D 66, 119903
(2002)]

7. M. Burkardt, Int. J. Mod. Phys. A 18, 173 (2003). https://doi.org/
10.1142/S0217751X03012370

8. M. Burkardt, Phys. Lett. B 595, 245 (2004). https://doi.org/10.
1016/j.physletb.2004.05.070

9. X.D. Ji, W. Melnitchouk, X. Song, Phys. Rev. D 56, 5511 (1997).
https://doi.org/10.1103/PhysRevD.56.5511

10. M.V. Polyakov, A.G. Shuvaev, On “dual” parametrizations of gen-
eralized parton distributions (2002). arXiv:hep-ph/0207153

11. M.V. Polyakov, Phys. Lett. B 555, 57 (2003). https://doi.org/10.
1016/S0370-2693(03)00036-4

12. M.V. Polyakov, P. Schweitzer, Int. J. Mod. Phys. A 33(26), 1830025
(2018). https://doi.org/10.1142/S0217751X18300259

13. C. Lorcé, H. Moutarde, A.P. Trawiński, Eur. Phys. J. C 79(1), 89
(2019). https://doi.org/10.1140/epjc/s10052-019-6572-3

14. E.R. Berger, M. Diehl, B. Pire, Eur. Phys. J. C 23, 675 (2002).
https://doi.org/10.1007/s100520200917

15. J.C. Collins, L. Frankfurt, M. Strikman, Phys. Rev. D 56, 2982
(1997). https://doi.org/10.1103/PhysRevD.56.2982

16. A. Accardi et al., Eur. Phys. J. A 52(9), 268 (2016). https://doi.org/
10.1140/epja/i2016-16268-9

17. R. Abdul Khalek, et al., Science Requirements and Detector Con-
cepts for the Electron-Ion Collider: EIC Yellow Report (2021).
arXiv:2103.05419 [physics.ins-det]

18. D.P. Anderle et al., Front. Phys. (Beijing) 16(6), 64701 (2021).
https://doi.org/10.1007/s11467-021-1062-0

19. J.L. Abelleira Fernandez et al., J. Phys. G 39, 075001 (2012).
https://doi.org/10.1088/0954-3899/39/7/075001

20. K. Kumericki, S. Liuti, H. Moutarde, Eur. Phys. J. A 52(6), 157
(2016). https://doi.org/10.1140/epja/i2016-16157-3

21. N. d’Hose, S. Niccolai, A. Rostomyan, Eur. Phys. J. A 52(6), 151
(2016). https://doi.org/10.1140/epja/i2016-16151-9

22. L. Favart, M. Guidal, T. Horn, P. Kroll, Eur. Phys. J. A 52(6), 158
(2016). https://doi.org/10.1140/epja/i2016-16158-2

23. P. Chatagnon et al., Phys. Rev. Lett. 127(26), 262501 (2021).
https://doi.org/10.1103/PhysRevLett.127.262501

24. V. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, P. Sznajder,
Phys. Rev. D 103(11), 114019 (2021). https://doi.org/10.1103/
PhysRevD.103.114019

25. S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 42, 281 (2005). https://
doi.org/10.1140/epjc/s2005-02298-5

26. S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 53, 367 (2008). https://
doi.org/10.1140/epjc/s10052-007-0466-5

27. S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 65, 137 (2010). https://
doi.org/10.1140/epjc/s10052-009-1178-9

28. M. Vanderhaeghen, P.A.M. Guichon, M. Guidal, Phys. Rev. Lett.
80, 5064 (1998). https://doi.org/10.1103/PhysRevLett.80.5064

29. M. Vanderhaeghen, P.A.M. Guichon, M. Guidal, Phys. Rev. D 60,
094017 (1999). https://doi.org/10.1103/PhysRevD.60.094017

30. K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Prog.
Part. Nucl. Phys. 47, 401 (2001). https://doi.org/10.1016/
S0146-6410(01)00158-2

31. M. Guidal, M.V. Polyakov, A.V. Radyushkin, M. Vander-
haeghen, Phys. Rev. D 72, 054013 (2005). https://doi.org/10.1103/
PhysRevD.72.054013

32. V. Bertone and collaborators, in preparation (2021)
33. M. Constantinou, Eur. Phys. J. A 57(2), 77 (2021). https://doi.org/

10.1140/epja/s10050-021-00353-7
34. B. Berthou et al., Eur. Phys. J. C 78(6), 478 (2018). https://doi.org/

10.1140/epjc/s10052-018-5948-0

35. K. Kumericki, Status of the GeParD code
(2021). Joint GDR-QCD/QCD@short distances and
STRONG2020/PARTONS/FTE@LHC/NLOAccess workshop

36. K. Kumericki, Nature 570(7759), E1 (2019). https://doi.org/10.
1038/s41586-019-1211-6

37. H. Dutrieux, C. Lorcé, H. Moutarde, P. Sznajder, A. Trawiński, J.
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